[go: up one dir, main page]

JP2010121518A - Vertical shaft magnus type wind turbine generator - Google Patents

Vertical shaft magnus type wind turbine generator Download PDF

Info

Publication number
JP2010121518A
JP2010121518A JP2008295692A JP2008295692A JP2010121518A JP 2010121518 A JP2010121518 A JP 2010121518A JP 2008295692 A JP2008295692 A JP 2008295692A JP 2008295692 A JP2008295692 A JP 2008295692A JP 2010121518 A JP2010121518 A JP 2010121518A
Authority
JP
Japan
Prior art keywords
cylindrical
cylindrical blade
wind
blade
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008295692A
Other languages
Japanese (ja)
Inventor
Takasuke Yoshinaga
貴祐 吉永
Toyoaki Furukawa
豊秋 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008295692A priority Critical patent/JP2010121518A/en
Publication of JP2010121518A publication Critical patent/JP2010121518A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical shaft Magnus type wind turbine generator which has good startability irrespective of wind speed and can efficiently generate power. <P>SOLUTION: This generator includes a wind direction measuring means measuring wind direction of air flow acting on a cylindrical blade, an azimuth angle measuring means measuring azimuth angle of the cylindrical blade circulating on a circular trajectory having a center on a generator axis, and a wind speed measuring means measuring wind speed of the air flow acting on the cylindrical blade. Slippage of a cylindrical blade position and the wind direction is detected based on the wind direction, the azimuth angle, and the wind speed measured by the measuring means, rotation speed of the cylindrical blade is determined, and a motor rotating the cylindrical blade is respectively controlled based on the slippage of the cylindrical blade position and wind direction, and the rotation speed of the cylindrical blade. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電機に連結される発電機軸と、該発電機軸を中心として回転するとともに円筒体翼を軸支する支持部材と、該支持部材上に垂設され各個に独立して回転する複数の円筒体翼と、該円筒体翼の翼根部に夫々設けられ円筒体翼を回転させるモーターとを備え、前記支持部材上に垂設される円筒体翼が発電機軸を中心とする円周軌道上に配設されるとともに、前記円筒体翼の回転と該円筒体翼に作用する空気流により生じるマグナス揚力によって円筒体翼が該円周軌道上を円運動して発電機軸を回転せしめる縦軸式マグナス型風力発電装置に関する。   The present invention relates to a generator shaft connected to a generator, a support member that rotates about the generator shaft and supports a cylindrical blade, and a plurality of members that are suspended on the support member and rotate independently of each other. A cylindrical wing and a motor provided on the blade root of the cylindrical wing for rotating the cylindrical wing, and the cylindrical wing suspended from the support member has a circumferential orbit about the generator shaft A vertical axis that is disposed above and rotates the generator shaft by causing the cylindrical blade to circularly move on the circumferential track by the Magnus lift generated by the rotation of the cylindrical blade and the air flow acting on the cylindrical blade. The present invention relates to a type Magnus type wind power generator.

従来、風力発電装置には様々な形式のものがあり、その形式に応じてそれぞれ異なる特性を有している。例えば風力発電装置を、風車を支持する軸の取り付け方向により分類すれば、その軸の取り付け方向が垂直である縦軸式とその軸の取り付け方向が水平である横軸式とに分類される。縦軸式には、サボニウス型、ダリウス型などがあり、横軸式には、プロペラ型などがある。   Conventionally, there are various types of wind turbine generators, and each has different characteristics depending on the type. For example, if a wind power generator is classified according to the mounting direction of the shaft that supports the windmill, it is classified into a vertical axis type in which the shaft mounting direction is vertical and a horizontal axis type in which the shaft mounting direction is horizontal. The vertical axis includes a Savonius type and Darrieus, and the horizontal axis includes a propeller type.

また、風力発電装置は、風車を回転させるトルクとして抗力が支配的に作用される抗力型と、風車を回転させるトルクとして抗力が支配的に作用される揚力型とに分類することができる。抗力型にはサボニウス型があり、微風といわれる低速の風においても風車が良く回転するから低速の風でも発電できるという利点があるが、大電力を発電しようとすると、その構造上から装置が大型化して経済的でない。   Further, the wind turbine generator can be classified into a drag type in which a drag acts predominantly as a torque for rotating the windmill and a lift type in which a drag acts predominantly as a torque for rotating the windmill. The drag type is the Savonius type, which has the advantage of being able to generate power even at low speeds because the windmill rotates well even in low speed winds, which are said to be light breeze. Not economical.

また、揚力型の風力発電装置としてはダリウス型などがあり、その構造上、小電力の発電だけでなく大電力の発電にも容易に対応できる利点があるばかりでなく、ものによっては小型ながら効率良く電力を発生させることができるという利点を有している。しかし、揚力型は、発電のために回転を開始する風速である回転開始風速として、高速の風力が必要であるという特性があり、低速の風に対しては回転ができず起動性が悪いため、発電効率が十分に得られないという問題を有している。   In addition, there is a Darius type as a wind power generator of the lift type, and its structure not only has the advantage of being able to easily handle not only small power generation but also high power generation, and depending on what is small, it is efficient There is an advantage that electric power can be generated well. However, the lift type has the characteristic that high-speed wind power is required as the rotation start wind speed, which is the wind speed at which rotation starts for power generation. The power generation efficiency cannot be sufficiently obtained.

一方、飛行装置に使用されている揚力発生装置としてはジェット機やプロペラ機等に使用されている固定翼によるものが主流である。航空機の固定翼の代わりにマグナス効果の円筒を適用した例として特許文献1(特開昭61−105299号公報)が開示されている。特許文献1によれば、小型且つ軽量な揚力装置をマグナス効果の円筒により可能にし、揚力装置の小型化とともに経済的な航空機の形成に役立てている。
このようなマグナス効果を利用し、現在では上述した方式の他に特許文献2(特開2007−85327号公報)に開示される風力発電装置が提案されている。
On the other hand, as a lift generating device used in a flying device, a main component is a fixed wing used in a jet or a propeller. Patent Document 1 (Japanese Patent Laid-Open No. 61-105299) is disclosed as an example in which a Magnus effect cylinder is used instead of a fixed wing of an aircraft. According to Patent Document 1, a small and lightweight lift device is made possible by a cylinder of the Magnus effect, which is useful for the formation of an economical aircraft as well as miniaturization of the lift device.
A wind power generator disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 2007-85327) has been proposed using the Magnus effect in addition to the method described above.

特許文献2は横軸式風力発電装置であり、詳しくは、発電機構部に回転トルクを伝達する水平回転軸と、該水平回転軸から放射状に所要数配設された回転円柱と、該各回転円柱をこれら回転円柱の軸周りに回転駆動する駆動モータをと備え、前記各回転円柱の回転と風力との相互作用で生じるマグナス揚力により前記水平回転軸を回転させて発電機構部を駆動するマグナス型風力発電装置であって、前記回転円柱の外周表面に空気流動を発生させてマグナス揚力を増大させる空気流動手段が、所定位置に設けられている発明である。   Patent Document 2 is a horizontal axis wind power generator, and more specifically, a horizontal rotating shaft that transmits rotational torque to a power generation mechanism, a rotating cylinder that is arranged in a required number radially from the horizontal rotating shaft, and each rotation A driving motor that rotates the cylinder around the axis of the rotating cylinder, and drives the power generation mechanism by rotating the horizontal rotating shaft by the Magnus lift generated by the interaction between the rotation of each rotating cylinder and wind force. In this type of wind power generator, air flow means for generating air flow on the outer peripheral surface of the rotating cylinder to increase Magnus lift is provided at a predetermined position.

また、縦軸式でマグナス効果を利用した風力発電装置としては、特許文献3(特開2008−175070号公報)が開示されている。特許文献3は、発電機の垂直回転軸を中心軸とする架台上に、各個自転するマグナス円筒を円周上に複数個垂直に軸支して配置し、各マグナス円筒には自転用の駆動装置を設けており、風速中で各マグナス円筒が自転することにより発生するマグナス力で各マグナス円筒、上部回転架台、下部回転架台等により構成されるマグナス型風車部を回転させ、マグナス型風車の回転軸に連結した発電機を回転させることにより発電させている。   Patent Document 3 (Japanese Patent Laid-Open No. 2008-175070) is disclosed as a wind power generator that uses the Magnus effect in a vertical axis. In Patent Document 3, a plurality of rotating Magnus cylinders are vertically supported on a circumference on a frame having a vertical rotation axis of a generator as a central axis, and each Magnus cylinder is driven for rotation. A device is provided to rotate the Magnus type wind turbine unit composed of each Magnus cylinder, upper rotating frame, lower rotating frame, etc. by the Magnus force generated by the rotation of each Magnus cylinder in the wind speed. Electricity is generated by rotating a generator connected to the rotating shaft.

特開昭61−105299号公報JP-A 61-105299 特開2007−85327号公報JP 2007-85327 A 特開2008−175070号公報JP 2008-175070 A

しかしながら、前記特許文献2においては、横軸型の風力発電装置であるため大型であり、また風況の良い場所が必要となり、その場所までの道路建設、設置場所での建設、発電された電力の回収等、投下資本が大きくかかり、それらの費用は、電力採算に大きく影響している。
また、特許文献3においては、比較的低速や中速の領域にも設置できる縦軸型の風力発電装置ではあるが、風力発電装置の後流部において、マグナス円筒に発生する逆方向に回転させるマグナス力の制御が後流部への風速カットであり、風向に対して常に風の上流を向かせる風向維持装置を用いる必要があるため、その制御に時間差が生じるとともにカットされた後流部への風速が有効に活用されていないため、発電効率が十分に得られるものではない。
However, in Patent Document 2, since it is a horizontal axis type wind power generator, it is large and requires a place with good wind conditions. Road construction up to that place, construction at the place of installation, electric power generated Investing capital, such as the recovery of a large amount of money, and these costs greatly affect the profitability of electricity.
Further, in Patent Document 3, although it is a vertical wind power generator that can be installed in a relatively low speed or medium speed region, it is rotated in the reverse direction generated in the Magnus cylinder at the wake portion of the wind power generator. The control of the Magnus force is the wind speed cut to the wake, and it is necessary to use a wind direction maintaining device that always keeps the wind upstream with respect to the wind direction. Because the wind speed is not effectively utilized, the power generation efficiency cannot be obtained sufficiently.

従って、本発明はかかる従来技術の課題に鑑み、風速に関わらず起動性が良好であり、効率良く発電可能な縦軸式マグナス型風力発電装置を提供することを課題とする。   Accordingly, an object of the present invention is to provide a longitudinal-type Magnus type wind power generator that has good startability regardless of wind speed and is capable of generating electric power efficiently.

本発明は、かかる目的を達成するため、発電機に連結される発電機軸と、該発電機軸を中心として回転するとともに円筒体翼を軸支する支持部材と、該支持部材上に垂設され各個に独立して回転する複数の円筒体翼と、該円筒体翼の翼根部に夫々設けられ円筒体翼を回転させるモーターとを備え、前記支持部材上に垂設される円筒体翼が発電機軸を中心とする円周軌道上に配設されるとともに、前記円筒体翼の回転と該円筒体翼に作用する空気流により生じるマグナス揚力によって円筒体翼が該円周軌道上を円運動して発電機軸を回転せしめる縦軸式マグナス型風力発電装置において、
前記円筒体翼に作用する空気流の風向を計測する風向計測手段と、前記発電機軸を中心とする円周軌道上を円運動する円筒体翼のアジマス角を計測するアジマス角計測手段と、前記円筒体翼に作用する空気流の風速を計測する風速計測手段とを備え、前記計測手段により計測される風向、アジマス角、風速に基づいて円筒体翼位置と風向のズレを検出するとともに円筒体翼の回転数を決定し、該円筒体翼位置と風向のズレ及び円筒体翼の回転数に基づいて円筒体翼を回転させるモーターを夫々制御したことを特徴とする。
In order to achieve such an object, the present invention provides a generator shaft connected to a generator, a support member that rotates about the generator shaft and supports a cylindrical blade, and is suspended from the support member. A plurality of cylindrical wings that rotate independently of each other, and a motor that rotates the cylindrical wings provided respectively at the blade roots of the cylindrical wings, and the cylindrical wings suspended on the support member include a generator shaft The cylindrical wings are caused to move circularly on the circumferential orbits by the Magnus lift generated by the rotation of the cylindrical wings and the air flow acting on the cylindrical wings. In the vertical type Magnus type wind power generator that rotates the generator shaft,
Wind direction measuring means for measuring the wind direction of the air flow acting on the cylindrical blade, azimuth angle measuring means for measuring the azimuth angle of the cylindrical blade moving circularly on a circular orbit around the generator shaft, and A wind speed measuring means for measuring the wind speed of the air flow acting on the cylindrical blade, and detecting a deviation of the cylindrical blade position and the wind direction based on the wind direction, the azimuth angle, and the wind speed measured by the measuring means, and the cylindrical body The rotational speed of the blade is determined, and the motor for rotating the cylindrical blade is controlled based on the displacement of the cylindrical blade position and the wind direction and the rotational speed of the cylindrical blade.

本発明によれば、計測される風向、アジマス角、風速に基づいて円筒体翼位置と風向のズレを検出するとともに円筒体翼の回転数を決定し、該円筒体翼位置と風向のズレ及び円筒体翼の回転数に基づいて円筒体翼を回転させるモーターを夫々制御することにより、円筒体翼の回転速度を最適化してマグナス効果を最大限利用することができる。よって、風速に関わらず起動性が良好であり、効率良く発電可能な縦軸式マグナス型風力発電装置を提供することができる。   According to the present invention, the displacement of the cylindrical blade position and the wind direction is detected based on the measured wind direction, azimuth angle, and wind speed, the rotational speed of the cylindrical blade is determined, the displacement of the cylindrical blade position and the wind direction, and By controlling the motors that rotate the cylindrical blades based on the rotational speed of the cylindrical blades, the rotational speed of the cylindrical blades can be optimized to maximize the Magnus effect. Therefore, it is possible to provide a vertical axis type Magnus type wind power generator that has good startability regardless of wind speed and can generate power efficiently.

また、前記円筒体翼が風下側に位置するときに、風上側に位置する円筒体翼の回転方向と逆向きに円筒体翼を回転若しくは回転を停止させたことを特徴とする。
このように、前記円筒体翼が風下側に位置するときに、風上側に位置する円筒体翼の回転方向と逆向きに円筒体翼を回転若しくは回転を停止させることにより、円筒体翼に受ける風力を最大限に利用し、風力発電装置の正方向の回転モーメントを更に向上させることができる。
Further, when the cylindrical wing is positioned on the leeward side, the cylindrical wing is rotated or stopped in a direction opposite to the rotation direction of the cylindrical wing positioned on the leeward side.
In this way, when the cylindrical blade is positioned on the leeward side, the cylindrical blade is rotated or stopped in a direction opposite to the rotational direction of the cylindrical blade positioned on the windward side, thereby receiving the cylindrical blade. Wind power can be utilized to the maximum and the rotational moment in the positive direction of the wind turbine generator can be further improved.

また、前記風下側は、風向に対して90°<θ<270°の範囲域であることを特徴とする。
さらに、前記円筒体翼が風向に対して90°若しくは270°に位置するときに円筒体の回転を停止させることを特徴とする。
これにより、風向に対して常に風の上流を向かせなくても、円筒体翼が風向に対してどの範囲域に位置するかによって円筒体翼ごとに回転を制御すれば良く、風力発電装置の正方向の回転モーメントを向上させて、風力発電を高効率で行うことが可能となる。
Further, the leeward side is in a range of 90 ° <θ <270 ° with respect to the wind direction.
Further, when the cylindrical blade is positioned at 90 ° or 270 ° with respect to the wind direction, the rotation of the cylindrical body is stopped.
As a result, even if the upstream direction of the wind is not always directed to the wind direction, the rotation of each cylindrical blade may be controlled depending on which range the cylindrical blade is located with respect to the wind direction. Wind power generation can be performed with high efficiency by improving the rotational moment in the positive direction.

また、前記円筒体翼に作用する空気流の風速によって該円筒体翼の回転数を増減させることを特徴とする。
このように、前記円筒体翼に作用する空気流の風速によって該円筒体翼の回転数を増減させ、風速に対して最適な円筒体翼の回転数を選択することによりマグナス効果が得られるため、円筒体翼の回転制御不能状態となり回転数が増加した場合でも発電機が過回転状態になる恐れがなく安全である。従来の風力発電装置は、風に対するピッチ角度を変化させて回転する力を変化させているため、風速に比例して発電機回転数が増加し過回転で風車を損傷する可能性を有しているが、本発明によれば過回転状態になる恐れがなく、また回転数制御のためピッチ角度制御よりも容易である。
Further, the rotational speed of the cylindrical blade is increased or decreased according to the wind velocity of the air flow acting on the cylindrical blade.
Thus, the Magnus effect can be obtained by increasing / decreasing the rotational speed of the cylindrical blade according to the wind speed of the air flow acting on the cylindrical blade, and selecting the optimal rotational speed of the cylindrical blade with respect to the wind speed. Even when the rotational speed of the cylindrical blade is disabled, the generator is safe without being in a state of over-rotation. Since the conventional wind power generator changes the rotating force by changing the pitch angle with respect to the wind, there is a possibility that the generator speed increases in proportion to the wind speed and damages the windmill due to overspeed. However, according to the present invention, there is no fear of over-rotation, and it is easier than pitch angle control for controlling the number of rotations.

また、前記円筒体翼の円筒側面部の表面に螺旋状の空気穴を形成し、該円筒体翼の回転方向に空気を吐出しながら円筒体翼を回転させることを特徴とする。
このように、前記円筒体翼の円筒側面部の表面に螺旋状の空気穴を形成し、該円筒体翼の回転方向に空気を吐出しながら円筒体翼を回転させることにより、マグナス効果の効率を向上させることができる。
Further, a spiral air hole is formed on the surface of the cylindrical side surface of the cylindrical blade, and the cylindrical blade is rotated while discharging air in the rotation direction of the cylindrical blade.
Thus, by forming a spiral air hole in the surface of the cylindrical side surface of the cylindrical blade, and rotating the cylindrical blade while discharging air in the rotational direction of the cylindrical blade, the efficiency of the Magnus effect Can be improved.

さらに、前記円筒体翼の円筒側面部の表面に、該円筒体翼の周方向に沿う並行溝を形成したことを特徴とする。
このように、前記円筒体翼の円筒側面部の表面に、該円筒体翼の周方向に沿う並行溝を形成することにより、円筒体翼の自転時の空気抵抗を低減し、円筒体翼にそれぞれ設けられるモーターの負荷を減らすことができる。
Furthermore, parallel grooves along the circumferential direction of the cylindrical blade are formed on the surface of the cylindrical side surface of the cylindrical blade.
Thus, by forming parallel grooves along the circumferential direction of the cylindrical blade on the surface of the cylindrical side surface of the cylindrical blade, the air resistance during rotation of the cylindrical blade is reduced, and the cylindrical blade is It is possible to reduce the load on each motor provided.

以上記載のごとく本発明によれば、計測される風向、アジマス角、風速に基づいて円筒体翼位置と風向のズレを検出するとともに円筒体翼の回転数を決定し、該円筒体翼位置と風向のズレ及び円筒体翼の回転数に基づいて円筒体翼を回転させるモーターを夫々制御することにより、円筒体翼の回転速度を最適化してマグナス効果を最大限利用することができる。
また、前記円筒体翼が風下側に位置するときに、風上側に位置する円筒体翼の回転方向と逆向きに円筒体翼を回転若しくは回転を停止させることにより、円筒体翼に受ける風力を最大限に利用し、風力発電装置の正方向の回転モーメントを更に向上させることができる。
さらに、風向に対して常に風の上流を向かせなくても、円筒体翼が風向に対してどの範囲域に位置するかによって円筒体翼ごとに回転を制御すれば良く、風力発電装置の正方向の回転モーメントを向上させて、風力発電を高効率で行うことが可能となる。
さらにまた、前記円筒体翼に作用する空気流の風速によって該円筒体翼の回転数を増減させ、風速に対して最適な円筒体翼の回転数を選択することによりマグナス効果が得られるため、円筒体翼の回転制御不能状態となり回転数が増加した場合でも発電機が過回転状態になる恐れがなく安全である。
よって、本発明によれば、風速に関わらず起動性が良好であり、効率良く発電可能な縦軸式マグナス型風力発電装置を提供することができる。
As described above, according to the present invention, the displacement of the cylindrical blade position and the wind direction is detected based on the measured wind direction, azimuth angle, and wind speed, and the rotational speed of the cylindrical blade is determined. By controlling the motor for rotating the cylindrical blade based on the deviation of the wind direction and the rotational speed of the cylindrical blade, the rotational speed of the cylindrical blade can be optimized to maximize the Magnus effect.
In addition, when the cylindrical wing is located on the leeward side, the cylindrical wing is rotated or stopped in a direction opposite to the rotational direction of the cylindrical wing located on the leeward side, so that the wind force received by the cylindrical wing is reduced. It can be utilized to the maximum and the rotational moment in the positive direction of the wind turbine generator can be further improved.
Furthermore, even if the upstream direction of the wind is not always directed to the wind direction, the rotation of each cylindrical blade may be controlled depending on the range of the position of the cylindrical blade relative to the wind direction. Wind power generation can be performed with high efficiency by improving the rotational moment in the direction.
Furthermore, since the Magnus effect can be obtained by increasing or decreasing the rotational speed of the cylindrical blade by the wind speed of the air flow acting on the cylindrical blade, and selecting the optimal rotational speed of the cylindrical blade with respect to the wind speed, Even when the rotational speed of the cylindrical blade is disabled, the generator does not become over-rotated and is safe.
Therefore, according to the present invention, it is possible to provide a vertical-magnet-type wind turbine generator that has good startability regardless of wind speed and can generate power efficiently.

以下、図面を参照して本発明の好適な実施の形態を例示的に詳しく説明する。但しこの実施の形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の実施形態1に係る縦軸式マグナス型風力発電装置の正面図、図2は実施形態1に係る縦軸式マグナス型風力発電装置の制御方式の説明図、図3は実施形態1に係る縦軸式マグナス型風力発電装置の制御方式の構成を示すブロック図、図4は風向との位相差による円筒体翼の回転方向を表した特性テーブルの一例を示す図、図5は実施形態1に係る縦軸式マグナス型風力発電装置の参考斜視図、図6は円筒体翼の表面形状の一例を示す図である。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Only.
FIG. 1 is a front view of a vertical-type Magnus-type wind power generator according to Embodiment 1 of the present invention, FIG. 2 is an explanatory diagram of a control method of the vertical-type Magnus-type wind power generator according to Embodiment 1, and FIG. FIG. 4 is a block diagram showing the configuration of the control method of the vertical axis Magnus type wind power generator according to the first embodiment, FIG. 4 is a diagram showing an example of a characteristic table showing the rotational direction of the cylindrical blades according to the phase difference with the wind direction, and FIG. FIG. 6 is a reference perspective view of a vertical-magnet-type wind turbine generator according to Embodiment 1, and FIG. 6 is a diagram showing an example of the surface shape of a cylindrical blade.

(実施形態1)
図1に示す縦軸式マグナス型風力発電装置10は、発電機14と、該発電機14を収納する基礎12と、該発電機14に連結される発電機軸6と、各個に独立して回転する複数の円筒体翼2と、該発電機軸6を中心として回転するとともに円筒体翼2を軸支する支持部材4と、該円筒体翼2の翼根部に夫々設けられ円筒体翼を回転させるモーター3とで構成される。
なお、円筒体翼2はその翼根部に設けられたモーター3で回転させる他に、翼根部のみ風を受けて回る構造としても良い。このとき、円筒体翼内部に設けた歯車、クラッチ等で伝達や遮断を行って増速、減速、停止を行う。
(Embodiment 1)
A vertical-type Magnus type wind power generator 10 shown in FIG. 1 rotates independently for each of a generator 14, a foundation 12 for housing the generator 14, a generator shaft 6 connected to the generator 14. A plurality of cylindrical blades 2, a support member 4 that rotates around the generator shaft 6 and supports the cylindrical blade 2, and a cylindrical blade that is provided at the blade root of the cylindrical blade 2. It consists of a motor 3.
The cylindrical blade 2 may be rotated by a wind only at the blade root, in addition to being rotated by the motor 3 provided at the blade root. At this time, transmission, interruption, and the like are performed by gears, clutches, and the like provided inside the cylindrical blades to increase, decrease, and stop.

このような縦軸式マグナス型風力発電装置の制御方式について、図2〜図5を用いて説明する。本実施形態では、風力発電装置の翼を4本としているが、本発明の趣旨を逸脱しなければ本数は問わない。
図2に示すように、円筒体翼2a、2b、2c、2dは円周軌道上に配設されており、各円筒体翼の翼根部に夫々設けられ円筒体翼を回転(自転)させるモーターを3a、3b、3c、3dとした。これらの円筒体翼2a〜2dを風に対して直角方向に回転させ、該円筒体翼に作用する空気流により生じるマグナス揚力によって円筒体翼2a〜2dは該円周軌道上を公転方向に円運動して発電機軸6を回転させる。
A control method of such a vertical axis type Magnus type wind power generator will be described with reference to FIGS. In the present embodiment, the number of blades of the wind power generator is four, but the number is not limited as long as it does not depart from the spirit of the present invention.
As shown in FIG. 2, the cylindrical wings 2a, 2b, 2c, and 2d are arranged on a circumferential orbit, and are provided at the blade roots of the respective cylindrical wings to rotate (spin) the cylindrical wings. 3a, 3b, 3c, 3d. These cylindrical wings 2a to 2d are rotated in a direction perpendicular to the wind, and the cylindrical wings 2a to 2d are rotated in a revolving direction on the circumferential orbit by a Magnus lift generated by an air flow acting on the cylindrical wing. Move to rotate the generator shaft 6.

また、図2では円筒体翼2aに作用する風向を0°とし、円筒体翼2b、2c、2dを位置させた。さらに、前記円筒体翼に作用する空気流の風向を計測する風向計16と、前記発電機軸を中心とする円周軌道上を円運動する円筒体翼のアジマス角を計測するアジマス角計17と、前記円筒体翼に作用する空気流の風速を計測する風速計18とを備える構成とした。   In FIG. 2, the wind direction acting on the cylindrical blade 2a is set to 0 °, and the cylindrical blades 2b, 2c, and 2d are positioned. Furthermore, an anemometer 16 that measures the wind direction of the air flow acting on the cylindrical blade, and an azimuth angle meter 17 that measures the azimuth angle of the cylindrical blade that moves circularly on a circumferential orbit about the generator shaft; And an anemometer 18 for measuring the wind speed of the airflow acting on the cylindrical blade.

本実施形態に係る縦軸式マグナス型風力発電装置では、風向計16により計測される風向、アジマス角計17により計測されるアジマス角、風速計18により計測される風速によって円筒体翼を回転させるモーターを夫々制御する。この制御について、円筒体翼2aが図2の位置にある場合を例とし、図3を用いて説明する。   In the vertical-type Magnus type wind power generator according to the present embodiment, the cylindrical blade is rotated by the wind direction measured by the anemometer 16, the azimuth angle measured by the azimuth angle meter 17, and the wind speed measured by the anemometer 18. Control each motor. This control will be described with reference to FIG. 3, taking as an example the case where the cylindrical blade 2a is in the position of FIG.

まず、風向計16、アジマス角計17で計測された風向、アジマス角に基づき、円筒体翼2aの位置と風向のズレを検出する。また、風速計18で計測された風速により、円筒体翼2aの回転数(翼回転数)を決定する。
次に、前記円筒体翼2aの位置と風向のズレ及び円筒体翼2aの回転数に基づき、各円筒体翼への回転速度や回転方向等の自転パラメータ指令を受け、例えば円筒体翼2aを回転させるモーター3aを制御させる。同様に、円筒体翼2b、2c、2dを自転させるモーター3b、3c、3dもパラメータ指令を受け制御される。
First, based on the wind direction and the azimuth angle measured by the anemometer 16 and the azimuth angle meter 17, a deviation between the position of the cylindrical blade 2a and the wind direction is detected. Further, the rotational speed (blade rotational speed) of the cylindrical blade 2 a is determined by the wind speed measured by the anemometer 18.
Next, based on the position and wind direction deviation of the cylindrical blade 2a and the rotational speed of the cylindrical blade 2a, a rotation parameter command such as the rotational speed and direction of rotation of each cylindrical blade is received. The motor 3a to be rotated is controlled. Similarly, the motors 3b, 3c, and 3d that rotate the cylindrical wings 2b, 2c, and 2d are also controlled by receiving parameter commands.

このとき、円筒体翼の回転方向は、円筒体翼が風向に対してどの領域に位置するかによって決定される。風向との位相差について円筒体翼毎に示した図を図4とした。
図4に示すように、円筒体翼はそれぞれ正回転域と、逆回転域を有している。正回転域は風上側であり、即ち翼が風向に対して0°≦θ<90°、270°<θ<360°の範囲域に位置するときである。また、逆回転域は風下側であり、即ち翼が風向に対して風向に対して90°<θ<270°の範囲域に位置するときであり、θ=90°、270°のときは回転を停止させる。
図中の太線部分は同時刻で指令されるモーター駆動指令である。
At this time, the rotation direction of the cylindrical wing is determined depending on which region the cylindrical wing is located with respect to the wind direction. A diagram showing the phase difference with the wind direction for each cylindrical blade is shown in FIG.
As shown in FIG. 4, each cylindrical blade has a normal rotation region and a reverse rotation region. The positive rotation region is on the windward side, that is, when the blade is located in the range of 0 ° ≦ θ <90 °, 270 ° <θ <360 ° with respect to the wind direction. Further, the reverse rotation region is the leeward side, that is, when the blade is located in the range of 90 ° <θ <270 ° with respect to the wind direction, and when θ = 90 ° and 270 °, the rotation is performed. Stop.
The bold line portion in the figure is a motor drive command that is commanded at the same time.

例えば、図5を用いて説明すると、円筒体翼が風上側に位置するときは、矢印aのように正回転させる(円筒体翼2a)。
一方、円筒体翼が風下側に位置するときは、正回転させるとマグナス効果が逆に出てしまうため、翼を矢印bのように逆回転させる(円筒体翼2c)。なお、マグナス効果が逆に出なければいいので、円筒体翼が風下側に位置するときは、モーターを停止若しくは円筒体翼に組み込まれたクラッチ(図示しない)で回転力を遮断する等して回転を停止させても良い。
このようにして、円筒体翼2a〜2dに受ける風力を最大限に利用し、風力発電装置の正方向の回転モーメントを更に向上させ、発電機軸6を矢印c方向へ回転させて発電する。
For example, referring to FIG. 5, when the cylindrical wing is located on the windward side, it is rotated forward as indicated by an arrow a (cylindrical wing 2a).
On the other hand, when the cylindrical wing is positioned on the leeward side, if the forward rotation is performed, the Magnus effect appears in reverse, so the wing is rotated reversely as indicated by arrow b (cylindrical wing 2c). Note that the Magnus effect does not have to be reversed, so when the cylindrical wing is located on the leeward side, stop the motor or shut off the rotational force with a clutch (not shown) incorporated in the cylindrical wing. The rotation may be stopped.
In this way, the wind force received by the cylindrical blades 2a to 2d is utilized to the maximum, the rotational moment in the positive direction of the wind power generator is further improved, and the generator shaft 6 is rotated in the direction of the arrow c to generate power.

なお、上述したように、円筒体翼2aの回転数(翼回転数)は、風速計18で計測された風速により決定され、風速に対して最適な円筒体翼の回転数を選択することにより、マグナス効果を最大限利用できる。
よって、低速な弱風の場合においても起動性が良く発電することも可能であるし、また強風時で円筒体翼の回転制御不能状態となり回転数が増加した場合でもモーターを停止若しくは円筒体翼に組み込まれたクラッチ(図示しない)で回転力を遮断する等して回転を停止させることができるので、発電機が過回転状態になる恐れがなく安全である。
また、円筒体翼はその翼根部に設けられたモーター3で回転させる他に、翼根部のみ風を受けて回る構造しても良いため、風の力のみで翼を回転させることができ、消費電力を削減することができる。
As described above, the rotational speed of the cylindrical blade 2a (blade rotational speed) is determined by the wind speed measured by the anemometer 18, and by selecting the optimal rotational speed of the cylindrical blade with respect to the wind speed. The Magnus effect can be used to the maximum.
Therefore, it is possible to generate electric power with good startability even in the case of low-speed, low winds, and even when the wind speed is strong and the rotation of the cylindrical blades becomes impossible, the motor is stopped or the cylindrical blades are stopped. Since the rotation can be stopped by shutting off the rotational force with a clutch (not shown) incorporated in the generator, it is safe without causing the generator to become over-rotated.
In addition to rotating the cylindrical blade by the motor 3 provided at the blade root, the blade may be rotated only by the wind, so that the blade can be rotated only by the wind force. Electric power can be reduced.

次に、円筒体翼2の表面形状について、図6に示す表面形状を一例として説明する。
図6の(a)は円筒体翼の表面に螺旋空気穴を設けており、該円筒体翼の回転方向(自転方向)に空気を吐出しながら円筒体翼を回転させる。これにより、マグナス効果の効率を向上させることができる。
図6の(b)は円筒体翼の周方向に沿う並行溝を形成しており、円筒体翼の自転時の空気抵抗を低減し、円筒体翼にそれぞれ設けられるモーターの負荷を減らすことができる。
Next, the surface shape of the cylindrical blade 2 will be described by taking the surface shape shown in FIG. 6 as an example.
In FIG. 6A, a spiral air hole is provided on the surface of the cylindrical blade, and the cylindrical blade is rotated while discharging air in the rotation direction (spinning direction) of the cylindrical blade. Thereby, the efficiency of the Magnus effect can be improved.
In FIG. 6B, parallel grooves are formed along the circumferential direction of the cylindrical blades to reduce the air resistance during the rotation of the cylindrical blades, and to reduce the load on the motors respectively provided on the cylindrical blades. it can.

また、その他の構成として、図6の(c)のように、円筒体翼の表面にディンプルを配しても良く、これにより円筒体翼の回転時(自転時)の空気抵抗を軽減してモーターの負荷を減らすことができる。
さらに、図6の(d)のように、円筒体翼の表面に大小の隆起を螺旋状に形成しても良い。大小の隆起は翼長手方向で配列などピッチを変えることができ、これにより風速の高度分布に応じたマグナス効果の効率を向上することができる。また、円筒体翼の剛性も向上するという効果もある。なお、前記隆起を形成するものとして導電体を用い、導電体を螺旋状に巻き付けることで落雷対策も可能である。
As another configuration, as shown in FIG. 6C, dimples may be arranged on the surface of the cylindrical wing, thereby reducing the air resistance when the cylindrical wing rotates (during rotation). The load on the motor can be reduced.
Furthermore, as shown in FIG. 6D, large and small ridges may be formed in a spiral shape on the surface of the cylindrical wing. The pitches of the large and small ridges can be changed in pitch, for example, in the longitudinal direction of the wing, thereby improving the efficiency of the Magnus effect according to the altitude distribution of the wind speed. In addition, there is an effect that the rigidity of the cylindrical blade is also improved. It is to be noted that a lightning countermeasure can be taken by using a conductor to form the bulge and winding the conductor in a spiral shape.

以上述べたように、自転時の空気抵抗を低減させる、あるいはスパイラル状に隆起をつけて空気が翼根部に向って流れるようにする等、円筒体翼2の表面形状を工夫することにより、マグナス効果の効率を向上させることができる。よって、発電が効率よく行われる。   As described above, by devising the surface shape of the cylindrical wing 2 such as reducing the air resistance at the time of rotation or adding a spiral ridge so that the air flows toward the blade root, The efficiency of the effect can be improved. Therefore, power generation is performed efficiently.

本発明によれば、風速に関わらず起動性が良好であり、効率良く発電を行うことができるので、比較的風速の低い領域にも設置することができる縦軸式マグナス型風力発電装置への適用に際して有益である。   According to the present invention, the startability is good regardless of the wind speed, and power generation can be performed efficiently. Therefore, the vertical axis type Magnus type wind power generator can be installed in a relatively low wind speed region. Useful in application.

本発明の実施形態1に係る縦軸式マグナス型風力発電装置の正面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a vertical-axis Magnus type wind power generator according to Embodiment 1 of the present invention. 実施形態1に係る縦軸式マグナス型風力発電装置の制御方式の説明図である。It is explanatory drawing of the control system of the vertical-axis-type Magnus type | mold wind power generator which concerns on Embodiment 1. FIG. 実施形態1に係る縦軸式マグナス型風力発電装置の制御方式の構成を示すブロック図である。It is a block diagram which shows the structure of the control system of the vertical axis | shaft type Magnus type | formula wind power generator concerning Embodiment 1. FIG. 風向との位相差による円筒体翼の回転方向を表した特性テーブルの一例を示す図である。It is a figure which shows an example of the characteristic table showing the rotation direction of the cylindrical wing | blade by the phase difference with a wind direction. 実施形態1に係る縦軸式マグナス型風力発電装置の参考斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a reference perspective view of a vertical-magnet-type wind turbine generator according to a first embodiment. 円筒体翼の表面形状の一例を示す図である。It is a figure which shows an example of the surface shape of a cylindrical body wing | blade.

符号の説明Explanation of symbols

2 円筒体翼(翼)
3 モーター
4 支持部材
6 発電機軸
10 縦軸式マグナス型風力発電装置
14 発電機
16 風向計
17 アジマス角計
18 風速計
2 Cylindrical wings (wings)
DESCRIPTION OF SYMBOLS 3 Motor 4 Support member 6 Generator shaft 10 Vertical axis | shaft type Magnus type wind power generator 14 Generator 16 Anemometer 17 Azimuth angle meter 18 Anemometer

Claims (7)

発電機に連結される発電機軸と、該発電機軸を中心として回転するとともに円筒体翼を軸支する支持部材と、該支持部材上に垂設され各個に独立して回転する複数の円筒体翼と、該円筒体翼の翼根部に夫々設けられ円筒体翼を回転させるモーターとを備え、前記支持部材上に垂設される円筒体翼が発電機軸を中心とする円周軌道上に配設されるとともに、前記円筒体翼の回転と該円筒体翼に作用する空気流により生じるマグナス揚力によって円筒体翼が該円周軌道上を円運動して発電機軸を回転せしめる縦軸式マグナス型風力発電装置において、
前記円筒体翼に作用する空気流の風向を計測する風向計測手段と、前記発電機軸を中心とする円周軌道上を円運動する円筒体翼のアジマス角を計測するアジマス角計測手段と、前記円筒体翼に作用する空気流の風速を計測する風速計測手段とを備え、
前記計測手段により計測される風向、アジマス角、風速に基づいて円筒体翼位置と風向のズレを検出するとともに円筒体翼の回転数を決定し、該円筒体翼位置と風向のズレ及び円筒体翼の回転数に基づいて円筒体翼を回転させるモーターを夫々制御したことを特徴とする縦軸式マグナス型風力発電装置。
A generator shaft connected to the generator, a support member that rotates about the generator shaft and supports the cylindrical blade, and a plurality of cylindrical blades that are vertically suspended on the support member and rotate independently of each other And a motor provided on the blade root of the cylindrical wing for rotating the cylindrical wing, and the cylindrical wing suspended from the support member is disposed on a circumferential track around the generator shaft. In addition, the vertical axis type Magnus type wind power which rotates the generator shaft by circular movement of the cylindrical blade on the circumferential track by the Magnus lift generated by the rotation of the cylindrical blade and the air flow acting on the cylindrical blade. In the power generator,
Wind direction measuring means for measuring the wind direction of the air flow acting on the cylindrical blade, azimuth angle measuring means for measuring the azimuth angle of the cylindrical blade moving circularly on a circular orbit around the generator shaft, and A wind speed measuring means for measuring the wind speed of the air flow acting on the cylindrical blade,
Based on the wind direction, azimuth angle, and wind speed measured by the measuring means, the displacement of the cylindrical blade position and the wind direction is detected and the rotational speed of the cylindrical blade is determined, and the displacement of the cylindrical blade position and the wind direction and the cylindrical body are determined. A vertical axis type Magnus type wind power generator in which motors for rotating cylindrical blades are controlled based on the rotational speed of the blades.
前記円筒体翼が風下側に位置するときに、風上側に位置する円筒体翼の回転方向と逆向きに円筒体翼を回転若しくは回転を停止させたことを特徴とする請求項1記載の縦軸式マグナス型風力発電装置。   2. The longitudinal direction according to claim 1, wherein when the cylindrical blade is positioned on the leeward side, the cylindrical blade is rotated or stopped in a direction opposite to a rotation direction of the cylindrical blade positioned on the windward side. Axial Magnus type wind power generator. 前記風下側は、風向に対して90°<θ<270°の範囲域であることを特徴とする請求項2記載の縦軸式マグナス型風力発電装置。   The vertical wind Magnus type wind turbine generator according to claim 2, wherein the leeward side is in a range of 90 ° <θ <270 ° with respect to the wind direction. 前記円筒体翼が風向に対して90°若しくは270°に位置するときに円筒体の回転を停止させることを特徴とする請求項1記載の縦軸式マグナス型風力発電装置。   The vertical axis type Magnus type wind power generator according to claim 1, wherein the rotation of the cylindrical body is stopped when the cylindrical blade is positioned at 90 ° or 270 ° with respect to the wind direction. 前記円筒体翼に作用する空気流の風速によって該円筒体翼の回転数を増減させることを特徴とする請求項1記載の縦軸式マグナス型風力発電装置。   The vertical axis type Magnus type wind power generator according to claim 1, wherein the number of rotations of the cylindrical blade is increased or decreased by a wind speed of an air flow acting on the cylindrical blade. 前記円筒体翼の円筒側面部の表面に螺旋状の空気穴を形成し、該円筒体翼の回転方向に空気を吐出しながら円筒体翼を回転させることを特徴とする請求項1記載の縦軸式マグナス型風力発電装置。   2. The longitudinal direction according to claim 1, wherein a spiral air hole is formed on a surface of a cylindrical side surface of the cylindrical blade, and the cylindrical blade is rotated while discharging air in a rotation direction of the cylindrical blade. Axial Magnus type wind power generator. 前記円筒体翼の円筒側面部の表面に、該円筒体翼の周方向に沿う並行溝を形成したことを特徴とする請求項1記載の縦軸式マグナス型風力発電装置。   The vertical-magnet-type wind turbine generator according to claim 1, wherein parallel grooves along the circumferential direction of the cylindrical blade are formed on the surface of the cylindrical side surface of the cylindrical blade.
JP2008295692A 2008-11-19 2008-11-19 Vertical shaft magnus type wind turbine generator Withdrawn JP2010121518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008295692A JP2010121518A (en) 2008-11-19 2008-11-19 Vertical shaft magnus type wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295692A JP2010121518A (en) 2008-11-19 2008-11-19 Vertical shaft magnus type wind turbine generator

Publications (1)

Publication Number Publication Date
JP2010121518A true JP2010121518A (en) 2010-06-03

Family

ID=42323065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008295692A Withdrawn JP2010121518A (en) 2008-11-19 2008-11-19 Vertical shaft magnus type wind turbine generator

Country Status (1)

Country Link
JP (1) JP2010121518A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014848A1 (en) 2011-07-22 2013-01-31 Shimizu Atsushi Vertical axis type magnus wind turbine generator
JP2013194724A (en) * 2012-03-23 2013-09-30 Atsushi Shimizu Rotary blade of magnus type wind power generator
JP2014046912A (en) * 2012-08-31 2014-03-17 Kenichi Suzuki Surface structure of rotor of rotor ship
CN105736243A (en) * 2016-05-12 2016-07-06 武汉国能华瀛新科技有限公司 Closed-loop controlling system for horizontal-axis wind turbine
WO2017002757A1 (en) * 2015-07-01 2017-01-05 株式会社チャレナジー Magnus-type thrust generating device
CN107152378A (en) * 2016-03-03 2017-09-12 苏州盛恒兴自动化设备有限公司 A kind of vertical-shaft wind machine rotor rotating energy conversion device and its application method
CN108590963A (en) * 2018-05-03 2018-09-28 南京师范大学 A kind of variable speed drives control strategy of vertical axis windmill cylindrical rotor blade
US20190063453A1 (en) * 2017-08-22 2019-02-28 Asia Vital Components Co., Ltd. Heat-dissipation fan with cylindrical fan blades
TWI710698B (en) * 2019-12-03 2020-11-21 周中奇 Vertical axis fluid energy converting device
JP2023173903A (en) * 2022-05-26 2023-12-07 晋一 嶋名 Hollow cylinder vertical wind turbine

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014848A1 (en) 2011-07-22 2013-01-31 Shimizu Atsushi Vertical axis type magnus wind turbine generator
JP5209826B1 (en) * 2011-07-22 2013-06-12 敦史 清水 Vertical axis type Magnus wind generator
US20140008916A1 (en) * 2011-07-22 2014-01-09 Atsushi Shimizu Vertical axis type magnus wind turbine generator
CN103717884A (en) * 2011-07-22 2014-04-09 清水敦史 Vertical axis type Magnus wind turbine generator
JP2013194724A (en) * 2012-03-23 2013-09-30 Atsushi Shimizu Rotary blade of magnus type wind power generator
JP2014046912A (en) * 2012-08-31 2014-03-17 Kenichi Suzuki Surface structure of rotor of rotor ship
JPWO2017002757A1 (en) * 2015-07-01 2017-09-07 株式会社チャレナジー Magnus thrust generator
WO2017002757A1 (en) * 2015-07-01 2017-01-05 株式会社チャレナジー Magnus-type thrust generating device
CN107850054A (en) * 2015-07-01 2018-03-27 巧连能源 Magnus formula thrust inducing device
RU2689862C1 (en) * 2015-07-01 2019-05-29 Чалленерджи Инк. Traction-generating device by magnus effect type and rotary device using it
US10443564B2 (en) 2015-07-01 2019-10-15 Challenergy Inc. Magnus type thrust generating device
CN107152378A (en) * 2016-03-03 2017-09-12 苏州盛恒兴自动化设备有限公司 A kind of vertical-shaft wind machine rotor rotating energy conversion device and its application method
CN105736243A (en) * 2016-05-12 2016-07-06 武汉国能华瀛新科技有限公司 Closed-loop controlling system for horizontal-axis wind turbine
US20190063453A1 (en) * 2017-08-22 2019-02-28 Asia Vital Components Co., Ltd. Heat-dissipation fan with cylindrical fan blades
US10598187B2 (en) * 2017-08-22 2020-03-24 Asia Vital Components Co., Ltd. Heat-dissipation fan with cylindrical fan blades
CN108590963A (en) * 2018-05-03 2018-09-28 南京师范大学 A kind of variable speed drives control strategy of vertical axis windmill cylindrical rotor blade
TWI710698B (en) * 2019-12-03 2020-11-21 周中奇 Vertical axis fluid energy converting device
JP2023173903A (en) * 2022-05-26 2023-12-07 晋一 嶋名 Hollow cylinder vertical wind turbine

Similar Documents

Publication Publication Date Title
JP2010121518A (en) Vertical shaft magnus type wind turbine generator
JP5101689B2 (en) Wind power generator and yaw rotation control method for wind power generator
EP2267298A2 (en) Wind turbine blade with rotatable fins at the tip
CA2707407C (en) Wind turbine with a flow control device and method for optimizing energy production therein
WO2007043895A1 (en) Speed control system for a wind power plant&#39;s rotor and an aerodynamic brake
KR20120024820A (en) Rotation blade-type vertical axis wind turbine
JP2008175070A (en) Vertical shaft magnus type wind power generator
US20220412310A1 (en) Enhanced Wind Turbine Wake Mixing
JP2004197643A (en) Vertical axis wind turbine device
EP3473851A1 (en) Wind turbine generator
TWI710698B (en) Vertical axis fluid energy converting device
US9234498B2 (en) High efficiency wind turbine
JP2008057350A (en) Wind power generator
JP4184847B2 (en) Windmill device and wind power generator using the same
KR20170000577A (en) Vertical axis wind turbine with detachable drag force generating wing for lift force blade
US20080019832A1 (en) Turbine/rotorcraft/oar blade
US12071931B2 (en) Universal propeller, operating method and favoured use
WO2011065840A2 (en) Method for turning a wind power plant relative to the wind direction
KR101525553B1 (en) Wind power generator with vertical rotor
JP2005171868A (en) Compound windmill
JP2010223207A (en) Vertical type reaction wind turbine generator
KR20150069066A (en) Lift-Drag Blade and Rotor for Vertical Axis Wind-Turbine
US20160327022A1 (en) Crossflow axes rotary mechanical devices with dynamic increased swept area
KR20020005556A (en) Savonius Windmill Blade with Air-Vent Groove
WO2018235220A1 (en) Sail device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207