JP2010118391A - METHOD OF GROWING AlxGal-xN CRYSTAL - Google Patents
METHOD OF GROWING AlxGal-xN CRYSTAL Download PDFInfo
- Publication number
- JP2010118391A JP2010118391A JP2008288787A JP2008288787A JP2010118391A JP 2010118391 A JP2010118391 A JP 2010118391A JP 2008288787 A JP2008288787 A JP 2008288787A JP 2008288787 A JP2008288787 A JP 2008288787A JP 2010118391 A JP2010118391 A JP 2010118391A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- layer
- aln
- melt
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 233
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000000758 substrate Substances 0.000 claims abstract description 74
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 26
- 238000002109 crystal growth method Methods 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 description 45
- 239000000155 melt Substances 0.000 description 20
- 239000002585 base Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 239000000203 mixture Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 11
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 8
- 238000004090 dissolution Methods 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000004907 flux Effects 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 4
- 150000001340 alkali metals Chemical class 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229910052733 gallium Inorganic materials 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
【課題】結晶性の高いAlxGa1-xN(0≦x≦1)結晶を成長させる方法を提供する。
【解決手段】本AlxGa1-xN結晶の成長方法は、下地基板10を準備する工程と、Alを含有したGa融液3への窒素の溶解5がされた溶液7を下地基板10に接触させて、下地基板10上に少なくとも1層のAlxGa1-xN結晶20を成長させる工程と、を備える。ここで、下地基板10上に、第1層のAlxGa1-xN結晶21としてAlN結晶、第2層のAlxGa1-xN結晶22としてAlx2Ga1-x2N(0<x2<1)結晶、第3層のAlxGa1-xN結晶23としてGaN結晶を順次成長させることができる。
【選択図】図1A method for growing Al x Ga 1-x N (0 ≦ x ≦ 1) crystals having high crystallinity is provided.
The Al x Ga 1-x N crystal growth method includes a step of preparing a base substrate 10 and a solution 7 in which nitrogen is dissolved 5 in a Ga melt 3 containing Al. And a step of growing at least one layer of Al x Ga 1-x N crystal 20 on the base substrate 10. Here, an AlN crystal as the first layer Al x Ga 1-x N crystal 21 and an Al x2 Ga 1-x2 N as the second layer Al x Ga 1-x N crystal 22 (0 < As the x2 <1) crystal and the third layer Al x Ga 1-x N crystal 23, a GaN crystal can be grown sequentially.
[Selection] Figure 1
Description
本発明は、Alを含有したGa融液に窒素を溶解した溶液を下地基板の主面に接触させて、その主面上にAlxGa1-xN(0≦x≦1)結晶を成長させる方法に関する。 In the present invention, a solution obtained by dissolving nitrogen in a Ga melt containing Al is brought into contact with the main surface of the base substrate, and Al x Ga 1-x N (0 ≦ x ≦ 1) crystals are grown on the main surface. It relates to the method of making it.
AlN結晶、GaN結晶などのAlxGa1-xN(0≦x≦1、以下同じ)結晶は、発光デバイス、電子デバイスなどの半導体デバイスの基板として好ましく用いられる。ここで、半導体デバイスの特性を向上させるために、転位密度が低く結晶性が高いAlxGa1-xN結晶が必要とされている。 AlN crystal, Al x Ga 1-x N, such as GaN crystal (0 ≦ x ≦ 1, hereinafter the same) crystals, the light emitting device preferably used as a substrate for a semiconductor device such as an electronic device. Here, in order to improve the characteristics of the semiconductor device, an Al x Ga 1-x N crystal having a low dislocation density and high crystallinity is required.
ここで、AlおよびGaを含む融液を用いた液相法は、HVPE(ハイドライド気相成長)法、MOCVD(有機金属化学気相堆積)法などの気相法に比べて、転位密度が低く結晶性が高いAlxGa1-xN結晶の成長が可能と期待されている。 Here, a liquid phase method using a melt containing Al and Ga has a lower dislocation density than a vapor phase method such as an HVPE (hydride vapor phase epitaxy) method or an MOCVD (metal organic chemical vapor deposition) method. It is expected that Al x Ga 1-x N crystals having high crystallinity can be grown.
たとえば、再公表国際公開WO2006/022302号公報(以下、特許文献1という)は、穏やかな圧力および温度条件(たとえば、0.01〜1000MPaおよび300〜2300℃)でAlN結晶を製造する方法として、窒素含有ガスの存在下、アルカリ金属およびアルカリ土類の少なくとも一方の元素である(A)成分、およびSn、Ga、In、BiおよびHgからなる群から選択される少なくとも一つの元素である(B)成分を含むフラックス中または上記(B)成分を含むフラックス中において、アルミニウムと窒素とを反応させてAlN結晶を成長させる方法を提案する。 For example, re-published international publication WO2006 / 022302 (hereinafter referred to as Patent Document 1) describes a method for producing an AlN crystal under mild pressure and temperature conditions (for example, 0.01 to 1000 MPa and 300 to 2300 ° C.), In the presence of a nitrogen-containing gas, the component (A) which is at least one element of alkali metal and alkaline earth, and at least one element selected from the group consisting of Sn, Ga, In, Bi and Hg (B The present invention proposes a method of growing AlN crystals by reacting aluminum and nitrogen in a flux containing a component) or in a flux containing the component (B).
また、再公表国際公開WO2006/030718号公報(以下、特許文献2という)は、高品質のAlN単結晶を育成する方法として、少なくともガリウム(Ga)とアルミニウム(Al)とナトリウム(Na)とを含む融液を窒素含有雰囲気中で加圧することによって、好ましくは窒素分圧が50気圧以下または850℃以上1200℃以下の温度で、AlN単結晶を育成する方法を提案する。 In addition, the republished international publication WO2006 / 030718 (hereinafter referred to as Patent Document 2) describes at least gallium (Ga), aluminum (Al), and sodium (Na) as a method for growing a high-quality AlN single crystal. A method is proposed in which an AlN single crystal is grown by pressurizing the melt contained in a nitrogen-containing atmosphere, preferably at a nitrogen partial pressure of 50 atm or lower or at a temperature of 850 ° C. or higher and 1200 ° C. or lower.
また、特開2003−335600号公報(以下、特許文献3という)は、比較的大きなAlN単結晶を簡易かつ低コストで製造しえる方法として、金属aとしてCr、Mn、Fe、Co、CuおよびNiから選択された1種類以上を含み、金属bとしてSc、Ti、V、Y、ZrおよびNbから選択された1種類以上を含み、さらに成分cとしてAlを含むabc系合金の融液を冷却するかまたは金属aとbの少なくともいずれかの蒸発によってAlN単結晶を成長させる方法を提案する。
しかし、特許文献1の方法においては、実施例の結晶条件では基板上に2μm程度以下の薄いAlN結晶しか得られず、また多結晶化し易く再現性が低いという問題があった。実施例において、(A)成分として蒸気圧が高いアルカリ金属および/またはアルカリ土類金属を用いているため、(A)成分の蒸発を抑制するために結晶成長温度を低くする(たとえば、実施例においては結晶成長温度は800〜980℃としている)必要があり、このため結晶成長速度が低いと考えられる。また、結晶成長温度が低いため、結晶性が低下し、多結晶化し易く再現性が低いと考えられる。
However, the method of
また、特許文献2の方法においては、フラックスとして蒸気圧の高いNaを用いているため、結晶成長温度を高くするとNaが蒸発して再現性が低下する問題があった。一方、Naの蒸発を抑制するために結晶成長温度を低くすると、結晶性が低下する問題があった。 Further, in the method of Patent Document 2, Na having a high vapor pressure is used as the flux. Therefore, when the crystal growth temperature is increased, Na is evaporated and the reproducibility is lowered. On the other hand, if the crystal growth temperature is lowered to suppress the evaporation of Na, there is a problem that the crystallinity is lowered.
また、特許文献3の方法においては、実施例の結晶成長条件ではSiC基板のように成長させるAlN単結晶と化学組成が異なる異種基板を用いると、AlN単結晶にクラックが発生する問題があった。結晶成長を開始させる融液の温度が1500〜1850℃と高いため、冷却の際に異種基板とAlN単結晶との熱膨張係数の差により大きな熱応力が発生するためと考えられる。
Further, in the method of
そこで、上記問題を解決して、結晶性の高いAlxGa1-xN(0≦x≦1)結晶を成長させる方法を提供することを目的とする。かかる目的を達成するために、本発明者らは、フラックスとして蒸気圧の高いNaなどのアルカリ金属またはCaなどのアルカリ土類金属を用いて結晶成長温度を特に低くすることなく、またフラックスとしてCr、Scなどの高融点金属を用いて特に結晶成長温度を高くすることなく、Alを含有したGa融液に窒素を溶解させた溶液を用いて結晶性の高いAlxGa1-xN結晶を成長させることができることを見い出すことにより、本発明を完成させた。 Therefore, an object of the present invention is to solve the above problems and provide a method for growing Al x Ga 1-x N (0 ≦ x ≦ 1) crystals having high crystallinity. In order to achieve such an object, the present inventors use an alkali metal such as Na having a high vapor pressure or an alkaline earth metal such as Ca as the flux without particularly lowering the crystal growth temperature, and Cr as the flux. A high crystallinity Al x Ga 1-x N crystal is obtained using a solution obtained by dissolving nitrogen in a Ga-containing melt containing Al without using a high melting point metal such as Sc and Sc. The present invention was completed by finding that it can be grown.
本発明は、下地基板を準備する工程と、Alを含有したGa融液に窒素を溶解させた溶液を下地基板に接触させて、下地基板上に少なくとも1層のAlxGa1-xN(0≦x≦1)結晶を成長させる工程と、を備えるAlxGa1-xN結晶の成長方法である。 In the present invention, a step of preparing a base substrate, and a solution obtained by dissolving nitrogen in an Al-containing Ga melt is brought into contact with the base substrate, so that at least one layer of Al x Ga 1-x N ( And 0 ≦ x ≦ 1) a step of growing a crystal, and a method for growing an Al x Ga 1-x N crystal.
本発明にかかるAlxGa1-xN結晶の成長方法のAlxGa1-xN結晶を成長させる工程において、下地基板上に第1層のAlxGa1-xN結晶としてAlN結晶を成長させることができる。また、かかるAlN結晶上に、第2層のAlxGa1-xN結晶としてAlx2Ga1-x2N(0<x2<1)結晶、第3層のAlxGa1-xN結晶としてGaN結晶をさらに順次成長させることができる。ここで、結晶成長温度を1000℃以上1300℃以下とすることができる。 In the step of growing an Al x Ga 1-x N crystal in the Al x Ga 1-x N crystal growth method according to the present invention, an AlN crystal is formed as an Al x Ga 1-x N crystal of the first layer on the base substrate. Can be grown. Further, on the take AlN crystal, Al x2 Ga 1-x2 N as Al x Ga 1-x N crystal of the second layer (0 <x2 <1) crystal, as Al x Ga 1-x N crystal of the third layer GaN crystals can be further grown sequentially. Here, the crystal growth temperature can be set to 1000 ° C. or higher and 1300 ° C. or lower.
本発明によれば、結晶性の高いAlxGa1-xN(0≦x≦1)結晶を成長させる方法を提供することができる。 The present invention can provide a method for growing Al x Ga 1-x N (0 ≦ x ≦ 1) crystals having high crystallinity.
図1を参照して、本発明にかかるAlxGa1-xN(0≦x≦1)結晶の成長方法の一実施形態は、下地基板10を準備する工程と、Alを含有したGa融液3に窒素を溶解(融液への窒素の溶解5)させた溶液7を下地基板10に接触させて、下地基板10上に少なくとも1層のAlxGa1-xN結晶20を成長させる工程と、を備える。
Referring to FIG. 1, an embodiment of the Al x Ga 1-x N (0 ≦ x ≦ 1) crystal growth method according to the present invention includes a step of preparing a
本実施形態にかかるAlxGa1-xN結晶の成長方法によれば、Alを含有したGa融液3を用いることにより、蒸気圧の高いアルカリ金属もしくはアルカリ土類金属、または融点の高い遷移金属を用いることなく、融液3に窒素を溶解(融液への窒素の溶解5)させた溶液7を形成し、かかる溶液7を下地基板10に接触させて、下地基板10上に少なくとも1層のAlxGa1-xN結晶20を成長させることができる。
According to the Al x Ga 1-x N crystal growth method according to the present embodiment, by using a
(下地基板を準備する工程)
図1を参照して、本実施形態のAlxGa1-xN結晶の成長方法は、下地基板10を準備する工程を備える。ここで、下地基板10は、その上にAlxGa1-xN結晶20をエピタキシャル成長させることができるものであれば特に制限はないが、下地基板と成長させるAlxGa1-xN結晶との格子定数の不整合を低減して結晶性の高いAlxGa1-xN結晶をエピタキシャル成長させる観点から、サファイア基板、SiC基板、Si基板、GaAs基板、AlsGa1-sN(0≦s≦1)基板などが好ましい。また、同様の観点から、サファイア基板、SiC基板、Si基板またはGaAs基板などの基礎基板上に薄いAltGa1-tN(0≦t≦1)層が形成されたAltGa1-tNテンプレート基板も好ましい。
(Process for preparing the base substrate)
With reference to FIG. 1, the Al x Ga 1-x N crystal growth method of the present embodiment includes a step of preparing a
(AlxGa1-xN結晶を成長させる工程)
図1を参照して、本実施形態のAlxGa1-xN結晶の成長方法は、Alを含有したGa融液3に窒素を溶解(融液への窒素の溶解5)させた溶液7を下地基板10に接触させて、下地基板10上に少なくとも1層のAlxGa1-xN結晶20を成長させる工程を備える。
(Step of growing Al x Ga 1-x N crystal)
Referring to FIG. 1, the Al x Ga 1-x N crystal growth method of this embodiment is a
ここで、Alを含有したGa融液3への窒素の溶解5の方法には、特に制限なく、融液に、窒素含有気体、窒素含有液体および窒素含有固体の少なくともいずれかを供給することにより行うことができる。融液への窒素の溶解量の調節が容易な観点から、融液に窒素含有ガスを加圧によって供給することが好ましい。窒素含有ガスは、融液への溶解が可能な窒素を含むガスであれば特に制限はなく、窒素(N2)ガス、アンモニア(NH3)ガスなどが用いられる。結晶への不純物の混入を低減する観点から、融液3を形成するためのAl原料およびGa原料のそれぞれの純度は、99mol%以上が好ましく、99.99mol%以上がより好ましく、99.9999mol%以上がさらに好ましい。また、同様の観点から、窒素含有ガスの純度は、99.99mol%以上が好ましく、99.9999mol%以上がより好ましい。
Here, the method 5 for dissolving nitrogen in the Ga-
このとき、Ga融液に比べてAl融液への窒素の溶解5は困難であるが、Alを含有するGa融液には窒素が溶解する。また、GaN結晶に比べてAlN結晶は非常に成長しやすい。このため、所定の結晶成長条件において、Alを含有したGa融液に窒素を溶解させた溶液7から、下地基板10上に、まず、第1層のAlxGa1-xN結晶21としてAlN結晶が成長する。かかるAlN結晶の成長とともに、Alを含有したGa融液3中のAl含有量が低減する。
At this time, the dissolution 5 of nitrogen in the Al melt is more difficult than the Ga melt, but nitrogen dissolves in the Ga melt containing Al. In addition, an AlN crystal is very easy to grow as compared with a GaN crystal. Therefore, in a given crystal growth conditions, the
さらに、結晶成長を続けると、AlN結晶(第1層のAlxGa1-xN結晶21)上に、第2層のAlxGa1-xN結晶22としてAlx2Ga1-x2N(0<x2<1)結晶が成長する。かかるAlx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)は、AlN結晶(第1層のAlxGa1-xN結晶21)と次に成長するGaN結晶(第3層のAlxGa1-xN結晶23)との間のAlGaN組成遷移結晶層と位置づけられるものである。Alx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)の成長とともに、結晶中のAl組成(x2)は低減し、また融液3中のAl含有量はさらに低減して最終的には無くなる。
Further, when the crystal growth is continued, an Al x2 Ga 1-x2 N (second layer Al x Ga 1-x N crystal 22 is formed on the AlN crystal (first Al x Ga 1-x N crystal 21). 0 <x2 <1) Crystal grows. The Al x2 Ga 1-x2 N crystal (the second layer Al x Ga 1-x N crystal 22) is an AlN crystal (the first layer Al x Ga 1-x N crystal 21) and the next grown GaN crystal. It is positioned as an AlGaN composition transition crystal layer between the (third layer Al x Ga 1-x N crystal 23). As the Al x2 Ga 1-x2 N crystal (the second layer Al x Ga 1-x N crystal 22) grows, the Al composition (x2) in the crystal decreases, and the Al content in the
さらに、結晶成長を続けると、Alx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)上に、第3層のAlxGa1-xN結晶23としてGaN結晶が成長する。このようにして、下地基板10上に、少なくとも1層のAlxGa1-xN結晶20として、AlN結晶(第1層のAlxGa1-xN結晶21)、Alx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)およびGaN結晶(第3層のAlxGa1-xN結晶23)を順次かつ連続的に成長させることができる。
Further, when the crystal growth is continued, a GaN crystal is formed on the Al x2 Ga 1 -x2 N crystal (the second layer Al x Ga 1 -xN crystal 22) as the third layer Al x Ga 1 -x
ここで、上記のAlN結晶(第1層のAlxGa1-xN結晶21)、Alx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)およびGaN結晶(第3層のAlxGa1-xN結晶23)の存在およびそれらの厚さは、EPMA(電子プローブ微小分析)法を用いて、得られた結晶の成長方向に平行な断面の化学組成を分析することにより確認することができる。 Here, the above AlN crystal (first layer Al x Ga 1-x N crystal 21), Al x2 Ga 1-x2 N crystal (second layer Al x Ga 1-x N crystal 22) and GaN crystal ( The presence of the third layer Al x Ga 1-x N crystal 23) and their thickness are determined by the chemical composition of the cross section parallel to the growth direction of the obtained crystal using the EPMA (electron probe microanalysis) method. This can be confirmed by analysis.
上記のように、本実施形態のAlxGa1-xN(0≦x≦1)結晶の成長方法によれば、結晶成長とともにAlxGa1-xN結晶中のAl組成(x)を低減させることにより、下地基板上に、AlN結晶、Alx2Ga1-x2N結晶およびGaN結晶を順次かつ連続的に成長させることができるため、下地基板10としてSiC基板またはサファイア基板などのAlxGa1-xNと化学組成が異なる異種基板を用いても、結晶性の高いGaN結晶を得ることができる。
As described above, according to the Al x Ga 1-x N (0 ≦ x ≦ 1) crystal growth method of the present embodiment, the Al composition (x) in the Al x Ga 1-x N crystal is increased along with the crystal growth. By reducing this, an AlN crystal, an Al x2 Ga 1-x2 N crystal, and a GaN crystal can be grown sequentially and continuously on the base substrate. Therefore, an Al x such as a SiC substrate or a sapphire substrate can be used as the
ここで、Alを含有したGa融液3中のAl含有量は、特に制限はないが、AlN結晶の成長を促進させる観点から、Ga含有量に対して、0.01mol%以上10mol%以下が好ましい。Ga含有量に対するAl含有量が、0.01mol%より小さいとAlN結晶がほとんど成長せず、10molより大きいと融液中への窒素の溶解が減少しAlN結晶の成長が抑制される。ここで、Al組成比の増加に伴うGa組成比低下により融液への窒素の溶解が低下する一方、窒化物を形成しやすいAlの組成増加によって基板上以外の融液液面でもAlN結晶が発生し成長しやすくなる。これを抑制するためには窒素圧力を低くする必要があり、この窒素圧力の低減が融液中に溶解する窒素の量を低下させてしまう。
Here, the Al content in the
また、Alを含有したGa融液3中のAl含有量を調節することにより、上記のAlN結晶(第1層のAlxGa1-xN結晶21)、Alx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)およびGaN結晶(第3層のAlxGa1-xN結晶23)のそれぞれの結晶成長の厚さを調節することができる。すなわち、Alを含有したGa融液3中のAl含有量を増大させることによりAlN結晶(第1層のAlxGa1-xN結晶21)の厚さを大きくすることができる。Alを含有したGa融液3中のAl含有量を減少させることによりAlN結晶(第1層のAlxGa1-xN結晶21)およびAlx2Ga1-x2N結晶(第2層のAlxGa1-xN結晶22)の厚さを小さくしてGaN結晶(第3層のAlxGa1-xN結晶23)の厚さを大きくすることができる。
Further, by adjusting the Al content in the
本実施形態のAlxGa1-xN結晶において、AlxGa1-xN結晶を成長させる工程における結晶成長温度は、特に制限はないが、層状に連続したAlN結晶の形成が容易な観点から、1000℃以上1300℃以下が好ましい。結晶成長温度が、1000℃より低いと層状に連続したAlN結晶の成長が困難となり、1300℃より高いと成長する結晶(AlxGa1-xN結晶)と化学組成が異なる下地基板(下地異種基板)との熱膨張係数の差により層状のAlN結晶にクラックが発生しやすくなる。 In the Al x Ga 1-x N crystal of this embodiment, the crystal growth temperature in the step of growing the Al x Ga 1-x N crystal is not particularly limited, but it is easy to form a layered continuous AlN crystal From 1000 ° C. to 1300 ° C. is preferable. When the crystal growth temperature is lower than 1000 ° C., it is difficult to grow layered continuous AlN crystals. When the crystal growth temperature is higher than 1300 ° C., the substrate (Al x Ga 1-x N crystal) that has a different chemical composition from the growing crystal Cracks are likely to occur in the layered AlN crystal due to the difference in thermal expansion coefficient from the substrate.
また、AlxGa1-xN結晶を成長させる工程における結晶成長圧力は、特に制限はないが、結晶性の高いAlxGa1-xN結晶を効率よく成長させる観点から、100気圧(10.1MPa)以上2000気圧(202.7MPa)以下が好ましい。結晶成長圧力が、100気圧より低いと結晶成長速度が低くなりすぎ、2000気圧より高いと融液の液面に結晶が成長してしまい下地基板上への選択的な結晶成長ができなくなってしまう。ここで、AlN結晶は、GaN結晶に比べて結晶成長しやすく、GaN結晶の結晶成長圧力より低い圧力においても、結晶性の高い結晶が成長する。そこで、第1層のAlxGa1-xN結晶21としてAlN結晶を成長させる際にGaN結晶の成長を確実に防止してAlN結晶にGa混入を防止する観点から、GaN結晶の結晶成長圧力より十分に低い圧力でAlN結晶を成長させる必要がある。このようなAlN結晶の結晶成長圧力は、結晶成長温度によって変わるため、結晶成長温度に応じて探索すれば良い。 The crystal growth pressure in the step of growing the Al x Ga 1-x N crystal is not particularly limited, but from the viewpoint of efficiently growing the Al x Ga 1-x N crystal having high crystallinity, the pressure is 100 atm (10 .1 MPa) or more and 2000 atmospheres (202.7 MPa) or less. If the crystal growth pressure is lower than 100 atm, the crystal growth rate becomes too low, and if it is higher than 2000 atm, crystals grow on the surface of the melt and selective crystal growth on the underlying substrate becomes impossible. . Here, the AlN crystal grows easier than the GaN crystal, and a crystal with high crystallinity grows even at a pressure lower than the crystal growth pressure of the GaN crystal. Therefore, when an AlN crystal is grown as the Al x Ga 1-x N crystal 21 of the first layer, the crystal growth pressure of the GaN crystal is prevented from reliably preventing the growth of the GaN crystal and preventing the GaN from entering the AlN crystal. It is necessary to grow AlN crystals at a sufficiently lower pressure. Since the crystal growth pressure of such an AlN crystal varies depending on the crystal growth temperature, it may be searched according to the crystal growth temperature.
また、結晶性の高いAlxGa1-xN結晶を成長させる観点から、1000℃以上好ましくは1100℃以上の温度で成長させることが好ましい。ただし下地異種基板上にAlxGa1-xN結晶を成長させる場合は、下地異種基板とAlxGa1-xN結晶との熱膨張係数の差によりクラックが発生するため、結晶成長温度を高くしすぎることは好ましくない。この観点から1300℃以下の結晶成長温度が好ましい。 Further, from the viewpoint of growing Al x Ga 1-x N crystal having high crystallinity, it is preferably grown at a temperature of 1000 ° C. or higher, preferably 1100 ° C. or higher. However, when an Al x Ga 1-x N crystal is grown on the underlying heterogeneous substrate, cracks are generated due to the difference in thermal expansion coefficient between the underlying heterogeneous substrate and the Al x Ga 1-x N crystal. It is not preferable to make it too high. From this viewpoint, a crystal growth temperature of 1300 ° C. or lower is preferable.
(実施例1)
1.下地基板の準備工程
図1を参照して、下地基板10として、主面の面方位が(0001)で6Hタイプの直径3インチ(7.62cm)×厚さ300μmのSiC基板を準備した。
Example 1
1. Step of Preparing Substrate Referring to FIG. 1, a SiC substrate having a principal surface with a plane orientation of (0001) and a 6H type diameter of 3 inches (7.62 cm) × thickness of 300 μm was prepared as
2.AlxGa1-xN結晶の成長
図1を参照して、結晶成長室110内に配置された内径10cm×高さ5cmのカーボン製の坩堝(結晶成長容器1)内に、上記SiC基板(下地基板10)、450gの純度99.9999mol%の金属Gaおよび1.7gの純度99.9999mol%の金属Al(金属Gaに対して1mol%の金属Al)を配置した。
2. 1. Growth of Al x Ga 1-x N crystal Referring to FIG. 1, the above SiC substrate (crystal growth vessel 1) is placed in a crystal crucible (crystal growth vessel 1) having an inner diameter of 10 cm and a height of 5 cm. Underlying substrate 10), 450 g of 99.9999 mol% metal Ga and 1.7 g of 99.9999 mol% metal Al (1 mol% metal Al with respect to metal Ga) were arranged.
次に、結晶成長室110内を1×10-5気圧(1.01Pa)まで真空排気しながらヒータ120を用いて室温から700℃まで昇温し、700℃で1時間保持した後、ガス供給口110eから結晶成長室110内に純度99.9999mol%の窒素ガスを供給して、坩堝(結晶成長容器1)を大気圧から10気圧(1.01MPa)まで加圧した。次いで、坩堝を10気圧に保持してヒータ120を用いて1時間かけて700℃から1200℃まで昇温した。次いで、坩堝を1200℃に保持して10気圧から500気圧(50.7MPa)まで加圧した。このとき、坩堝内に配置された金属Gaおよび金属Alが融解してAlを含有したGa融液3(Ga含有量に対するAl含有量は1mol%)となり、融液3への窒素の溶解5により得られた溶液7がSiC基板(下地基板10)に接触している。ここで、溶液7の表面7mから下地基板10の主面10mまでの深さは約5mmである。次いで、坩堝を1200℃および500気圧で10時間保持した。次いで、坩堝を500気圧に保持して1時間かけて1200℃から100℃まで降温した。次いで、坩堝を100℃に保持して500気圧から大気圧に減圧し、その後100℃から室温(30℃)まで降温した。
Next, while the inside of the
こうして、SiC基板(下地基板10)の主面10mの全面上に層状に広がって成長した厚さ5〜10μmのAlxGa1-xN単結晶(AlxGa1-xN結晶20)が得られた。得られたAlxGa1-xN単結晶の成長方向に平行な断面の化学組成をEPMA法により分析したところ、AlN単結晶(第1層のAlxGa1-xN結晶21)が形成されていた。かかるAlN単結晶は、(0002)面に関するロッキングカーブにおけるX線回折ピークの半値幅が150〜200arcsecであり、高い結晶性を有していた。また、AlN単結晶にクラックの発生は認められなかった。
In this way, an Al x Ga 1-x N single crystal (Al x Ga 1-x N crystal 20) having a thickness of 5 to 10 μm and grown in layers on the entire
(実施例2)
1.下地基板の準備
図1を参照して、下地基板10として実施例1と同様のSiC基板を準備した。
(Example 2)
1. Preparation of Base Substrate With reference to FIG. 1, a SiC substrate similar to Example 1 was prepared as the
2.AlxGa1-xN結晶の成長
図1を参照して、結晶成長室110内に配置された内径10cm×高さ5cmのカーボン製の坩堝(結晶成長容器1)内に、上記SiC基板(下地基板10)、450gの純度99.9999mol%の金属Gaおよび0.17gの純度99.9999mol%の金属Al(金属Gaに対して0.1mol%の金属Al)を配置した。
2. 1. Growth of Al x Ga 1-x N crystal Referring to FIG. 1, the above SiC substrate (crystal growth vessel 1) is placed in a crystal crucible (crystal growth vessel 1) having an inner diameter of 10 cm and a height of 5 cm. Underlying substrate 10), 450 g of 99.9999 mol% metal Ga and 0.17 g of 99.9999 mol% metal Al (0.1 mol% metal Al with respect to metal Ga) were placed.
次に、結晶成長室110内を1×10-5気圧(1.01Pa)まで真空排気しながらヒータ120を用いて室温から700℃まで昇温し、700℃で1時間保持した後、ガス供給口110eから結晶成長室110内に純度99.9999mol%の窒素ガスを供給して、坩堝(結晶成長容器1)を大気圧から10気圧(1.01MPa)まで加圧した。次いで、坩堝を10気圧に保持してヒータ120を用いて1時間かけて700℃から1200℃まで昇温した。次いで、坩堝を1200℃に保持して10気圧から500気圧(50.7MPa)まで加圧した。このとき、坩堝内に配置された金属Gaおよび金属Alが融解してAlを含有したGa融液3(Ga含有量に対するAl含有量は0.1mol%)となり、融液3への窒素の溶解5により得られた溶液7がSiC基板(下地基板10)に接触している。ここで、溶液7の表面7mから下地基板10の主面10mまでの深さは約5mmである。次いで、坩堝を1200℃および500気圧で10時間保持した。次いで、坩堝を1200℃に保持して500気圧から1950気圧(197.6MPa)まで3時間かけて加圧した。次いで、坩堝を1200℃および1950気圧で20時間保持した。次いで、坩堝を1950気圧に保持して1時間かけて1200℃から100℃まで降温した。次いで、坩堝を100℃に保持して1950気圧から大気圧に減圧し、その後100℃から室温(30℃)まで降温した。
Next, while the inside of the
こうして、SiC基板(下地基板10)の主面10mの全面上に層状に広がって成長した厚さ10〜15μmのAlxGa1-xN単結晶(AlxGa1-xN結晶20)が得られた。得られたAlxGa1-xN単結晶の成長方向に平行な断面の化学組成をEPMA法により分析したところ、SiC基板側から、厚さ2〜3μmのAlN単結晶(第1層のAlxGa1-xN結晶21)、厚さ2〜3μmのAlx2Ga1-x2N(0<x2<1)単結晶(第2層のAlxGa1-xN結晶22)および厚さ5〜10μmのGaN単結晶(第3層のAlxGa1-xN結晶23)が順次形成されていた。ここで、Alx2Ga1-x2N単結晶(第2層のAlxGa1-xN結晶22)のAl組成(x2)は、AlN単結晶(第1層のAlxGa1-xN結晶21)側の主面からGaN単結晶(第3層のAlxGa1-xN結晶23)側の主面にかけて、1近傍の値から0近傍の値に減少していた。
In this way, an Al x Ga 1-x N single crystal (Al x Ga 1-x N crystal 20) having a thickness of 10 to 15 μm which is grown in a layered manner on the entire
また、GaN単結晶(第3層のAlxGa1-xN結晶23)は、(0002)面に関するロッキングカーブにおけるX線回折ピークの半値幅が120〜150arcsecであり、極めて高い結晶性を有していた。また、AlN単結晶(第1層のAlxGa1-xN結晶21)、Alx2Ga1-x2N(0<x2<1)単結晶(第2層のAlxGa1-xN結晶22)およびGaN単結晶(第3層のAlxGa1-xN結晶23)のいずれにもクラックの発生は認められなかった。 In addition, the GaN single crystal (third layer Al x Ga 1-x N crystal 23) has an extremely high crystallinity because the half-value width of the X-ray diffraction peak in the rocking curve with respect to the (0002) plane is 120 to 150 arcsec. Was. Also, AlN single crystal (first layer Al x Ga 1-x N crystal 21), Al x2 Ga 1-x2 N (0 <x2 <1) single crystal (second layer Al x Ga 1-x N crystal) No occurrence of cracks was observed in any of 22) and the GaN single crystal (third layer Al x Ga 1-x N crystal 23).
本発明で得られるAlxGa1-xN結晶は高品質であり、本発明によれば数十以上の多数のAlxGa1-xN結晶を同時に成長させることも可能であることから、多数の高品質のAlxGa1-xN結晶を効率よく低コストで作製することができる。本発明で得られたAlxGa1-xN結晶を下地基板として、目的に応じて単層もしくは多層のIII族窒化物系薄膜を成膜して、半導体デバイスを作製することが出来る。この場合低コストで高品質のAlxGa1-xN結晶を使用するので、低コストで高品質の半導体デバイスを作製することができる。ここで、必要に応じて、III族窒化物系薄膜を成膜する前に、下地基板として用いるAlxGa1-xN結晶の表面を研磨加工して表面平坦性を向上させる工程を導入しても良い。 The Al x Ga 1-x N crystal obtained in the present invention is of high quality, and according to the present invention, it is possible to simultaneously grow a large number of dozens of Al x Ga 1-x N crystals. A large number of high-quality Al x Ga 1-x N crystals can be efficiently produced at low cost. Using the Al x Ga 1-x N crystal obtained in the present invention as a base substrate, a semiconductor device can be produced by depositing a single-layer or multilayer III-nitride thin film according to the purpose. In this case, since a high-quality Al x Ga 1-x N crystal is used at low cost, a high-quality semiconductor device can be produced at low cost. Here, if necessary, before forming the group III nitride thin film, a step of polishing the surface of the Al x Ga 1-x N crystal used as the base substrate to improve the surface flatness is introduced. May be.
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。 It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 結晶成長容器、3 融液、5 融液への窒素の溶解、7 溶液、7m 表面、10 下地基板、10m 主面、20 AlxGa1-xN結晶、21 第1層のAlxGa1-xN結晶、22 第2層のAlxGa1-xN結晶、23 第3層のAlxGa1-xN結晶、110 結晶成長室、110e ガス供給口、120 ヒータ。
1 crystal growth vessel, 3 melt, nitrogen dissolved in the 5
Claims (4)
Alを含有したGa融液に窒素を溶解させた溶液を前記下地基板に接触させて、前記下地基板上に少なくとも1層のAlxGa1-xN(0≦x≦1)結晶を成長させる工程と、を備えるAlxGa1-xN結晶の成長方法。 Preparing a base substrate;
A solution in which nitrogen is dissolved in an Al-containing Ga melt is brought into contact with the base substrate to grow at least one layer of Al x Ga 1-x N (0 ≦ x ≦ 1) crystals on the base substrate. And a method of growing an Al x Ga 1-x N crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008288787A JP5487594B2 (en) | 2008-11-11 | 2008-11-11 | AlxGa1-xN crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008288787A JP5487594B2 (en) | 2008-11-11 | 2008-11-11 | AlxGa1-xN crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010118391A true JP2010118391A (en) | 2010-05-27 |
JP5487594B2 JP5487594B2 (en) | 2014-05-07 |
Family
ID=42305901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008288787A Expired - Fee Related JP5487594B2 (en) | 2008-11-11 | 2008-11-11 | AlxGa1-xN crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5487594B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11246297A (en) * | 1998-03-05 | 1999-09-14 | Hitachi Cable Ltd | Method for growing nitride-based compound semiconductor crystal |
WO2006030718A1 (en) * | 2004-09-16 | 2006-03-23 | Ngk Insulators, Ltd. | METHOD FOR PRODUCING AlN SINGLE CRYSTAL AND AlN SINGLE CRYSTAL |
JP2010111549A (en) * | 2008-11-07 | 2010-05-20 | Sumitomo Electric Ind Ltd | GaN crystal growth method |
-
2008
- 2008-11-11 JP JP2008288787A patent/JP5487594B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11246297A (en) * | 1998-03-05 | 1999-09-14 | Hitachi Cable Ltd | Method for growing nitride-based compound semiconductor crystal |
WO2006030718A1 (en) * | 2004-09-16 | 2006-03-23 | Ngk Insulators, Ltd. | METHOD FOR PRODUCING AlN SINGLE CRYSTAL AND AlN SINGLE CRYSTAL |
JP2010111549A (en) * | 2008-11-07 | 2010-05-20 | Sumitomo Electric Ind Ltd | GaN crystal growth method |
Also Published As
Publication number | Publication date |
---|---|
JP5487594B2 (en) | 2014-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7282381B2 (en) | Method of producing self supporting substrates comprising III-nitrides by means of heteroepitaxy on a sacrificial layer | |
JP4117156B2 (en) | Method for manufacturing group III nitride semiconductor substrate | |
KR101321654B1 (en) | Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the preceding | |
JP5276852B2 (en) | Method for manufacturing group III nitride semiconductor epitaxial substrate | |
JP4396816B2 (en) | Group III nitride semiconductor substrate and manufacturing method thereof | |
JP4823856B2 (en) | Method for producing AlN group III nitride single crystal thick film | |
JP4886711B2 (en) | Method for producing group III nitride single crystal | |
US8795431B2 (en) | Method for producing gallium nitride layer and seed crystal substrate used in same | |
JP2010232322A (en) | Compound semiconductor substrate | |
JP5236148B2 (en) | EPITAXIAL SUBSTRATE, SEMICONDUCTOR DEVICE, METHOD FOR MANUFACTURING EPITAXIAL SUBSTRATE, METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND METHOD FOR ALIGNING DISLOCATION IN GROUP III NITRIDE CRYSTAL | |
JP4825747B2 (en) | Method for producing nonpolar plane group III nitride single crystal | |
US20050257733A1 (en) | III nitride crystal and method for producing same | |
JP2009067658A (en) | Nitride semiconductor base substrate, nitride semiconductor multilayer substrate, nitride semiconductor free-standing substrate, and method for manufacturing nitride semiconductor base substrate | |
JP4768759B2 (en) | Group III nitride semiconductor substrate | |
JP5005266B2 (en) | AlN crystal fabrication method and AlN thick film | |
JP5487594B2 (en) | AlxGa1-xN crystal growth method | |
JP2013173638A (en) | Method for producing aluminum nitride crystal | |
CN103534391A (en) | Process for producing group 13 metal nitride, and seed crystal substrate for use in same | |
JP4507810B2 (en) | Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate | |
JP5047561B2 (en) | Method for removing base material layer from laminate and method for producing self-standing substrate of AlN group III nitride single crystal using the same | |
JP2006008500A (en) | Nitride semiconductor substrate manufacturing method and nitride semiconductor substrate | |
JP2006024897A (en) | Nitride semiconductor substrate and manufacturing method thereof | |
JP2002211999A (en) | Method for manufacturing crystal growth substrate of group III nitride compound semiconductor | |
JP4186076B2 (en) | Manufacturing method of nitride semiconductor substrate | |
JP2010132550A (en) | Method of manufacturing nitride semiconductor substrate, and nitride semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5487594 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |