[go: up one dir, main page]

JP2010117183A - Potential difference measuring device - Google Patents

Potential difference measuring device Download PDF

Info

Publication number
JP2010117183A
JP2010117183A JP2008289127A JP2008289127A JP2010117183A JP 2010117183 A JP2010117183 A JP 2010117183A JP 2008289127 A JP2008289127 A JP 2008289127A JP 2008289127 A JP2008289127 A JP 2008289127A JP 2010117183 A JP2010117183 A JP 2010117183A
Authority
JP
Japan
Prior art keywords
measurement
electrode
potential difference
solution
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008289127A
Other languages
Japanese (ja)
Inventor
Masao Kamahori
政男 釜堀
Hisashi Ishige
悠 石毛
Kuniaki Nagamine
邦明 長峯
Kotaro Yamashita
浩太郎 山下
Yasuhisa Shibata
康久 柴田
Masafumi Miyake
雅文 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008289127A priority Critical patent/JP2010117183A/en
Publication of JP2010117183A publication Critical patent/JP2010117183A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

【課題】生体試料中、特に血液や尿中の分析対象成分を測定する電位差計測装置において、電位差計測を精度良く行い、検体試料中の測定対象物の濃度を正しく定量できるようにする。
【解決手段】測定法として電位差計測法を用いて、検体試料と反応試薬溶液の反応容器への導入順序に応じて、検体試料の導入直後又は導入後の一定時間後、又は反応溶液の攪拌開始直後又は攪拌開始後の一定時間後と同期して測定を行い、得られた電位差から検体試料中の測定対象物の濃度を求める。
【選択図】図1
A potential difference measuring apparatus for measuring a component to be analyzed in a biological sample, particularly blood or urine, accurately measures the potential difference so that the concentration of the measurement target in the sample can be accurately quantified.
A potentiometric method is used as a measurement method, depending on the order of introduction of the sample sample and the reaction reagent solution into the reaction container, immediately after the introduction of the sample sample or after a certain time after the introduction, or start of stirring of the reaction solution. Immediately after measurement or in synchronization with a certain time after the start of stirring, the concentration of the measurement object in the sample is determined from the obtained potential difference.
[Selection] Figure 1

Description

本発明は、生体試料中、特に血液や尿中の分析対象成分を測定する電位差計測装置に関する。   The present invention relates to a potentiometer for measuring an analysis target component in a biological sample, particularly blood or urine.

医療分野における血液、尿等の生体試料の定性・定量分析は、検体試料と試薬を反応させた反応液の吸光度変化を測定する比色法が主に用いられており、この方式を自動化した生化学自動分析装置で行われている。生化学自動分析装置としては、フロータイプからディスクリートタイプまで様々な機種が開発されている。現在では、検体試料と試薬溶液の反応容器への分注、検体試料と試薬溶液の攪拌、反応溶液の吸光度変化測定等の全ての操作を自動化したディスクリートタイプが主流である(例えば、特許第2525063号、WO2002/059624)。これらの装置は、比色法を測定原理とするため、大型で高価な光学系が必要であった。比色法で用いられる試薬は、検体試料中の測定対象物と特異的に反応する酵素や化学物質が単独であるいは複数組み合わせて使用されている。例えば、血糖値の測定では、測定対象物質であるグルコースを基質とするヘキソキナーゼを用いて、ATP存在下でグルコースにリン酸を付加し、生成したグルコース−6−リン酸をNADP存在下でグルコース−6−リン酸デヒドロゲナーゼによる脱水素反応の際に生じるNADPHの吸光度の増加により目的のグルコース濃度を得ている。   For the qualitative and quantitative analysis of biological samples such as blood and urine in the medical field, the colorimetric method is mainly used to measure the change in absorbance of the reaction solution obtained by reacting the sample sample with the reagent. It is carried out with an automatic chemical analyzer. Various types of biochemical automatic analyzers have been developed from flow type to discrete type. At present, the discrete type that automates all operations such as dispensing of a sample sample and a reagent solution into a reaction container, stirring the sample sample and the reagent solution, and measuring the change in absorbance of the reaction solution is the mainstream (for example, Japanese Patent No. 2525063). No., WO2002 / 059624). Since these apparatuses use the colorimetric method as a measurement principle, they require a large and expensive optical system. As a reagent used in the colorimetric method, an enzyme or a chemical substance that specifically reacts with an object to be measured in a specimen sample is used alone or in combination. For example, in the measurement of blood glucose level, phosphoric acid is added to glucose in the presence of ATP using hexokinase using glucose as a measurement target substance as a substrate, and the resulting glucose-6-phosphate is converted to glucose − in the presence of NADP. The target glucose concentration is obtained by increasing the absorbance of NADPH generated during the dehydrogenation reaction with 6-phosphate dehydrogenase.

吸光光度法を用いた呈色法で測定対象物の濃度を求める方法としては、通常、エンドポイント法が用いられている。エンドポイント法は、反応開始前の測定値と反応終了後の測定値から測定対象物の濃度を求める方法である。反応開始前の測定値は、検体試料中の測定対象物と反応する試薬成分を除いた試薬(例えば緩衝液)と検体試料との混合溶液を測定した値であり、反応終了後の測定値は、その混合溶液に測定対象物との反応を生じさせる成分を含有する試薬を添加して反応終了後に測定した値である。   The end point method is usually used as a method for obtaining the concentration of an object to be measured by a coloration method using an absorptiometry. The end point method is a method for obtaining the concentration of the measurement object from the measured value before the start of the reaction and the measured value after the end of the reaction. The measured value before the start of the reaction is a value obtained by measuring a mixed solution of a reagent (for example, a buffer) excluding the reagent component that reacts with the measurement target in the sample and the sample, and the measured value after the end of the reaction is This is a value measured after completion of the reaction by adding a reagent containing a component that causes a reaction with the measurement object to the mixed solution.

一方、光学系を必要としない測定法としては、検体試料の濃度を電気化学的に測定する方法がある。本方式は測定原理が電気化学的測定法であり、大型で複雑な装置が不要であり、装置システムが小型になる利点を有している。電気化学的測定法には、酸化還元反応に伴い作用電極に流れる電流値を測定する電流計測法と、化学反応に伴い変化する測定電極の界面電位を測定する電位差計測法がある。電気化学的測定で用いられる試薬は、比色法で用いられる試薬と同様に測定対象物と特異的に反応する酵素や化学物質が単独であるいは複数組み合わせて使用されている。   On the other hand, as a measurement method that does not require an optical system, there is a method of electrochemically measuring the concentration of a specimen sample. This method has an advantage that the measurement principle is an electrochemical measurement method, a large and complicated apparatus is unnecessary, and the apparatus system is small. Electrochemical measurement methods include a current measurement method for measuring a current value flowing through a working electrode in accordance with an oxidation-reduction reaction, and a potential difference measurement method for measuring an interface potential of the measurement electrode that changes with a chemical reaction. As reagents used in electrochemical measurements, enzymes and chemical substances that react specifically with the measurement object are used alone or in combination, as in the reagents used in the colorimetric method.

例えば、電流方式を用いた血糖値の測定では、測定対象物質であるグルコースを基質とするグルコースオキシダーゼで酸素あるいはメディエータ存在下でグルコースを酸化することにより、グルコノラクトンと過酸化水素水が生成する。生成した過酸化水素水を電極に流れる電流で測定することにより、測定対象物質であるグルコース濃度を測定する(Pure & Appl. Chem., Vol.68, (1996) pp.1837-1841)。本方式では、酵素を含む反応試薬が予め測定電極上に保持されており、サンプル注入口から導入された検体試料は流路を通り、測定電極表面に達して、所定の酵素反応が開始する構成になっている。電位差計測方式では、グルコースオキダーゼによる酸化反応を酸化還元反応のメディエータであるフェリシアン化カリウムとフェロシアン化カリウムの酸化還元電位の変化として測定して、測定対象物質であるグルコース濃度を測定する(特許第3387926号、特開2008-128803号公報)。電位差計測方式でも、通常、酵素を含む反応試薬が予め測定電極上に保持されており、導入された検体試料が測定電極表面に達成して、所定の酵素反応が開始する構成になっている(特許第3387926号)。また、測定容器を用いる場合には、酵素等の試薬を含む反応溶液が予め保持された測定容器中に検体試料を注入後の一定時間後の電位差、又は検体試料を注入前もしくは注入直後の電位差と一定時間後の電位差との変化量を用いて測定対象物の濃度を求めていた(特開2008-128803号公報)。   For example, in the measurement of blood glucose level using a current method, gluconolactone and hydrogen peroxide are generated by oxidizing glucose in the presence of oxygen or mediator with glucose oxidase using glucose as a substrate as a measurement target substance. . By measuring the generated hydrogen peroxide solution by the current flowing through the electrode, the concentration of glucose as a measurement target substance is measured (Pure & Appl. Chem., Vol. 68, (1996) pp. 1837-1841). In this method, a reaction reagent containing an enzyme is held on the measurement electrode in advance, and the specimen sample introduced from the sample inlet passes through the flow path and reaches the surface of the measurement electrode to start a predetermined enzyme reaction. It has become. In the potentiometric method, the oxidation reaction by glucose oxidase is measured as a change in the oxidation-reduction potential of potassium ferricyanide and potassium ferrocyanide, which are mediators of the redox reaction, and the concentration of glucose as a measurement target substance is measured (Patent No. 3387926). JP, 2008-128803, A). Even in the potentiometric method, a reaction reagent containing an enzyme is usually held in advance on the measurement electrode, and the introduced specimen sample is achieved on the measurement electrode surface, so that a predetermined enzyme reaction is started ( (Patent No. 3387926). When a measurement container is used, the potential difference after a certain time after injecting the specimen sample into the measurement container in which a reaction solution containing an enzyme or other reagent is previously held, or the potential difference before or just after the specimen sample is injected. The concentration of the measurement object was obtained using the amount of change between the voltage difference and the potential difference after a certain time (Japanese Patent Laid-Open No. 2008-128803).

特許第2525063号Patent No. 2525063 WO2002/05962WO2002 / 05962 特開2005-345173号公報JP 2005-345173 A 特許第3387926号Patent No. 3387926 特開2008-128803号公報JP 2008-128803 JP Pure & Appl. Chem., Vol.68, (1996) pp.1837-1841Pure & Appl. Chem., Vol.68, (1996) pp.1837-1841

しかしながら、上述した測定容器を用いた電位差計測法では、実際の装置に実装する際の酵素等の試薬を含む反応試薬溶液と検体試料の容量に関する考慮がなされておらず、検体試料を注入前もしくは注入直後の電位差と一定時間後の電位差との変化量を用いて測定対象物の濃度を求める方法では、電位差測定ができなかったり、測定値にバラツキが生じる問題があった。例えば、容積が小さい検体試料(通常は数μL)を先に導入し、その後に容積の大きな反応試薬溶液(通常は数十μL〜数百μL)を導入する場合には、検体試料導入時では測定電極が溶液に浸漬しておらず(すなわち、回路を形成していない)、電位差測定を開始することは不可能である。この場合には、反応試薬溶液を導入することより、測定電極が溶液に浸漬され、電位差測定が始めて可能になる。一方、容積の大きな反応試薬溶液を先に導入する場合には、電位差測定は可能であるが、容積の大きな反応試薬溶液に容積が小さい検体試料を注入するため、検体試料と反応試薬溶液の混合が不十分で反応がうまく進まない問題があった。この場合は、所定の時間内に反応が終了しないため、測定値にバラツキが生じる問題があった。また、電位差計測方式では、通常、測定電極として金や白金等の貴金属が用いられるが、これらの電極は未修飾状態では溶液中であまり安定ではないため、電位差がドリフトして測定誤差を生じやすい問題があった。その対策として、電気化学活性物質で電極表面を修飾する方法はある程度有効であるが、高精度分析の場合には電位差のわずかなドリフトが問題になることがある。そのため、電位差計測を精度良く行うのに適した装置構成及び測定手順が求められていた。   However, in the potential difference measurement method using the measurement container described above, no consideration is given to the volume of the reaction reagent solution containing the reagent such as an enzyme and the sample sample when mounted in an actual apparatus, and the sample sample is not injected before or In the method of obtaining the concentration of the measurement object using the amount of change between the potential difference immediately after the injection and the potential difference after a certain time, there is a problem that the potential difference cannot be measured or the measured values vary. For example, when a sample sample with a small volume (usually several μL) is introduced first, and then a reaction reagent solution with a large volume (usually several tens to several hundred μL) is introduced, Since the measuring electrode is not immersed in the solution (i.e. it does not form a circuit), it is impossible to initiate a potentiometric measurement. In this case, by introducing the reaction reagent solution, the measurement electrode is immersed in the solution, and the potential difference measurement becomes possible for the first time. On the other hand, when a reaction reagent solution with a large volume is introduced first, potential difference measurement is possible, but since a sample sample with a small volume is injected into a reaction reagent solution with a large volume, mixing of the sample sample and the reaction reagent solution is possible. However, there was a problem that the reaction did not proceed well. In this case, since the reaction is not completed within a predetermined time, there is a problem that the measurement value varies. In addition, in the potentiometric method, noble metals such as gold and platinum are usually used as measurement electrodes. However, these electrodes are not very stable in a solution in an unmodified state, so that the potential difference drifts and measurement errors are likely to occur. There was a problem. As a countermeasure, the method of modifying the electrode surface with an electrochemically active substance is effective to some extent, but in the case of high-precision analysis, a slight drift in potential difference may be a problem. Therefore, there has been a demand for an apparatus configuration and a measurement procedure that are suitable for accurately measuring a potential difference.

本発明の目的は、検体試料と反応試薬溶液を含む2液以上の溶液を用いた電位差計測法において、電位差計測を精度良く行い、検体試料中の測定対象物の濃度を正しく定量できるようにすることである。   An object of the present invention is to perform a potentiometric measurement with high accuracy in a potentiometric method using two or more solutions including a specimen sample and a reaction reagent solution so that the concentration of the measurement object in the specimen sample can be accurately quantified. That is.

上記目的を達成するために、本発明では検体試料と反応試薬溶液を含む2液以上の溶液を用いた電位差計測法において、反応開始直後又は反応開始後の一定時間後に電位差を行うために、検体試料と反応試薬溶液の反応容器への導入順序に応じて、検体試料の導入直後又は導入後の一定時間後、又は反応溶液の攪拌開始直後又は攪拌開始後の一定時間後と同期して測定を行い、得られた反応開始直後の電位差と反応がほぼ終了した一定時間後の電位差の変化量から、検体試料中の測定対象物の濃度を求める測定手順を採用した。   In order to achieve the above object, in the present invention, in a potentiometric measurement method using two or more solutions including a sample sample and a reaction reagent solution, the sample is subjected to a potential difference immediately after the start of the reaction or after a certain time after the start of the reaction. Depending on the order in which the sample and reaction reagent solution are introduced into the reaction vessel, measurement is performed immediately after introduction of the specimen sample or after a certain time after introduction, or immediately after the start of stirring of the reaction solution or after a certain time after the start of stirring. The measurement procedure for determining the concentration of the measurement object in the sample was adopted from the obtained potential difference immediately after the start of the reaction and the amount of change in the potential difference after a certain time after the reaction was almost completed.

例えば、容積が小さい検体試料(通常は数μL)を先に導入し、その後に容積の大きな反応試薬溶液(通常は数十μL〜数百μL)を導入する場合には、反応試薬溶液により検体試料は反応試薬溶液中にすばやく混合されて反応が進むため、反応試薬溶液を測定溶液に分注直後又は分注後一定時間後から測定電極の界面電位の測定を開始する。その際、反応試薬溶液を測定容器に分注する手段と、測定電極と参照電極の測定溶液中への浸漬と同期して測定電極の界面電位の測定を開始する信号を制御する制御装置とを有する装置構成になっている。さらに、検体試料と反応試薬溶液の混合の効率が悪い場合には、攪拌手段を付加させることが望ましい。   For example, when a sample sample with a small volume (usually several μL) is introduced first, and then a reaction reagent solution with a large volume (usually several tens μL to several hundred μL) is introduced, the sample is added with the reaction reagent solution. Since the sample is quickly mixed in the reaction reagent solution and the reaction proceeds, the measurement of the interface potential of the measurement electrode is started immediately after dispensing the reaction reagent solution into the measurement solution or after a certain time after dispensing. At that time, means for dispensing the reaction reagent solution into the measurement container and a control device for controlling a signal for starting measurement of the interface potential of the measurement electrode in synchronization with the immersion of the measurement electrode and the reference electrode in the measurement solution. It has a device configuration. Furthermore, it is desirable to add a stirring means when the mixing efficiency of the specimen sample and the reaction reagent solution is poor.

また、容積の大きな反応試薬溶液を先に導入し、次に容積の小さい検体試料を注入する場合には、検体試料と反応試薬溶液の混合が不十分で反応がうまく進まないため、検体試料分注後一定時間放置するか、あるいは攪拌機構を具備する必要がある。測定電極の界面電位測定は、検体試料分注後一定時間後、あるいは反応溶液の攪拌開始直後又は攪拌開始後一定時間後から開始する。検体試料分注後一定時間放置する場合には、検体試料分注後一定時間後に測定電極の界面電位の測定を開始する信号を制御する制御装置を有する装置構成になっている。また、攪拌手段を有する場合には、反応溶液の攪拌開始直後又は攪拌開始後一定時間後に測定電極の界面電位の測定を開始する信号を制御する制御装置を有する装置構成になっている。   In addition, when a reaction reagent solution with a large volume is introduced first, and then a specimen sample with a smaller volume is injected, the reaction between the sample sample and the reaction reagent solution is insufficient and the reaction does not proceed well. It is necessary to leave it for a certain time after pouring or to provide a stirring mechanism. The measurement of the interfacial potential of the measurement electrode starts after a certain time after dispensing of the specimen sample, or immediately after the reaction solution starts stirring or after a certain time after starting stirring. In the case of leaving the specimen sample for a certain period of time after dispensing the specimen sample, the apparatus has a control device that controls a signal for starting measurement of the interface potential of the measurement electrode after a certain period of time after dispensing the specimen sample. In addition, in the case of having a stirring means, the apparatus has a control device for controlling a signal for starting measurement of the interface potential of the measurement electrode immediately after starting stirring of the reaction solution or after a certain time after starting stirring.

本発明に使用する測定容器の内側形状は、検体試料と反応試薬溶液の攪拌・混合が効率良く行える円筒形が望ましい。電極の材料には、金、銀等の貴金属を用いることができる。また、未処理の電極表面は電位が不安定なため、フェロセン、ピリジン、ピリミジン等の酸化還元物質を有する分子を電極表面に固定することが望ましい。上記酸化還元物質を有する分子の電極表面への固定化は、電極表面に自己組織化膜を形成する絶縁性分子(例えば、アルカンチオール)をリンカーとする酸化還元物資誘導体を用いればよい。さらに、電位差測定装置として、電極と同一基板上に形成された絶縁ゲート電界効果トランジスタを用いる。その際、参照電極に1KHz以上の交流電圧を重畳して測定を行うのが望ましい。   The inner shape of the measurement container used in the present invention is preferably a cylindrical shape that can efficiently stir and mix the specimen sample and the reaction reagent solution. As a material of the electrode, a noble metal such as gold or silver can be used. Further, since the potential of the untreated electrode surface is unstable, it is desirable to fix a molecule having a redox substance such as ferrocene, pyridine, or pyrimidine to the electrode surface. The molecule having the redox substance may be immobilized on the electrode surface using a redox material derivative having an insulating molecule (for example, alkanethiol) that forms a self-assembled film on the electrode surface as a linker. Furthermore, an insulated gate field effect transistor formed on the same substrate as the electrode is used as a potential difference measuring device. At that time, it is desirable to perform measurement by superimposing an AC voltage of 1 KHz or more on the reference electrode.

本発明によると、検体試料と反応試薬溶液を含む2液以上の溶液を用いた電位差計測法において、検体試料と反応試薬溶液の反応容器への導入順序に応じて、検体試料の導入直後又は導入後の一定時間後、又は反応溶液の攪拌開始直後又は攪拌開始後の一定時間後に測定を開始することにより、反応開始直後又は反応開始後の一定時間後と同期して測定を行うことができ、得られた反応開始直後の電位差と反応がほぼ終了した一定時間後の電位差の変化量から検体試料中の測定対象物の濃度を求めることができるため、ドリフトの影響の少ない高精度の電位差計測法を実現し、検体試料中の測定対象物の濃度を正しく定量できるようになる。その際、分注した検体試料と試薬溶液の混合には攪拌素子を用いるのが一般的であるが、本発明の電位差計測法では攪拌素子が電位測定に影響を及ぼさないため、反応開始からのデータが取得でき、精度良く電位差測定ができる。尚、吸光度測定の場合には、攪拌素子が反応容器中の光路上にあり、攪拌混合中は測定光の反射・散乱のため吸光度測定ができない。また、電極表面にフェロセン、ピリジン、ピリミジン等の酸化還元物質を有する分子を固定化することにより、反応溶液中の酸化還元反応の電位を精度良く測定することができる。さらに、電位差測定装置として、電極と同一基板上に形成された絶縁ゲート電界効果トランジスタを用いることで、リーク電流を低減することができ、電極表面の界面電位を安定に測定することができる。その際、参照電極に1KHz以上の交流電圧を重畳することで、金電極表面の界面電位を安定化でき、測定精度が向上する。   According to the present invention, in a potentiometric measurement method using two or more solutions including a specimen sample and a reaction reagent solution, immediately after or after introduction of the specimen sample, depending on the order of introduction of the specimen sample and the reaction reagent solution into the reaction container. By starting the measurement after a certain time after, or immediately after starting the stirring of the reaction solution or after a certain time after starting the stirring, the measurement can be performed immediately after starting the reaction or after a certain time after starting the reaction, Since the concentration of the analyte in the sample can be determined from the obtained potential difference immediately after the start of reaction and the amount of change in potential difference after a certain period of time when the reaction is almost complete, a highly accurate potential difference measurement method with little effect of drift Thus, the concentration of the measurement object in the sample can be accurately quantified. At that time, a stirring element is generally used to mix the dispensed specimen sample and the reagent solution. However, in the potential difference measuring method of the present invention, since the stirring element does not affect the potential measurement, the reaction from the start of the reaction. Data can be acquired and potential difference can be measured with high accuracy. In the case of absorbance measurement, the stirring element is on the optical path in the reaction vessel, and during the stirring and mixing, the absorbance cannot be measured due to reflection / scattering of the measurement light. Further, by immobilizing a molecule having a redox substance such as ferrocene, pyridine, or pyrimidine on the electrode surface, the potential of the redox reaction in the reaction solution can be measured with high accuracy. Furthermore, by using an insulated gate field effect transistor formed on the same substrate as the electrode as the potential difference measuring device, leakage current can be reduced and the interface potential on the electrode surface can be measured stably. At that time, by superimposing an AC voltage of 1 KHz or more on the reference electrode, the interface potential on the gold electrode surface can be stabilized, and the measurement accuracy is improved.

以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明による電位差計測装置の一例を示すブロック図である。本実施例の測定装置は、電位差測定用電極101、参照電極102、測定容器103、制御装置104、データ処理装置105、検体試料を測定容器103に分注する検体試料用分注器106、試薬溶液を測定容器103に分注する試薬溶液分注器107、分注された検体試料と試薬溶液を攪拌する攪拌素子108を有する。制御装置104は、電位差測定用電極101の電位測定と、電位差測定用電極101、参照電極102、検体試料用分注器106、試薬溶液分注器107、攪拌素子108の移動及び動作開始の制御を行う。データ処理装置105は、電位差測定用電極101で取得した信号をデータ処理して検体試料中の測定対象物の濃度を計算する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing an example of a potential difference measuring apparatus according to the present invention. The measurement apparatus according to the present embodiment includes a potentiometric electrode 101, a reference electrode 102, a measurement container 103, a control device 104, a data processing device 105, a specimen sample dispenser 106 that dispenses a specimen sample into the measurement container 103, and a reagent. A reagent solution dispenser 107 that dispenses the solution into the measurement container 103 and a stirring element 108 that stirs the dispensed specimen sample and the reagent solution are provided. The control device 104 controls the potential measurement of the potential difference measurement electrode 101 and the movement and start of operation of the potential difference measurement electrode 101, the reference electrode 102, the specimen sample dispenser 106, the reagent solution dispenser 107, and the stirring element 108. I do. The data processing device 105 performs data processing on the signal acquired by the potential difference measuring electrode 101 and calculates the concentration of the measurement object in the sample.

電位差測定用電極101には、金等の貴金属やカーボンからなる電極を用いることができる。また、生体成分測定時の夾雑物の影響低減のために、電極表面に酸化還元物質を固定化して使用しても良い。酸化還元物質としては、フェロセン、ピリジン、ピリミジン等を使用すれば良い。参照電極102は、測定容器103中の溶液に接触した電位差測定用電極101の表面で起こる平衡反応あるいは化学反応に基づく電位変化を安定に測定するために、基準となる電位を与える。通常は参照電極としては、飽和塩化カリウムを内部溶液に使用している銀・塩化銀電極、あるいは甘こう(カロメル)電極が用いられるが、測定する試料溶液の組成が一定の場合には、疑似電極として銀・塩化銀電極のみを使用しても問題はない。   As the potential difference measuring electrode 101, an electrode made of a noble metal such as gold or carbon can be used. Further, in order to reduce the influence of foreign substances at the time of measuring biological components, a redox substance may be immobilized on the electrode surface. As the redox substance, ferrocene, pyridine, pyrimidine, or the like may be used. The reference electrode 102 provides a reference potential in order to stably measure a potential change based on an equilibrium reaction or a chemical reaction occurring on the surface of the potential difference measuring electrode 101 in contact with the solution in the measurement container 103. Usually, the reference electrode is a silver / silver chloride electrode or calomel electrode using saturated potassium chloride as the internal solution. However, if the composition of the sample solution to be measured is constant, There is no problem even if only a silver / silver chloride electrode is used as an electrode.

測定容器103は、角セルのような角を有する容器では分注された検体試料と試薬溶液の攪拌混合がやり難いので、曲面を有する容器、例えば円筒形の容器が望ましい。検体試料用分注器106及び試薬溶液分注器107は、シリンジポンプ又はペリスタポンプ(チューブポンプ)を使用することができる。攪拌素子108は、先端のへらが回転するものを用いることができるが、磁力の力で回転するスターラーを用いても良い。   The measurement container 103 is preferably a container having a curved surface, for example, a cylindrical container, because it is difficult to stir and mix the sample sample and the reagent solution in a container having a corner such as a square cell. As the specimen sample dispenser 106 and the reagent solution dispenser 107, a syringe pump or a peristaltic pump (tube pump) can be used. As the stirring element 108, a device in which a spatula at the tip rotates can be used, but a stirrer that rotates by a magnetic force may be used.

図2は、本発明による電位差計測装置を用いた測定動作の一例を示す図である。測定手順は以下の通りである。最初、図2(a)に示すように、測定容器201に検体試料用分注器202を用いて検体試料203を分注する。次に、図2(b)に示すように、電位差測定用電極204、参照電極205及び攪拌素子206を測定容器201に設置する。この状態では、分注された検体試料203と参照電極205及び攪拌素子206は接していない。次に、測定容器201中に試薬溶液分注器209を用いて試薬溶液を分注する。試薬溶液の分注と同期して攪拌素子206による攪拌混合と電位差測定用電極204の電位測定を開始する(図2(c))。   FIG. 2 is a diagram showing an example of a measurement operation using the potential difference measuring apparatus according to the present invention. The measurement procedure is as follows. First, as shown in FIG. 2A, the specimen sample 203 is dispensed into the measurement container 201 using the specimen sample dispenser 202. Next, as shown in FIG. 2B, the potential difference measuring electrode 204, the reference electrode 205, and the stirring element 206 are installed in the measurement container 201. In this state, the dispensed specimen sample 203 is not in contact with the reference electrode 205 and the stirring element 206. Next, the reagent solution is dispensed into the measurement container 201 using the reagent solution dispenser 209. In synchronization with the dispensing of the reagent solution, the stirring and mixing by the stirring element 206 and the potential measurement of the potential difference measuring electrode 204 are started (FIG. 2 (c)).

図3は本発明による他の攪拌手段の一例を示す図であり、(a)は側面図を、(b)鳥瞰図を示す図である。攪拌素子台301に設置された攪拌素子302には攪拌用へら303が取り付けてあり、攪拌素子台301を図中の矢印に示すように回転又は上下運動を行うことにより、反応容器304内の溶液を攪拌・混合する。その際、電位差測定用電極305及び参照電極306は攪拌素子台301の中央の穴に挿入しており、攪拌素子302に接することがないので、電位測定に支障はない。   FIG. 3 is a view showing an example of another stirring means according to the present invention, where (a) shows a side view and (b) shows a bird's-eye view. A stirring spatula 303 is attached to the stirring element 302 installed on the stirring element base 301, and the solution in the reaction vessel 304 is moved by rotating or vertically moving the stirring element base 301 as shown by an arrow in the figure. Is stirred and mixed. At that time, since the potential difference measuring electrode 305 and the reference electrode 306 are inserted into the central hole of the stirring element base 301 and do not contact the stirring element 302, there is no problem in potential measurement.

図4は本発明による他の攪拌手段の一例を示す図であり、(a)は側面図を、(b)は鳥瞰図を示す図である。攪拌素子401の先端に攪拌用へら402が取り付けてあり、攪拌素子401を回転させることにより、測定容器403中の溶液が攪拌・混合する。その際、電位差測定用電極404及び参照電極405は攪拌素子401に触れないように配置してあり、電位測定に支障はない。   FIG. 4 is a view showing an example of another stirring means according to the present invention, wherein (a) is a side view and (b) is a bird's eye view. A stirring spatula 402 is attached to the tip of the stirring element 401. By rotating the stirring element 401, the solution in the measurement container 403 is stirred and mixed. At that time, the potential difference measuring electrode 404 and the reference electrode 405 are arranged so as not to touch the stirring element 401, and there is no problem in potential measurement.

図5は、本発明の電位差計測装置に使用する測定電極の構造例を示す図である。本実施例では、電極材料として金を使用して、酸化還元物質としてフェロセン誘導体を金電極表面に固定してある。金電極501へのフェロセン誘導体502の固定化は、末端にチオール基を有するアルカンチオール503を介して、金とチオールの結合により固定化した。金電極表面へのフェロセン誘導体の固定化は、以下の手順で行った。最初、固定化に使用する金電極を1N硝酸、純水、エタノールの順番で洗浄し、金電極表面を窒素パージした。次に、フェロセン誘導体溶液(11−フェロセニル―1−ウンデカンチオール、濃度;0.5mM、溶媒;エタノール)に1時間浸漬した。固定化終了後、エタノール及び純水で洗浄し、使用するまでバッファー溶液中で保存した。   FIG. 5 is a diagram showing an example of the structure of a measurement electrode used in the potential difference measuring apparatus of the present invention. In this embodiment, gold is used as an electrode material, and a ferrocene derivative is fixed to the gold electrode surface as a redox substance. The ferrocene derivative 502 was immobilized on the gold electrode 501 by bonding gold and thiol via an alkanethiol 503 having a thiol group at the terminal. The ferrocene derivative was immobilized on the gold electrode surface by the following procedure. First, the gold electrode used for immobilization was washed with 1N nitric acid, pure water, and ethanol in this order, and the gold electrode surface was purged with nitrogen. Next, it was immersed in a ferrocene derivative solution (11-ferrocenyl-1-undecanethiol, concentration: 0.5 mM, solvent: ethanol) for 1 hour. After the immobilization, it was washed with ethanol and pure water and stored in a buffer solution until used.

図6は、本発明による電位差計測装置の他の実施例を示すブロック図である。本実施例の測定装置は、電位差測定用電極601、参照電極602、測定容器603、制御装置604、データ処理装置605、検体試料を測定容器603に分注する検体試料用分注器606、試薬溶液を測定容器603に分注する試薬溶液分注器607、分注された検体試料と試薬溶液を攪拌する攪拌素子608を有する。制御装置604は、電位差測定用電極601の電位測定と、電位差測定用電極601、参照電極602、検体試料用分注器606、試薬溶液分注器607、攪拌素子608の動作開始の制御を行う。データ処理装置605は、電位差測定用電極601で取得した信号をデータ処理して検体試料中の測定対象物の濃度を計算する。   FIG. 6 is a block diagram showing another embodiment of the potential difference measuring apparatus according to the present invention. The measurement apparatus according to the present embodiment includes a potential difference measurement electrode 601, a reference electrode 602, a measurement container 603, a control apparatus 604, a data processing apparatus 605, a specimen sample dispenser 606 that dispenses a specimen sample into the measurement container 603, and a reagent. A reagent solution dispenser 607 for dispensing the solution into the measurement container 603 and a stirring element 608 for stirring the dispensed specimen sample and the reagent solution are provided. The control device 604 measures the potential of the potential difference measuring electrode 601 and controls the operation start of the potential difference measuring electrode 601, the reference electrode 602, the specimen sample dispenser 606, the reagent solution dispenser 607, and the stirring element 608. . The data processing device 605 performs data processing on the signal acquired by the potential difference measuring electrode 601 and calculates the concentration of the measurement object in the specimen sample.

電位差測定用電極601は、測定容器603の底に接して設置してある。また、電位差測定用電極601は、材料として金を使用して、金表面にはアルカンチオールを介してフェロセン誘導体609が固定してある。本実施例では、酸化還元物質としては、フェロセン誘導体を使用したが、ピリジン、ピリミジン等を使用しても良い。参照電極602は、測定容器603中の溶液に接触した電位差測定用電極601の表面で起こる平衡反応あるいは化学反応に基づく電位変化を安定に測定するために、基準となる電位を与える。通常は参照電極としては、飽和塩化カリウムを内部溶液に使用している銀・塩化銀電極、あるいは甘こう(カロメル)電極が用いられるが、測定する試料溶液の組成が一定の場合には、疑似電極として銀・塩化銀電極のみを使用しても問題はない。   The potential difference measurement electrode 601 is disposed in contact with the bottom of the measurement container 603. The potential difference measuring electrode 601 uses gold as a material, and a ferrocene derivative 609 is fixed to the gold surface via an alkanethiol. In this embodiment, a ferrocene derivative is used as the redox substance, but pyridine, pyrimidine, or the like may be used. The reference electrode 602 provides a reference potential in order to stably measure a potential change based on an equilibrium reaction or a chemical reaction that occurs on the surface of the potential difference measuring electrode 601 in contact with the solution in the measurement container 603. Usually, the reference electrode is a silver / silver chloride electrode or calomel electrode using saturated potassium chloride as the internal solution. However, if the composition of the sample solution to be measured is constant, There is no problem even if only a silver / silver chloride electrode is used as an electrode.

測定容器603は、角セルのような角を有する容器では分注された検体試料と試薬溶液の攪拌混合がやり難いので、曲面を有する容器、例えば円筒形の容器が望ましい。検体試料用分注器606及び試薬溶液分注器607は、シリンジポンプ又はペリスタポンプ(チューブポンプ)を使用することができる。攪拌素子608は、先端のへらが回転するものを用いた。   The measuring container 603 is preferably a container having a curved surface, for example, a cylindrical container, because it is difficult to stir and mix the sample sample and reagent solution dispensed in a container having a corner such as a square cell. The specimen sample dispenser 606 and the reagent solution dispenser 607 can use a syringe pump or a peristaltic pump (tube pump). The stirring element 608 used was one whose tip spatula rotates.

図7は、FETセンサを用いた本発明の電位差計測装置の一例を示すブロック図である。本実施例の測定装置は、電位差測定用FETセンサ701、参照電極702、測定容器703、制御装置704、データ処理装置705、検体試料を測定容器703に分注する検体試料用分注器706、試薬溶液を測定容器703に分注する試薬溶液分注器707、分注された検体試料と試薬溶液を攪拌する攪拌素子708、及び参照電極に電圧を印加する電源709を有する。制御装置704は、電位差測定用FETセンサ701のソース710とドレイン711の間の電流変化の測定と、電位差測定用FETセンサ701、参照電極702、検体試料用分注器706、試薬溶液分注器707、攪拌素子708、電源709の動作開始の制御を行う。データ処理装置705は、電位差測定用FETセンサ701で取得した信号をデータ処理して検体試料中の測定対象物の濃度を計算する。電位差測定用FETセンサ701は、測定容器703の底に接して設置してある。また、FETセンサ701のセンシング部には、金電極712を使用して、金表面にはアルカンチオールを介してフェロセン誘導体713が固定してある。本実施例では、酸化還元物質としては、フェロセン誘導体を使用したが、ピリジン、ピリミジン等を使用しても良い。FETセンサ701を測定電極として使用する場合には、電源709を用いてFETセンサ701と参照電極702の間に電圧を印加する必要があるが、金電極表面への外部変動による影響を低減するために、好ましくは交流成分を印加することが望ましい。その際、直流成分に1KHz以上の交流電圧を重畳することで、金電極の表面電位の安定化が期待できる。また、FETセンサは光に応答するため、測定容器は不透明の材質のものを用いるか、あるいは測定容器そのものを遮光すると良い。   FIG. 7 is a block diagram showing an example of the potential difference measuring apparatus of the present invention using an FET sensor. The measurement apparatus of this embodiment includes a potential difference measurement FET sensor 701, a reference electrode 702, a measurement container 703, a control apparatus 704, a data processing apparatus 705, a specimen sample dispenser 706 for dispensing the specimen sample into the measurement container 703, A reagent solution dispenser 707 for dispensing the reagent solution into the measurement container 703, a stirring element 708 for stirring the dispensed specimen sample and the reagent solution, and a power source 709 for applying a voltage to the reference electrode are provided. The control device 704 measures the current change between the source 710 and the drain 711 of the potential difference measuring FET sensor 701, the potential difference measuring FET sensor 701, the reference electrode 702, the specimen sample dispenser 706, and the reagent solution dispenser. 707, the operation start of the stirring element 708 and the power source 709 are controlled. The data processing device 705 performs data processing on the signal acquired by the potential difference measuring FET sensor 701 to calculate the concentration of the measurement object in the specimen sample. The potential difference measuring FET sensor 701 is installed in contact with the bottom of the measurement container 703. The sensing part of the FET sensor 701 uses a gold electrode 712, and a ferrocene derivative 713 is fixed to the gold surface via an alkanethiol. In this embodiment, a ferrocene derivative is used as the redox substance, but pyridine, pyrimidine, or the like may be used. When the FET sensor 701 is used as a measurement electrode, it is necessary to apply a voltage between the FET sensor 701 and the reference electrode 702 using the power source 709. In order to reduce the influence of external fluctuations on the gold electrode surface. In addition, it is preferable to apply an alternating current component. At that time, the surface potential of the gold electrode can be stabilized by superimposing an AC voltage of 1 KHz or more on the DC component. Further, since the FET sensor responds to light, it is preferable to use an opaque material for the measurement container or to shield the measurement container itself.

参照電極702は、測定容器703中の溶液に接触したFETセンサ701のセンシング部の表面で起こる平衡反応あるいは化学反応に基づく電位変化を安定に測定するために、基準となる電位を与える。通常は参照電極としては、飽和塩化カリウムを内部溶液に使用している銀・塩化銀電極、あるいは甘こう(カロメル)電極が用いられるが、測定する試料溶液の組成が一定の場合には、疑似電極として銀・塩化銀電極のみを使用しても問題はない。   The reference electrode 702 provides a reference potential in order to stably measure a potential change based on an equilibrium reaction or a chemical reaction that occurs on the surface of the sensing portion of the FET sensor 701 that is in contact with the solution in the measurement container 703. Usually, the reference electrode is a silver / silver chloride electrode or calomel electrode using saturated potassium chloride as the internal solution. However, if the composition of the sample solution to be measured is constant, There is no problem even if only a silver / silver chloride electrode is used as an electrode.

測定容器703は、角セルのような角を有する容器では分注された検体試料と試薬溶液の攪拌混合がやり難いので、曲面を有する容器、例えば円筒形の容器が望ましい。検体試料用分注器706及び試薬溶液分注器707は、シリンジポンプ又はペリスタポンプ(チューブポンプ)を使用することができる。攪拌素子708は、先端のへらが回転するものを用いた。   The measurement container 703 is preferably a container having a curved surface, for example, a cylindrical container, because it is difficult to stir and mix the sample sample and reagent solution dispensed in a container having a corner such as a square cell. The sample sample dispenser 706 and the reagent solution dispenser 707 can use a syringe pump or a peristaltic pump (tube pump). As the stirring element 708, a device in which a spatula at the tip rotates was used.

図8は、FETセンサを用いた本発明の電位差計測装置に使用する分析素子の構造の一例を示す図である。図8(a)、(b)は、各々断面構造及び平面構造を表わしている。絶縁ゲート電界効果トランジスタ801は、シリコン基板の表面にソース802、ドレイン803、及びゲート絶縁物804を形成し、金電極805を設けてある。金電極805と絶縁ゲート電界効果トランジスタのゲート806を導電性配線807で接続してある。好ましくは、絶縁ゲート電界効果トランジスタは、シリコン酸化物を絶縁膜として用いる金属酸化物半導体(Metal-oxide semiconductor)電界効果トランジスタ(FET)であるが、薄膜トランジスタ(TFT)を用いても問題はない。本構造を採用することにより、金電極805上にアルカンチオオールを介して容易に酸化還元物質を固定化することができる。   FIG. 8 is a diagram showing an example of the structure of an analytical element used in the potential difference measuring apparatus of the present invention using an FET sensor. FIGS. 8A and 8B show a cross-sectional structure and a planar structure, respectively. In the insulated gate field effect transistor 801, a source 802, a drain 803, and a gate insulator 804 are formed on a surface of a silicon substrate, and a gold electrode 805 is provided. A gold electrode 805 and an insulated gate field effect transistor gate 806 are connected by a conductive wiring 807. Preferably, the insulated gate field effect transistor is a metal-oxide semiconductor field effect transistor (FET) using silicon oxide as an insulating film, but there is no problem even if a thin film transistor (TFT) is used. By adopting this structure, the redox substance can be easily immobilized on the gold electrode 805 via the alkanethiool.

本実施例で使用する絶縁ゲート電界効果トランジスタは、SiO2(厚さ;17.5nm)を用いた絶縁層を有するデプレション型FETであり、金電極を400μm×400μmの大きさで作製してある。通常の測定は、水溶液を使用するため、本素子は溶液中で動作しなければならない。溶液中で測定する場合には、電気化学反応を起こし難い−0.5〜0.5Vの電極電位範囲で動作することが必要である。そのため、本実施例ではデプレション型nチャネルFETの作製条件、すなわち閾値電圧(Vt)調整用イオン打ち込み条件を調整し、FETの閾値電圧を−0.5V付近に設定してある。なお、金電極に代えて、銀等の他の貴金属からなる電極を用いてもよい。 The insulated gate field effect transistor used in this example is a depletion type FET having an insulating layer using SiO 2 (thickness: 17.5 nm), and a gold electrode is fabricated to a size of 400 μm × 400 μm. is there. Since normal measurement uses an aqueous solution, the device must operate in solution. When measuring in a solution, it is necessary to operate in an electrode potential range of −0.5 to 0.5 V that hardly causes an electrochemical reaction. Therefore, in this embodiment, the fabrication condition of the depletion type n-channel FET, that is, the ion implantation condition for adjusting the threshold voltage (Vt) is adjusted, and the threshold voltage of the FET is set to around −0.5V. In place of the gold electrode, an electrode made of another noble metal such as silver may be used.

図9は、本発明による電位差計測装置の他の実施例を示すブロック図である。本実施例では、検体試料と試薬溶液との攪拌混合と電位差測定を別の場所で行う構成になっている。最初、図9(a)に示すように、測定容器台901上の測定容器902中の測定溶液を分注器903で一定量分取する。分注器903はステージ904で検出部905の測定チップ906上に移動して、測定用溶液を滴下し、電位差測定を開始する(図9(b))。   FIG. 9 is a block diagram showing another embodiment of the potential difference measuring apparatus according to the present invention. In this embodiment, the mixing of the specimen sample and the reagent solution and the potential difference measurement are performed at different locations. First, as shown in FIG. 9A, a predetermined amount of the measurement solution in the measurement container 902 on the measurement container table 901 is dispensed by the dispenser 903. The dispenser 903 moves on the measurement chip 906 of the detection unit 905 at the stage 904, drops the measurement solution, and starts the potential difference measurement (FIG. 9B).

その際の検体試料と試薬溶液との攪拌混合の手順を図10を用いて説明する。最初、図10(a)に示すように、測定容器1001に検体試料用分注器1002を用いて検体試料1003を分注する。次に、図10(b)に示すように攪拌素子1004を測定容器1001に設置する。次に、測定容器1001中に試薬溶液分注器1005を用いて試薬溶液を分注する。試薬溶液の分注と同期して攪拌素子1004による攪拌混合を一定時間(例えば、1〜2秒)行った後、直ちに反応溶液の一部を分取して測定チップに添加して電位測定を開始する。   The procedure of stirring and mixing the specimen sample and the reagent solution at that time will be described with reference to FIG. First, as shown in FIG. 10A, the specimen sample 1003 is dispensed into the measurement container 1001 using the specimen sample dispenser 1002. Next, as shown in FIG. 10 (b), the stirring element 1004 is installed in the measurement container 1001. Next, the reagent solution is dispensed into the measurement container 1001 using the reagent solution dispenser 1005. After stirring and mixing with the stirring element 1004 for a certain time (for example, 1 to 2 seconds) in synchronization with the dispensing of the reagent solution, a part of the reaction solution is immediately separated and added to the measuring chip to measure the potential. Start.

本発明で使用する測定チップの構造を図11を用いて説明する。図11(a)、(b)は、各々断面構造及び平面構造を表わしている。測定チップは、シリコン基板1101上に、金電極1102、参照電極1103、端子用パッド1104、1105、金電極1102と端子用パッド1104を接続させる導電性配線1106、参照電極1103と端子用パッド1105を接続させる導電性配線1107を形成してある。金電極1102、参照電極1103と端子用パッド1104、1105以外の部分は高耐熱ポリイミドで被覆してある。金電極1102には、アルカンチオールを介してフェロセン誘導体を固定して測定電極とした。本実施例では、フェロセン誘導体として、11−フェロセニル−1−ウンデカンイオールを使用したが、他の電気化学活性物質としてピリジン、ピリミジン等を使用してもよい。参照電極1103は、金電極の表面に銀塩化銀を形成して擬似参照電極としている。参照電極1103を作製した後、測定セル用部材1108を貼り付けて、測定セル1109を形成する。本実施例では、測定セル用部材は、円形の貫通穴を形成したポリジメチルシロキサン製のシートを用いたが、シリコンゴム等の柔軟性のある材質を用いればよい。また、円形の貫通穴の代わりに四角の貫通穴を用いても良い。本実施例では、金電極の大きさは1mm×1mm、厚さ100nmで形成したが、電位差計測法では、測定感度が電極の表面積に依存しないため、測定溶液の体積に応じて金電極の面積を変更しても問題ない。また、金電極の厚さは、50nm以上であればピンホール等ができることはない。   The structure of the measuring chip used in the present invention will be described with reference to FIG. FIGS. 11A and 11B respectively show a cross-sectional structure and a planar structure. The measurement chip has a gold electrode 1102, a reference electrode 1103, terminal pads 1104 and 1105, a conductive wiring 1106 for connecting the gold electrode 1102 and the terminal pad 1104, a reference electrode 1103 and a terminal pad 1105 on a silicon substrate 1101. Conductive wiring 1107 to be connected is formed. Portions other than the gold electrode 1102, the reference electrode 1103, and the terminal pads 1104 and 1105 are covered with high heat resistant polyimide. A ferrocene derivative was fixed to the gold electrode 1102 via an alkanethiol to obtain a measurement electrode. In this example, 11-ferrocenyl-1-undecaniol was used as the ferrocene derivative, but pyridine, pyrimidine and the like may be used as other electrochemically active substances. The reference electrode 1103 is a pseudo reference electrode by forming silver silver chloride on the surface of a gold electrode. After the reference electrode 1103 is manufactured, the measurement cell member 1108 is attached to form the measurement cell 1109. In this embodiment, the measurement cell member is a polydimethylsiloxane sheet having a circular through hole, but a flexible material such as silicon rubber may be used. Further, a square through hole may be used instead of the circular through hole. In this example, the gold electrode was formed with a size of 1 mm × 1 mm and a thickness of 100 nm. However, in the potentiometric method, the measurement sensitivity does not depend on the surface area of the electrode, so the area of the gold electrode depends on the volume of the measurement solution. There is no problem even if it is changed. Moreover, if the thickness of the gold electrode is 50 nm or more, no pinhole or the like can be formed.

図12は、本発明による電位差計測装置の他の実施例を示すブロック図である。本実施例では、検体試料と試薬溶液との攪拌混合と電位差測定を別の場所で行う構成になっている。最初、測定容器台1201上の測定容器1202中の測定溶液を分注器1203で一定量分注する。分注器1203はステージ1204で測定溶液導入部1205上に移動して、測定溶液導入部1205に測定用溶液を注入する。測定溶液導入部1205に導入された測定溶液は、導入管1206を通りフローセル部1207に導入・保持される。測定溶液のフローセル部1207への導入・保持と同期して、電位測定装置1208により電位差測定が開始される。電位差測定の際には、溶液の流れは停止しており、測定用溶液はフローセル中に保持されて流れによる電位の乱れ等の影響はない。尚、本実施例では測定溶液の導入前のフロー停止時の電位差をブランクとした。取得した信号は、データ処理装置1209でデータ処理して検体試料中の測定対象物の濃度を計算する。測定溶液のフローセル部1207への導入・保持及び電位差測定後の測定溶液の廃液槽1210への送液等の一連の動作は、送液部1211で制御する。送液部1211は、シリンジポンプ又はペリスタポンプ(チューブポンプ)を使用することができる。尚、本発明で使用した検体試料と試薬溶液との攪拌混合の手順は、図10に示した手順で行った。   FIG. 12 is a block diagram showing another embodiment of the potential difference measuring apparatus according to the present invention. In this embodiment, the mixing of the specimen sample and the reagent solution and the potential difference measurement are performed at different locations. First, a predetermined amount of the measurement solution in the measurement container 1202 on the measurement container table 1201 is dispensed by the dispenser 1203. The dispenser 1203 moves onto the measurement solution introduction unit 1205 at the stage 1204 and injects the measurement solution into the measurement solution introduction unit 1205. The measurement solution introduced into the measurement solution introduction unit 1205 is introduced and held in the flow cell unit 1207 through the introduction tube 1206. In synchronism with the introduction / holding of the measurement solution to the flow cell unit 1207, the potential difference measurement is started by the potential measuring device 1208. At the time of the potential difference measurement, the flow of the solution is stopped, and the measurement solution is held in the flow cell so that there is no influence such as disturbance of the potential due to the flow. In this example, the potential difference when the flow was stopped before introducing the measurement solution was blank. The acquired signal is subjected to data processing by the data processing device 1209 to calculate the concentration of the measurement object in the sample. A series of operations such as introduction / holding of the measurement solution to the flow cell unit 1207 and liquid supply of the measurement solution after the potential difference measurement to the waste liquid tank 1210 are controlled by the liquid supply unit 1211. The liquid feeding unit 1211 can use a syringe pump or a peristaltic pump (tube pump). The procedure of stirring and mixing the specimen sample and the reagent solution used in the present invention was performed according to the procedure shown in FIG.

本発明で使用するフローセルの構造を図13を用いて説明する。図13は、フローセルの断面構造を表わしている。フローセルは、フローセル部材1301に溶液導入用配管1302、溶液廃液用配管1303、及び参照電極1304が接続されている構造になっている。本実施例では、フローセル部材1301として、ポリジメチルシロキサン製のシートを用いたが、シリコンゴム等の柔軟性のある材質を用いればよい。フローセル部材1301の流路内面には、測定電極1305が取り付けてあり、フローセル部材1301の流路1306に接している。測定電極1305の信号は配線1307により外部に取り出せるようになっている。参照電極1304は、フローセル部材1301に形成された微細流路1308を介して、フローセル部材1301内の流路1306に接するように取り付けてある。参照電極1304は配線1309により外部と電気的に接続できるようになっている。本実施例では、測定電極1305には、11−フェロセニル−1−ウンデカンイオールを固定化した金電極を用いた。尚、11−フェロセニル−1−ウンデカンイオールに代わりに、他のアルカンチオールの炭素鎖の数が違うフェロセン誘導体、ピリジン、ピリミジン等を使用してもよい。参照電極1304は、飽和塩化カリウムを内部溶液に使用している銀・塩化銀電極を用いたが、甘こう(カロメル)電極や銀・塩化銀電極のみを使用しても問題はない。   The structure of the flow cell used in the present invention will be described with reference to FIG. FIG. 13 shows a cross-sectional structure of the flow cell. The flow cell has a structure in which a solution introduction pipe 1302, a solution waste liquid pipe 1303, and a reference electrode 1304 are connected to a flow cell member 1301. In this embodiment, a sheet made of polydimethylsiloxane is used as the flow cell member 1301, but a flexible material such as silicon rubber may be used. A measurement electrode 1305 is attached to the inner surface of the flow cell member 1301 and is in contact with the flow channel 1306 of the flow cell member 1301. A signal from the measurement electrode 1305 can be extracted to the outside through a wiring 1307. The reference electrode 1304 is attached so as to be in contact with the flow path 1306 in the flow cell member 1301 through the fine flow path 1308 formed in the flow cell member 1301. The reference electrode 1304 can be electrically connected to the outside through a wiring 1309. In this example, a gold electrode on which 11-ferrocenyl-1-undecaniol was immobilized was used as the measurement electrode 1305. Instead of 11-ferrocenyl-1-undecaniol, a ferrocene derivative, pyridine, pyrimidine, or the like having a different number of carbon chains of other alkanethiols may be used. As the reference electrode 1304, a silver / silver chloride electrode using saturated potassium chloride as an internal solution is used. However, there is no problem even if only a calomel electrode or a silver / silver chloride electrode is used.

本発明の電位差計測装置を用いてグルコースを測定した結果を図14に示す。ここでは、図1に示す装置構成で測定を行った。本実施例で行った測定動作のフローを図15に示す。本実施例では、測定容器への検体試料の分注、測定容器への試薬溶液分注後、電位差測定用電極、参照電極、及び攪拌素子を同時に測定容器内に挿入し、一定時間後、攪拌素子の動作開始と同期して電位差測定を開始した。本実施例では、電位差測定用電極、参照電極、及び攪拌素子を同時に測定容器内に挿入後の一定時間を1秒とし、測定時間を3分としたが、他の測定対象の場合には、使用する酵素の反応時間や試薬の特性等を考慮して、電位差測定用電極、参照電極、及び攪拌素子を同時に測定容器内に挿入後の一定時間及び測定時間を変更すれば良い。図14に示すように、反応開始から約150秒後に一定の電位差を示していることが分かる。本実施例の測定条件下で予め作成した検量線を図16に示す。検量線は、既知のグルコース濃度の2つの試料(濃度、70mg/dlと150mg/dl)を用いて作成した。図16中の点線が検量線、●が測定値を示しており、グルコース濃度として115mg/dLを得た。   FIG. 14 shows the results of measuring glucose using the potentiometer of the present invention. Here, the measurement was performed with the apparatus configuration shown in FIG. FIG. 15 shows the flow of the measurement operation performed in this example. In this example, after dispensing the specimen sample into the measurement container and the reagent solution into the measurement container, the potential difference measurement electrode, the reference electrode, and the stirring element were inserted into the measurement container at the same time, and after a certain time, stirring The potential difference measurement was started in synchronism with the operation start of the element. In this example, the potential difference measurement electrode, the reference electrode, and the stirring element are simultaneously set to 1 second after the insertion into the measurement container, and the measurement time is 3 minutes. In consideration of the reaction time of the enzyme to be used, the characteristics of the reagent, and the like, the fixed time and measurement time after the potential difference measurement electrode, the reference electrode, and the stirring element are simultaneously inserted into the measurement container may be changed. As shown in FIG. 14, it can be seen that a constant potential difference is exhibited about 150 seconds after the start of the reaction. A calibration curve prepared in advance under the measurement conditions of this example is shown in FIG. A calibration curve was prepared using two samples with known glucose concentrations (concentration, 70 mg / dl and 150 mg / dl). A dotted line in FIG. 16 indicates a calibration curve, and a black circle indicates a measured value, and 115 mg / dL was obtained as a glucose concentration.

本実験で用いた測定条件は以下の通りである。
試薬量:30μL
試薬組成:100mM リン酸バッファー、pH7.0
37.5mM フェリシアン化カリウム
1.25mg/mL グルコース脱水素酵素
2% Triton X-100
サンプル量:7.5μL
サンプル:管理血清(オートノルム)
The measurement conditions used in this experiment are as follows.
Reagent volume: 30 μL
Reagent composition: 100 mM phosphate buffer, pH 7.0
37.5 mM potassium ferricyanide
1.25 mg / mL glucose dehydrogenase
2% Triton X-100
Sample volume: 7.5 μL
Sample: Control serum (autonorm)

本発明では、グルコース測定について説明したが、測定対象に応じて表1に例示した酵素を用いることができる。   Although glucose measurement was demonstrated in this invention, the enzyme illustrated in Table 1 can be used according to a measuring object.

Figure 2010117183
Figure 2010117183

本発明による電位差計測装置の一例を示すブロック図。The block diagram which shows an example of the electrical potential difference measuring apparatus by this invention. 本発明による電位差計測装置を用いた測定動作の一例を示す図。The figure which shows an example of the measurement operation | movement using the electric potential difference measuring apparatus by this invention. 本発明による他の攪拌手段の一例を示す図であり、(a)は側面図、(b)鳥瞰図。It is a figure which shows an example of the other stirring means by this invention, (a) is a side view, (b) Bird's-eye view. 本発明による他の攪拌手段の一例を示す図であり、(a)は側面図、(b)鳥瞰図。It is a figure which shows an example of the other stirring means by this invention, (a) is a side view, (b) Bird's-eye view. 本発明の電位差計測装置に使用する測定電極の構造例を示す図。The figure which shows the structural example of the measurement electrode used for the electric potential difference measuring apparatus of this invention. 本発明による電位差計測装置の他の実施例を示すブロック図。The block diagram which shows the other Example of the electric potential difference measuring apparatus by this invention. FETセンサを用いた本発明の電位差計測装置の一例を示すブロック図。The block diagram which shows an example of the electric potential difference measuring apparatus of this invention using FET sensor. FETセンサを用いた本発明の電位差計測装置に使用する分析素子の構造の一例を示す図であり、(a)は断面構造、(b)は平面構造。It is a figure which shows an example of the structure of the analysis element used for the potentiometer of this invention using a FET sensor, (a) is a cross-sectional structure, (b) is a planar structure. 本発明による電位差計測装置の他の実施例を示すブロック図であり、(a)は測定溶液の分注、(b) 測定溶液の測定チップへの添加。It is a block diagram which shows the other Example of the potentiometric device by this invention, (a) Dispensing a measurement solution, (b) Addition of a measurement solution to a measurement chip. 本発明による検体試料と試薬溶液との攪拌混合の手順を示す図。The figure which shows the procedure of the stirring mixing of the sample sample and reagent solution by this invention. 本発明の電位差計測装置に使用する測定チップの構造の一例を示す図であり、(a)は断面構造、(b)は平面構造。It is a figure which shows an example of the structure of the measurement chip | tip used for the potentiometric device of this invention, (a) is a cross-sectional structure, (b) is a planar structure. 本発明による電位差計測装置の他の実施例を示すブロック図。The block diagram which shows the other Example of the electric potential difference measuring apparatus by this invention. 本発明の電位差計測装置に使用するフローセルの構造の一例を示す図。The figure which shows an example of the structure of the flow cell used for the electric potential difference measuring apparatus of this invention. 本発明の他の実施例である電位差計測装置を用いてグルコースを測定した結果を示す図。The figure which shows the result of having measured glucose using the potentiometric device which is another Example of this invention. 本発明の他の実施例である電位差計測装置を用いたグルコース濃度測定動作フローを示す図。The figure which shows the glucose concentration measurement operation | movement flow using the potentiometer which is the other Example of this invention. 本発明の他の実施例である電位差計測装置を用いた取得したグルコース濃度に対する検量線を示す図。The figure which shows the calibration curve with respect to the acquired glucose concentration using the potentiometric device which is another Example of this invention.

符号の説明Explanation of symbols

101,204,305,404,601…電位差測定用電極、102,205,306,405,602,702,1103,1304…参照電極、103,201,304,403,603,703,902,1001,1202…測定容器、104,604,704…制御装置、105,605,705,1209…データ処理装置、203,1003…検体試料、106,202,606,706,1002…検体試料用分注器、107,209,607,707,1005…試薬溶液分注器、108,206,302,401,608,708,1004…攪拌素子、203…検体試料、205…試薬溶液、301…攪拌素子台、303,402…攪拌用へら、501,712,805,1102…金電極、502,609,713…フェロセン誘導体、503…アルカンチオール、701…電位差測定用FETセンサ、709…電源、710,802…ソース、711,803…ドレイン、801…絶縁ゲート電界効果トランジスタ、804…ゲート絶縁物、806…絶縁ゲート電界効果トランジスタのゲート、807,1106,1107…導電性配線、901,1201…測定容器台、903,1203…分注器、904,1204…ステージ、905…検出部、906…測定チップ、1101…シリコン基板、1104,1105…端子用パッド、1108…測定セル用部材、1109…測定セル、1205…測定溶液導入部、1206…導入管、1207…フローセル部、1208…電位測定装置、1210…廃液槽、1211…送液部、1301…フローセル部材、1302…溶液導入用配管、1303…溶液廃液用配管、1305…測定電極、1306…流路、1307,1309…配線、1308…微細流路、   101, 204, 305, 404, 601 ... Potential difference measuring electrodes, 102, 205, 306, 405, 602, 702, 1103, 1304 ... Reference electrodes, 103, 201, 304, 403, 603, 703, 902, 1001, 1202 ... Measurement container, 104,604,704 ... Control device, 105,605,705,1209 ... Data processing device, 203,1003 ... Sample sample, 106,202,606,706,1002 ... Specimen sample dispenser, 107, 209, 607, 707, 1005 ... Reagent dispenser, 108, 206, 302, 401, 608, 708, 1004 ... Stirring element, 203 ... Sample sample, 205 ... Reagent solution, 301 ... Stirring element stage, 303 402, stirring spatula, 501, 712, 805, 1102 ... gold electrode, 502, 609, 71 ... Ferrocene derivative, 503 ... Alkanethiol, 701 ... FET sensor for potential difference measurement, 709 ... Power source, 710, 802 ... Source, 711, 803 ... Drain, 801 ... Insulated gate field effect transistor, 804 ... Gate insulator, 806 ... Insulation Gate of gate field effect transistor, 807, 1106, 1107 ... conductive wiring, 901, 1201 ... measurement container base, 903, 1203 ... dispenser, 904, 1204 ... stage, 905 ... detector, 906 ... measurement chip, 1101 DESCRIPTION OF SYMBOLS ... Silicon substrate, 1104, 1105 ... Terminal pad, 1108 ... Measurement cell member, 1109 ... Measurement cell, 1205 ... Measurement solution introduction part, 1206 ... Introduction pipe, 1207 ... Flow cell part, 1208 ... Potential measurement device, 1210 ... Waste liquid Tank, 1211 ... Liquid feeding part, 1301 ... Flow Members, 1302 ... solution introducing pipe, 1303 ... solution waste pipes, 1305 ... measurement electrodes, 1306 ... passage, 1307,1309 ... wiring, 1308 ... microchannel

Claims (19)

測定対象物を含有する測定溶液を測定容器に分注する手段と、
前記測定対象物と選択的に反応する酵素又は試薬を含む反応溶液を前記測定容器に分注する手段と、
前記測定容器中の溶液と接触する測定電極と、
前記測定容器中の溶液と接触する参照電極と、
前記測定電極の界面電位を測定する手段とを備え、
前記測定対象物と、前記酵素又は前記試薬との反応開始直後又は反応開始後の一定時間後と同期して前記測定電極の界面電位の測定を開始する信号を制御する制御装置とを有することを特徴する電位差計測装置。
Means for dispensing a measurement solution containing a measurement object into a measurement container;
Means for dispensing a reaction solution containing an enzyme or a reagent that selectively reacts with the measurement object into the measurement container;
A measuring electrode in contact with the solution in the measuring vessel;
A reference electrode in contact with the solution in the measurement vessel;
Means for measuring the interface potential of the measurement electrode,
And a control device that controls a signal for starting measurement of the interface potential of the measurement electrode immediately after the start of the reaction with the enzyme or the reagent or after a certain time after the start of the reaction. Characteristic potential difference measuring device.
請求項1記載の電位差計測装置において、前記測定容器の内側形状が円筒形であることを特徴とする電位差計測装置。   2. The potential difference measuring apparatus according to claim 1, wherein an inner shape of the measurement container is a cylindrical shape. 請求項1記載の電位差計測装置において、前記測定容器がフローセルであることを特徴とする電位差計測装置。   The potential difference measuring apparatus according to claim 1, wherein the measurement container is a flow cell. 請求項1記載の電位差計測装置において、前記反応容器が測定電極上に形成されたことを特徴とする電位差計測装置。   The potential difference measuring apparatus according to claim 1, wherein the reaction container is formed on a measurement electrode. 請求項1記載の電位差計測装置において、前記測定電極が前記測定容器に接して設置されていることを特徴とする電位差計測装置。   The potential difference measuring apparatus according to claim 1, wherein the measurement electrode is disposed in contact with the measurement container. 請求項1記載の電位差計測装置において、前記測定電極に酸化還元物質が固定化されたことを特徴とする電位差計測装置。   2. The potentiometric apparatus according to claim 1, wherein an oxidation-reduction substance is immobilized on the measurement electrode. 請求項6記載の電位差計測装置において、前記酸化還元物質がチオール基を有することを特徴とする電位差計測装置。   7. The potentiometric apparatus according to claim 6, wherein the redox substance has a thiol group. 請求項1記載の電位差計測装置において、前記測定容器への前記測定溶液又は前記反応溶液の分注開始と同期して測定を開始することを特徴とする電位差計測装置。   2. The potentiometric apparatus according to claim 1, wherein the measurement is started in synchronization with the start of dispensing of the measurement solution or the reaction solution into the measurement container. 請求項1記載の電位差計測装置において、前記測定容器中の分注された測定溶液と反応溶液を混合する攪拌手段を有することを特徴とする電位差計測装置。   2. The potentiometric apparatus according to claim 1, further comprising a stirring means for mixing the dispensed measurement solution and the reaction solution in the measurement container. 請求項9記載の電位差計測装置において、前記攪拌手段が回転あるいは上下運動を行う攪拌素子であることを特徴とする電位差計測装置。   10. The potential difference measuring apparatus according to claim 9, wherein the stirring means is a stirring element that rotates or moves up and down. 請求項9記載の電位差計測装置において、前記攪拌素子が前記測定電極に隣接して配置されていることを特徴とする電位差計測装置。   10. The potential difference measuring apparatus according to claim 9, wherein the stirring element is disposed adjacent to the measurement electrode. 請求項9記載の電位差計測装置において、前記測定溶液又は前記反応溶液の分注と同期して前記攪拌素子が動作を開始することを特徴とする電位差計測装置。   10. The potentiometric device according to claim 9, wherein the stirring element starts operating in synchronization with the dispensing of the measurement solution or the reaction solution. 請求項1記載の電位差計測装置において、前記測定電極が電界効果トランジスタと、前記電界効果トランジスタのゲートと配線で接続された電極であることを特徴とする電位差計測装置。   2. The potential difference measuring apparatus according to claim 1, wherein the measurement electrode is a field effect transistor and an electrode connected to a gate of the field effect transistor by a wiring. 請求項13記載の電位差計測装置において、前記電極の材料が貴金属であることを特徴とする電位差計測装置。   14. The potential difference measuring apparatus according to claim 13, wherein the electrode material is a noble metal. 請求項13記載の電位差計測装置において、前記参照電極は前記電界効果トランジスタと同一基板上に形成されていることを特徴とする電位差計測装置。   14. The potential difference measuring apparatus according to claim 13, wherein the reference electrode is formed on the same substrate as the field effect transistor. 請求項13記載の電位差計測装置において、前記測定容器が遮光部材で覆われていることを特徴とする電位差計測装置。   14. The potential difference measuring apparatus according to claim 13, wherein the measurement container is covered with a light shielding member. 請求項13記載の電位差計測装置において、前記電極と前記参照電極との間に電圧を印加する電源を備えたことを特徴とする電位差計測装置。   14. The potential difference measuring apparatus according to claim 13, further comprising a power source that applies a voltage between the electrode and the reference electrode. 請求項17記載の電位差計測装置において、前記電源で1kHz以上の周波数の交流電圧を印加することを特徴とする電位差計測装置。   18. The potential difference measuring apparatus according to claim 17, wherein an AC voltage having a frequency of 1 kHz or more is applied by the power source. 測定対象物を含有する測定溶液を測定容器に分注する工程と、
前記測定対象物と選択的に反応する酵素又は試薬を含む反応溶液を前記測定容器に分注する工程と、
前記測定容器中の分注された測定溶液と反応溶液を混合する工程と、
前記測定容器中に配置された測定電極の界面電位を測定する工程を有し、
前記測定容器中の分注された測定溶液と反応溶液の混合と同期して前記測定電極の界面電位の測定を開始することを特徴とする電位差測定法。
A step of dispensing a measurement solution containing a measurement object into a measurement container;
Dispensing a reaction solution containing an enzyme or reagent that selectively reacts with the measurement object into the measurement container;
Mixing the dispensed measurement solution and the reaction solution in the measurement container;
Measuring the interfacial potential of the measurement electrode disposed in the measurement container,
A potential difference measuring method, wherein the measurement of the interfacial potential of the measurement electrode is started in synchronism with the mixing of the dispensed measurement solution and the reaction solution in the measurement container.
JP2008289127A 2008-11-11 2008-11-11 Potential difference measuring device Pending JP2010117183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289127A JP2010117183A (en) 2008-11-11 2008-11-11 Potential difference measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289127A JP2010117183A (en) 2008-11-11 2008-11-11 Potential difference measuring device

Publications (1)

Publication Number Publication Date
JP2010117183A true JP2010117183A (en) 2010-05-27

Family

ID=42304956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289127A Pending JP2010117183A (en) 2008-11-11 2008-11-11 Potential difference measuring device

Country Status (1)

Country Link
JP (1) JP2010117183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653101C1 (en) * 2017-03-30 2018-05-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО УГМУ Минздрава России) Contact lenses surface potential and surface charge sign determination method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653101C1 (en) * 2017-03-30 2018-05-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный медицинский университет" Министерства здравоохранения Российской Федерации (ФГБОУ ВО УГМУ Минздрава России) Contact lenses surface potential and surface charge sign determination method

Similar Documents

Publication Publication Date Title
US8128796B2 (en) Analyzer
JP6150262B2 (en) Analyte biosensor system
JP4964552B2 (en) Method and apparatus for rapid electrochemical analysis
ES2277933T3 (en) ELECTROCHEMICAL PROCEDURE TO MEASURE THE SPEED OF CHEMICAL REACTIONS.
RU2238548C2 (en) Method for measuring concentration of analyzed substance (variants), measuring device for doing the same
CN1296704C (en) Timing passive sample test
JP4751302B2 (en) Potential difference sensor and analytical element
US9234866B2 (en) Underfill recognition biosensor
EP2263522A1 (en) Methods for analyzing a sample in the presence of interferents
JP2011506964A (en) Speed reading gate amperometry
RU2267120C2 (en) Electrochemical mode of measuring of speed of chemical reactions
JP2010286423A (en) Potential difference measurement method
KR20190112731A (en) Determination of Analyte Concentrations in Physiological Fluids with Interferences
US10329684B2 (en) Method for forming an optical test sensor
JP2010117183A (en) Potential difference measuring device
KR20220097909A (en) Method and system for dynamically measuring redox potential during chemical reaction
JP5309042B2 (en) Potential difference measuring apparatus and potential difference measuring method
CN2837839Y (en) An electronic sensor device used to measure the amount of analyte in a sample
HK1151703B (en) Method for analyzing a sample in the presence of interferents