[go: up one dir, main page]

JP2010119214A - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
JP2010119214A
JP2010119214A JP2008290642A JP2008290642A JP2010119214A JP 2010119214 A JP2010119214 A JP 2010119214A JP 2008290642 A JP2008290642 A JP 2008290642A JP 2008290642 A JP2008290642 A JP 2008290642A JP 2010119214 A JP2010119214 A JP 2010119214A
Authority
JP
Japan
Prior art keywords
phase
synchronous motor
voltage
permanent magnet
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008290642A
Other languages
Japanese (ja)
Inventor
Shingo Makishima
信吾 牧島
Keiichi Uesono
恵一 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2008290642A priority Critical patent/JP2010119214A/en
Publication of JP2010119214A publication Critical patent/JP2010119214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent an excessive current or an excessive voltage when a coil or a wiring of a permanent-magnet synchronous motor is ground-faulted. <P>SOLUTION: An inverter device includes: a DC voltage source whose one end is grounded so as to output a DC voltage; and three sets of switching circuits each having a series connection of a switching element and a freewheel diode connected in reverse parallel between outputs of the DC voltage source. A three-phase permanent-magnet synchronous motor is connected between the three sets of series connections. A ground-fault is detected when a wiring connecting the permanent-magnet synchronous motor or a coil of the permanent-magnet synchronous motor is ground-faulted. Each switching element between a point connected to the permanent-magnet synchronous motor and the grounded one-end of the DC voltage source is made conductive while the other switching elements are disconnected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は永久磁石形同期電動機を駆動するためのインバータ装置に関するもので、特に地絡時の過大な電流やトルクを防止するものである。   The present invention relates to an inverter device for driving a permanent magnet type synchronous motor, and particularly to prevent excessive current and torque during a ground fault.

一例として図3にインバータ装置の構成図を示し、この図に基づいて従来の技術を説明する。   As an example, FIG. 3 shows a configuration diagram of an inverter device, and a conventional technique will be described based on this diagram.

直流電圧源1は、一方が接地されている直流の電圧源であり、電圧の高い方をP側、電圧の低いほうをN側とし、N側が接地されている。インバータ回路2は、直流電圧源1の直流の電圧が入力され、3相の交流電圧が出力される。U相スイッチング回路21は、U相出力電圧vU を出力し、V相スイッチング回路22はV相出力電圧vVを出力し、W相スイッチング回路23はW相出力電圧vWを出力する。 The DC voltage source 1 is a DC voltage source, one of which is grounded. The higher voltage is on the P side, the lower voltage is on the N side, and the N side is grounded. The inverter circuit 2 receives a DC voltage from the DC voltage source 1 and outputs a three-phase AC voltage. U-phase switching circuit 21 outputs the U-phase output voltage v U, V-phase switching circuit 22 outputs the V-phase output voltage v V, W-phase switching circuit 23 outputs the W-phase output voltage v W.

U相スイッチング回路21、V相スイッチング回路22、W相スイッチング回路23は、それぞれ図4に示す構成となっている。P側スイッチング素子201及びP側フリーホイールダイオード202を逆並列に接続したものと、N側スイッチング素子203及びN側フリーホイールダイオード204を逆並列に接続したものが、直流電圧源の間に直列に接続され、直列に接続した間がそれぞれの相の出力電圧となる。   The U-phase switching circuit 21, the V-phase switching circuit 22, and the W-phase switching circuit 23 each have the configuration shown in FIG. A P-side switching element 201 and a P-side freewheel diode 202 connected in antiparallel and an N-side switching element 203 and an N-side freewheel diode 204 connected in antiparallel are connected in series between DC voltage sources. Connected and connected in series becomes the output voltage of each phase.

インバータ回路2の3相の出力電圧vU 、vV 、vWには、永久磁石形同期電動機3が接続される。電流検出器4は、インバータ回路2から永久磁石形同期電動機3に流れるU相電流iU、V相電流iV、W相電流iを検出する。 A permanent magnet type synchronous motor 3 is connected to the three-phase output voltages v U , v V , and v W of the inverter circuit 2. The current detector 4 detects a U-phase current i U , a V-phase current i V , and a W-phase current i w flowing from the inverter circuit 2 to the permanent magnet type synchronous motor 3.

図5は制御回路5の一構成例である。電流制御器51は、電流検出器4で検出した3相の電流iU、iV、iWを入力し、永久磁石形同期電動機3の回転速度及び回転角度を演算し、制御指令に追従するような電圧指令を出力する。PWM制御器52は、電流制御器51の出力である電圧指令を入力し、電圧指令と基本波成分が一致するようなスイッチング指令を、各相のP側スイッチング素子201及びN側スイッチング素子203に出力する。なお制御指令とは、永久磁石形同期電動機3のトルクや回転速度の指令である。(例えば特許文献1) FIG. 5 is a configuration example of the control circuit 5. The current controller 51 inputs the three-phase currents i U , i V , i W detected by the current detector 4, calculates the rotation speed and rotation angle of the permanent magnet type synchronous motor 3, and follows the control command. The voltage command is output. The PWM controller 52 receives the voltage command that is the output of the current controller 51, and sends a switching command that matches the fundamental wave component to the voltage command to the P-side switching element 201 and the N-side switching element 203 of each phase. Output. The control command is a command for torque or rotational speed of the permanent magnet type synchronous motor 3. (For example, Patent Document 1)

ここでインバータ回路2の詳細な動作をU相スイッチング回路21を用いて説明するが、V相スイッチング回路22及びW相スイッチング回路23においても同様な動作である。なお、スイッチング素子は導通状態をオン、遮断状態をオフとする。   Here, the detailed operation of the inverter circuit 2 will be described using the U-phase switching circuit 21, but the same operation is performed in the V-phase switching circuit 22 and the W-phase switching circuit 23. Note that the switching element is turned on in the conduction state and turned off in the cutoff state.

P側スイッチング素子201がオンし、N側スイッチング素子203がオフした場合、U相電流iUが正のときはP側スイッチング素子201経由でU相電流iUが流れる。一方でU相電流iUが負のときはP側フリーホイールダイオード202経由でU相電流iUが流れる。どちらの場合も、U相電圧vUは直流電圧源1のP側と一致する。 P-side switching element 201 is turned on, if the N-side switching element 203 is turned off, when the U-phase current i U is positive flows U-phase current i U via P-side switching element 201. On the other hand when the U-phase current i U is negative flows U-phase current i U via P side freewheeling diode 202. In either case, the U-phase voltage v U matches the P side of the DC voltage source 1.

P側スイッチング素子201がオフし、N側スイッチング素子203がオンした場合は、U相電流iUが正のときはN側フリーホイールダイオード204経由でU相電流iUが流れ、U相電流iUが負のときはN側スイッチング素子203経由でU相電流iUが流れる。どらの場合も、U相電圧vUは直流電圧源1のN側と一致する。 When the P-side switching element 201 is turned off and the N-side switching element 203 is turned on, when the U-phase current i U is positive, the U-phase current i U flows through the N-side freewheel diode 204, and the U-phase current i When U is negative, a U-phase current i U flows through the N-side switching element 203. In either case, the U-phase voltage v U matches the N side of the DC voltage source 1.

P側スイッチング素子201及びN側スイッチング素子203の両方がオフしている場合は、U相電流iUが正のときはN側フリーホイールダイオード204経由でU相電流iUが流れU相電圧vUは直流電圧源1のP側と一致する。U相電流iUが負のときは、P側フリーホイールダイオード202経由でU相電流iUが流れU相電圧vUは直流電圧源1のN側と一致する。 When both the P-side switching element 201 and the N-side switching element 203 are off, when the U-phase current i U is positive, the U-phase current i U flows through the N-side freewheel diode 204 and the U-phase voltage v U coincides with the P side of the DC voltage source 1. When the U-phase current i U is negative, the U-phase current i U flows through the P-side freewheel diode 202, and the U-phase voltage v U matches the N side of the DC voltage source 1.

P側スイッチング素子201及びN側スイッチング素子203の両方がオンの場合は、直流電圧源1が短絡された状態となり、P側スイッチング素子201及びN側スイッチング素子203に過大な電流が流れ素子破壊を招くため、PWM制御器52はそのようなスイッチング指令を出すことは禁止している。
特許公開2001−69785公報
When both the P-side switching element 201 and the N-side switching element 203 are on, the DC voltage source 1 is short-circuited, and an excessive current flows through the P-side switching element 201 and the N-side switching element 203, causing element destruction. Therefore, the PWM controller 52 is prohibited from issuing such a switching command.
Patent Publication 2001-69785

永久磁石形同期電動機3のコイルの1相もしくは、インバータ回路2と永久磁石形同期電動機3の間の配線のうちの1相が地絡すると過大な電流・トルクが発生する。   If one phase of the coil of the permanent magnet type synchronous motor 3 or one phase of the wiring between the inverter circuit 2 and the permanent magnet type synchronous motor 3 is grounded, an excessive current / torque is generated.

地絡の一例として、W相の配線が地絡した場合を図6を用いて詳しく説明する。地絡が発生すると、電流制御器51は制御不能に陥りPWM制御器52はスイッチング指令の出力を停止するため、U相スイッチング回路21及びV相スイッチング回路22及びW相スイッチング回路23のP側スイッチング素子201及びN側スイッチング素子203は全てオフとなった状態となる。   As an example of the ground fault, the case where the W-phase wiring is grounded will be described in detail with reference to FIG. When a ground fault occurs, the current controller 51 becomes uncontrollable and the PWM controller 52 stops outputting the switching command. Therefore, the P-side switching of the U-phase switching circuit 21, the V-phase switching circuit 22, and the W-phase switching circuit 23 is performed. The element 201 and the N-side switching element 203 are all turned off.

直流電圧源1のN側は接地されているため、地絡したW相の配線と、U相スイッチング回路21及びV相スイッチング回路22のN側フリーホイールダイオード204経由で回路が形成されることとなる。   Since the N side of the DC voltage source 1 is grounded, a circuit is formed via the grounded W-phase wiring and the N-side freewheel diode 204 of the U-phase switching circuit 21 and the V-phase switching circuit 22. Become.

図7はU相電圧vUとW相電圧vWの差もしくはV相電圧vVとW相電圧vWの差が直流電圧源1の電圧を超えない場合の、W相の配線が地絡した際の等価回路である。永久磁石形同期電動機3は、永久磁石による交流誘起電圧が発生するために、交流電流を流そうとする。しかしながら、U相電流iU及びV相電流iVは、フリーホイールダイオード204によって、一方向にしか流れない。そのため、流れる電流は一方向に増大するため、想定された電流に比べ過大な電流が発生する場合がある。過大な電流が発生すると、同時に過大なトルクが発生することとなる。 Figure 7 shows the grounding of the W phase wiring when the difference between the U phase voltage v U and the W phase voltage v W or the difference between the V phase voltage v V and the W phase voltage v W does not exceed the voltage of the DC voltage source 1 This is an equivalent circuit. The permanent magnet type synchronous motor 3 tries to flow an alternating current because an alternating current induced voltage is generated by the permanent magnet. However, the U-phase current i U and the V-phase current i V flow only in one direction by the free wheel diode 204. For this reason, since the flowing current increases in one direction, an excessive current may occur compared to the assumed current. When an excessive current is generated, an excessive torque is generated at the same time.

永久磁石形同期電動機3の永久磁石による交流誘起電圧により、U相電圧vUとW相電圧vWの差もしくはV相電圧vVとW相電圧vWの差が直流電圧源1の電圧を超える場合、U相電流iUもしくはV相電流iVがそれぞれの相のP側フリーホイールダイオード202経由で直流電圧源1へ電流が流れることとなるが、永久磁石形同期電動機3の永久磁石による交流誘起電圧は、直流電圧源1の電圧以下もしくは同程度に設計されるため、直流電圧源1へ電流が流れたとしても僅かである。 The difference between the U-phase voltage v U and the W-phase voltage v W or the difference between the V-phase voltage v V and the W-phase voltage v W is caused by the AC induced voltage generated by the permanent magnet of the permanent magnet type synchronous motor 3. In the case of exceeding, the U-phase current i U or the V-phase current i V flows to the DC voltage source 1 via the P-side freewheel diode 202 of each phase, but depending on the permanent magnet of the permanent magnet type synchronous motor 3 Since the AC induced voltage is designed to be equal to or less than the voltage of the DC voltage source 1, even if a current flows to the DC voltage source 1, the AC induced voltage is small.

過大な電流及びトルクが発生すると、様々な問題が想定される。例として、通常運転での想定以上の電流が流れることにより、永久磁石形同期電動機3のコイルや永久磁石形同期電動機3とインバータ回路2の間の配線が過熱し、火災を生じる可能性がある。また、N側フリーホイールダイオード204に過大な電流が流れるため、N側フリーホイールダイオード204の破損を招く可能性もある。また、この時に発生する電流は、永久磁石形同期電動機3に内蔵されている永久磁石の作用を抑制するように働くため、永久磁石形同期電動機3の永久磁石を減磁させる恐れがある。永久磁石形同期電動機3の永久磁石が減磁すると、永久磁石を交換するために永久磁石形同期電動機3を分解・修理するか、永久磁石形同期電動機3自体を新しいものに交換する必要があり、きわめて非効率である。   When excessive current and torque are generated, various problems are assumed. As an example, when a current more than expected in normal operation flows, the coil of the permanent magnet type synchronous motor 3 or the wiring between the permanent magnet type synchronous motor 3 and the inverter circuit 2 may be overheated, causing a fire. . Moreover, since an excessive current flows through the N-side freewheel diode 204, the N-side freewheel diode 204 may be damaged. Further, since the current generated at this time works to suppress the action of the permanent magnet built in the permanent magnet type synchronous motor 3, there is a risk of demagnetizing the permanent magnet of the permanent magnet type synchronous motor 3. When the permanent magnet of the permanent magnet type synchronous motor 3 is demagnetized, it is necessary to disassemble and repair the permanent magnet type synchronous motor 3 in order to replace the permanent magnet, or to replace the permanent magnet type synchronous motor 3 itself with a new one. It is extremely inefficient.

また、過大なトルクが発生することにより、永久磁石形同期電動機3が機械的破損を生じたり、永久磁石形同期電動機3に接続されている機械装置の破損の恐れもある。   In addition, when excessive torque is generated, the permanent magnet type synchronous motor 3 may be mechanically damaged or a mechanical device connected to the permanent magnet type synchronous motor 3 may be damaged.

請求項1の発明によれば、一端が接地された直流電圧を出力する直流電圧源と、前記直流電圧源の出力間にスイッチング素子及びフリーホイールダイオードが逆並列接続されたものを複数直列接続したものが3組あり、前記3組の直列接続の間に三相の永久磁石形同期電動機が接続されるインバータ装置において、前記永久磁石形同期電動機を接続する配線もしくは前記永久磁石形同期電動機のコイルが地絡した際に前記地絡を検知し、前記永久磁石形同期電動機が接続されている箇所と前記直流電圧源の接地されている一端との間のスイッチング素子は全て導通状態とし他のスイッチング素子は全て遮断状態とすることを特徴とするインバータ装置。   According to the first aspect of the present invention, a DC voltage source that outputs a DC voltage with one end grounded, and a plurality of switching elements and free wheel diodes connected in reverse parallel between the outputs of the DC voltage source are connected in series. There are three sets, and in the inverter device in which a three-phase permanent magnet type synchronous motor is connected between the three sets of series connection, wiring for connecting the permanent magnet type synchronous motor or a coil of the permanent magnet type synchronous motor When a ground fault occurs, the ground fault is detected, and all the switching elements between the place where the permanent magnet type synchronous motor is connected and one end of the DC voltage source that is grounded are in a conductive state. An inverter device characterized in that all elements are cut off.

請求項2の発明によれば、請求項1のインバータ装置において、前記地絡の検知は3相の電流の和が零でないことにより検知することを特長としたインバータ装置。   According to a second aspect of the present invention, in the inverter device of the first aspect, the ground fault is detected when the sum of three-phase currents is not zero.

本発明により、地絡が発生しても過大な電流やトルクが発生することを防ぐことができる。   According to the present invention, it is possible to prevent an excessive current or torque from being generated even when a ground fault occurs.

一端が接地された直流電圧を出力する直流電圧源と、前記直流電圧源の出力間にスイッチング素子及びフリーホイールダイオードが逆並列接続されたものを複数直列接続したものが3組あり、前記3組の直列接続の間に三相の永久磁石形同期電動機が接続されるインバータ装置において、前記永久磁石形同期電動機を接続する配線もしくは前記永久磁石形同期電動機のコイルが地絡した際に前記地絡を検知し、前記永久磁石形同期電動機が接続されている箇所と前記直流電圧源の接地されている一端との間のスイッチング素子は全て導通状態とし他のスイッチング素子は全て遮断状態とすることを特徴とするインバータ装置。   There are three sets of a DC voltage source that outputs a DC voltage with one end grounded, and a plurality of series-connected switching elements and free wheel diodes connected between the outputs of the DC voltage source. In the inverter device in which a three-phase permanent magnet type synchronous motor is connected between the series connection, the ground fault occurs when the wiring connecting the permanent magnet type synchronous motor or the coil of the permanent magnet type synchronous motor is grounded. The switching elements between the location where the permanent magnet type synchronous motor is connected and one end of the DC voltage source grounded are all in a conducting state, and all other switching elements are in a shut-off state. A featured inverter device.

図1を用いて請求項1及び請求項2の発明について説明するが、従来の技術と同一部分は省略する。   The invention of claim 1 and claim 2 will be described with reference to FIG. 1, but the same parts as those of the prior art will be omitted.

加算器53は、U相電流iU及びV相電流iV及びW相電流iWの和を出力する。地絡判定器54は、加算器53の出力が零でない場合、異常信号を出力する。 The adder 53 outputs the sum of the U-phase current i U and V-phase current i V and W-phase current i W. The ground fault determiner 54 outputs an abnormal signal when the output of the adder 53 is not zero.

通常運転時はU相電流iU,V相電流iV,W相電流iWの電流和がゼロとなるのに対し、地絡が発生すると3相の電流和がゼロとならないため、上記構成により地絡が発生すると異常信号を出力することが可能となる。 Since during normal operation that does not contrast U-phase current i U, V-phase current i V, the current sum of the W-phase current i W becomes zero, the ground fault occurs current sum of the three phases is zero, the configuration If a ground fault occurs, an abnormal signal can be output.

切替器55は、加算器53が異常信号を出力していない場合は、PWM制御器52の出力をそのまま出力し、加算器53が異常信号を出力した場合、U相スイッチング回路21及びV相スイッチング回路22及びW相スイッチング回路23のP側スイッチング素子201を全てオフに,N側スイッチング素子203を全てオンとするような信号を出力する。   The switch 55 outputs the output of the PWM controller 52 as it is when the adder 53 does not output an abnormal signal, and the U-phase switching circuit 21 and the V-phase switching when the adder 53 outputs an abnormal signal. Signals that turn off all P-side switching elements 201 and turn on all N-side switching elements 203 of the circuit 22 and the W-phase switching circuit 23 are output.

図2は、本発明を実施した場合の従来例の図7に相当する等価回路である。例のようにW相の配線が地絡した場合でも、全ての相の電流は両方向に流れることができるようになるため、一方向に電流が増大する恐れがなく、過大な電流やトルクの発生を防ぐことが可能となる。   FIG. 2 is an equivalent circuit corresponding to FIG. 7 of the conventional example when the present invention is implemented. Even if the W-phase wiring is grounded as shown in the example, all phases of current can flow in both directions, so there is no risk of current increase in one direction, and excessive current and torque are generated. Can be prevented.

直流電気鉄道は架線と線路の間の電圧を利用するため、インバータの直流電圧の一端が接地されており、永久磁石形同期電動機を駆動する際に地絡が発生すると過大な電流及びトルクが発生するが、本発明により解決されるため極めて有効である。   Since the DC electric railway uses the voltage between the overhead line and the track, one end of the DC voltage of the inverter is grounded, and if a ground fault occurs when driving the permanent magnet synchronous motor, excessive current and torque are generated. However, since it is solved by the present invention, it is extremely effective.

本発明の一実施例の制御回路構成図である。It is a control circuit block diagram of one Example of this invention. 本発明の一実施例の地絡時の等価回路である。It is an equivalent circuit at the time of a ground fault of one Example of this invention. インバータ装置の構成例である。It is a structural example of an inverter apparatus. インバータ回路のスイッチング回路一相分の一例である。It is an example for one phase of the switching circuit of an inverter circuit. 従来技術の制御回路構成図の一例である。It is an example of the control circuit block diagram of a prior art. 地絡時の一例である。It is an example of a ground fault. 従来技術における地絡時の一例の等価回路である。It is an equivalent circuit of an example at the time of a ground fault in a prior art.

符号の説明Explanation of symbols

1 直流電圧源
2 インバータ回路
21 U相スイッチング回路
22 V相スイッチング回路
23 W相スイッチング回路
201 P側スイッチング素子
202 P側フリーホイールダイオード
203 N側スイッチング素子
204 P側フリーホイールダイオード
3 永久磁石形同期電動機
4 電流検出器
5 制御回路
51 電流制御器
52 PWM制御器
53 加算器
54 地絡判定器
55 切替器
DESCRIPTION OF SYMBOLS 1 DC voltage source 2 Inverter circuit 21 U phase switching circuit 22 V phase switching circuit 23 W phase switching circuit 201 P side switching element 202 P side freewheel diode 203 N side switching element 204 P side freewheel diode 3 Permanent magnet type synchronous motor 4 Current detector 5 Control circuit 51 Current controller 52 PWM controller 53 Adder 54 Ground fault determiner 55 Switch

Claims (2)

一端が接地された直流電圧を出力する直流電圧源と、該直流電圧源の出力間にスイッチング素子及びフリーホイールダイオードが逆並列接続されたものを複数直列接続したものが3組あり、該3組の直列接続の間に三相の永久磁石形同期電動機が接続されるインバータ装置において、該永久磁石形同期電動機を接続する配線もしくは前記永久磁石形同期電動機のコイルが地絡した際に該地絡を検知し、前記永久磁石形同期電動機が接続されている箇所と前記直流電圧源の接地されている一端との間のスイッチング素子は全て導通状態とし他のスイッチング素子は全て遮断状態とすることを特徴とするインバータ装置。   There are three sets of a DC voltage source that outputs a DC voltage with one end grounded, and a plurality of series-connected switching elements and free wheel diodes connected between the outputs of the DC voltage source. In an inverter device in which a three-phase permanent magnet type synchronous motor is connected during serial connection, a ground fault occurs when a wiring connecting the permanent magnet type synchronous motor or a coil of the permanent magnet type synchronous motor is grounded. The switching elements between the location where the permanent magnet type synchronous motor is connected and one end of the DC voltage source grounded are all in a conducting state, and all other switching elements are in a shut-off state. A featured inverter device. 請求項1のインバータ装置において、前記地絡の検知は3相の電流の和が零でないことにより検知することを特徴としたインバータ装置。   2. The inverter device according to claim 1, wherein the detection of the ground fault is performed when the sum of three-phase currents is not zero.
JP2008290642A 2008-11-13 2008-11-13 Inverter device Pending JP2010119214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290642A JP2010119214A (en) 2008-11-13 2008-11-13 Inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290642A JP2010119214A (en) 2008-11-13 2008-11-13 Inverter device

Publications (1)

Publication Number Publication Date
JP2010119214A true JP2010119214A (en) 2010-05-27

Family

ID=42306490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290642A Pending JP2010119214A (en) 2008-11-13 2008-11-13 Inverter device

Country Status (1)

Country Link
JP (1) JP2010119214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215069A (en) * 2012-04-04 2013-10-17 Mitsubishi Electric Corp Motor controller, motor control method, and electric power steering device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416268A (en) * 1987-07-10 1989-01-19 Mitsubishi Electric Corp Earth protective circuit for inverter
JPH05328739A (en) * 1992-05-15 1993-12-10 Hitachi Ltd Power conversion equipment and detection ground fault method thereof
JP2002199744A (en) * 2000-12-27 2002-07-12 Daikin Ind Ltd Inverter protection method and device
JP2006238634A (en) * 2005-02-25 2006-09-07 Nsk Ltd Brushless motor and electric power steering apparatus using the same
JP2007189773A (en) * 2006-01-11 2007-07-26 Mitsubishi Electric Corp Field winding system of ac dynamo-electric machine apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416268A (en) * 1987-07-10 1989-01-19 Mitsubishi Electric Corp Earth protective circuit for inverter
JPH05328739A (en) * 1992-05-15 1993-12-10 Hitachi Ltd Power conversion equipment and detection ground fault method thereof
JP2002199744A (en) * 2000-12-27 2002-07-12 Daikin Ind Ltd Inverter protection method and device
JP2006238634A (en) * 2005-02-25 2006-09-07 Nsk Ltd Brushless motor and electric power steering apparatus using the same
JP2007189773A (en) * 2006-01-11 2007-07-26 Mitsubishi Electric Corp Field winding system of ac dynamo-electric machine apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215069A (en) * 2012-04-04 2013-10-17 Mitsubishi Electric Corp Motor controller, motor control method, and electric power steering device

Similar Documents

Publication Publication Date Title
CN106877755B (en) Rotating electric machine control device and electric power steering device including the same
JP5352570B2 (en) Rotating machine control device, rotating machine system, vehicle, electric vehicle or power generation system
JP4662316B2 (en) AC motor winding switching device and winding switching system thereof
JP4647684B2 (en) Power converter
JP6194113B2 (en) Motor drive device
JP5849586B2 (en) 3-level power conversion circuit system
JP4752772B2 (en) AC motor winding switching device and winding switching system thereof
WO2009107233A1 (en) Driving controller of ac motor
CN108352802B (en) Power conversion device and electric power steering device
WO2016038683A1 (en) Inverter device for driving multi-phase ac motor
CN109643959B (en) Power conversion device and logic circuit
CA2711504A1 (en) Power conversion device
JP5057661B2 (en) Electric motor drive system
JP6305495B1 (en) Inverter control device and inverter control method
JP2016019385A (en) Motor device
JP2017184448A (en) Motor controller and motor control method
JP5396920B2 (en) Winding switching device for three-phase AC motor drive system
JP2010028984A (en) Power conversion apparatus
JP3999226B2 (en) Electric motor control device
JP2010119214A (en) Inverter device
Heo et al. Fault tolerant control methods of dual type independent multi-phase BLDC motor under open-switch fault conditions
JP5784531B2 (en) Permanent magnet motor drive device
JP7463989B2 (en) Motor Control Device
WO2014112127A1 (en) Drive control device for railway vehicles
JP2017189029A (en) Motor controller and motor control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001