JP2010118449A - Method of manufacturing conductive film - Google Patents
Method of manufacturing conductive film Download PDFInfo
- Publication number
- JP2010118449A JP2010118449A JP2008289870A JP2008289870A JP2010118449A JP 2010118449 A JP2010118449 A JP 2010118449A JP 2008289870 A JP2008289870 A JP 2008289870A JP 2008289870 A JP2008289870 A JP 2008289870A JP 2010118449 A JP2010118449 A JP 2010118449A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- composition
- covering member
- cavity
- conductive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 147
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 138
- 229910052802 copper Inorganic materials 0.000 claims abstract description 138
- 239000010949 copper Substances 0.000 claims abstract description 138
- 239000002245 particle Substances 0.000 claims abstract description 100
- 238000010438 heat treatment Methods 0.000 claims abstract description 56
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 39
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims abstract description 29
- 239000005751 Copper oxide Substances 0.000 claims abstract description 25
- 229910000431 copper oxide Inorganic materials 0.000 claims abstract description 25
- 239000010419 fine particle Substances 0.000 claims description 44
- 239000000758 substrate Substances 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 25
- 238000000576 coating method Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 abstract description 59
- 239000000463 material Substances 0.000 abstract description 50
- 229920001721 polyimide Polymers 0.000 description 49
- 238000010304 firing Methods 0.000 description 39
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 27
- 229960004643 cupric oxide Drugs 0.000 description 25
- 229920005989 resin Polymers 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- 239000007787 solid Substances 0.000 description 24
- 239000002105 nanoparticle Substances 0.000 description 23
- 239000007789 gas Substances 0.000 description 21
- 230000007246 mechanism Effects 0.000 description 19
- 239000000126 substance Substances 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 16
- 238000007650 screen-printing Methods 0.000 description 15
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 14
- 229910052709 silver Inorganic materials 0.000 description 14
- 239000004332 silver Substances 0.000 description 14
- 239000002612 dispersion medium Substances 0.000 description 13
- 230000002265 prevention Effects 0.000 description 13
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 10
- 239000004519 grease Substances 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 239000010703 silicon Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000007747 plating Methods 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- -1 silver Chemical compound 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000002082 metal nanoparticle Substances 0.000 description 7
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003822 epoxy resin Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 5
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 5
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 3
- 239000005749 Copper compound Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 150000001880 copper compounds Chemical class 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000976 ink Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- PLIKAWJENQZMHA-UHFFFAOYSA-N 4-aminophenol Chemical compound NC1=CC=C(O)C=C1 PLIKAWJENQZMHA-UHFFFAOYSA-N 0.000 description 2
- ROWKJAVDOGWPAT-UHFFFAOYSA-N Acetoin Chemical compound CC(O)C(C)=O ROWKJAVDOGWPAT-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 2
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YZCKVEUIGOORGS-UHFFFAOYSA-N Hydrogen atom Chemical compound [H] YZCKVEUIGOORGS-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- MLFHJEHSLIIPHL-UHFFFAOYSA-N isoamyl acetate Chemical compound CC(C)CCOC(C)=O MLFHJEHSLIIPHL-UHFFFAOYSA-N 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- NDGRWYRVNANFNB-UHFFFAOYSA-N pyrazolidin-3-one Chemical class O=C1CCNN1 NDGRWYRVNANFNB-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FPZWZCWUIYYYBU-UHFFFAOYSA-N 2-(2-ethoxyethoxy)ethyl acetate Chemical compound CCOCCOCCOC(C)=O FPZWZCWUIYYYBU-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- RWLALWYNXFYRGW-UHFFFAOYSA-N 2-Ethyl-1,3-hexanediol Chemical compound CCCC(O)C(CC)CO RWLALWYNXFYRGW-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-SZSCBOSDSA-N 2-[(1s)-1,2-dihydroxyethyl]-3,4-dihydroxy-2h-furan-5-one Chemical compound OC[C@H](O)C1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-SZSCBOSDSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- ODZTXUXIYGJLMC-UHFFFAOYSA-N 2-hydroxycyclohexan-1-one Chemical compound OC1CCCCC1=O ODZTXUXIYGJLMC-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- SKCYVGUCBRYGTE-UHFFFAOYSA-N 4-hydroxyhexan-3-one Chemical compound CCC(O)C(=O)CC SKCYVGUCBRYGTE-UHFFFAOYSA-N 0.000 description 1
- ZZEYCGJAYIHIAZ-UHFFFAOYSA-N 4-methyl-1-phenylpyrazolidin-3-one Chemical compound N1C(=O)C(C)CN1C1=CC=CC=C1 ZZEYCGJAYIHIAZ-UHFFFAOYSA-N 0.000 description 1
- ZFIQGRISGKSVAG-UHFFFAOYSA-N 4-methylaminophenol Chemical compound CNC1=CC=C(O)C=C1 ZFIQGRISGKSVAG-UHFFFAOYSA-N 0.000 description 1
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 description 1
- BVEYJWQCMOVMAR-UHFFFAOYSA-N 5-Hydroxy-4-octanone Chemical compound CCCC(O)C(=O)CCC BVEYJWQCMOVMAR-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- CIWBSHSKHKDKBQ-DUZGATOHSA-N D-isoascorbic acid Chemical compound OC[C@@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-DUZGATOHSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- 150000000996 L-ascorbic acids Chemical class 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- WRUZLCLJULHLEY-UHFFFAOYSA-N N-(p-hydroxyphenyl)glycine Chemical compound OC(=O)CNC1=CC=C(O)C=C1 WRUZLCLJULHLEY-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical group [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 229940112669 cuprous oxide Drugs 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 235000010350 erythorbic acid Nutrition 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- GFAZHVHNLUBROE-UHFFFAOYSA-N hydroxymethyl propionaldehyde Natural products CCC(=O)CO GFAZHVHNLUBROE-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229940117955 isoamyl acetate Drugs 0.000 description 1
- 229940026239 isoascorbic acid Drugs 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- OEIJHBUUFURJLI-UHFFFAOYSA-N octane-1,8-diol Chemical compound OCCCCCCCCO OEIJHBUUFURJLI-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- CMCWWLVWPDLCRM-UHFFFAOYSA-N phenidone Chemical compound N1C(=O)CCN1C1=CC=CC=C1 CMCWWLVWPDLCRM-UHFFFAOYSA-N 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003217 poly(methylsilsesquioxane) Polymers 0.000 description 1
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229940032159 propylene carbonate Drugs 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 239000004250 tert-Butylhydroquinone Substances 0.000 description 1
- 235000019281 tert-butylhydroquinone Nutrition 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
本発明は、導電膜の製造方法に関するものである。 The present invention relates to a method for producing a conductive film.
近年、電子デバイスの製造では、地球環境の保護、レアメタルを始めたとした様々な材料の希少化、石油エネルギーの高騰のため、より低エネルギーコストで材料利用効率の高いプロセスを求めるようになってきており、プリント配線基板の製造もその1つである。多くの場合、プリント基板の配線パターン形成には銅のめっきが用いられているが、銅のめっきは基本的に一度基材全面に行われ、その後にフォトリソグラフィとエッチングによるパターニングを行う。その結果、めっきした量に対して最終製品まで残る銅の量はごくわずかであり材料の利用効率を著しく低下させている。また、フォトリソグラフィは解像度に優れた技術であるが、その利用には膨大なエネルギーが必要であり、プロセス過程においては膨大な材料が廃棄される。そこで、より効率的なめっきの方法として銅をパターニング部分にのみめっきするアディティブ法のめっきも開発されてはいるが、基材に触媒を含ませた高価な基材が必要である他、めっきが無電界めっきであるために時間がかかる、基材から剥離しやすいといった理由によって主流となるには至っていない。さらに根本的な問題として、めっきには環境汚染を防ぐために大量の廃液の処理が必要である。従ってめっきに代わる、低エネルギーコストで材料利用効率の高い導電膜の製造方法が求められている。 In recent years, manufacturing of electronic devices has been demanding processes with higher material utilization efficiency at lower energy costs due to the protection of the global environment, the scarcity of various materials such as rare metals, and soaring petroleum energy. Manufacturing of printed wiring boards is one of them. In many cases, copper plating is used to form a wiring pattern on a printed circuit board. However, copper plating is basically performed once on the entire surface of the substrate, and then patterned by photolithography and etching. As a result, the amount of copper remaining to the final product is negligible with respect to the amount of plating, which significantly reduces the material utilization efficiency. Photolithography is a technology with excellent resolution, but its use requires enormous energy, and enormous materials are discarded in the process. Therefore, although an additive plating method in which copper is plated only on the patterning portion has been developed as a more efficient plating method, an expensive base material containing a catalyst in the base material is required. Since it is electroless plating, it has not yet become mainstream because it takes time and is easily peeled off from the substrate. Furthermore, as a fundamental problem, plating requires treatment of a large amount of waste liquid to prevent environmental pollution. Therefore, there is a need for a method for producing a conductive film that replaces plating and has low material cost and high material utilization efficiency.
めっきのようなサブトラクティブな方法でなく、アディティブな方法による配線パターンのような導電膜の製造方法としては、導電性ペーストをパターニングして焼成するという方法が広く用いられている。導電性ペーストはスクリーン印刷などを用いて基材に直接パターンを描画し、焼成するというプロセスを経て配線パターニングが形成される。この方法ではペーストを直接パターニングするために材料のロスが少なく、エネルギー的にも低コストである点が有利である。 As a method for producing a conductive film such as a wiring pattern by an additive method rather than a subtractive method such as plating, a method of patterning and baking a conductive paste is widely used. The conductive paste is subjected to a process of drawing a pattern directly on a base material using screen printing or the like and baking it to form a wiring pattern. This method is advantageous in that since the paste is directly patterned, there is little material loss and the energy is low.
一般に市販されている導電性ペーストには、焼成に800℃以上の高温が必要な高温焼成型ペーストと、焼成に必要な温度が200℃程度と低温なポリマー型ペーストがある。高温焼成型ペーストは、銀を素材とした場合、バルクの銀とほとんど変わらない抵抗率を実現できる。ただし、導電性ペーストを塗布できる基材が耐熱温度の面から大きく制限され、特にプリント配線基板にとって重要なフレキシブルプリント基板を使用できないという問題がある。一方、ポリマー型ペーストを焼成したときの抵抗率は、銀を素材とした場合で10−5Ω・cm程度、銅を素材とした場合で10−4Ω・cm程度と、バルクに近い抵抗率までは実現できない。しかし、焼成温度が低いために、フレキシブルプリント基板にも適用が可能である。 In general, commercially available conductive pastes include a high-temperature fired paste that requires a high temperature of 800 ° C. or higher for firing, and a polymer paste that requires a low temperature of approximately 200 ° C. for firing. When the high-temperature fired paste is made of silver, it can realize a resistivity almost the same as bulk silver. However, the base material to which the conductive paste can be applied is greatly limited in terms of heat resistance temperature, and there is a problem that a flexible printed circuit board that is particularly important for a printed wiring board cannot be used. On the other hand, when the polymer paste is fired, the resistivity is about 10 −5 Ω · cm when silver is used as the material, and about 10 −4 Ω · cm when copper is used as the material. It cannot be realized until. However, since the firing temperature is low, it can be applied to a flexible printed circuit board.
いずれのペーストにおいても含有される銀や銅の粒子の粒径は数μm程度である。高温焼成型ペーストでは焼成によって粒子同士は融着するが、ポリマー型ペーストでは焼成をしても粒子同士が一体化することはなく、接触するのみである。また、粒子の粒径が数μmであることは、30μm程度の線幅をパターニングするには大きすぎるという問題をもつ。一般に、粒径数μmでパターニングできるのは線幅で50μm程度までである。 The particle size of silver or copper particles contained in any paste is about several μm. In the high-temperature fired paste, the particles are fused to each other by firing, but in the polymer paste, the particles are not integrated with each other even when fired, and only contact. Further, the fact that the particle diameter of the particles is several μm has a problem that the line width of about 30 μm is too large for patterning. In general, patterning with a particle size of several μm is up to about 50 μm in line width.
このように導電性ペーストを用いると焼成温度と抵抗率のトレードオフ関係や高解像度化が困難であるというめっきにはなかった問題がある。したがって導電ペーストには低温で焼成できて、かつ抵抗率がバルク並に低く、また高解像度化も可能であるものが求められていた。 As described above, when the conductive paste is used, there is a problem that is not found in the plating in which it is difficult to increase the resolution and the trade-off relationship between the baking temperature and the resistivity. Accordingly, there has been a demand for a conductive paste that can be fired at a low temperature, has a resistivity as low as the bulk, and can achieve high resolution.
近年そのような課題を解決するために、金属粒子を粒径100nm以下のナノ粒子化した金属ナノ粒子ペーストが開発されている。金属粒子の粒径をナノメートルオーダーにまで引き下げることにより、表面の活性が上がり、比較的低温でも粒子同士を融着させることが可能になるからである。さらに粒径が小さくなったことにより、より高精細なパターンにも適応できるようになるというメリットもある。 In recent years, in order to solve such problems, metal nanoparticle pastes in which metal particles are made into nanoparticles having a particle diameter of 100 nm or less have been developed. This is because by reducing the particle size of the metal particles to the nanometer order, the activity of the surface is increased and the particles can be fused even at a relatively low temperature. Furthermore, since the particle size is reduced, there is an advantage that it can be adapted to a higher definition pattern.
金属ナノ粒子ペーストは従来ペーストの問題であった焼成温度と抵抗率のトレードオフ関係を脱するものとして注目を浴びている。さらに、パターンの高精細化についても30/30μmのラインアンドスペースパターンにも対応が可能であり、線幅10μm程度の細線も報告されている。 Metal nanoparticle pastes are attracting attention because they break the trade-off relationship between firing temperature and resistivity, which was a problem with conventional pastes. Furthermore, it is possible to deal with a 30/30 μm line and space pattern for higher definition of the pattern, and a thin line having a line width of about 10 μm has been reported.
材料の利用効率が高く、低エネルギーコストプロセスという長所を残しながら、低温焼成でバルク並の抵抗率を実現する金属ナノ粒子ペーストは、その素材として銀と銅を中心に研究開発が進んでいる。 Metal nanoparticle pastes that achieve high bulk resistivity by low-temperature firing, while maintaining the advantages of high material utilization efficiency and low energy cost processes, are being researched and developed mainly for silver and copper.
金属ナノ粒子ペーストにおいて、銀ナノ粒子は最も積極的に開発されている金属ナノ粒子である。これは、バルクにおける銀の抵抗率が極めて低いということと、銀は加熱しても酸化が問題にならないために、焼成が容易であることが大きく影響している。さらに、銀ナノ粒子は150℃程度の低温で焼結することが可能で、ポリエステルフィルムへのパターニングも試みられている(特許文献1参照)。こういった銀ナノ粒子を用いたペーストやインクはすでにいくつかが市販されており、比較的容易に入手することが可能である。例えばアルバックマテリアル株式会社の販売するL−Ag1Tは、150℃で1時間焼成することで数μΩ・cmの導体膜が得られる。さらに低温なものとしては、バンドー化学株式会社の販売する“Flow Metal”(登録商標)は、120℃で20分間焼成することで8μΩ・cmの導体を得られるとしている。 In metal nanoparticle pastes, silver nanoparticles are the most actively developed metal nanoparticles. This is greatly influenced by the fact that the resistivity of silver in the bulk is extremely low and the fact that the silver does not oxidize even when heated, so that baking is easy. Furthermore, silver nanoparticles can be sintered at a low temperature of about 150 ° C., and patterning into a polyester film has been attempted (see Patent Document 1). Some pastes and inks using such silver nanoparticles are already available on the market and can be obtained relatively easily. For example, L-Ag1T sold by ULVAC Material Co., Ltd. can be fired at 150 ° C. for 1 hour to obtain a conductor film of several μΩ · cm. As a lower temperature, “Flow Metal” (registered trademark) sold by Bando Chemical Co., Ltd. can obtain a conductor of 8 μΩ · cm by baking at 120 ° C. for 20 minutes.
このように銀ナノ粒子ペーストは当初の目標であった低温焼成でバルク並の抵抗率を実現するものである。しかしながら、銀自体のコストが高く、マイクグレーション耐性にも問題があるため、本格的な普及には至っていないが実状である。 As described above, the silver nanoparticle paste achieves a bulk resistivity by low-temperature firing, which was the initial target. However, the cost of silver itself is high, and there is a problem with resistance to migration.
同じく金属ナノ粒子ペーストとして銅ナノ粒子も積極的な開発がされている。銅も銀と同様にバルクにおける抵抗率が低い上に、銅はそれ自体のコストは安く、マイグレーション耐性も銀よりも優れるからである。しかしながら、銅は酸化しやすいため、還元雰囲気で焼成する必要がある。この還元雰囲気をつくりだすための雰囲気制御が焼成プロセスの煩雑化を招いており、銅ナノ粒子ペーストの普及の大きな妨げになっている。また、銅ナノ粒子ペーストの焼成には250℃〜350℃程度の高温が必要であり、焼成できる基材の種類を大きく制限している。そのため、銅ナノ粒子ペーストを銀ナノ粒子ペーストのようにポリエステルフィルムに印刷・焼成することは極めて困難である。 Similarly, copper nanoparticles have been actively developed as metal nanoparticle pastes. This is because copper has a low resistivity in the bulk like silver, and copper has a low cost and migration resistance is superior to silver. However, since copper is easily oxidized, it must be fired in a reducing atmosphere. Controlling the atmosphere to create this reducing atmosphere has complicated the firing process, which has been a major obstacle to the widespread use of copper nanoparticle pastes. In addition, firing of the copper nanoparticle paste requires a high temperature of about 250 ° C. to 350 ° C., which greatly limits the types of base materials that can be fired. Therefore, it is extremely difficult to print and fire the copper nanoparticle paste on the polyester film like the silver nanoparticle paste.
銅ナノ粒子ペーストを焼成するのに特許文献2に開示される方法によれば、焼成前に炉内に水素ガスを流すことで還元雰囲気をつくり、2時間加熱する。この焼成方法では低抵抗導電膜が得られるものの、水素還元雰囲気が必要であり、また加熱時間が2時間と長い。 According to the method disclosed in Patent Document 2 for firing the copper nanoparticle paste, a reducing atmosphere is created by flowing hydrogen gas into the furnace before firing and heating is performed for 2 hours. Although a low resistance conductive film can be obtained by this firing method, a hydrogen reduction atmosphere is required, and the heating time is as long as 2 hours.
銅ナノ粒子ペーストを焼成するのに特許文献3に開示された方法によれば、原子状水素を用いて焼成することで銅ナノ粒子ペーストから低抵抗率導電膜を得ることができる。この方法においては、原子状水素の供給源として水素ガスが必要なほか、供給した水素ガスを原子化するための1700℃程度まで加熱したタングステン触媒も必要と、焼成環境は複雑である。 According to the method disclosed in Patent Document 3 for firing the copper nanoparticle paste, a low resistivity conductive film can be obtained from the copper nanoparticle paste by firing using atomic hydrogen. This method requires a hydrogen gas as a supply source of atomic hydrogen, and also requires a tungsten catalyst heated to about 1700 ° C. for atomizing the supplied hydrogen gas, and the firing environment is complicated.
銅ナノ粒子ペーストを焼成するのに特許文献4に開示された方法によれば、グリセリンを蒸気として供給することでも銅ナノ粒子から低抵抗導電膜を得ることができる。しかしながらこの方法では、銅ナノ粒子表面の有機物を燃焼により除去するため、還元雰囲気だけでの加熱だけでなく、酸素に曝された状態での加熱も必要である。そのために酸化と還元の雰囲気を5回程度入れ替えて加熱することになり、煩雑な焼成プロセスとなっている。 According to the method disclosed in Patent Document 4 for firing a copper nanoparticle paste, a low-resistance conductive film can be obtained from copper nanoparticles by supplying glycerin as a vapor. However, in this method, in order to remove organic substances on the surface of the copper nanoparticles by combustion, not only heating in a reducing atmosphere but also heating in a state exposed to oxygen is necessary. Therefore, the atmosphere of oxidation and reduction is changed about 5 times and heated, which is a complicated firing process.
したがってこれらの開示されたいずれの方法を用いても銅ナノ粒子ペーストを焼成するには雰囲気制御を欠くことはできず、そのために外部からの気体導入など煩雑なプロセスを強いられる。このことは銅が低コストで低抵抗率かつ耐マイグレーション性に優れた素材であっても、金属ナノ粒子ペーストとして広く用いられることへの大きな障害となっている。
銅ナノ粒子ペーストを焼成するには、酸化抑制のための雰囲気制御が不可欠であり、そのためには外部から気体を導入する必要がある。そして多くの場合、効率的な気体置換のために、気体を導入する前には炉内を一度真空状態にすることが必要である。 In order to fire the copper nanoparticle paste, it is indispensable to control the atmosphere to suppress oxidation, and for this purpose, it is necessary to introduce a gas from the outside. In many cases, it is necessary to evacuate the furnace once before introducing the gas for efficient gas replacement.
しかしながら、このようなプロセスは銀ナノ粒子ペーストを焼成する場合と比較して煩雑であり、大規模な装置を必要とする。 However, such a process is complicated as compared with the case of firing the silver nanoparticle paste, and requires a large-scale apparatus.
本発明は、外部から気体を導入することなく、銅の微粒子を含む組成物を焼成し、低抵抗導電膜を製造する方法を提供することを目的とする。 An object of the present invention is to provide a method for producing a low-resistance conductive film by firing a composition containing copper fine particles without introducing a gas from the outside.
上記課題を解決するために本発明は以下の構成からなる。 In order to solve the above problems, the present invention has the following configuration.
すなわち、本発明は、導電膜の製造方法であって、
基材上に平均粒径1nm以上200nm以下の銅及び/または酸化銅からなる微粒子を含む組成物を付着させる第一工程と、
第一工程で得た基材上に被覆部材を覆設して外気から遮断されるキャビティ内部に該組成物を包囲する第二工程と、
被覆部材外部からキャビティ内部に気体を供給することなく、キャビティ内部の該組成物を還元剤存在下で120℃以上350℃以下で加熱する第三工程とを含み、
該被覆部材がキャビティ内部の内圧上昇防止手段を備え、
該被覆部材のキャビティ内クリアランスが0.01mm以上20mm以下である、
導電膜の製造方法である。
That is, this invention is a manufacturing method of an electrically conductive film,
A first step of attaching a composition comprising fine particles comprising copper and / or copper oxide having an average particle size of 1 nm or more and 200 nm or less on a substrate;
A second step of covering the composition inside a cavity that is covered with a coating member on the substrate obtained in the first step and is shielded from the outside air;
A third step of heating the composition inside the cavity at 120 ° C. or more and 350 ° C. or less in the presence of a reducing agent without supplying gas from the outside of the covering member to the inside of the cavity,
The covering member includes an internal pressure rise preventing means inside the cavity,
The clearance in the cavity of the covering member is 0.01 mm or more and 20 mm or less,
It is a manufacturing method of an electrically conductive film.
本発明により、銅微粒子を含む組成物を、簡便な装置を用いて外部から気体を供給することなく焼成し、低抵抗率な導電膜を得ることができる。 According to the present invention, a composition containing copper fine particles can be baked using a simple apparatus without supplying gas from the outside, and a conductive film having low resistivity can be obtained.
本発明者は、銅微粒子を含む組成物を簡便な装置を用いて外部から気体を供給することなく、低抵抗率な導電膜を得る方法を鋭意検討し、特定の条件を備える被覆部材を用いて還元剤の存在下に焼成することで上記課題を解決し、本発明に到達したものである。なお、ここでいう低抵抗率な導電膜とは、エレクトロニクス材料としての実用性を鑑みて、100μΩ・cm以下の抵抗率を有する導電膜であることが好ましい。 The present inventor has eagerly studied a method for obtaining a conductive film having a low resistivity without supplying a gas from outside using a simple apparatus, and using a covering member having specific conditions. Thus, the above-mentioned problems have been solved by firing in the presence of a reducing agent, and the present invention has been achieved. Note that the low-resistivity conductive film here is preferably a conductive film having a resistivity of 100 μΩ · cm or less in view of practicality as an electronic material.
本発明における導電膜の製造方法の第一工程は、基材上に平均粒径1nm以上200nm以下の銅及び/または酸化銅からなる微粒子を含む組成物(以下「銅粒子組成物」ということがある)を付着させる工程である。 The first step of the method for producing a conductive film in the present invention is a composition containing fine particles comprising copper and / or copper oxide having an average particle diameter of 1 nm or more and 200 nm or less on a substrate (hereinafter referred to as “copper particle composition”). This is a step of attaching a certain).
銅粒子組成物に含まれる銅及び/または酸化銅からなる微粒子(以下、本明細書において単に「銅微粒子」ということがある)とは、銅の微粒子、酸化銅の微粒子、銅の微粒子と酸化銅の微粒子の混合物又は表面が酸化されている銅の微粒子である。ここで、酸化銅とは、酸化第一銅、酸化第二銅又はその混合物である。本発明においては、後述する還元剤の添加量を低減することができることから、銅微粒子を含む組成物中の酸化銅の量は少ない方が好ましく、具体的には銅粒子組成物において酸化第一銅の質量と酸化第二銅の質量の2倍との和が銅の質量よりも少ないことが好ましい。 The fine particles composed of copper and / or copper oxide contained in the copper particle composition (hereinafter sometimes simply referred to as “copper fine particles” in this specification) are copper fine particles, copper oxide fine particles, copper fine particles and oxidized particles. A mixture of copper fine particles or copper fine particles whose surface is oxidized. Here, copper oxide is cuprous oxide, cupric oxide or a mixture thereof. In the present invention, since the amount of the reducing agent to be described later can be reduced, the amount of copper oxide in the composition containing copper fine particles is preferably small. The sum of the mass of copper and twice the mass of cupric oxide is preferably less than the mass of copper.
銅粒子組成物中の銅微粒子の平均粒径は、銅の融点以下でも粒子同士が焼結するように、1nm以上200nm以下である。ここで平均粒径とは、一次粒子の平均粒径であり、一次粒子とは電子顕微鏡によって認識できる2原子以上からなる最小の3次元単位構造物である。一次粒子の平均粒径は、個数平均に基づき、電子顕微鏡で観察できる範囲の粒子の内、任意の100個の粒子の選び出し、それらの粒子径を粒子の個数で平均することにより求められる。このとき抽出する任意の100個の粒子は電子顕微鏡において一視野内に収まっている必要はなく、任意の複数の視野から抽出して良い。また、顕微鏡の倍率は粒子径が明確に測定できるよう10000倍以上とする。一次粒子の形状については特に制限はなく、球、多面体、平板、針状など様々な形態が可能であり、それらの粒径は同体積の球形にしたときの直径、すなわち同体積球相当径によって定義する。平均粒径が200nmよりも大きくなると、粒子同士を焼結させるために必要な温度が上がり、本発明を実施できる基材を大きく限定する可能性があり、好ましくない。 The average particle diameter of the copper fine particles in the copper particle composition is 1 nm or more and 200 nm or less so that the particles sinter even when the melting point of copper is below. Here, the average particle diameter is the average particle diameter of primary particles, and the primary particles are the minimum three-dimensional unit structure composed of two or more atoms that can be recognized by an electron microscope. The average particle size of primary particles is determined by selecting 100 arbitrary particles out of the range that can be observed with an electron microscope based on the number average and averaging the particle size by the number of particles. Any 100 particles to be extracted at this time need not be within one field of view in the electron microscope, and may be extracted from any plurality of fields. The magnification of the microscope is 10,000 times or more so that the particle diameter can be clearly measured. There are no particular restrictions on the shape of the primary particles, and various forms such as spheres, polyhedrons, flat plates, and needles are possible, and their particle sizes depend on the diameter of the same volume sphere, that is, the equivalent volume sphere equivalent diameter. Define. If the average particle size is larger than 200 nm, the temperature necessary for sintering the particles increases, which may unfavorably limit the substrate on which the present invention can be carried out.
本発明の銅微粒子を含む組成物には粒径が1nm以上200nm以下の銅微粒子の焼結をもって粒径が200nmよりも大きい銅粒子をつなぎ合わせることが可能な程度において、粒径が200nmよりも大きい粗大な銅粒子が含まれていてもよい。添加する粗大な銅及び/または酸化銅からなる粒子(以下「粗大銅粒子」ということがある)の粒径は好適には200nmよりも大きく10μm以下であり、その添加量は粗大銅粒子が焼結の阻害とならないために、添加後の組成物中の銅微粒子と粗大銅粒子を合わせた平均粒径が1nm以上200nm以下になるような範囲から選択する。好適な添加量は、添加後の銅粒子組成物の銅微粒子及び粗大銅粒子をあわせた平均粒径が1nm以上200nm以下となる範囲において、組成物中に含まれるすべての銅粒子の1次粒子に対する粗大銅粒子の1次粒子の個数割合が1%以上5%以下である。それ以上の粗大銅粒子の添加は焼結を妨げるため、好ましくない。 The composition containing the copper fine particles of the present invention has a particle size of more than 200 nm to the extent that copper particles having a particle size of more than 200 nm can be joined by sintering of copper fine particles having a particle size of 1 nm to 200 nm. Large coarse copper particles may be included. The particle size of the coarse copper and / or copper oxide particles (hereinafter sometimes referred to as “coarse copper particles”) to be added is preferably greater than 200 nm and 10 μm or less. In order not to inhibit the binding, the range is selected so that the average particle size of the copper fine particles and the coarse copper particles in the composition after the addition is 1 nm or more and 200 nm or less. A suitable addition amount is a primary particle of all the copper particles contained in the composition in the range in which the average particle size of the copper fine particle and the coarse copper particle in the copper particle composition after the addition is 1 nm or more and 200 nm or less. The ratio of the number of primary particles of coarse copper particles to 1% is 1% or more and 5% or less. Addition of larger coarse copper particles is not preferable because it hinders sintering.
本発明の銅及び/または酸化銅からなる微粒子は、銅以外の金属元素、例えば銀などを、本発明の目的を損なわない程度に含んでいてもよい。 The fine particles comprising copper and / or copper oxide of the present invention may contain a metal element other than copper, such as silver, to the extent that the object of the present invention is not impaired.
銅及び/または酸化銅からなる微粒子は、その表面に有機物が付着し又は被覆されたものであってもよい。付着し又は被覆される有機物としては、微粒子の合成時に粒径制御のために添加されたものや、分散性付与や耐酸化性付与のために付着されたものが挙げられる。このような有機物としては、オクチルアミンのような低分子化合物やポリビニルピロリドンなどの高分子化合物が知られている。 The fine particles made of copper and / or copper oxide may have organic materials attached to or coated on the surface thereof. Examples of the organic matter to be attached or coated include those added for particle size control during the synthesis of fine particles, and those attached for imparting dispersibility and oxidation resistance. As such an organic substance, a low molecular compound such as octylamine and a high molecular compound such as polyvinylpyrrolidone are known.
銅及び/または酸化銅からなる微粒子の合成法は多数知られており、市販品も入手可能である。公知の合成法の例として、特許第2561537号公報、特開2002−121606号公報に記載のような気体中蒸発法で銅微粒子を得る方法。特開2004−256857号公報、特開2005−281781号公報、特開2008−069374号公報に記載のような銅化合物に還元剤を作用させて銅微粒子を得る方法、特開2007−056321号公報、特開2008−013466号公報に記載のような銅化合物の熱分解により銅微粒子を得る方法、国際公開第2004/050559号パンフレットに記載のような銅化合物に還元剤を作用させて酸化銅微粒子を得る方法を挙げることができる。 Many methods for synthesizing fine particles comprising copper and / or copper oxide are known, and commercially available products are also available. As an example of a known synthesis method, a method of obtaining copper fine particles by a gas evaporation method as described in Japanese Patent No. 2561537 and Japanese Patent Application Laid-Open No. 2002-121606. JP-A-2004-256857, JP-A-2005-281781, JP-A-2008-069374, a method for obtaining copper fine particles by causing a reducing agent to act on a copper compound, JP-A-2007-056321 , A method for obtaining copper fine particles by thermal decomposition of a copper compound as described in JP-A-2008-013466, and a copper oxide fine particle obtained by allowing a reducing agent to act on a copper compound as described in WO 2004/050559 The method of obtaining can be mentioned.
本発明における銅粒子組成物は、平均粒径1nm以上200nm以下の銅及び/または酸化銅からなる微粒子を分散媒中に分散させた組成物であり、必要に応じて以下に示す他の成分を含んでも良い。 The copper particle composition in the present invention is a composition in which fine particles comprising copper and / or copper oxide having an average particle diameter of 1 nm or more and 200 nm or less are dispersed in a dispersion medium, and other components shown below are added as necessary. May be included.
銅粒子組成物中に含まれる銅微粒子の重量の好適な割合は、組成物を基材に付着させる方法に応じて適宜選択されるが、好適には10質量%以上95質量%以下である。 Although the suitable ratio of the weight of the copper fine particle contained in a copper particle composition is suitably selected according to the method of attaching a composition to a base material, it is 10 to 95 mass% suitably.
銅粒子組成物に含まれる分散媒としては、水、公知の有機溶媒あるいはこれらを混合した液体が用いられる。分散媒として用いる液体は、少なくとも第三工程における加熱の温度で気化するものが好ましい。好ましい有機溶媒の具体例を挙げると、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、1−オクタノール、テルピネオール、ベンジルアルコール、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、ジエチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、1,2−ジメトキシエタン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、プロピレンカーボネート、1,4−ジオキサン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルスルホキシド、γ−ブチロラクトン、トルエン、キシレン、デカリン、テトラリン、クロロベンゼン、1,2−ジクロロエタン、1,1,1−トリクロロエタンなどを挙げることができる。 As a dispersion medium contained in the copper particle composition, water, a known organic solvent, or a liquid obtained by mixing them is used. The liquid used as the dispersion medium is preferably one that vaporizes at least at the heating temperature in the third step. Specific examples of preferred organic solvents include 1-propanol, 2-propanol, 1-butanol, 2-butanol, 1-octanol, terpineol, benzyl alcohol, ethylene glycol, propylene glycol, 1,3-propanediol, 1, 4-butanediol, diethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether, diethylene glycol monoethyl ether acetate, 1,2-dimethoxyethane, methyl ethyl ketone , Methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, isophorone, ethyl acetate, Acid butyl, isoamyl acetate, ethyl lactate, propylene carbonate, 1,4-dioxane, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, dimethyl sulfoxide, γ-butyrolactone, toluene, xylene, decalin, Examples include tetralin, chlorobenzene, 1,2-dichloroethane, 1,1,1-trichloroethane, and the like.
本発明における銅粒子組成物は、還元剤(第二工程の部で後述)、ポリマー成分、ポリマー前駆体を含んでいてもよい。 The copper particle composition in the present invention may contain a reducing agent (described later in the second step), a polymer component, and a polymer precursor.
ポリマー成分は、銅及び/または酸化銅からなる微粒子の分散をよくするため、銅粒子組成物の粘度特性を制御するため、導電膜と基材の密着性を高めるなどの目的で添加される。ポリマー成分は分散媒に溶解したものであってもよく、微粒子の形で分散媒に分散したものであってもよい。ポリマー成分として好ましいポリマーとしては、アクリル系ポリマー(すなわち(メタ)アクリル酸エステル、(メタ)アクリル酸、(メタ)アクリルアミド、(メタ)アクリロニトリルなどのアクリル系モノマーの重合体または共重合体)、ポリビニルピロリドン、ポリビニルアセタール、ポリエステル、ポリアミド、ポリイミド、ポリウレタンなどを挙げることができる。 The polymer component is added for the purpose of improving the adhesion of the conductive film and the base material in order to improve the dispersion of fine particles composed of copper and / or copper oxide and to control the viscosity characteristics of the copper particle composition. The polymer component may be dissolved in a dispersion medium, or may be dispersed in a dispersion medium in the form of fine particles. Preferred polymers as the polymer component include acrylic polymers (that is, polymers or copolymers of acrylic monomers such as (meth) acrylic acid ester, (meth) acrylic acid, (meth) acrylamide, (meth) acrylonitrile), polyvinyl Examples include pyrrolidone, polyvinyl acetal, polyester, polyamide, polyimide, polyurethane, and the like.
ポリマー前駆体とは、第三工程における加熱によりポリマーを生じる前駆体であり、未硬化のエポキシ樹脂(エポキシ化合物と硬化剤の混合物)や未硬化のフェノール樹脂(レゾールと硬化剤の混合物)や未硬化のシアネート樹脂(シアネート化合物と硬化剤の混合物)などを例示するこができる。 The polymer precursor is a precursor that generates a polymer by heating in the third step, and is an uncured epoxy resin (a mixture of an epoxy compound and a curing agent), an uncured phenol resin (a mixture of a resole and a curing agent), or an uncured epoxy resin. Examples thereof include a cured cyanate resin (a mixture of a cyanate compound and a curing agent).
本発明における銅粒子組成物は、その他にも、揺変剤、レベリング剤、消泡剤など塗料や印刷インクに用いられるあらゆる添加剤を含むことができる。 In addition, the copper particle composition in the present invention can contain any additive used for paints and printing inks such as thixotropic agents, leveling agents, and antifoaming agents.
本発明における基材は、平板状の部材である。本発明の実施に支障がない程度において凹凸や貫通孔があってもよい。基材は、第三工程での焼成時に融解や変形のおこらないものであることが好ましい。好適な部材としては、樹脂フィルム、樹脂板、ガラス板、紙、グリーンシートを例示することができる。 The base material in the present invention is a flat member. There may be irregularities and through holes as long as there is no hindrance to the implementation of the present invention. The substrate is preferably one that does not melt or deform during firing in the third step. Examples of suitable members include resin films, resin plates, glass plates, paper, and green sheets.
樹脂フィルムの樹脂としては、ポリエステル樹脂(ポリエチレンテレフタレート、ポリエチレンナフタレート、液晶ポリエステルなど)、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリアラミド樹脂、ポリエーテルスルホン樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンエーテル樹脂などを例示することができる。樹脂板に用いる樹脂としては、樹脂フィルムで例示したと同様の熱可塑性樹脂に加えて、エポキシ樹脂、フェノール樹脂、シアネート樹脂、マレイミド樹脂、ベンズオキサジン樹脂などの熱硬化性樹脂(硬化物)を挙げることができる。また、樹脂板は強化繊維基材に熱硬化性樹脂を含浸して硬化した繊維強化樹脂であってもよい。このとき強化繊維基材としては、紙、綿布、ポリエステル織布、ガラス繊維織布などが好ましい。 Examples of resin for the resin film include polyester resin (polyethylene terephthalate, polyethylene naphthalate, liquid crystal polyester, etc.), polyimide resin, polyetherimide resin, polyaramid resin, polyethersulfone resin, polyphenylene sulfide resin, polyphenylene ether resin, and the like. Can do. Examples of the resin used for the resin plate include thermosetting resins (cured products) such as epoxy resins, phenol resins, cyanate resins, maleimide resins, and benzoxazine resins, in addition to the same thermoplastic resins exemplified in the resin film. be able to. The resin plate may be a fiber reinforced resin obtained by impregnating a reinforced fiber base material with a thermosetting resin and curing. At this time, paper, cotton cloth, polyester woven cloth, glass fiber woven cloth or the like is preferable as the reinforcing fiber base.
グリーンシートとは、焼成によりセラミックス基板となる前駆体であって、通常アルミナ骨材、ガラス材料、有機バインダーなどの成分をシート状に成形したものである。 The green sheet is a precursor that becomes a ceramic substrate by firing, and is usually formed by molding components such as an alumina aggregate, a glass material, and an organic binder into a sheet shape.
銅粒子組成物の基材上への付着は、銅粒子組成物を基材の全面若しくはほぼ全面に付着又は塗布させても、基材の特定の部分にのみに付着又は塗布させてもよい。また、銅粒子組成物の基材上への付着には、基材の凹部(溝や貫通孔など)に埋め込むこと(印刷)も含まれる。銅粒子組成物を付着若しくは塗布する好ましい方法としては、バーコーター、グラビアロールコーター、スリットダイコーター、ナイフコーター、リップコーター、コンマコーター法、リバースロールコーター、スプレーコーター、ディップコーター、スピンコーターなどの装置を用いる方法を挙げることができる。銅粒子組成物を印刷する好ましい方法としては、孔版印刷法(スクリーン印刷法など)、凸版印刷法(フレキソ印刷法など)、凹版印刷法(グラビア印刷法など)、平版印刷法、インクジェット法、ディスペンサー法などを挙げることができる。 The adhesion of the copper particle composition onto the base material may be performed by attaching or applying the copper particle composition to the entire surface or almost the entire surface of the base material, or may be applied or applied only to a specific portion of the base material. Moreover, embedding (printing) in the recessed part (a groove | channel, a through-hole, etc.) of a base material is also included in adhesion on the base material of a copper particle composition. Preferred methods for attaching or applying the copper particle composition include bar coaters, gravure roll coaters, slit die coaters, knife coaters, lip coaters, comma coater methods, reverse roll coaters, spray coaters, dip coaters, spin coaters and the like. Can be mentioned. Preferable methods for printing the copper particle composition include stencil printing method (screen printing method, etc.), relief printing method (flexo printing method, etc.), intaglio printing method (gravure printing method, etc.), lithographic printing method, inkjet method, dispenser. Law.
本発明の導電膜の製造方法では、第一工程の後に、加熱などの手段を用いて基材に付着させた銅粒子組成物中の分散媒の一部分を揮発させる工程を設けても良い。 In the manufacturing method of the electrically conductive film of this invention, you may provide the process of volatilizing a part of dispersion medium in the copper particle composition adhered to the base material using means, such as a heating, after a 1st process.
本発明の導電膜の製造方法の第二工程は、基材上に被覆部材を覆設して外気から遮断されるキャビティ内部に該組成物を包囲する工程である。ここで、被覆部材はキャビティ内部の内圧上昇防止手段を備える。また、被覆部材のキャビティ内クリアランスが0.01mm以上20mm以下である。 The second step of the method for producing a conductive film of the present invention is a step of covering the composition inside a cavity that is covered with a covering member on the substrate and is shielded from the outside air. Here, the covering member includes a means for preventing an increase in internal pressure inside the cavity. Further, the clearance in the cavity of the covering member is 0.01 mm or more and 20 mm or less.
被覆部材とは、基材上の銅粒子組成物を付着させし部分に覆設してキャビティを形成し、銅粒子組成物を外気から遮断するようにキャビティ内部に包囲する部材である。 A covering member is a member which attaches the copper particle composition on a base material, covers it in a part, forms a cavity, and surrounds the inside of a cavity so that a copper particle composition may be shielded from external air.
被覆部材の形状は、基材上の一部に覆設して銅粒子組成物が付着した部分を被覆する蓋状の部材(カバー型)であってもよく(図1)、基材全体を覆設して銅粒子組成物を封入する箱状の部材(ケース型)であってもよい(図2)。被覆部材は、単一の部品からなるものであってもよく、複数の部品の組合せになるものであってもよいが、特にケース型の被覆部材の場合は通常複数の部材の組合せで実現される。被覆部材は第三工程における加熱によって溶解や変形しないように、その材料は耐熱性の材料、例えば金属(鉄、鋼、ステンレス、アルミニウムなど)、ガラス、耐熱性樹脂(エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂など)から選択されるもの又はその複数の組合せであることが好ましい。 The shape of the covering member may be a lid-like member (cover type) that covers a part of the base material and covers the part to which the copper particle composition is adhered (FIG. 1). It may be a box-shaped member (case type) that covers and encloses the copper particle composition (FIG. 2). The covering member may be composed of a single part or may be a combination of a plurality of parts. In particular, in the case of a case-type covering member, it is usually realized by a combination of a plurality of members. The The covering member is made of a heat-resistant material such as metal (iron, steel, stainless steel, aluminum, etc.), glass, heat-resistant resin (epoxy resin, phenol resin, polyimide, etc.) so that it is not melted or deformed by heating in the third step. Resin, polyether ether ketone resin, fluororesin, etc.) or a combination thereof.
キャビティとは、被覆部材と基材により形成され、銅粒子組成物がその中に包囲される空間のことである。 A cavity is a space formed by a covering member and a base material, in which a copper particle composition is surrounded.
被覆部材はキャビティ内部の内圧上昇防止機構を備える。キャビティ内部の内圧上昇防止機構(以下、「キャビティ内圧上昇防止機構」ということがある。)は、第三工程における加熱に伴うキャビティ内の圧力上昇をキャビティ内部の気体を外部に逃がすことにより防止し、かつ流出した気体の逆流や外部の大気の流入を防止または制限する機構のことである。第三工程の加熱により分散媒が気化することによりキャビティ内に当初あった酸素は分散媒蒸気によってキャビティ内圧上昇防止機構を通じて大部分がキャビティ外部に排出され、キャビティ内を低酸素状態にすることができる。 The covering member includes an internal pressure rise prevention mechanism inside the cavity. The internal pressure rise prevention mechanism inside the cavity (hereinafter sometimes referred to as “cavity internal pressure rise prevention mechanism”) prevents the pressure inside the cavity from rising due to heating in the third step by letting the gas inside the cavity escape to the outside. It is a mechanism that prevents or restricts the backflow of outflowing gas and the inflow of outside air. When the dispersion medium is vaporized by heating in the third step, most of the oxygen originally in the cavity is discharged by the dispersion medium vapor through the cavity internal pressure rise prevention mechanism to the outside of the cavity, so that the cavity is in a low oxygen state. it can.
キャビティ内圧上昇防止機構の典型的な様態は、逆止弁を備えた貫通孔である。逆止弁とは、流体がある方向に流れることは許すが、逆方向に流れることは妨げる弁である。逆止弁には、内部にスイングディスクを備えるもの、ボールとスプリングを備えるもの、フラップを備えるもの、ダイヤフラムを備えるもの、特開2005−337415号公報に開示されるような2つのバルブ室と1つのシリコンゴム用いた弁を備えるものなど、構造や動作機構が異なるものが数種あるが、特に限定されない。 A typical mode of the cavity internal pressure rise prevention mechanism is a through hole provided with a check valve. A check valve is a valve that allows fluid to flow in one direction but prevents flow in the reverse direction. The check valve includes a swing disk inside, a ball and spring, a flap, a diaphragm, two valve chambers as disclosed in JP 2005-337415, and 1 There are several types with different structures and operating mechanisms, such as a valve with two silicone rubber valves, but there is no particular limitation.
キャビティ内圧上昇防止機構の別な様態は、電磁バルブを備えた貫通孔である。この場合はキャビティ内の圧力と大気圧の差圧を検知するセンサーを別途設け、センサーの出力と電磁部バルブの開閉を連動させ、所定値以上の差圧がある場合電磁バルブを開くように制御する。 Another aspect of the cavity internal pressure rise prevention mechanism is a through hole provided with an electromagnetic valve. In this case, a sensor that detects the differential pressure between the pressure in the cavity and the atmospheric pressure is provided separately, and the output of the sensor is linked to the opening and closing of the solenoid valve. To do.
キャビティ内圧上昇防止機構のさらに別な様態は、気体貯留機構を備えた貫通孔である。気体貯留機構とは、貫通孔より出てきた気体の圧力を大気圧に保ったまま貯留する機構である。具体的にはプラスチックやゴムの袋状体を用いることができる。 Yet another aspect of the cavity internal pressure rise prevention mechanism is a through hole provided with a gas storage mechanism. The gas storage mechanism is a mechanism for storing the gas that has come out of the through hole while maintaining the pressure at atmospheric pressure. Specifically, a bag of plastic or rubber can be used.
キャビティ内圧上昇防止機構の様態として、貫通孔のみを用いることもできる。貫通孔の断面積や長さが適正であれば、キャビティ内の気体の流出が終わり、内外の差圧がほぼなくなった状態では、外の大気のキャビティ内への流入は十分に小さくできるためである。 As an aspect of the cavity internal pressure rise prevention mechanism, only a through hole can be used. If the cross-sectional area and length of the through-hole are appropriate, the outflow of gas into the cavity ends and the inflow of the outside atmosphere into the cavity can be made sufficiently small when there is almost no pressure difference between the inside and outside. is there.
なお、被覆部材がカバー型である場合、キャビティ内圧上昇防止機構は、被覆部材の基材に接する面に溝が設けられておおり、被覆部材が基材を覆ったときに貫通孔として機能するようなものであってもよい。また、被覆部材が複数の部品からなる場合、貫通孔は2つの接する部品の接合面の片方もしくは両方に溝が設けられており、部品を接合したとき貫通孔になるようなものであってもよい。 When the covering member is a cover type, the cavity internal pressure rise prevention mechanism is provided with a groove on the surface of the covering member that contacts the substrate, and functions as a through hole when the covering member covers the substrate. It may be something like this. Further, when the covering member is composed of a plurality of parts, the through hole is provided with a groove on one or both of the joining surfaces of the two contacting parts, and the through hole may be a through hole when the parts are joined. Good.
キャビティ内圧上昇防止機構が貫通孔のみである場合、被覆部材の構造が単純で作成が容易になるという利点があり、好ましい。 When the cavity internal pressure rise prevention mechanism is only the through hole, there is an advantage that the structure of the covering member is simple and easy to produce, which is preferable.
キャビティ内圧上昇防止機構の設置位置は、第三工程における加熱時にキャビティ内部の気体を効率よく排出できるように、キャビティの辺縁部に設置することが好適である。 The installation position of the cavity internal pressure rise prevention mechanism is preferably installed at the edge of the cavity so that the gas inside the cavity can be efficiently discharged during heating in the third step.
キャビティ内クリアランスとは、基材上面と被覆部材のキャビティ内部基材対向面との最短距離をいう。ここで、基材上面とは、基材において銅粒子組成物が付着されている面である。ただし、銅粒子組成物が基材に設けられた溝に注入されている場合には溝の上面であり、貫通孔に注入されている場合には貫通孔の上面及び底面である。また、キャビティ内部基材対向面とは、被覆部材のキャビティ内部の面であって、基材上面と対向する面である。基材上面及び/又は被覆部材のキャビティ内部の面が凹凸、湾曲もしくは傾斜等の形状である場合には、基材上面と被覆部材のキャビティ内部の基材対向面とで規定される複数のキャビティ内クリアランスのうち、その距離が最小となるものを選択する。 The intracavity clearance refers to the shortest distance between the upper surface of the base material and the surface of the covering member facing the base material inside the cavity. Here, the upper surface of the base material is a surface on which the copper particle composition is attached on the base material. However, it is the upper surface of the groove when the copper particle composition is injected into the groove provided on the substrate, and the upper surface and the bottom surface of the through hole when injected into the through hole. The cavity-internal substrate facing surface is a surface inside the cavity of the covering member and is a surface facing the upper surface of the substrate. A plurality of cavities defined by the substrate upper surface and the substrate facing surface inside the cavity of the coating member when the surface of the substrate upper surface and / or the surface inside the cavity of the coating member has a shape such as unevenness, curvature, or inclination Select the inner clearance that minimizes the distance.
例えば、被覆部材がケース型である図3(a)の場合は図3(a)6で示される距離、被覆部材がカバー型である図3(b)の場合は図3(b)6で示される距離がそれぞれキャビティ内クリアランスである。また、銅粒子組成物が基材に設けられた溝に注入されている図3(c)の場合は、図3(c)6によって示される距離がキャビティ内クリアランスである。基材に設けられた貫通孔に銅粒子組成物が注入されている図3(d)の場合には、図3(d)6によって示される距離をキャビティ内クリアランスとする。 For example, in the case of FIG. 3A where the covering member is a case type, the distance shown in FIG. 3A 6 is used, and in the case of FIG. 3B where the covering member is a cover type, the distance shown in FIG. The distances shown are the intracavity clearances. In the case of FIG. 3C in which the copper particle composition is injected into a groove provided in the base material, the distance indicated by FIG. 3C 6 is the intracavity clearance. In the case of FIG. 3D in which the copper particle composition is injected into the through-hole provided in the base material, the distance indicated by FIG.
被覆部材のキャビティ内クリアランスが大きいと、銅粒子組成物中の分散媒の気化によりキャビティ内の酸素等の気体をキャビティ外へ追い出すことが効率的にできなくなる。またその距離があまりに小さいと、一度気化した分散媒や還元剤が被覆部材で冷やされて被覆部材のキャビティ内部基材対向面上で液化したときに銅粒子組成物と接触する危険が生じる。したがって被覆部材のキャビティ内クリアランスは、0.01mm以上20mm以下であり、好ましくは0.1mm以上5mm以下である。 When the clearance in the cavity of the covering member is large, it becomes impossible to efficiently expel a gas such as oxygen in the cavity out of the cavity due to the vaporization of the dispersion medium in the copper particle composition. If the distance is too small, there is a risk that the dispersion medium and the reducing agent once vaporized are cooled by the coating member and come into contact with the copper particle composition when liquefied on the cavity inner substrate facing surface of the coating member. Therefore, the clearance in the cavity of the covering member is 0.01 mm or more and 20 mm or less, preferably 0.1 mm or more and 5 mm or less.
本発明の導電膜の製造方法の第三工程は、外部から気体を供給することなく120℃以上350℃以下で銅粒子組成物を還元剤存在下で加熱する工程である。 The 3rd process of the manufacturing method of the electrically conductive film of this invention is a process of heating a copper particle composition in 120 degreeC or more and 350 degrees C or less in the presence of a reducing agent, without supplying gas from the outside.
本発明においては銅粒子組成物の加熱時に、外部から窒素、アルゴンのような不活性気体あるいは水素、グリセリン、エチレングリコールのような還元性気体を導入しない。不活性気体を導入して焼成する例としては、例えば特許第3939375号公報中の実施例1−5を挙げることができる。また、還元性気体を導入して焼成する例としては、例えば国際公開2003−051562号公報中の実施例1を挙げることができる。 In the present invention, an inert gas such as nitrogen or argon or a reducing gas such as hydrogen, glycerin or ethylene glycol is not introduced from the outside when the copper particle composition is heated. Examples of firing by introducing an inert gas include, for example, Example 1-5 in Japanese Patent No. 3939375. Moreover, as an example in which reducing gas is introduced and baked, for example, Example 1 in International Publication No. 2003-05156 can be cited.
第三工程の銅粒子組成物の加熱は、還元剤存在下で行うため、還元剤はキャビティ内に存在する必要がある。キャビティ内に還元剤を存在せしめる方法には、銅粒子組成物中にあらかじめ配合しておく方法と、キャビティ内の銅粒子組成物とは別の場所に還元剤を配置する方法が挙げられ、このいずれを用いてもよい。または、この二つの方法を組み合わせて用いてもよい。 Since the heating of the copper particle composition in the third step is performed in the presence of a reducing agent, the reducing agent needs to be present in the cavity. As a method for causing the reducing agent to exist in the cavity, there are a method in which the reducing agent is preliminarily mixed in the copper particle composition, and a method in which the reducing agent is disposed in a place different from the copper particle composition in the cavity. Any of them may be used. Or you may use combining these two methods.
還元剤を銅粒子組成物中にあらかじめ配合する場合は、分散媒に可溶な還元剤を銅粒子組成物中に配合しても、液状の還元剤を分散媒として用いてもよい。 When the reducing agent is blended in the copper particle composition in advance, a reducing agent soluble in the dispersion medium may be blended in the copper particle composition or a liquid reducing agent may be used as the dispersion medium.
還元剤をキャビティ内の銅粒子組成物とは別の場所に配置する場合は、例えば基材上の銅粒子組成物が付着していない面に配置することも、被覆部材で基材が置かれていない部分に配置することも可能である。還元剤をキャビティ内の銅粒子組成物とは別の場所に配置する場合は、加熱時に還元剤が銅粒子組成物が付着している部位まで拡散できるよう、第三工程における加熱温度で気化しうる液体もしくは昇華しうる固体の還元剤が選択される。 When the reducing agent is disposed at a location different from the copper particle composition in the cavity, for example, the reducing agent may be disposed on the surface of the substrate where the copper particle composition is not attached, or the substrate may be placed on the covering member. It is also possible to arrange in a portion that is not. When the reducing agent is placed at a location different from the copper particle composition in the cavity, it is vaporized at the heating temperature in the third step so that the reducing agent can diffuse to the site where the copper particle composition is adhered during heating. A liquid or sublimable solid reducing agent is selected.
還元剤は、第三工程の加熱温度において、酸化銅を金属銅に還元するのに十分な還元力を有するものが選択される。この還元剤の作用により、キャビティ内に残留する酸素が焼結を妨げることが抑止され、銅粒子組成物中に酸化銅が含まれる場合は、これが還元されて金属銅となる。 The reducing agent is selected to have a reducing power sufficient to reduce copper oxide to metallic copper at the heating temperature in the third step. The action of the reducing agent prevents oxygen remaining in the cavity from interfering with sintering, and when copper oxide is contained in the copper particle composition, it is reduced to metal copper.
本発明の導電膜の製造方法に好ましい還元剤の具体例としては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,8−オクタンジオール、2−エチル−1,3−ヘキサンジオールなどのポリオール類、アセトイン、プロピオイン、ブチロイン、アジポインなどのα−ケトアルコール類、モノエタノールアミン、ジエタノールアミンなどのアミノアルコール類、ヒドロキノン、カテコール、tert−ブチルヒドロキノン、4−tert−ブチルカテコールなどのポリフェノール類、p−アミノフェノールとその塩、p−(メチルアミノ)フェノールとその塩、N−(p−ヒドロキシフェニル)グリシン、N,N,N’,N’−テトラメチル−p−フェニレンジアミンなどの芳香族アミン類(塩を含む)、1−フェニル−3−ピラゾリドン、1−フェニル−4−メチル−3−ピラゾリドン、1−フェニル−4、4−ジメチル−3−ピラゾリドンなどのピラゾリドン類、アスコルビン酸、イソアスコルビン酸、アスコルビン酸エステル類などを挙げることができる。 Specific examples of preferable reducing agents for the method for producing a conductive film of the present invention include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,8-octanediol. Polyols such as 2-ethyl-1,3-hexanediol, α-ketoalcohols such as acetoin, propioin, butyroin, and adipoin, aminoalcohols such as monoethanolamine and diethanolamine, hydroquinone, catechol, and tert-butylhydroquinone Polyphenols such as 4-tert-butylcatechol, p-aminophenol and salts thereof, p- (methylamino) phenol and salts thereof, N- (p-hydroxyphenyl) glycine, N, N, N ′, N ′ -Tetra Aromatic amines (including salts) such as til-p-phenylenediamine, 1-phenyl-3-pyrazolidone, 1-phenyl-4-methyl-3-pyrazolidone, 1-phenyl-4, 4-dimethyl-3- Examples include pyrazolidones such as pyrazolidone, ascorbic acid, isoascorbic acid, ascorbic acid esters, and the like.
本発明の導電膜の製造方法において、微粒子を含む組成物として、酸化銅からなる微粒子を含む組成物を用いる場合には、第三工程の該組成物の加熱により、分散媒が気化することによって被覆部材のキャビティ内の気体が排出されて生じた低酸素環境下において、還元剤により酸化銅が還元されて金属銅になる過程を伴いつつ、銅微粒子の焼結を行うことができる。その結果、内部に銅が連続した構造を有し、導電性の高い導電膜を製造することができる。 In the method for producing a conductive film of the present invention, when a composition containing fine particles made of copper oxide is used as the composition containing fine particles, the dispersion medium is vaporized by heating the composition in the third step. In a low oxygen environment generated by exhausting the gas in the cavity of the covering member, the copper fine particles can be sintered while the copper oxide is reduced to metal copper by the reducing agent. As a result, a conductive film having a structure in which copper is continuous and having high conductivity can be manufactured.
また、ポリマー成分やポリマー前駆体を含む銅粒子組成物を用いる場合、本発明の製造方法により、金属銅の連続層とポリマーからなる導電膜を製造することができる。この場合、導電膜に含まれるポリマーは塗膜の堅牢性向上や基材との接着性向上に寄与しうる。 Moreover, when using the copper particle composition containing a polymer component and a polymer precursor, the electrically conductive film which consists of a continuous layer of metallic copper and a polymer can be manufactured with the manufacturing method of this invention. In this case, the polymer contained in the conductive film can contribute to improving the fastness of the coating film and improving the adhesion to the substrate.
第三工程における銅粒子組成物の加熱温度は、銅及び/または酸化銅からなる微粒子の性状、基材の耐熱温度、還元剤の反応性、所望の処理時間などに応じ、120℃以上350℃以下から選択される。加熱温度が高いと、使用可能な基材や遮蔽材の材質か制限され、また投入するエネルギーも大きくなる。また、加熱温度が低いと、加熱時間が長くなる。そのため、加熱温度は120℃以上260℃以下であることが好ましく、150℃以上260℃以下であることがさらに好ましい。 The heating temperature of the copper particle composition in the third step is 120 ° C. or higher and 350 ° C. depending on the properties of the fine particles comprising copper and / or copper oxide, the heat resistance temperature of the base material, the reactivity of the reducing agent, the desired treatment time, etc. Selected from: When the heating temperature is high, the material of the base material and the shielding material that can be used is limited, and the energy to be input becomes large. Moreover, when heating temperature is low, heating time will become long. Therefore, the heating temperature is preferably 120 ° C. or higher and 260 ° C. or lower, and more preferably 150 ° C. or higher and 260 ° C. or lower.
本発明の導電膜の製造方法は、銅及び/または酸化銅からなる微粒子、還元剤、第三工程における加熱温度を適切に選択することにより、従来提案されている銅及び/または酸化銅からなる微粒子を用いた導電膜の製造方法と比較して、短時間で焼成を行うことが可能である。10分以内の短時間で焼成することが可能になれば、生産性が高くなるため、特に好ましい。 The method for producing a conductive film of the present invention comprises conventionally proposed copper and / or copper oxide by appropriately selecting the fine particles comprising copper and / or copper oxide, the reducing agent, and the heating temperature in the third step. Compared with the manufacturing method of the electrically conductive film using microparticles | fine-particles, it is possible to bake in a short time. It is particularly preferable that baking can be performed in a short time within 10 minutes because productivity is increased.
第三工程における銅粒子組成物の加熱方法には、あらゆる公知の方法を用いることができる。好ましい加熱方法として、熱板による加熱を挙げることができる。被覆部材がカバー型である場合には、基材の裏面、すなわち被覆部材で被覆された面の反対の面に熱板を接触させることが好ましい。被覆部材がケース型である場合は、熱板の上に被覆部材を載せることが好ましい。熱板の加熱機構は、電熱ヒーター、熱媒、スチームなど公知の方法を用いることができる。 Any known method can be used for the method of heating the copper particle composition in the third step. As a preferred heating method, heating with a hot plate can be mentioned. When the covering member is a cover type, it is preferable to bring the hot plate into contact with the back surface of the substrate, that is, the surface opposite to the surface covered with the covering member. When the covering member is a case type, it is preferable to place the covering member on the hot plate. As the heating mechanism of the hot plate, a known method such as an electric heater, a heating medium, or steam can be used.
他の加熱方法としては、基材と被覆部材を熱風オーブン中に設置する方法や、ランプヒータ(ハロゲンランプヒーターやカーボンランプヒーター)の輻射熱による方法などを挙げることができる。 Examples of other heating methods include a method in which the base material and the covering member are installed in a hot air oven, and a method by radiant heat from a lamp heater (halogen lamp heater or carbon lamp heater).
キャビティ内圧情報防止機構が貫通孔である場合、第三工程の加熱時に貫通孔から還元剤が直ちに流出しないように、基材上面とは反対の面から熱板を用いて銅粒子組成物を加熱し、被覆部材の基材対向面を還元剤の沸点以下に保ち、還元剤を基材対向面に結露させることで、還元剤をキャビティ内に滞留させることが好ましい。さらにこのとき、被覆部材の基材対向面に熱伝導率の低い材料を用いることは、簡便に被覆部材の基材対向面を低温に保つ方法としてより好ましい。また、そのような熱伝導率が低い材料にはガラス、耐熱性樹脂(エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエーテルエーテルケトン樹脂、フッ素樹脂など)がある。 If the cavity internal pressure information prevention mechanism is a through-hole, heat the copper particle composition from the opposite side of the base material using a hot plate so that the reducing agent does not immediately flow out of the through-hole during heating in the third step. And it is preferable to make a reducing agent retain in a cavity by keeping the base material opposing surface of a coating | coated member below the boiling point of a reducing agent, and condensing a reducing agent on a base material opposing surface. Further, at this time, it is more preferable to use a material having low thermal conductivity for the substrate facing surface of the covering member as a method for easily keeping the substrate facing surface of the covering member at a low temperature. Examples of such a material having low thermal conductivity include glass and heat-resistant resin (epoxy resin, phenol resin, polyimide resin, polyether ether ketone resin, fluorine resin, etc.).
本発明の導電膜の製造方法によって得られる導電膜は、回路基板の配線、メンブラン配線板の配線、フィルムコネクタの配線、多層基板の層間配線、電磁波遮蔽材の導体メッシュ、フラットパネルディスプレイの配線(ゲートバスラインやソースバスライン)、プラズマディスプレイの集電電極、太陽電池の集電電極、ICタグのアンテナ、印刷コイルなどの用途に好適に使用することができる。 The conductive film obtained by the method for producing a conductive film of the present invention includes wiring for circuit boards, wiring for membrane wiring boards, wiring for film connectors, interlayer wiring for multilayer boards, conductor mesh for electromagnetic wave shielding materials, wiring for flat panel displays ( (Gate bus line and source bus line), current collecting electrode for plasma display, current collecting electrode for solar cell, antenna for IC tag, printed coil and the like.
以下、実施例を用いて本発明を具体的に説明する。ただし、本発明は下記実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
以下の実施例では、導電膜の抵抗率は株式会社ダイアインスツルメンツ製ロレスターGPを用いて4端子4探針法により測定した。抵抗率を測定した部分は組成物をべた塗りした部分である。スクリーン印刷によってベタパターンが複数印刷されている場合はすべてのベタパターンについて抵抗率を測定し、その平均値を抵抗率とした。合成した銅微粒子の観察及び導電膜の観察には走査型顕微鏡(日立S−4800)を用いた。また、ミキサーには株式会社シンキー製あわとり錬太郎AR−100を用いた。 In the following examples, the resistivity of the conductive film was measured by a four-terminal four-probe method using a Lorester GP manufactured by Dia Instruments Co., Ltd. The part where the resistivity was measured is the part where the composition was applied. When a plurality of solid patterns were printed by screen printing, the resistivity was measured for all the solid patterns, and the average value was taken as the resistivity. A scanning microscope (Hitachi S-4800) was used to observe the synthesized copper fine particles and the conductive film. Moreover, Shintaro Awatori Rentaro AR-100 manufactured by Shinky Corporation was used for the mixer.
シリコングリスには東レ・ダウコーニング株式会社製SH111を、ポリイミドフィルムにはカプトン(東レ・デュポン株式会社 500V、厚み125μm)を用いた。 SH111 manufactured by Toray Dow Corning Co., Ltd. was used for the silicon grease, and Kapton (500 V, thickness 125 μm) was used for the polyimide film.
(参考例1)
被覆部材は以下のようにして作製した。
(Reference Example 1)
The covering member was produced as follows.
アルミニウムに切削加工を施すことで図4に示す被覆部材1(a)及び1(b)を作製した。被覆部材1(b)にはポリジメチルシロキサン(PDMS)をはめ込み、被覆部材1(a)と1(b)を張り合わせたときに逆止弁として機能するようにした。 The covering members 1 (a) and 1 (b) shown in FIG. 4 were produced by cutting aluminum. The covering member 1 (b) was fitted with polydimethylsiloxane (PDMS) so that the covering member 1 (a) and 1 (b) functioned as a check valve.
また、アルミニウムを切削加工することにより、図5に示すキャビティの大きさwとキャビティの深さdの異なる7つの被覆部材(被覆部材2(a)〜2(g))を作製した。被覆部材2(a)〜2(e)のキャビティの大きさwは30mmであり、キャビティの深さdは被覆部材2(a)が1.2mm、2(b)が5.0mm、2(c)が10.0mm、2(d)が20.0mm、2(e)が30.0mmである。被覆部材2(f)及び2(g)のキャビティ深さは1.2mmであり、キャビティの広さwは2(f)が60mm、2(g)が90mmである。図5中の4に示すように、被覆部材2(a)〜2(g)には溝を掘ることで、平板で被覆部材に蓋をしたときに貫通孔が形成されるようにした。 Further, by cutting aluminum, seven covering members (covering members 2 (a) to 2 (g)) having different cavity sizes w and cavity depths d shown in FIG. 5 were produced. The size w of the cavity of the covering members 2 (a) to 2 (e) is 30 mm, and the depth d of the cavity is 1.2 mm for the covering member 2 (a), 5.0mm for 2 (b), 2 ( c) is 10.0 mm, 2 (d) is 20.0 mm, and 2 (e) is 30.0 mm. The cavity depth of the covering members 2 (f) and 2 (g) is 1.2 mm, and the width w of the cavity is 60 mm for 2 (f) and 90 mm for 2 (g). As indicated by 4 in FIG. 5, grooves are formed in the covering members 2 (a) to 2 (g) so that through holes are formed when the covering member is covered with a flat plate.
また、スライドガラスにシリコングリスを塗布し、ガラス板の上に配置することで図6に示す被覆部材(被覆部材3)を作製した。 Moreover, the coating member (covering member 3) shown in FIG. 6 was produced by apply | coating silicon grease to a slide glass and arrange | positioning on a glass plate.
図7に示されるように、被覆部材2(a)〜2(g)もしくは被覆部材3のキャビティに組成物を付着せしめた基材を入れて被覆するために、図7中の8に相当する被覆部材として厚さが1.5mmのガラス板(被覆部材4)を用いた。 As shown in FIG. 7, in order to cover the coating member 2 (a) to 2 (g) or the cavity of the coating member 3 with a base material on which the composition is adhered, 8 corresponds to 8 in FIG. 7. A glass plate (covering member 4) having a thickness of 1.5 mm was used as the covering member.
(参考例2)
銅微粒子Aは以下のようにして合成を行った。
(Reference Example 2)
Copper fine particles A were synthesized as follows.
テフロンコートした攪拌子を備えたナス型フラスコ中で水酸化銅(II)(和光純薬製、98mg、1mmol)をメタノール(10ml)に懸濁させ、ここに2−ウンデシルイミダゾール (和光純薬製、74mg、0.33mmol)とヒドラジン水和物(80%水溶液、関東化学製、1g、20mmol)をメタノール(10ml)で希釈したものを加えた。室温で一晩攪拌し、析出した固体をメンブレンフィルターでろ取後、メタノールで十分に洗浄した。その後得られた固体を減圧乾燥させることにより、銅微粒子59mgを得た(銅微粒子A)。走査型電子顕微鏡により粒径を測定した結果、平均粒径は約50nmであった。また粉末X線回折測定の結果、得られた粒子の主成分が銅であり、ほとんど酸化銅を含まないことがわかった。 Copper hydroxide (II) (Wako Pure Chemical Industries, 98 mg, 1 mmol) was suspended in methanol (10 ml) in an eggplant-shaped flask equipped with a Teflon-coated stir bar, and 2-undecylimidazole (Wako Pure Chemical Industries, Ltd.) was suspended here. Manufactured, 74 mg, 0.33 mmol) and hydrazine hydrate (80% aqueous solution, manufactured by Kanto Chemical Co., 1 g, 20 mmol) diluted with methanol (10 ml) were added. The mixture was stirred overnight at room temperature, and the precipitated solid was collected by filtration with a membrane filter and thoroughly washed with methanol. Thereafter, the obtained solid was dried under reduced pressure to obtain 59 mg of copper fine particles (copper fine particles A). As a result of measuring the particle diameter with a scanning electron microscope, the average particle diameter was about 50 nm. As a result of the powder X-ray diffraction measurement, it was found that the main component of the obtained particles was copper and contained almost no copper oxide.
(実施例1)
平均分子量10000のポリビニルピロリドン(東京化成株式会社 P0471)0.28gを0.72gの表1に示す還元剤、エチレングリコール(和光純薬工業株式会社 058−00986)、グリセリン(関東化学株式会社 17029−00)、ジエチレングリコール(和光純薬工業株式会社 045−25915)、2,3−ブタンジオール(和光純薬工業株式会社 022−03242)に溶解させ、平均粒径50nmの銅ナノ粒子(シグマアルドリッチ 684007−25G)4.0gと3本ロール及びミキサーを用いて混練した(組成物1〜4)。
Example 1
An average molecular weight of 10000 polyvinylpyrrolidone (Tokyo Kasei Co., Ltd. P0471) 0.28 g of 0.72 g of the reducing agent shown in Table 1, ethylene glycol (Wako Pure Chemical Industries, Ltd. 058-00986), glycerin (Kanto Chemical Co., Inc. 17029- 00), diethylene glycol (Wako Pure Chemical Industries, Ltd. 045-25915) and 2,3-butanediol (Wako Pure Chemical Industries, Ltd. 022-03242), and copper nanoparticles having an average particle diameter of 50 nm (Sigma Aldrich 684007- 25G) It knead | mixed using 4.0g, 3 rolls, and a mixer (compositions 1-4).
(実施例2)
平均分子量10000のポリビニルピロリドン(東京化成株式会社 P0471)0.28gを0.72gのN−メチルピロリドン(関東化学株式会社 25336−00)に溶解させ、平均粒径50nmの銅ナノ粒子(シグマアルドリッチ 684007−25G)4gと3本ロール及びミキサーを用いて混練した(組成物5)。
(Example 2)
An average molecular weight of 10,000 polyvinylpyrrolidone (Tokyo Kasei Co., Ltd. P0471) 0.28 g was dissolved in 0.72 g of N-methylpyrrolidone (Kanto Chemical Co., Ltd. 25336-00), and copper nanoparticles with an average particle size of 50 nm (Sigma Aldrich 684007). -25G) Kneaded using 4 g, 3 rolls and a mixer (Composition 5).
(実施例3)
L(+)−アスコルビン酸(和光純薬工業株式会社 016−04805)0.1g及び平均分子量40000のポリビニルピロリドン(和光純薬工業株式会社 161−17032)0.28gを精製水0.62gに溶解させ、平均粒径50nmの銅ナノ粒子(シグマアルドリッチ 684007−25G)4gと3本ロール及びミキサーを用いて混練した(組成物6)。
(Example 3)
0.1 g of L (+)-ascorbic acid (Wako Pure Chemical Industries, Ltd. 016-04805) and 0.28 g of polyvinylpyrrolidone having an average molecular weight of 40000 (Wako Pure Chemical Industries, Ltd. 161-17032) were dissolved in 0.62 g of purified water. Then, 4 g of copper nanoparticles having an average particle diameter of 50 nm (Sigma Aldrich 684007-25G) were kneaded using three rolls and a mixer (Composition 6).
(実施例4)
組成物1〜4を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に図7(a)に示すように、印刷されたポリイミドフィルムを被覆部材1(a)のキャビティに入れ、被覆部材1(b)で蓋をし、4隅をビスで固定した。次に4台のホットプレートをそれぞれ100℃、150℃、200℃、250℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと100℃のホットプレートで1分間加熱し、次いで150℃のホットプレートで1分間加熱し、次いで200℃のホットプレートで1分間加熱し、次いで250℃のホットプレートで5分間加熱した。加熱後、被覆部材からポリイミドフィルムを取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表1のように低抵抗率であることがわかった。また組成物1を焼成したものについて、ポリイミドフィルムを裂き、その断面を走査型顕微鏡で観察すると、粒子同士が焼結していることが確認された(図10)。
Example 4
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on a polyimide film having a size of 29 mm square using Compositions 1 to 4 by screen printing. Next, as shown in FIG. 7A, the printed polyimide film was put into the cavity of the covering member 1 (a), covered with the covering member 1 (b), and the four corners were fixed with screws. Next, four hot plates were set at 100 ° C., 150 ° C., 200 ° C., and 250 ° C., respectively. The composition coated with the covering member is then heated with the covering member for 1 minute on a 100 ° C. hot plate, then with a 150 ° C. hot plate for 1 minute, then with a 200 ° C. hot plate for 1 minute, and then Heated on a hot plate at 250 ° C. for 5 minutes. When the polyimide film was taken out from the covering member after heating, it was found that the composition became a conductive film by firing, and the resistivity was low as shown in Table 1. Moreover, about what baked the composition 1, when the polyimide film was torn and the cross section was observed with the scanning microscope, it was confirmed that particle | grains are sintered (FIG. 10).
(実施例5)
組成物5を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。また、表1に示した還元剤、エチレングリコール(和光純薬工業株式会社 058−00986)、グリセリン(関東化学株式会社 17029−00)、ジエチレングリコール(和光純薬工業株式会社 045−25915)、2,3−ブタンジオール(和光純薬工業株式会社 022−03242)をポリイミドフィルムの上に印刷パターンにかからないように0.01g滴下した。次に図7(b)に示すように、印刷されたポリイミドフィルムを被覆部材1(a)のキャビティに入れ、被覆部材1(b)で蓋をして4隅をビスで固定した。次に4台のホットプレートをそれぞれ100℃、150℃、200℃、250℃に設定した。次に実施例4と同様に組成物を加熱した。加熱後、被覆部材から組成物を取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表1のように低抵抗率であることが確認された。
(Example 5)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the polyimide film having a size of 29 mm square using the composition 5 by screen printing. Moreover, the reducing agent shown in Table 1, ethylene glycol (Wako Pure Chemical Industries, Ltd. 058-00986), glycerin (Kanto Chemical Co., Ltd. 17029-00), diethylene glycol (Wako Pure Chemical Industries, Ltd. 045-25915), 2, 0.01 g of 3-butanediol (Wako Pure Chemical Industries, Ltd. 022-03242) was dropped on the polyimide film so as not to cover the printing pattern. Next, as shown in FIG. 7B, the printed polyimide film was put into the cavity of the covering member 1 (a), covered with the covering member 1 (b), and fixed at the four corners with screws. Next, four hot plates were set at 100 ° C., 150 ° C., 200 ° C., and 250 ° C., respectively. The composition was then heated as in Example 4. When the composition was taken out from the covering member after heating, it was confirmed that the composition became a conductive film by firing, and the resistivity was low as shown in Table 1.
(実施例6)
組成物6を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に図7(a)に示すように、印刷されたポリイミドフィルムを被覆部材1(a)のキャビティに入れ、被覆部材1(b)で蓋をして4隅をビスで固定した。次に実施例4と同様に組成物を加熱した。加熱後、被覆部材からポリイミドフィルムを取り出すと、組成物は焼成により厚さ8μmの導電膜となっており、その抵抗率は89.2μΩ・cmと低抵抗率であることが確認された(表1)。
(Example 6)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the composition 6 on a polyimide film having a size of 29 mm square using screen printing. Next, as shown in FIG. 7A, the printed polyimide film was placed in the cavity of the covering member 1 (a), covered with the covering member 1 (b), and fixed at the four corners with screws. The composition was then heated as in Example 4. After heating, when the polyimide film was taken out from the covering member, the composition became a conductive film having a thickness of 8 μm by firing, and it was confirmed that the resistivity was as low as 89.2 μΩ · cm (Table 1).
(実施例7)
参考例2で合成した銅微粒子A4.0gとエチレングリコール(和光純薬工業株式会社 058−00986)1gと混合し、3本ロール用いて混練した後、2,2-ビス(4-グリシジルオキシフェニル)プロパン(東京化成株式会社 B1796)0.2gを加えてミキサーで撹拌した(組成物7)。銅微粒子Aは2−ウンデシルイミダゾールが銅粒子の周囲に付着している粒子であり、2−ウンデシルイミダゾールは焼成中に銅粒子から外れ、2,2-ビス(4-グリシジルオキシフェニル)プロパンの硬化剤として機能する。
(Example 7)
After mixing 4.0 g of copper fine particles A synthesized in Reference Example 2 and 1 g of ethylene glycol (Wako Pure Chemical Industries, Ltd. 058-00986) and kneading using three rolls, 2,2-bis (4-glycidyloxyphenyl) ) 0.2 g of propane (Tokyo Chemical Industry B1796) was added and stirred with a mixer (Composition 7). The copper fine particles A are particles in which 2-undecylimidazole is attached around the copper particles, and 2-undecylimidazole is detached from the copper particles during firing, and 2,2-bis (4-glycidyloxyphenyl) propane Functions as a curing agent.
組成物7を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に図7(a)に示すように、印刷されたポリイミドフィルムを被覆部材1(a)のキャビティに入れ、被覆部材1(b)で蓋をして4隅をビスで固定した。次に4台のホットプレートをそれぞれ150℃、200℃、250℃、300℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと150℃のホットプレートで1分間加熱し、次いで200度のホットプレートで1分間加熱し、次いで250℃のホットプレートで1分間加熱し、次いで300℃のホットプレートで5分間加熱した。加熱後、被覆部材から組成物を取り出すと、組成物は焼成により厚さ9μmの導電膜として硬化しており、その抵抗率は18.3μΩ・cmと低抵抗率であることが確認された(表1)。 A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the polyimide film having a size of 29 mm square by screen printing on the composition 7. Next, as shown in FIG. 7A, the printed polyimide film was placed in the cavity of the covering member 1 (a), covered with the covering member 1 (b), and fixed at the four corners with screws. Next, four hot plates were set at 150 ° C., 200 ° C., 250 ° C., and 300 ° C., respectively. Next, the composition coated with the covering member is heated on the hot plate at 150 ° C. for 1 minute together with the covering member, then heated on the 200 ° C. hot plate for 1 minute, then heated on the 250 ° C. hot plate for 1 minute, and then Heated on a hot plate at 300 ° C. for 5 minutes. When the composition was taken out from the covering member after heating, it was confirmed that the composition was cured as a conductive film having a thickness of 9 μm by firing, and its resistivity was as low as 18.3 μΩ · cm ( Table 1).
(実施例8)
特開2007−39765号公報の実施例1において開示される方法にて銅ナノ粒子を合成した(銅微粒子B)。平均分子量10000のポリビニルピロリドン(和光純薬工業株式会社 161−17032)0.28gをエチレングリコール(和光純薬工業株式会社 058−00986)0.72gに溶解させ、合成した銅微粒子B4.0gと混合し、3本ロール及びミキサーを用いて混練した(組成物8)。
(Example 8)
Copper nanoparticles were synthesized by the method disclosed in Example 1 of JP 2007-39765 A (copper fine particles B). 0.28 g of polyvinylpyrrolidone (Wako Pure Chemical Industries, Ltd. 161-17032) having an average molecular weight of 10,000 is dissolved in 0.72 g of ethylene glycol (Wako Pure Chemical Industries, Ltd. 058-00986) and mixed with 4.0 g of synthesized copper fine particles B. Then, the mixture was kneaded using three rolls and a mixer (Composition 8).
組成物8を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に、図7(a)に示すように、印刷されたポリイミドフィルムを被覆部材1(a)のキャビティに入れ、被覆部材1(b)で蓋をして4隅をビスで固定した。次に5台のホットプレートをそれぞれ150℃、200℃、250℃、300℃、350℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと150℃のホットプレートで1分間加熱し、次いで200度のホットプレートで1分間加熱し、次いで250℃のホットプレートで1分間加熱し、次いで300℃のホットプレートで1分間加熱し、次いで350℃のホットプレートで5分間加熱した。加熱後、被覆部材から組成物を取り出すと、組成物は焼成により厚さ6μmの導電膜となっており、その抵抗率は13.1μΩ・cmと低抵抗率であることが確認された(表1)。 A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the polyimide film having a size of 29 mm square by using the composition 8 on a polyimide film having a size of 29 mm square. Next, as shown in FIG. 7A, the printed polyimide film was put into the cavity of the covering member 1 (a), covered with the covering member 1 (b), and fixed at the four corners with screws. Next, five hot plates were set at 150 ° C., 200 ° C., 250 ° C., 300 ° C., and 350 ° C., respectively. Next, the composition coated with the covering member is heated on the hot plate at 150 ° C. for 1 minute together with the covering member, then heated on the 200 ° C. hot plate for 1 minute, then heated on the 250 ° C. hot plate for 1 minute, and then Heated on a 300 ° C. hot plate for 1 minute, then heated on a 350 ° C. hot plate for 5 minutes. When the composition was taken out from the covering member after heating, the composition was baked to form a conductive film having a thickness of 6 μm, and the resistivity was confirmed to be as low as 13.1 μΩ · cm (Table 1).
(実施例9)
厚さ約1mm、大きさ25mm角のグリーンシート(日本電気真空硝子株式会社 GCS71E)に市販されている酸化銅ナノ粒子分散液(ナノメタルインキCuIT、アルバックマテリアル株式会社)を#5のバーコーターを用いてべた塗りをした。次にべた塗りされたグリーンシートを、図7(c)に示すように、被覆部材1(a)のキャビティに入れ、グリーンシートにかからないように、グリセリン(関東化学株式会社 17029−00)0.01gをキャビティ内に滴下し、被覆部材1(b)で蓋をして4隅をビスで固定した。次に5台のホットプレートをそれぞれ150℃、200℃、250℃、300℃、350℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと150℃のホットプレートで1分間加熱し、次いで200度のホットプレートで1分間加熱し、次いで250℃のホットプレートで1分間加熱し、次いで300℃のホットプレートで1分間加熱し、次いで350℃のホットプレートで5分間加熱した。加熱後、被覆部材からポリイミドフィルムを取り出すと、組成物は焼成により厚さ4μmの導電膜となっており、その抵抗率は7.2μΩ・cmと低抵抗率であることが確認された(表1)。
Example 9
Using a # 5 bar coater, a copper oxide nanoparticle dispersion (Nanometal Ink CuIT, ULVAC Material Co., Ltd.) marketed on a green sheet (NEC Vacuum Glass Co., Ltd. GCS71E) with a thickness of about 1 mm and a size of 25 mm square. I applied a solid coating. Next, as shown in FIG. 7C, the solid green sheet is put into the cavity of the covering member 1 (a), and glycerin (Kanto Chemical Co., Ltd. 17029-00) 0. 01 g was dropped into the cavity, the lid was covered with the covering member 1 (b), and the four corners were fixed with screws. Next, five hot plates were set at 150 ° C., 200 ° C., 250 ° C., 300 ° C., and 350 ° C., respectively. The composition coated with the covering member is then heated with the covering member for 1 minute on a 150 ° C. hot plate, then for 1 minute on a 200 ° C. hot plate, then for 1 minute on a 250 ° C. hot plate, Heated on a 300 ° C. hot plate for 1 minute, then heated on a 350 ° C. hot plate for 5 minutes. After heating, when the polyimide film was taken out from the covering member, the composition became a conductive film having a thickness of 4 μm by firing, and the resistivity was confirmed to be as low as 7.2 μΩ · cm (Table 1).
(実施例10)
大研化学工業株式会社より市販されている銅ナノ粒子ペースト(NCU−04)を大きさ25mm角のポリイミドフィルムに#5のバーコーターを用いてべた塗りをした。次にべた塗りしたポリイミドフィルムを、図7(c)に示すように、被覆部材1(a)のキャビティに入れ、ポリイミドフィルムの周囲に、エチレングリコール(和光純薬工業株式会社 058−00986)0.01gをキャビティ内に滴下し、被覆部材1(b)で蓋をして4隅をビスで固定した。次に4台のホットプレートをそれぞれ150℃、200℃、250℃、300℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと150℃のホットプレートで1分間加熱し、次いで200度のホットプレートで1分間加熱し、次いで250℃のホットプレートで1分間加熱し、次いで300℃のホットプレートで5分間加熱した。加熱後、被覆部材からポリイミドフィルムを取り出すと、銅ナノ粒子ペーストは焼成により厚さ5μmの導電膜となっており、その抵抗率は22.1μΩ・cmと低抵抗率であることが確認された(表1)。
(Example 10)
A copper nanoparticle paste (NCU-04) commercially available from Daiken Chemical Industry Co., Ltd. was applied to a 25 mm square polyimide film using a # 5 bar coater. Next, as shown in FIG.7 (c), the solid-coated polyimide film is put into the cavity of the coating | coated member 1 (a), and ethylene glycol (Wako Pure Chemical Industries, Ltd. 058-00986) 0 is put around a polyimide film. .01 g was dropped into the cavity, covered with the covering member 1 (b), and fixed at the four corners with screws. Next, four hot plates were set at 150 ° C., 200 ° C., 250 ° C., and 300 ° C., respectively. Next, the composition coated with the covering member is heated on the hot plate at 150 ° C. for 1 minute together with the covering member, then heated on the 200 ° C. hot plate for 1 minute, then heated on the 250 ° C. hot plate for 1 minute, and then Heated on a hot plate at 300 ° C. for 5 minutes. After heating, when the polyimide film was taken out from the covering member, the copper nanoparticle paste was baked to form a conductive film having a thickness of 5 μm, and its resistivity was confirmed to be as low as 22.1 μΩ · cm. (Table 1).
(実施例11)
組成物1〜4を大きさ100mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に図7(d)に示すように、被覆部材2(a)のキャビティを下に向けてポリイミドフィルムの上に置くことで組成物を被覆した。次に気密性確保のために被覆部材2(a)の上に重りとして約500gのステンレス板を置いた。次に被覆部材及び重りごと組成物を25℃のホットプレートの上に置き、10分間かけてホットプレートを250℃まで昇温した後に1分間保持し、組成物を取り出した。組成物は焼成により導電膜となっており、その抵抗率は表1のように低抵抗率であることが確認された。
(Example 11)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on a 100 mm square polyimide film using Compositions 1 to 4 by screen printing. Next, as shown in FIG.7 (d), the composition was coat | covered by setting the cavity of the coating | coated member 2 (a) facing down on a polyimide film. Next, a stainless steel plate of about 500 g was placed as a weight on the covering member 2 (a) to ensure airtightness. Next, the composition including the covering member and the weight was placed on a hot plate at 25 ° C., and the hot plate was heated up to 250 ° C. over 10 minutes and then held for 1 minute, and the composition was taken out. The composition was made into a conductive film by firing, and the resistivity was confirmed to be low as shown in Table 1.
(実施例12)
組成物1〜4を大きさ30mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に印刷したフィルムをベタパターンとラインアンドスペースパターンが一つずつ残るように半分に切断した。次に切断したポリイミドフィルムの1枚を図7(e)に示すように、被覆部材3のキャビティに入れ、被覆部材4で蓋をした。このとき、被覆部材3と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に実施例4と同様に組成物を加熱した。加熱後、被覆部材から組成物を取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表1のように低抵抗率であることが確認された。
Example 12
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on a 30 mm square polyimide film using Compositions 1 to 4 by screen printing. The printed film was then cut in half so that one solid pattern and one line and space pattern remained. Next, as shown in FIG. 7E, one piece of the cut polyimide film was put in the cavity of the covering member 3 and covered with the covering member 4. At this time, silicon grease was applied to the contact portion between the covering member 3 and the covering member 4 to ensure airtightness. The composition was then heated as in Example 4. When the composition was taken out from the covering member after heating, it was confirmed that the composition became a conductive film by firing, and the resistivity was low as shown in Table 1.
(実施例13)
大きさ29mm角のポリイミドフィルムに図9に示すようなエッチング加工を施した。組成物1をこのフィルムの溝へスキージを用いて埋め込んだ。次に、図7(g)に示すように印刷されたポリイミドフィルムを被覆部材2(a)のキャビティに入れ、被覆部材4で蓋をした。このとき、被覆部材2(a)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に実施例4と同様に組成物を加熱した。加熱後、被覆部材から組成物を取り出すと、組成物は焼成により導電膜となっており、その抵抗率は11μΩ・cmと低抵抗率であることが確認された(表1)。
(Example 13)
Etching as shown in FIG. 9 was applied to a 29 mm square polyimide film. Composition 1 was embedded in the groove of this film using a squeegee. Next, the polyimide film printed as shown in FIG. 7 (g) was put in the cavity of the covering member 2 (a), and the covering member 4 was covered. At this time, silicon grease was applied to the contact portion between the covering member 2 (a) and the covering member 4 to ensure airtightness. The composition was then heated as in Example 4. When the composition was taken out from the covering member after heating, it was confirmed that the composition became a conductive film by firing, and the resistivity was as low as 11 μΩ · cm (Table 1).
(実施例14)
組成物1を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に図7(a)に示すように、印刷されたポリイミドフィルムを被覆部材2(a)のキャビティに入れ、被覆部材4で蓋をした。このとき、被覆部材2(a)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に3台のホットプレートをそれぞれ100℃、150℃、200℃に設定し、表2に示すように7〜90分間加熱した。その結果、長時間の加熱にもかかわらず導電膜の抵抗率はほとんど上がることがなく、キャビティ内への酸素の流入が抑制されていることが確認された。
(Example 14)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the polyimide film having a size of 29 mm square using the composition 1 by screen printing. Next, as shown in FIG. 7A, the printed polyimide film was put into the cavity of the covering member 2 (a), and the covering member 4 was covered. At this time, silicon grease was applied to the contact portion between the covering member 2 (a) and the covering member 4 to ensure airtightness. Next, the three hot plates were set at 100 ° C., 150 ° C. and 200 ° C., respectively, and heated for 7 to 90 minutes as shown in Table 2. As a result, it was confirmed that the resistivity of the conductive film hardly increased in spite of heating for a long time, and the inflow of oxygen into the cavity was suppressed.
(実施例15)
組成物1を5枚の大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。次に、図7(a)に示すように印刷されたポリイミドフィルムをそれぞれ別々の被覆部材2(a)のキャビティに入れ、被覆部材4で蓋をした。このとき、被覆部材2(a)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に7台のホットプレートをそれぞれ100℃、150℃、175℃、200℃、250℃、300℃、350℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと表5に示した加熱温度及び加熱時間で各ホットプレートを用いて低温側から加熱した。加熱後、被覆部材から試料6〜10を取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表2に示すように低抵抗率であることが確認された。
(Example 15)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the five 1-mm 29 mm square polyimide films of the composition 1 using screen printing. Next, the polyimide films printed as shown in FIG. 7A were put in the cavities of the separate covering members 2 (a) and covered with the covering members 4. At this time, silicon grease was applied to the contact portion between the covering member 2 (a) and the covering member 4 to ensure airtightness. Next, seven hot plates were set at 100 ° C., 150 ° C., 175 ° C., 200 ° C., 250 ° C., 300 ° C., and 350 ° C., respectively. Next, the composition coated with the covering member was heated from the low temperature side using each hot plate at the heating temperature and heating time shown in Table 5 together with the covering member. When samples 6 to 10 were taken out from the covering member after heating, it was confirmed that the composition became a conductive film by firing, and the resistivity was low as shown in Table 2.
(実施例16)
組成物1を大きさ29mm角のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンを印刷した。印刷されたポリイミドフィルムを被覆部材1(a)のキャビティに入れ、被覆部材1(b)で蓋をして4隅をビスで固定した。次に25℃の熱風オーブンに組成物を被覆部材ごと入れ、30分間かけて250℃まで昇温した後、1分間保持した。加熱後オーブンから被覆部材を取り出し、その中の組成物を取り出すと、焼成された組成物は厚さが5μmで、抵抗率が17μΩ・cmと低抵抗率であることが確認された(表2)。
(Example 16)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were printed on the polyimide film having a size of 29 mm square using the composition 1 by screen printing. The printed polyimide film was placed in the cavity of the covering member 1 (a), covered with the covering member 1 (b), and fixed at the four corners with screws. Next, the composition was put together with the covering member in a hot air oven at 25 ° C., heated to 250 ° C. over 30 minutes, and held for 1 minute. When the covering member was taken out from the oven after heating and the composition therein was taken out, it was confirmed that the fired composition had a thickness of 5 μm and a resistivity as low as 17 μΩ · cm (Table 2). ).
(実施例17)
組成物1をポリイミドフィルムに#5のバーコーターを用いてべた塗りした。次にべた塗りしたフィルムからフィルム表面が露出している部分を含まないように90,180,270,450,810mm2の5枚の試料を切り出した。
(Example 17)
Composition 1 was applied to a polyimide film using a # 5 bar coater. Next, five samples of 90, 180, 270, 450, and 810 mm 2 were cut out from the solid-coated film so as not to include a portion where the film surface was exposed.
試料1〜5をそれぞれ別々の被覆部材2(a)のキャビティに入れ、図7(f)に示すように被覆部材4で蓋をした。このとき、被覆部材2(a)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。この時点で、キャビティ底面の面積に対する組成物の塗布面積の割合は10,20,30,50,90%である。 Samples 1 to 5 were put in the cavities of the respective coating members 2 (a) and covered with the coating member 4 as shown in FIG. 7 (f). At this time, silicon grease was applied to the contact portion between the covering member 2 (a) and the covering member 4 to ensure airtightness. At this time, the ratio of the application area of the composition to the area of the bottom surface of the cavity is 10, 20, 30, 50, 90%.
次に組成物を実施例4と同様に加熱した。加熱後、被覆部材からポリイミドフィルムを取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表3に示すように、低抵抗率であることが確認された。 The composition was then heated as in Example 4. After the heating, when the polyimide film was taken out from the covering member, the composition became a conductive film by firing, and the resistivity was confirmed to be low as shown in Table 3.
(実施例18)
組成物1を大きさ29mm角の4枚のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンをそれぞれ印刷した。次に図7(a)に示すように、印刷された4枚のポリイミドフィルムを被覆部材2(a)〜(d)のキャビティに1枚ずつ入れ、それぞれを被覆部材4で蓋をした。このとき、被覆部材2(a)〜(d)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に4台のホットプレートをそれぞれ100℃、150℃、200℃、250℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごとそれぞれ100℃のホットプレートで1分間加熱し、次いで150℃のホットプレートで2分間加熱し、次いで200℃のホットプレートで5分間加熱し、次いで250℃のホットプレートで15分間加熱した。加熱後、それぞれの被覆部材からポリイミドフィルムを取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表4のように低抵抗率であることが確認された。
(Example 18)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were respectively printed on the four polyimide films having a size of 29 mm square by using screen printing. Next, as shown in FIG. 7A, four printed polyimide films were put into the cavities of the covering members 2 (a) to (d) one by one, and each was covered with the covering member 4. At this time, silicon grease was applied to the contact portion between the covering members 2 (a) to (d) and the covering member 4 to ensure airtightness. Next, four hot plates were set at 100 ° C., 150 ° C., 200 ° C., and 250 ° C., respectively. Next, the composition coated with the covering member is heated together with the covering member for 1 minute each on a hot plate at 100 ° C., then heated on a hot plate at 150 ° C. for 2 minutes, and then heated on a hot plate at 200 ° C. for 5 minutes, Subsequently, it heated for 15 minutes with a 250 degreeC hotplate. When the polyimide film was taken out from each covering member after heating, it was confirmed that the composition became a conductive film by firing, and the resistivity was low as shown in Table 4.
(実施例19)
組成物1を大きさ29mm角の13枚のポリイミドフィルムにスクリーン印刷を用いて図8に示すような100μmのラインアンドスペースパターン及び10mm角のベタパターンをそれぞれ印刷した。次に図7(a)に示すように、印刷されたポリイミドフィルムを被覆部材2(f)のキャビティに4枚、被覆部材2(g)に9枚を重ならないように並べて入れた。次にそれぞれを被覆部材4で蓋をした。このとき、被覆部材2(f)、2(g)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に組成物を実施例4と同様に加熱した。加熱後、それぞれの被覆部材から組成物を取り出すと、組成物は焼成により導電膜となっており、その抵抗率は表4のように低抵抗率であることが確認された。また、被覆部材2(f)及び2(g)において、各フィルムによる抵抗率の差は最大で2μΩ・cm程度であった。
(Example 19)
A 100 μm line and space pattern and a 10 mm square solid pattern as shown in FIG. 8 were respectively printed on 13 polyimide films having a size of 29 mm square by screen printing. Next, as shown in FIG. 7A, four printed polyimide films were placed in the cavity of the covering member 2 (f) and nine sheets were placed so as not to overlap the covering member 2 (g). Next, each was covered with a covering member 4. At this time, silicon grease was applied to the contact portion between the covering members 2 (f) and 2 (g) and the covering member 4 to ensure airtightness. The composition was then heated as in Example 4. When the composition was taken out from each covering member after heating, it was confirmed that the composition became a conductive film by firing, and the resistivity was low as shown in Table 4. Further, in the covering members 2 (f) and 2 (g), the maximum difference in resistivity between the films was about 2 μΩ · cm.
(実施例20)
組成物1を、一辺が約20mmのガラスの立方体上面に#5のバーコーターを用いてべた塗りした。次に図7(f)に示すように、べた塗りしたガラス立方体を被覆部材2(e)のキャビティに入れ、被覆部材4で蓋をした。このとき、被覆部材2(e)と被覆部材4の接触部にはシリコングリスを塗り、気密性を確保した。次に4台のホットプレートをそれぞれ100℃、150℃、200℃、250℃に設定した。次に被覆部材によって被覆された組成物を被覆部材ごと100℃のホットプレートで3分間加熱し、次いで150℃のホットプレートで3分間加熱し、次いで200℃のホットプレートで3分間加熱し、次いで250℃のホットプレートで15分間加熱した。加熱後、被覆部材から組成物を取り出すと、焼成された組成物は厚さが7μmで、抵抗率が9.9μΩ・cmと低抵抗率であることが確認された(表4)。
(Example 20)
The composition 1 was solid-coated using a # 5 bar coater on the upper surface of a glass cube having a side of about 20 mm. Next, as shown in FIG. 7 (f), the solid glass cube was put into the cavity of the covering member 2 (e) and covered with the covering member 4. At this time, silicon grease was applied to the contact portion between the covering member 2 (e) and the covering member 4 to ensure airtightness. Next, four hot plates were set at 100 ° C., 150 ° C., 200 ° C., and 250 ° C., respectively. Next, the composition coated with the covering member is heated on the hot plate at 100 ° C. for 3 minutes together with the covering member, then heated on the hot plate at 150 ° C. for 3 minutes, then heated on the hot plate at 200 ° C. for 3 minutes, and then Heated on a hot plate at 250 ° C. for 15 minutes. When the composition was taken out from the covering member after heating, it was confirmed that the fired composition had a thickness of 7 μm and a resistivity of 9.9 μΩ · cm and a low resistivity (Table 4).
(比較例1)
被覆部材1(b)による蓋をしない以外は実施例4と同様にして実施した。蓋をしないことにより、被覆は不完全であり、組成物から放出される蒸気は直ちに大気中へと拡散する。その結果、組成物1〜4を焼成することで得られた膜の抵抗率は測定器の測定限界を超えてオーバーロードとなり、極めて高い抵抗率であることが確認された(表1)。
(Comparative Example 1)
The same operation as in Example 4 was carried out except that the cover member 1 (b) was not covered. By not covering, the coating is incomplete and the vapor released from the composition immediately diffuses into the atmosphere. As a result, the resistivity of the film obtained by firing the compositions 1 to 4 exceeded the measurement limit of the measuring device and was overloaded, and it was confirmed that the resistivity was extremely high (Table 1).
(比較例2)
還元剤を滴下しない以外は実施例5と同様にして実施した。還元剤がない状態で加熱することにより、銅粒子はキャビティ内の酸素と反応し、酸化銅が生成される。その結果得られた膜は酸化しており、その抵抗率は測定器の測定限界を超えてオーバーロードとなり、極めて高い抵抗率であることが確認された(表1)。
(Comparative Example 2)
It implemented like Example 5 except not having dripped a reducing agent. By heating in the absence of a reducing agent, the copper particles react with oxygen in the cavities to produce copper oxide. As a result, the obtained film was oxidized, and its resistivity exceeded the measurement limit of the measuring instrument and was overloaded, and it was confirmed that the resistivity was extremely high (Table 1).
(比較例3)
基材にガラスの立方体ではなく、大きさ20mm角のポリイミドフィルムを用いた以外は実施例20と同様に実施した。このときのキャビティ内クリアランスは29.8mmであり、好適な範囲の上限である20mmを越える。加熱後、被覆部材からポリイミドフィルムを取り出すと、組成物は焼成により膜厚9μmの導電膜となっていたが、抵抗率は450μΩ・cmと高いことが確認された(表4)。
(Comparative Example 3)
The same procedure as in Example 20 was performed, except that a 20 mm square polyimide film was used instead of a glass cube. The clearance in the cavity at this time is 29.8 mm, which exceeds 20 mm, which is the upper limit of the preferred range. When the polyimide film was taken out from the covering member after heating, the composition was a conductive film having a thickness of 9 μm by firing, but it was confirmed that the resistivity was as high as 450 μΩ · cm (Table 4).
1 基材
2 被覆部材
3 組成物
4 キャビティ内圧上昇防止機構
5 キャビティ
6 キャビティ内クリアランス
7 ポリジメチルシロキサン
8 被覆部材(ガラス板)
9 還元剤
DESCRIPTION OF SYMBOLS 1 Base material 2 Cover member 3 Composition 4 Cavity internal pressure rise prevention mechanism 5 Cavity 6 Cavity clearance 7 Polydimethylsiloxane 8 Cover member (glass plate)
9 Reducing agent
Claims (4)
第一工程で得た基材上に被覆部材を覆設して外気から遮断されるキャビティ内部に該組成物を包囲する第二工程と、
被覆部材外部からキャビティ内部に気体を供給することなく、キャビティ内部の該組成物を還元剤存在下で120℃以上350℃以下で加熱する第三工程とを含み、
該被覆部材がキャビティ内部の内圧上昇防止手段を備え、
該被覆部材のキャビティ内クリアランスが0.01mm以上20mm以下である、導電膜の製造方法。 A first step of attaching a composition comprising fine particles comprising copper and / or copper oxide having an average particle size of 1 nm or more and 200 nm or less on a substrate;
A second step of covering the composition inside a cavity that is covered with a coating member on the substrate obtained in the first step and is shielded from the outside air;
A third step of heating the composition inside the cavity at 120 ° C. or more and 350 ° C. or less in the presence of a reducing agent without supplying gas from the outside of the covering member to the inside of the cavity,
The covering member includes an internal pressure rise preventing means inside the cavity,
The manufacturing method of the electrically conductive film whose clearance in a cavity of this coating | coated member is 0.01 mm or more and 20 mm or less.
The method for producing a conductive film according to any one of claims 1 to 3, wherein the time for heating the composition in the third step is within 10 minutes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008289870A JP2010118449A (en) | 2008-11-12 | 2008-11-12 | Method of manufacturing conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008289870A JP2010118449A (en) | 2008-11-12 | 2008-11-12 | Method of manufacturing conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010118449A true JP2010118449A (en) | 2010-05-27 |
Family
ID=42305947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008289870A Pending JP2010118449A (en) | 2008-11-12 | 2008-11-12 | Method of manufacturing conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010118449A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012214641A (en) * | 2011-03-31 | 2012-11-08 | Dainippon Printing Co Ltd | Metal particulate dispersed body, conductive substrate, and method of manufacturing the conductive substrate |
JP2012251187A (en) * | 2011-06-01 | 2012-12-20 | Jsr Corp | Composition for forming metal film, metal film, method for forming metal film, and electronic part |
WO2013077448A1 (en) * | 2011-11-24 | 2013-05-30 | 昭和電工株式会社 | Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating |
JP2014067617A (en) * | 2012-09-26 | 2014-04-17 | Fujifilm Corp | Method for producing conductive film and conductive film-forming composition |
KR20140056045A (en) * | 2012-10-31 | 2014-05-09 | 주식회사 동진쎄미켐 | Copper paste composition for printed electronics |
WO2014185102A1 (en) * | 2013-05-15 | 2014-11-20 | 石原ケミカル株式会社 | Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board |
-
2008
- 2008-11-12 JP JP2008289870A patent/JP2010118449A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012214641A (en) * | 2011-03-31 | 2012-11-08 | Dainippon Printing Co Ltd | Metal particulate dispersed body, conductive substrate, and method of manufacturing the conductive substrate |
JP2012251187A (en) * | 2011-06-01 | 2012-12-20 | Jsr Corp | Composition for forming metal film, metal film, method for forming metal film, and electronic part |
WO2013077448A1 (en) * | 2011-11-24 | 2013-05-30 | 昭和電工株式会社 | Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating |
CN103947305B (en) * | 2011-11-24 | 2017-03-08 | 昭和电工株式会社 | Conductive pattern forming method and the conductive pattern formation compositionss forming conductive pattern by light irradiation or microwave heating |
CN103947305A (en) * | 2011-11-24 | 2014-07-23 | 昭和电工株式会社 | Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating |
TWI561608B (en) * | 2011-11-24 | 2016-12-11 | Showa Denko Kk | |
US9318243B2 (en) | 2011-11-24 | 2016-04-19 | Showa Denko K.K. | Conductive-pattern forming method and composition for forming conductive pattern by photo irradiation or microwave heating |
KR101608295B1 (en) | 2011-11-24 | 2016-04-04 | 쇼와 덴코 가부시키가이샤 | Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating |
JP2014067617A (en) * | 2012-09-26 | 2014-04-17 | Fujifilm Corp | Method for producing conductive film and conductive film-forming composition |
JP2016502752A (en) * | 2012-10-31 | 2016-01-28 | ドンジン セミケム カンパニー リミテッド | Copper paste composition for printed electronics |
KR20140056045A (en) * | 2012-10-31 | 2014-05-09 | 주식회사 동진쎄미켐 | Copper paste composition for printed electronics |
KR102109427B1 (en) * | 2012-10-31 | 2020-05-28 | 주식회사 동진쎄미켐 | Copper paste composition for printed electronics |
CN105210155A (en) * | 2013-05-15 | 2015-12-30 | 日本石原化学株式会社 | Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board |
JP2014225338A (en) * | 2013-05-15 | 2014-12-04 | 石原ケミカル株式会社 | Copper fine particle dispersion liquid, conductive film forming method, and circuit board |
WO2014185102A1 (en) * | 2013-05-15 | 2014-11-20 | 石原ケミカル株式会社 | Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Farraj et al. | Plasma-induced decomposition of copper complex ink for the formation of highly conductive copper tracks on heat-sensitive substrates | |
US9907183B2 (en) | Electrical, plating and catalytic uses of metal nanomaterial compositions | |
Wang et al. | Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering | |
CN102601363B (en) | The electricity of metal nanomaterial compositions, plating and catalysis use | |
JP6295080B2 (en) | Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating | |
JP4913663B2 (en) | Circuit board manufacturing method | |
CN105210155B (en) | Copper microparticle dispersion, conductive film forming method and circuit board | |
US20080241391A1 (en) | Method of manufacturing a metal nanoparticle, conductive ink composition having the metal nanoparticle and method of forming a conductive pattern using the same | |
JP2010118449A (en) | Method of manufacturing conductive film | |
Jeon et al. | Two-step flash light sintering process for enhanced adhesion between copper complex ion/silane ink and a flexible substrate | |
KR20120132424A (en) | Light sintering method of conductive Cu nano ink | |
CN100428368C (en) | Conductive composition, conductive film and method for forming conductive film | |
CN101993634A (en) | Conductive ink, preparation method of metal micropattern using the same and printed circuit board prepared by the method | |
JP4960993B2 (en) | Method of forming metal wiring and metal wiring formed using the same | |
TW200818562A (en) | Method for manufacturing a parts of electric circuit | |
CN109563363B (en) | Formulations and processes for producing highly conductive copper patterns | |
TW201434867A (en) | Metal particle dispersion for electrically conductive substrate and method for producing the same, and method for producing electrically conductive substrate | |
JP2008243946A (en) | Conductive substrate and its manufacturing method | |
KR101467470B1 (en) | Copper nano ink using copper complex compound and prepration method of the same | |
Yu et al. | Sintering behavior of copper nanoparticles | |
TWI597319B (en) | Dispersant, metal particle dispersion for electroconductive substrate, and method for producing electroconductive substrate | |
JP2009278045A (en) | Workpiece and method for producing the same | |
JP2020119737A (en) | Conductive paste, base material with conductive film, production method of base material with conductive film | |
JP2008280592A (en) | Method for producing electrically conductive metal nanoparticle, electrically conductive metal nanoparticle, ink composition using the same, and method for forming wiring | |
JP2006269119A (en) | Reduction/thermolysis mutual fusion method by high frequency electromagnetic wave irradiation for metal oxide particle or the like to which sintering aid is added, and calcination material for various electronic parts and metal oxide particle or like using it |