JP2010110671A - PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL - Google Patents
PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL Download PDFInfo
- Publication number
- JP2010110671A JP2010110671A JP2008283741A JP2008283741A JP2010110671A JP 2010110671 A JP2010110671 A JP 2010110671A JP 2008283741 A JP2008283741 A JP 2008283741A JP 2008283741 A JP2008283741 A JP 2008283741A JP 2010110671 A JP2010110671 A JP 2010110671A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- calcium titanate
- catalyst
- nickel catalyst
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 65
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 title description 12
- 238000012986 modification Methods 0.000 title description 2
- 230000004048 modification Effects 0.000 title description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 124
- 239000011575 calcium Substances 0.000 claims abstract description 98
- 238000006243 chemical reaction Methods 0.000 claims abstract description 74
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 65
- 150000001669 calcium Chemical class 0.000 claims abstract description 52
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000010936 titanium Chemical group 0.000 claims abstract description 44
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 35
- 150000001768 cations Chemical class 0.000 claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 21
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 21
- 238000002407 reforming Methods 0.000 claims abstract description 20
- 239000011164 primary particle Substances 0.000 claims abstract description 15
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 13
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 11
- 230000002776 aggregation Effects 0.000 claims abstract description 9
- 238000004220 aggregation Methods 0.000 claims abstract description 9
- AOWKSNWVBZGMTJ-UHFFFAOYSA-N calcium titanate Chemical compound [Ca+2].[O-][Ti]([O-])=O AOWKSNWVBZGMTJ-UHFFFAOYSA-N 0.000 claims abstract 3
- 239000007864 aqueous solution Substances 0.000 claims description 75
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 239000007789 gas Substances 0.000 claims description 39
- 229910001868 water Inorganic materials 0.000 claims description 39
- 238000002156 mixing Methods 0.000 claims description 15
- 239000010419 fine particle Substances 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 10
- 159000000007 calcium salts Chemical class 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 238000010335 hydrothermal treatment Methods 0.000 claims description 6
- 150000002505 iron Chemical class 0.000 claims description 6
- 159000000008 strontium salts Chemical class 0.000 claims description 6
- 150000003609 titanium compounds Chemical class 0.000 claims description 6
- 150000002815 nickel Chemical class 0.000 claims description 4
- 229910052719 titanium Chemical group 0.000 abstract description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 13
- 238000000034 method Methods 0.000 abstract description 13
- 229910052742 iron Inorganic materials 0.000 abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 8
- 230000036961 partial effect Effects 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 229910052712 strontium Inorganic materials 0.000 abstract description 5
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 abstract description 5
- 238000006467 substitution reaction Methods 0.000 abstract 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 41
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 34
- 239000000243 solution Substances 0.000 description 32
- WEUCVIBPSSMHJG-UHFFFAOYSA-N calcium titanate Chemical class [O-2].[O-2].[O-2].[Ca+2].[Ti+4] WEUCVIBPSSMHJG-UHFFFAOYSA-N 0.000 description 30
- 239000002245 particle Substances 0.000 description 30
- 239000002994 raw material Substances 0.000 description 25
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 18
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 description 18
- 239000000047 product Substances 0.000 description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 16
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 15
- -1 oxygen ion Chemical class 0.000 description 15
- 239000012153 distilled water Substances 0.000 description 14
- 229910052759 nickel Chemical class 0.000 description 12
- 239000011550 stock solution Substances 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 239000012266 salt solution Substances 0.000 description 10
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 9
- 238000004811 liquid chromatography Methods 0.000 description 8
- 239000011259 mixed solution Substances 0.000 description 8
- 239000003345 natural gas Substances 0.000 description 8
- 238000003980 solgel method Methods 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910001424 calcium ion Inorganic materials 0.000 description 6
- 239000012295 chemical reaction liquid Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 229910001427 strontium ion Inorganic materials 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229910001453 nickel ion Inorganic materials 0.000 description 4
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003570 air Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- NPFOYSMITVOQOS-UHFFFAOYSA-K iron(III) citrate Chemical compound [Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NPFOYSMITVOQOS-UHFFFAOYSA-K 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- UPPLJLAHMKABPR-UHFFFAOYSA-H 2-hydroxypropane-1,2,3-tricarboxylate;nickel(2+) Chemical compound [Ni+2].[Ni+2].[Ni+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O UPPLJLAHMKABPR-UHFFFAOYSA-H 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003034 coal gas Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- JWFGIQXZIKKLFA-UHFFFAOYSA-H nickel(2+);carbonate;tetrahydroxide;tetrahydrate Chemical compound O.O.O.O.[OH-].[OH-].[OH-].[OH-].[Ni+2].[Ni+2].[Ni+2].[O-]C([O-])=O JWFGIQXZIKKLFA-UHFFFAOYSA-H 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000010900 secondary nucleation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
- Hydrogen, Water And Hydrids (AREA)
Abstract
【課題】結晶化度が高いカチオン部分置換型チタン酸カルシウム担持ニッケル触媒からなる炭化水素改質触媒及びこれを用いた合成ガスの製造方法を提供する。
【解決手段】超臨界もしくは亜臨界の水熱合成反応により、ストロンチュウムと鉄がそれぞれカルシウムとチタンの格子サイトに部分的に置換されており、1次粒子径が50nm以下のカチオン部分置換型チタン酸カルシウム担持体を製造するとともに、一次粒子径が10nm以下であるニッケル触媒を製造し、これを前記担持体に担持し、表面積が70平方メートル/g以上で、凝集のない、結晶化度が高いチタン酸カルシウム担持ニッケル触媒を製造する。
【効果】超臨界水熱合成法により、一段で、高表面積なペロブスカイト担持Ni触媒を調製し、提供することができる。
【選択図】図3The present invention provides a hydrocarbon reforming catalyst comprising a cation partially-substituted calcium titanate-supported nickel catalyst having a high degree of crystallinity and a method for producing synthesis gas using the same.
A cation partial substitution type in which strontium and iron are partially substituted by calcium and titanium lattice sites by supercritical or subcritical hydrothermal synthesis reaction, respectively, and the primary particle diameter is 50 nm or less. In addition to producing a calcium titanate carrier, a nickel catalyst having a primary particle size of 10 nm or less is produced, and this is supported on the carrier. The surface area is 70 square meters / g or more, there is no aggregation, and the crystallinity is Producing high calcium titanate supported nickel catalyst.
[Effect] A perovskite-supported Ni catalyst having a high surface area can be prepared and provided by a supercritical hydrothermal synthesis method.
[Selection] Figure 3
Description
本発明は、カチオン部分置換型チタン酸カルシウム担持ニッケル触媒及びその製造方法、また、この触媒を用いた合成ガスの製造方法に関するものであり、更に詳しくは、メタンの部分酸化反応用の触媒として適用できる、粒子径50nm以下で、表面積が70平方メートル/g以上の高表面積で、凝集のない、斜方晶構造を有するカチオン部分置換型チタン酸カルシウム(Ca0.8Sr0.2Ti1−xFexO3−δ)微粒子に、簡単にニッケル触媒を担持する方法、及び該ニッケル触媒により一酸化炭素と水素の混合ガスからなる合成ガスを製造する方法に関するものである。 The present invention relates to a cation partially substituted calcium titanate-supported nickel catalyst, a method for producing the same, and a method for producing a synthesis gas using the catalyst, and more particularly, as a catalyst for a partial oxidation reaction of methane. Cationic partially substituted calcium titanate (Ca 0.8 Sr 0.2 Ti 1-x having a rhomboid structure with a high surface area with a particle size of 50 nm or less, a surface area of 70 square meters / g or more, and no aggregation. The present invention relates to a method of simply supporting a nickel catalyst on (Fe x O 3−δ ) fine particles and a method of producing a synthesis gas comprising a mixed gas of carbon monoxide and hydrogen using the nickel catalyst.
本発明は、簡単なプロセスで、微粒子化による高表面積を特徴としたカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造し、提供することを可能とする、新しいニッケルを担持したカチオン部分置換型チタン酸カルシウム触媒の製造方法、及びこの触媒を用いた一酸化炭素と水素との混合ガスからなる合成ガスの製造方法に関する新技術・新製品を提供するものである。 The present invention is a novel nickel-supported cation partially substituted titanium that can produce and provide a cation partially substituted calcium titanate-supported nickel catalyst characterized by a high surface area by atomization in a simple process. The present invention provides a new technology and a new product relating to a method for producing a calcium acid catalyst and a method for producing a synthesis gas comprising a mixed gas of carbon monoxide and hydrogen using the catalyst.
石油資源の枯渇に由来して、エネルギー資源としての天然ガスの利用技術に期待が高まっている。天然ガスの利用技術の中でも、特に、天然ガスの有効利用技術として、天然ガスからエタノールやガソリンなどの液体燃料化する技術の主反応である、メタンから合成ガス(一酸化炭素と水素の混合ガス)へ酸化的に変換する触媒の開発が緊急の課題となっている。特に、触媒として、混合導電性セラミックス担持ニッケル触媒が、触媒活性だけでなく、高い炭素析出抑制能を有することで注目されている。 Due to the depletion of petroleum resources, expectations are rising for the technology for using natural gas as an energy resource. Among the natural gas utilization technologies, in particular, as the effective utilization technology of natural gas, the main reaction of the technology to convert natural gas into liquid fuels such as ethanol and gasoline, methane to synthesis gas (mixed gas of carbon monoxide and hydrogen) The development of catalysts that oxidatively convert to) is an urgent issue. In particular, a mixed conductive ceramic-supported nickel catalyst has attracted attention as a catalyst because it has not only catalytic activity but also high carbon deposition suppression ability.
上記触媒に用いられる混合導電性セラミックスでは、主にペロブスカイト型構造を有した酸化物(一般式;ABO3)の構成金属の一部を、より低原子価の金属で部分的に置換することで、酸化物中に酸素空孔を導入し、これにより発現した電子と酸素イオン導電性を利用して、耐炭素析出の機能を発現させる。混合導電性ペロブスカイト酸化物で、高い組成均質性や結晶化度とともに、焼結温度の低温化による微粒子(ナノサイズ)化と高表面積化をすることができれば、高い触媒反応速度とともに、炭素析出を抑制する高活性触媒が実現できると考えられる。 In the mixed conductive ceramics used for the catalyst, a part of the constituent metal of the oxide having a perovskite structure (general formula; ABO 3 ) is partially substituted with a metal having a lower valence. Then, oxygen vacancies are introduced into the oxide, and the function of carbon deposition resistance is exhibited by utilizing the electron and oxygen ion conductivity expressed thereby. A mixed conductive perovskite oxide, with high compositional homogeneity and crystallinity, as well as a high catalytic reaction rate and carbon deposition if the particle size (nanosize) and surface area can be increased by lowering the sintering temperature. It is considered that a highly active catalyst can be realized.
これまでに、チタン酸カルシウム(CaTiO3)をベースに、Caの一部をSrで部分置換した、カチオン部分置換型チタン酸カルシウム(Ca0.8Sr0.2Ti1−xFexO3−δ)は、メタンの部分酸化反応触媒の触媒担体として、高い活性を示すことが知られている(非特許文献1)。 So far, based on calcium titanate (CaTiO 3), a portion of Ca was partially substituted by Sr, the cationic portion substituted calcium titanate (Ca 0.8 Sr 0.2 Ti 1- x Fe x O 3 -Δ ) is known to exhibit high activity as a catalyst support for a partial oxidation reaction catalyst of methane (Non-patent Document 1).
また、チタン酸カルシウム(CaTiO3)をベースに、Caの一部をSrで、また、Tiの一部をFeで部分置換した、カチオン部分置換型チタン酸カルシウム(Ca0.8Sr0.2Ti1−xFexO3−δ)は、酸素と電子の混合導電性を示し、この特性が、メタンの部分酸化反応において、触媒上での炭素析出を抑制する機能の発現に大きく寄与しているものと考えられている(非特許文献2)。 Further, based on calcium titanate (CaTiO 3 ), a part of Ca is partially substituted with Sr, and a part of Ti is partially substituted with Fe, and cation partially substituted calcium titanate (Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3 -δ) represents oxygen and mixed conducting electrons, this property is in partial oxidation reaction of methane, greatly contributes to the expression of the function of inhibiting carbon deposition on the catalyst (Non-Patent Document 2).
上記カチオン部分置換型チタン酸カルシウム(以下、部分置換型チタン酸カルシウムと記載することがある。)は、主にゾルゲル法により調製することが検討されている。そこで、混合導電性を有し、高結晶性の微粒子を用いることができれば、高い触媒活性を得ることができることが期待される。そのためには、高結晶性で、かつ粒子径が50nm以下の微粒子で、表面積が60平方メートル/g以上のカチオン部分置換型チタン酸カルシウム微粒子が必要とされる。 Preparation of the cation partially substituted calcium titanate (hereinafter sometimes referred to as partially substituted calcium titanate) by the sol-gel method has been studied. Thus, it is expected that high catalytic activity can be obtained if fine particles having mixed conductivity and high crystallinity can be used. For this purpose, cation partially-substituted calcium titanate fine particles having high crystallinity and having a particle diameter of 50 nm or less and a surface area of 60 square meters / g or more are required.
上記部分置換型チタン酸カルシウムをニッケル触媒担体として利用した部分置換型チタン酸カルシウム担持ニッケル触媒は、主にゾルゲル法によって製造されている。ゾルゲル法では、原料に、炭酸カルシウム、炭酸ストロンチュウム、オルトチタン酸テトライソプロピル、クエン酸鉄、クエン酸ニッケルを用いる。 The partially substituted calcium titanate-supported nickel catalyst using the partially substituted calcium titanate as a nickel catalyst carrier is mainly produced by a sol-gel method. In the sol-gel method, calcium carbonate, strontium carbonate, tetraisopropyl orthotitanate, iron citrate, and nickel citrate are used as raw materials.
ゾルゲル法では、それぞれの原料を、クエン酸とエチレングリコールの混合溶液に混合し、これを、所定量混合させ、空気中で加熱することで、徐々に塩との加水分解反応によって、アモルファス又は部分的に結晶化した部分置換型チタン酸カルシウムとニッケル前駆体のプレカーサを得て、それを、850℃で熱処理している(非特許文献2)。しかし、当該方法で得られる粒子は、結晶性は高いが、粒子径が数10μmであり、そのため、得られた粒子は、粉砕、分級操作により微粒化されるが、高々、数100nm程度であり、また、表面積は、1平方メートル/g程度でしかない。 In the sol-gel method, each raw material is mixed with a mixed solution of citric acid and ethylene glycol, mixed in a predetermined amount, and heated in air, so that it is gradually converted into amorphous or partially by a hydrolysis reaction with a salt. A partially crystallized partially substituted calcium titanate and nickel precursor precursor was obtained and heat treated at 850 ° C. (Non-patent Document 2). However, although the particles obtained by this method have high crystallinity, the particle diameter is several tens of μm. Therefore, the obtained particles are pulverized by pulverization and classification, but at most about several hundred nm. The surface area is only about 1 square meter / g.
このような状況の中で、本発明者らは、上記従来技術に鑑みて、結晶化度が高く、単一の結晶性を有し、70平方メートル/g以上の高表面積化した、部分置換型チタン酸カルシウム担持ニッケル触媒を、効率よく、簡単なプロセスで、かつ短時間で製造できる新しい技術を開発することを目標として鋭意研究を重ねた。その結果、本発明者らは、カルシウムイオン、ストロンチュウムイオン、チタンイオン、鉄イオンとニッケルイオンとを、亜臨界ないし超臨界状態の水中にて水熱反応させることにより、所期の目的を達成し得ることを見出し、本発明を完成するに至った。 In such a situation, in view of the prior art, the present inventors have a high degree of crystallinity, single crystallinity, and a high surface area of 70 square meters / g or more. We conducted extensive research with the goal of developing a new technology that can produce calcium titanate-supported nickel catalysts efficiently, in a simple process, and in a short time. As a result, the present inventors achieved the intended purpose by hydrothermal reaction of calcium ions, strontium ions, titanium ions, iron ions and nickel ions in subcritical or supercritical water. As a result, the present invention has been completed.
本発明は、上述の問題点に着目してなされたものであり、表面積が70平方メートル/g以上の高表面積の部分置換型チタン酸カルシウム担持ニッケル触媒を、短時間で、かつ効率よく製造することのできる、部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法、及びその触媒製品を提供することを目的とするものである。 The present invention has been made by paying attention to the above-mentioned problems, and efficiently produces a partially substituted calcium titanate-carrying nickel catalyst having a high surface area of 70 square meters / g or more in a short time. It is an object of the present invention to provide a method for producing a partially-substituted calcium titanate-supported nickel catalyst that can be used, and a catalyst product thereof.
また、本発明は、天然ガスなどの炭化水素と、水、二酸化炭素、酸素、空気などの改質ガス化剤とから、水素と一酸化炭素との混合物である合成ガスを得るための炭化水素の改質用触媒として、当該触媒を用いた合成ガスの製造方法を提供することを目的とするものである。 The present invention also provides a hydrocarbon for obtaining a synthesis gas that is a mixture of hydrogen and carbon monoxide from a hydrocarbon such as natural gas and a reforming gasifying agent such as water, carbon dioxide, oxygen, and air. An object of the present invention is to provide a synthesis gas production method using the catalyst as a reforming catalyst.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)基本構造が、一般式
Ni/Ca0.8Sr0.2Ti1−xFexO3−δ
(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒であって、
上記Ca0.8Sr0.2Ti1−xFexO3−δは、一次粒子径が0超〜50nmの小さい微粒子の担持体であり、該担持体に、一次粒子径が0超〜10nmで、原子比Ni/(Ca+Sr)が0.2〜1.0であるNi触媒を担持し、少なくとも表面積が70平方メートル/gの高表面積で、凝集がなく、結晶化度が高い、高結晶性のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒。
(2)Ni触媒を担持したカチオン部分置換型チタン酸カルシウムが、単一の結晶構造を有している、前記(1)に記載のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒。
(3)Ni触媒の一次粒子径が、0超〜10nmである、前記(1)に記載のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒。
(4)チタニウム化合物水溶液、カルシウム塩水溶液、ストロンチュウム塩水溶液、及び、鉄塩水溶液を混合し、アルカリ水溶液を添加した後、亜臨界ないし超臨界状態の水中にて水熱反応する工程により、基本構造が、一般式
Ca0.8Sr0.2Ti1−xFexO3−δ
(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム微粒子を製造し、その後、ニッケル塩水溶液を添加し、亜臨界ないし超臨界状態の水中にて水熱反応することにより、基本構造が、一般式
Ni/Ca0.8Sr0.2Ti1−xFexO3−δ
で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造することを特徴とするカチオン部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法。
(5)チタニウム化合物水溶液、カルシウム塩水溶液、ストロンチュウム塩水溶液、鉄塩水溶液、及び、ニッケル塩水溶液を混合し、アルカリ水溶液を添加した後、亜臨界ないし超臨界状態の水中にて水熱反応する工程により、基本構造が、一般式
Ni/Ca0.8Sr0.2Ti1−xFexO3−δ
(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造することを特徴とするカチオン部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法。
(6)水熱反応の水熱処理温度が、高くても400℃で、反応圧力が、高くても35MPaである、前記(4)又は(5)に記載のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法。
(7)水熱反応の水熱処理時間が、0超〜20秒である、前記(4)又は(5)に記載のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法。
(8)前記(1)から(3)のいずれかに記載のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を用いて、炭化水素と、改質ガス化剤から、一酸化炭素と水素の混合ガスからなる合成ガスを得ることを特徴とする合成ガスの製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) Basic structure of the general formula Ni / Ca 0.8 Sr 0.2 Ti 1 -x Fe x O 3-δ
(Wherein x is a number from 0.1 to 0.3, δ is a number from 0.05 to 0.15),
The Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ is a small fine particle carrier having a primary particle diameter of more than 0 to 50 nm, and the primary particle diameter is more than 0 to A high crystal supporting Ni catalyst having an atomic ratio of Ni / (Ca + Sr) of 0.2 to 1.0 at 10 nm, having a high surface area of at least 70 square meters / g, no aggregation, and high crystallinity. Cationic partially substituted calcium titanate-supported nickel catalyst.
(2) The cation partially substituted calcium titanate-carrying nickel catalyst according to (1), wherein the cation partially substituted calcium titanate carrying a Ni catalyst has a single crystal structure.
(3) The cation partially substituted calcium titanate-carrying nickel catalyst according to (1), wherein the primary particle diameter of the Ni catalyst is more than 0 to 10 nm.
(4) By mixing a titanium compound aqueous solution, a calcium salt aqueous solution, a strontium salt aqueous solution, and an iron salt aqueous solution, adding an alkaline aqueous solution, and then hydrothermally reacting in subcritical or supercritical water, the basic structure of the general formula Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ
(Wherein x is a number from 0.1 to 0.3, and δ is a number from 0.05 to 0.15). By adding and hydrothermally reacting in subcritical or supercritical water, the basic structure has the general formula Ni / Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ
A method for producing a cation partially-substituted calcium titanate-supported nickel catalyst represented by the formula:
(5) A titanium compound aqueous solution, a calcium salt aqueous solution, a strontium salt aqueous solution, an iron salt aqueous solution, and a nickel salt aqueous solution are mixed, an alkaline aqueous solution is added, and then a hydrothermal reaction is performed in subcritical or supercritical water. the process of the basic structure, the general formula Ni / Ca 0.8 Sr 0.2 Ti 1 -x Fe x O 3-δ
(Wherein x is a number from 0.1 to 0.3, and δ is a number from 0.05 to 0.15). A method for producing a cation partially substituted calcium titanate-supported nickel catalyst.
(6) The cation partially substituted calcium titanate-supported nickel according to (4) or (5), wherein the hydrothermal reaction hydrothermal treatment temperature is at most 400 ° C. and the reaction pressure is at most 35 MPa. A method for producing a catalyst.
(7) The method for producing a cation partially-substituted calcium titanate-supported nickel catalyst according to (4) or (5), wherein the hydrothermal treatment time of the hydrothermal reaction is more than 0 to 20 seconds.
(8) A mixed gas of carbon monoxide and hydrogen from a hydrocarbon and a reforming gasifying agent using the cation partially substituted calcium titanate-supported nickel catalyst according to any one of (1) to (3) A process for producing synthesis gas comprising obtaining a synthesis gas comprising:
次に、本発明について更に詳細に説明する。
本発明は、基本構造が、一般式 Ni/Ca0.8Sr0.2Ti1−xFexO3−δ(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒であって、上記Ca0.8Sr0.2Ti1−xFexO3−δは、一次粒子径が0超〜50nmの小さい微粒子の担持体であり、該担持体に、一次粒子径が0超〜10nmで、原子比Ni/(Ca+Sr)が0.2〜1.0であるNi触媒を担持し、少なくとも表面積が70平方メートル/gの高表面積で、凝集がなく、結晶化度が高い、高結晶性のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒、であることを特徴とするものである。ここで、一次粒子径が0超〜50nm、あるいは0超〜10nmとは、一次粒子径が0超以上で50nm以下、あるいは0超以上で10nm以下であることを意味する。
Next, the present invention will be described in more detail.
The present invention, the basic structure is the general formula Ni / Ca 0.8 Sr 0.2 Ti 1 -x Fe x O 3-δ (x in the formula 0.1 to 0.3, [delta] is 0.05 a cationic moiety substituted calcium titanate supported nickel catalyst represented by 0.15 is the number of) the above-mentioned Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ, primary particle size Is a carrier of small fine particles of more than 0 to 50 nm, and the carrier carries a Ni catalyst having a primary particle diameter of more than 0 to 10 nm and an atomic ratio Ni / (Ca + Sr) of 0.2 to 1.0. In addition, it is a highly crystalline cationic partially substituted calcium titanate-supported nickel catalyst having a high surface area of at least 70 square meters / g, no aggregation, and high crystallinity. Here, the primary particle diameter of more than 0 to 50 nm, or more than 0 to 10 nm means that the primary particle diameter is more than 0 and 50 nm or less, or more than 0 and 10 nm or less.
また、本発明は、上記カチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造する方法であって、チタニウム化合物水溶液、カルシウム塩水溶液、ストロンチュウム塩水溶液、及び、鉄塩水溶液を混合し、アルカリ水溶液を添加した後、亜臨界ないし超臨界状態の水中にて水熱反応する工程により、基本構造が、一般式 Ca0.8Sr0.2Ti1−xFexO3−δ(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム微粒子を製造し、その後、ニッケル塩水溶液を添加し、亜臨界ないし超臨界状態の水中にて水熱反応することにより、基本構造が、一般式 Ni/Ca0.8Sr0.2Ti1−xFexO3−δで表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造することを特徴とするものである。 The present invention is also a method for producing the above cation partially substituted calcium titanate-supported nickel catalyst, comprising mixing an aqueous titanium compound solution, an aqueous calcium salt solution, an aqueous strontium salt solution, and an aqueous iron salt solution, and an alkaline aqueous solution. After the addition of, the basic structure is represented by the general formula Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ (in the formula, by a hydrothermal reaction in subcritical or supercritical water. c is a number from 0.1 to 0.3, and δ is a number from 0.05 to 0.15). Thereafter, a nickel salt aqueous solution is added, by hydrothermal reaction in water in supercritical or supercritical state, the basic structure, the cation moiety substituted represented by the general formula Ni / Ca 0.8 Sr 0.2 Ti 1 -x Fe x O 3-δ titanium It is characterized in that to produce a calcium supported nickel catalyst.
また、本発明は、上記カチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造する方法であって、チタニウム化合物水溶液、カルシウム塩水溶液、ストロンチュウム塩水溶液、鉄塩水溶液、及び、ニッケル塩水溶液を混合し、アルカリ水溶液を添加した後、亜臨界ないし超臨界状態の水中にて水熱反応する工程により、基本構造が、一般式 Ni/Ca0.8Sr0.2Ti1−xFexO3−δ(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造することを特徴とするものである。 The present invention also relates to a method for producing the above cation partially substituted calcium titanate-supported nickel catalyst, comprising mixing an aqueous titanium compound solution, an aqueous calcium salt solution, an aqueous strontium salt solution, an aqueous iron salt solution, and an aqueous nickel salt solution. Then, after adding the alkaline aqueous solution, the basic structure is represented by the general formula Ni / Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3 by a hydrothermal reaction in subcritical or supercritical water. -Δ (wherein x is a number between 0.1 and 0.3, and δ is a number between 0.05 and 0.15). It is what.
更に、本発明は、上記カチオン部分置換型チタン酸カルシウム担持ニッケル触媒を用いて、一酸化炭素と水素の混合ガスからなる合成ガスを製造する方法であって、炭化水素と、炭化水素を部分酸化して改質するための酸素源となる、水蒸気、二酸化炭素、酸素、空気などの酸化剤として用いられる通常の改質ガス化剤から、一酸化炭素と水素の混合ガスからなる合成ガスを製造することを特徴とするものである。 Furthermore, the present invention is a method for producing a synthesis gas comprising a mixed gas of carbon monoxide and hydrogen using the cation partially substituted calcium titanate supported nickel catalyst, wherein the hydrocarbon and the hydrocarbon are partially oxidized. Production of synthesis gas consisting of a mixture of carbon monoxide and hydrogen from ordinary reforming gasifiers used as oxidants such as water vapor, carbon dioxide, oxygen, air, etc. It is characterized by doing.
本発明の部分置換型チタン酸カルシウム担持ニッケル触媒を製造する方法としては、二つの製造法がある。本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の第一の製造法は、まず、カルシウムイオン、ストロンチュウムイオン、チタンイオンと鉄イオンとを、亜臨界ないし超臨界状態の水中にて水熱反応させ、一次粒子径が50nm以下であり、その粒子は、残存水酸イオンが少なく、凝集がなく、結晶化度が高い、斜方晶部分置換型チタン酸カルシウム酸化物を製造し、次に、反応ラインに、ニッケルイオンを添加し、亜臨界ないし超臨界状態の水中にて水熱反応させ、一次粒子径が10nm以下である、ニッケル触媒を製造することにより、部分置換型チタン酸カルシウム担持ニッケル触媒材料を製造するものである。 There are two production methods for producing the partially substituted calcium titanate-supported nickel catalyst of the present invention. The first method for producing the partially substituted calcium titanate-supported nickel catalyst of the present invention is as follows. First, calcium ions, strontium ions, titanium ions and iron ions are hydrothermally reacted in subcritical or supercritical water. Producing an orthorhombic partially substituted calcium titanate oxide having a primary particle size of 50 nm or less, the particles having little residual hydroxide ions, no aggregation, and high crystallinity; Partially-substituted calcium titanate-supported nickel by adding nickel ions to the reaction line and causing a hydrothermal reaction in subcritical or supercritical water to produce a nickel catalyst having a primary particle size of 10 nm or less A catalyst material is produced.
本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の第二の製造法は、カルシウムイオン、ストロンチュウムイオン、チタンイオン、鉄イオンとニッケルイオンとを、亜臨界ないし超臨界状態の水中にて水熱反応させることにより、一次粒子径が50nm以下であり、その粒子は、残存水酸イオンが少なく、凝集がなく、担持体微粒子の中に触媒が混ざりあった、部分置換型チタン酸カルシウム担持ニッケル触媒材料を製造するものである。これらの特徴を有する部分置換型チタン酸カルシウム担持ニッケル触媒材料を製造するには、反応により生成する核の凝集を抑制するとともに、結晶表面における2次核発生を抑制する必要がある。 The second method for producing the partially substituted calcium titanate-supported nickel catalyst of the present invention is to hydrocalcite calcium ions, strontium ions, titanium ions, iron ions and nickel ions in subcritical or supercritical water. By reacting, the partially substituted calcium titanate-supported nickel catalyst having a primary particle diameter of 50 nm or less, the particles having little residual hydroxide ions, no aggregation, and the catalyst was mixed in the carrier fine particles. The material is manufactured. In order to produce a partially substituted calcium titanate-carrying nickel catalyst material having these characteristics, it is necessary to suppress aggregation of nuclei generated by the reaction and to suppress generation of secondary nuclei on the crystal surface.
一般に、金属酸化物の結晶化度を上げるためには、高温処理することが望ましいが、高温、高圧の亜臨界ないし超臨界状態では、水は、非極性のガス状となり、非極性を有する部分置換型チタン酸カルシウム酸化物と、ニッケル触媒の生成速度が著しく大きくなるとともに、溶存するイオン濃度が極めて低くなることから、2次核発生や、過度の結晶成長が生じ難く、生成する粒子径も、小さくなる。 In general, in order to increase the crystallinity of a metal oxide, it is desirable to perform a high temperature treatment. However, in a high-temperature, high-pressure subcritical or supercritical state, water becomes a nonpolar gaseous state and has a nonpolar part. The generation rate of the substituted calcium titanate oxide and the nickel catalyst is remarkably increased, and the dissolved ion concentration is extremely low. Therefore, secondary nucleation and excessive crystal growth are unlikely to occur, and the generated particle size is also small. , Get smaller.
本発明において、チタン源には、チタンアルコキシドが用いられる。チタン源は、水溶性であることが好適であるが、例えば、適当なTi化合物を加水分解させて得られる固体生成物のチタン水酸化物(TiO2xH2O)を含むスラリーが望ましい。カルシウム源、ストロンチウム源、鉄源及びニッケル源には、水溶性であることが好ましく、例えば、硝酸カルシウム、硝酸ストロンチュウム、硝酸鉄、硝酸ニッケルを用いることが好ましい。上記のカルシウムイオン、ストロンチュウムイオン、チタンイオンと鉄イオンの個々の溶液又は混合溶液に、アルカリを加えて、中性よりも高いpHの溶液とすることが必要である。ここで、アルカリは、NaOHや、KOHなどが好適であるが、KOHを用いることが望ましい。 In the present invention, titanium alkoxide is used as the titanium source. The titanium source is preferably water-soluble. For example, a slurry containing a solid product titanium hydroxide (TiO 2 xH 2 O) obtained by hydrolyzing an appropriate Ti compound is desirable. The calcium source, strontium source, iron source and nickel source are preferably water-soluble, and for example, calcium nitrate, strontium nitrate, iron nitrate and nickel nitrate are preferably used. It is necessary to add an alkali to the above solution or mixed solution of calcium ion, strontium ion, titanium ion and iron ion to obtain a solution having a pH higher than neutrality. Here, NaOH or KOH is suitable as the alkali, but KOH is preferably used.
本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法では、急速昇温による水熱合成反応を、水酸イオンを適宜添加した条件下で行うことが好ましい。このようにすれば、前記カルシウムイオン、ストロンチュウムイオン、チタンイオンと鉄イオンの混合水溶液と、ニッケル水溶液に、水酸イオンを適宜添加して、アルカリ性にすることで、昇温過程で結晶化しやすい、水酸化チタンが、溶解され易くなる。 In the method for producing a partially substituted calcium titanate-carrying nickel catalyst according to the present invention, it is preferable that the hydrothermal synthesis reaction by rapid temperature increase is performed under conditions where hydroxide ions are appropriately added. In this way, it is easy to crystallize in the temperature rising process by adding a hydroxide ion to the mixed aqueous solution of calcium ion, strontium ion, titanium ion and iron ion, and nickel aqueous solution to make it alkaline. Titanium hydroxide is easily dissolved.
このようにすれば、これらの昇温過程において生成した副反応物質が、反応生成物中に残留して、結晶品質に悪影響を及ぼし、目的とする部分置換型チタン酸カルシウム担持ニッケル触媒の収率を低下させることを防止することができる。従って、本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法では、水熱反応を、カルシウムイオン、ストロンチュウムイオン、チタンイオンと鉄イオンの混合溶液と、ニッケルイオン溶液を、亜臨界ないし超臨界状態が得られる所定温度に、急速に昇温させて、実施することが好ましい。 In this way, the by-products generated in these temperature rising processes remain in the reaction product, adversely affect the crystal quality, and the yield of the desired partially substituted calcium titanate-supported nickel catalyst. Can be prevented. Therefore, in the method for producing the partially substituted calcium titanate-supported nickel catalyst of the present invention, the hydrothermal reaction is carried out using a mixed solution of calcium ions, strontium ions, titanium ions and iron ions, and a nickel ion solution as subcritical to supercritical. It is preferable to carry out by rapidly raising the temperature to a predetermined temperature at which a critical state is obtained.
本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の第一の製造法では、部分置換型チタン酸カルシウム微粒子が生成した後で、ニッケル触媒粒子を、亜臨界ないし超臨界条件下で、所定時間、水熱処理することで、ニッケル触媒粒子と部分置換型チタン酸カルシウム微粒子を成長させずに、それらの結晶化度を向上させることが好ましい。本発明において、結晶化度が高いとは、担体である部分置換型チタン酸カルシウムが目的とする組成で結晶水や水酸基を含まないペロブスカイト構造を形成することを意味するものとして定義される。 In the first production method of the partially substituted calcium titanate-supported nickel catalyst of the present invention, after the partially substituted calcium titanate fine particles are generated, the nickel catalyst particles are sublimated or supercritically for a predetermined time, It is preferable to improve the crystallinity of the nickel catalyst particles and the partially substituted calcium titanate fine particles without growing them by hydrothermal treatment. In the present invention, high crystallinity is defined as meaning that a partially substituted calcium titanate serving as a carrier forms a perovskite structure that does not contain crystal water or a hydroxyl group with a target composition.
本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の第二の製造法では、部分置換型チタン酸カルシウム微粒子とニッケル触媒粒子を、亜臨界ないし超臨界条件下で、所定時間、水熱処理することで、これらが同時に生成し、ニッケル触媒粒子と部分置換型チタン酸カルシウム微粒子を成長させずに、分散させることが好ましい。本発明において、亜臨界ないし超臨界状態の水中での水熱反応の水熱処理温度は、亜臨界ないし超臨界水の条件下であって、かつ温度及び圧力条件は、温度は、400℃以下で、反応圧力は、35MPa以下である。また、水熱反応の水熱処理時間は、0超以上で20秒以下の短時間である。 In the second method for producing the partially substituted calcium titanate-supported nickel catalyst of the present invention, the partially substituted calcium titanate fine particles and the nickel catalyst particles are hydrothermally treated for a predetermined time under subcritical or supercritical conditions. These are preferably produced at the same time, and the nickel catalyst particles and the partially substituted calcium titanate fine particles are not grown but dispersed. In the present invention, the hydrothermal reaction temperature of the hydrothermal reaction in subcritical or supercritical water is a subcritical or supercritical water condition, and the temperature and pressure conditions are 400 ° C. or less. The reaction pressure is 35 MPa or less. Moreover, the hydrothermal treatment time of the hydrothermal reaction is a short time of more than 0 and 20 seconds or less.
次に、本発明の実施の形態を、図面に基づいて説明する。図1に、本発明の部分置換型チタン酸カルシウム担持ニッケル触媒の製造に用いる流通式水熱合成装置の一例を示す。この装置は、金属原料である硝酸カルシウム水溶液、硝酸ストロンチュウム水溶液、硝酸鉄水溶液、チタニアゾル溶液の原料混合溶液と、ニッケル水溶液、アルカリ水溶液及び蒸留水、あるいは、硝酸カルシウム水溶液、硝酸ストロンチュウム水溶液、硝酸鉄水溶液、硝酸ニッケル水溶液、チタニアゾル溶液の原料混合水溶液と、アルカリ水溶液及び蒸留水の送液用の液体クロマトグラフィー用高圧ポンプ(4基)、反応管、及び蒸留水加熱用の電気炉(2基)、反応液冷却用の熱交換器、及び圧力調整器(背圧弁)から構成される。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a flow-through hydrothermal synthesizer used for producing the partially substituted calcium titanate-supported nickel catalyst of the present invention. This equipment consists of a raw material mixture of calcium nitrate aqueous solution, strontium nitrate aqueous solution, iron nitrate aqueous solution and titania sol solution, nickel aqueous solution, alkaline aqueous solution and distilled water, or calcium nitrate aqueous solution and strontium nitrate aqueous solution. , Iron nitrate aqueous solution, nickel nitrate aqueous solution, titania sol raw material mixed aqueous solution, alkaline aqueous solution and high pressure pump for liquid chromatography for feeding distilled water (4 units), reaction tube, and electric furnace for heating distilled water ( 2 units), a heat exchanger for cooling the reaction liquid, and a pressure regulator (back pressure valve).
製造法(一)では、ガラス製容器内のチタニアゾル溶液、硝酸カルシウム水溶液、硝酸ストロンチュウム水溶液、硝酸鉄水溶液の原料混合溶液1、水酸化カリウムなどのアルカリ水溶液3を、高速液体クロマトグラフィー用無脈流ポンプ2と4により、例えば、各流量10ml/minで送液する。硝酸ニッケル水溶液9を、別の高圧ポンプ10により、例えば、流量10ml/minで送液する。一方、蒸留水5は、別の高圧ポンプ6により、例えば、流量55ml/minで、管型電気炉7に送液され、そこで、蒸留水は、原料溶液の加熱に必要な超臨界水とする。金属イオン含有混合水溶液と水酸化カリウム水溶液は、混合点1にて混合され、前記超臨界水と、混合点2にて接触し、急速に反応温度まで昇温され、水熱反応が開始される。 In the production method (1), a titania sol solution in a glass container, a calcium nitrate aqueous solution, a strontium nitrate aqueous solution, a raw material mixed solution 1 of an iron nitrate aqueous solution, and an alkaline aqueous solution 3 such as potassium hydroxide are used for high performance liquid chromatography. With the pulsating pumps 2 and 4, for example, the liquid is fed at a flow rate of 10 ml / min. The nickel nitrate aqueous solution 9 is fed by another high-pressure pump 10 at a flow rate of 10 ml / min, for example. On the other hand, the distilled water 5 is sent to the tubular electric furnace 7 by another high-pressure pump 6 at a flow rate of 55 ml / min, for example, and the distilled water is supercritical water necessary for heating the raw material solution. . The metal ion-containing mixed aqueous solution and the potassium hydroxide aqueous solution are mixed at the mixing point 1, contacted with the supercritical water at the mixing point 2, rapidly heated to the reaction temperature, and the hydrothermal reaction is started. .
反応液は、管状の電気炉によって、一定温度に保持された反応管8に一定時間滞在後、混合点3にて、ニッケル水溶液と接触し、急速に反応温度まで昇温され、ニッケルの水熱反応が開始される。反応管8に一定時間滞在後、反応管出口の2重管型の熱交換器11により冷却した後、背圧弁12にて降圧し、回収容器13に捕集する。 The reaction liquid stays in the reaction tube 8 maintained at a constant temperature by a tubular electric furnace for a certain period of time, and then comes into contact with the nickel aqueous solution at the mixing point 3 and is rapidly heated to the reaction temperature. The reaction is started. After staying in the reaction tube 8 for a certain period of time, the reaction tube 8 is cooled by the double-tube heat exchanger 11 at the reaction tube outlet, and then the pressure is reduced by the back pressure valve 12 and collected in the collection container 13.
製造法(二)では、ガラス製容器内のチタニアゾル溶液、硝酸カルシウム水溶液、硝酸ストロンチュウム水溶液、硝酸鉄水溶液、硝酸ニッケル水溶液の混合溶液1、水酸化カリウム水溶液3を、高速液体クロマトグラフィー用無脈流ポンプ2と4により、例えば、各流量10ml/minで送液する。一方、蒸留水5は、別の高圧ポンプ6により、例えば、流量55ml/minで、管型電気炉7に送液され、そこで、蒸留水は、原料溶液の加熱に必要な超臨界水とする。 In the production method (2), a titania sol solution, a calcium nitrate aqueous solution, a strontium nitrate aqueous solution, an iron nitrate aqueous solution, a nickel nitrate aqueous solution mixed solution 1 and a potassium hydroxide aqueous solution 3 in a glass container are used for high performance liquid chromatography. With the pulsating pumps 2 and 4, for example, the liquid is fed at a flow rate of 10 ml / min. On the other hand, the distilled water 5 is sent to the tubular electric furnace 7 by another high-pressure pump 6 at a flow rate of 55 ml / min, for example, and the distilled water is supercritical water necessary for heating the raw material solution. .
金属イオン含有混合水溶液と水酸化カリウム水溶液は、混合点1に混合され、前記超臨界水と、混合点2にて接触し、急速に反応温度まで昇温され、水熱反応が開始される。反応液は、管状の電気炉によって、一定温度に保持された反応管8に一定時間滞在後、反応管出口の2重管型の熱交換器11により冷却した後、背圧弁12にて降圧し、回収容器13に捕集する。 The metal ion-containing mixed aqueous solution and the potassium hydroxide aqueous solution are mixed at the mixing point 1, contacted with the supercritical water at the mixing point 2, rapidly heated to the reaction temperature, and the hydrothermal reaction is started. The reaction liquid stays in the reaction tube 8 maintained at a constant temperature for a certain period of time by a tubular electric furnace, is cooled by the double-tube heat exchanger 11 at the outlet of the reaction tube, and is then depressurized by the back pressure valve 12. And collected in a collection container 13.
生成した粒子は、出口より、反応液とともにスラリーとして回収される。回収した溶液を適当なフィルターにより濾別し、生成した粉体を回収する。これらの粒子の特性は、粉末X線回折及び電子線回折像の解析により、結晶構造を同定する。また、組成は、ICP発光分析法によって決定される。粒子径や凝集の程度は、電子顕微鏡観察によって評価される。 The produced particles are recovered as a slurry together with the reaction liquid from the outlet. The collected solution is filtered through an appropriate filter, and the produced powder is collected. The characteristics of these particles identify the crystal structure by analyzing powder X-ray diffraction and electron diffraction images. The composition is determined by ICP emission spectrometry. The particle diameter and the degree of aggregation are evaluated by observation with an electron microscope.
本発明の触媒を用いて、合成ガスを製造する方法を説明する。先ず、本発明の部分置換型チタン酸カルシウム担持触媒を改質用触媒として使用し、当該改質用触媒の活性化処理を、水素などの還元性気流中に、873〜1373K、好ましくは923〜1323K、更に好ましくは973〜1273Kの温度範囲で、0.1〜10時間触媒を保持することにより行う。還元性気流は、反応に用いる炭化水素、及び改質ガス化剤を含むガス流れでもよい。活性化処理によって、触媒表面が還元され、複合酸化物中に分散していた活性金属種のNiで表される第二成分の酸化物が、金属元素として還元され、触媒活性が得られる。 A method for producing synthesis gas using the catalyst of the present invention will be described. First, the partially substituted calcium titanate-supported catalyst of the present invention is used as a reforming catalyst, and the activation treatment of the reforming catalyst is performed at 873 to 1373 K, preferably 923 to a reducing gas stream such as hydrogen. It is carried out by holding the catalyst in the temperature range of 1323 K, more preferably 973 to 1273 K for 0.1 to 10 hours. The reducing air stream may be a gas stream containing a hydrocarbon used for the reaction and a reforming gasifying agent. By the activation treatment, the surface of the catalyst is reduced, and the oxide of the second component represented by Ni of the active metal species dispersed in the composite oxide is reduced as a metal element to obtain catalytic activity.
合成ガスの原料となる炭化水素には、メタンを含有する天然ガス、エタン、LPG、ナフサ、その他原油系留分、及び原油を原料とする予備改質ガス、コークス炉ガス、石炭ガスなどが用いられる。また、メタンをほとんど含有しないエタン、LPG、ナフサ、その他原油系留分を原料としてもよい。改質ガス化剤には、水蒸気、二酸化炭素、酸素、空気などが用いられ、これらの複数種を混合したものでもよい。本発明において、改質ガス化剤とは、合成ガスの原料となる炭化水素を部分酸化する際の酸素源となる酸化剤を意味する。 Natural gas containing methane, ethane, LPG, naphtha, other crude oil fractions, and pre-reformed gas made from crude oil, coke oven gas, coal gas, etc. are used as hydrocarbons that are the raw material for synthesis gas It is done. Further, ethane, LPG, naphtha, and other crude oil fractions that hardly contain methane may be used as a raw material. Steam, carbon dioxide, oxygen, air or the like is used as the reforming gasifying agent, and a mixture of a plurality of these may be used. In the present invention, the reformed gasifying agent means an oxidizing agent that becomes an oxygen source when a hydrocarbon that is a raw material of synthesis gas is partially oxidized.
具体的な反応条件は、温度873〜1373K、好ましくは923〜1323K、更に好ましくは973〜1273Kであり、導入ガス全流量F(ml/hr)と触媒重量W(g)との比である、F/Wが0〜500000(ml/g・hr)の範囲内に設定される。触媒配置は、固定床、流動床など周知の形態を任意に選択できる。このようにして得られた合成ガスは、各種工業原料を効率よく合成するのに好適なものとして使用される。 Specific reaction conditions are a temperature of 873 to 1373 K, preferably 923 to 1323 K, more preferably 973 to 1273 K, and the ratio of the total flow rate F (ml / hr) of the introduced gas to the catalyst weight W (g). F / W is set within a range of 0 to 500,000 (ml / g · hr). The catalyst arrangement can be arbitrarily selected from known forms such as a fixed bed and a fluidized bed. The synthesis gas thus obtained is used as a suitable gas for efficiently synthesizing various industrial raw materials.
本発明により、次のような効果が奏される。
1)結晶水や水酸基を含まない、結晶化度の高い部分置換型チタン酸カルシウム担持ニッケル触媒を製造することができる。
2)粒子径50nm以下の単結晶性の斜方晶部分置換型チタン酸カルシウム微粒子と粒子径10nm以下のニッケル触媒からなる部分置換型チタン酸カルシウム担持ニッケル触媒を製造し、提供することができる。
3)表面積が70平方メートル/g以上の高表面積の触媒を提供することができる。
4)本発明の部分置換型チタン酸カルシウム担持ニッケル触媒微粒子は、天然ガスなどの炭化水素を改質する際に用いられる改質能にすぐれた実用的な高性能触媒に適用できる。
5)当該部分置換型チタン酸カルシウム担持ニッケル触媒を用いた効率的な合成ガスの製造技術を提供することができる。
The present invention has the following effects.
1) A partially substituted type calcium titanate-carrying nickel catalyst having a high degree of crystallinity and containing no crystallization water or hydroxyl group can be produced.
2) A partially-substituted calcium titanate-carrying nickel catalyst comprising monocrystalline orthorhombic partially-substituted calcium titanate fine particles having a particle diameter of 50 nm or less and a nickel catalyst having a particle diameter of 10 nm or less can be produced and provided.
3) A high surface area catalyst having a surface area of 70 square meters / g or more can be provided.
4) The partially substituted calcium titanate-supported nickel catalyst fine particles of the present invention can be applied to a practical high-performance catalyst having excellent reforming ability used when reforming hydrocarbons such as natural gas.
5) An efficient synthesis gas production technique using the partially substituted calcium titanate-supported nickel catalyst can be provided.
次に、実施例により本発明を更に具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these examples.
(1)流通式水熱合成反応装置
本実施例では、図1に示す流通式水熱合成反応装置を用いた。
まず、製造法(一)としては、図1の流通式水熱合成反応装置において、ガラス製容器内のチタニアゾル溶液、硝酸カルシウム水溶液、硝酸ストロンチュウム水溶液、硝酸鉄水溶液の各金属イオン含有混合水溶液の原料混合溶液(Metal salt solution)1、水酸化カリウム水溶液(Alkali solution)3を、高速液体クロマトグラフィー用無脈流高圧ポンプ2と4により、各流量10ml/minで送液した。硝酸ニッケル水溶液9を、別の液体クロマトグラフィー用高圧ポンプ10により、流量10ml/minで送液した。
(1) Flow-through hydrothermal synthesis reaction apparatus In this example, the flow-through hydrothermal synthesis reaction apparatus shown in FIG. 1 was used.
First, as a production method (1), in the flow-type hydrothermal synthesis reactor of FIG. 1, each metal ion-containing mixed aqueous solution of titania sol solution, calcium nitrate aqueous solution, strontium nitrate aqueous solution, and iron nitrate aqueous solution in a glass container is used. The raw material mixed solution (Metal salt solution) 1 and the potassium hydroxide aqueous solution (Alkali solution) 3 were fed at a flow rate of 10 ml / min by the non-pulsating high-pressure pumps 2 and 4 for high performance liquid chromatography. The aqueous nickel nitrate solution 9 was fed at a flow rate of 10 ml / min by another high pressure pump 10 for liquid chromatography.
一方、蒸留水(Distilled water)槽5の蒸留水は、別の液体クロマトグラフィー用高圧ポンプ6により、流量55ml/minで、管型電気炉(Heater)7に送液され、そこで、蒸留水は、原料溶液の加熱に必要な超臨界水とした。金属イオン含有混合水溶液と、水酸化カリウム水溶液は、混合点(Mixing point)1にて混合され、前記超臨界水と、混合点(Mixing point)2にて接触し、急速に反応温度まで昇温させ、水熱反応を開始させた。 On the other hand, the distilled water in the distilled water tank 5 is sent to a tubular electric furnace (Heater) 7 at a flow rate of 55 ml / min by another high pressure pump 6 for liquid chromatography, where the distilled water is The supercritical water necessary for heating the raw material solution was used. The metal ion-containing mixed aqueous solution and the potassium hydroxide aqueous solution are mixed at a mixing point 1, contacted with the supercritical water at the mixing point 2, and rapidly heated to the reaction temperature. To initiate a hydrothermal reaction.
前記反応液は、管状の電気炉によって、一定温度に保持された反応管(Reactor)8に一定時間滞在後、混合点(Mixing point)3にて、硝酸ニッケル水溶液と接触させ、急速に反応温度まで昇温させ、硝酸ニッケル水溶液との水熱反応を開始させた。これらの反応液は、反応管8に一定時間滞在後、反応管出口の2重管型の熱交換器(Cooler)11により冷却した後、背圧弁(Back−pressure regulator)12にて降圧し、回収容器(Collector)13に捕集した。 The reaction solution stays in a reactor 8 maintained at a constant temperature by a tubular electric furnace for a certain period of time, and then is brought into contact with a nickel nitrate aqueous solution at a mixing point 3 to rapidly react with the reaction temperature. The temperature was raised to 0 to initiate a hydrothermal reaction with the aqueous nickel nitrate solution. These reaction liquids stay in the reaction tube 8 for a certain period of time, are cooled by a double-tube heat exchanger (Cooler) 11 at the outlet of the reaction tube, and are then depressurized by a back pressure valve (Back-pressure regulator) 12. It collected in the collection | recovery container (Collector) 13.
次に、製造法(二)としては、図1の流通式水熱合成反応装置において、ガラス製容器内のチタニアゾル溶液、硝酸カルシウム水溶液、硝酸ストロンチュウム水溶液、硝酸鉄水溶液、硝酸ニッケル水溶液の原料混合溶液1、水酸化カリウム水溶液3を、高速液体クロマトグラフィー用無脈流高圧ポンプ2と4により、各流量10ml/minで送液した。 Next, as a production method (2), in the flow-type hydrothermal synthesis reactor of FIG. 1, raw materials for titania sol solution, calcium nitrate aqueous solution, strontium nitrate aqueous solution, iron nitrate aqueous solution, nickel nitrate aqueous solution in a glass container The mixed solution 1 and the potassium hydroxide aqueous solution 3 were fed at a flow rate of 10 ml / min by the non-pulsating high pressure pumps 2 and 4 for high performance liquid chromatography.
一方、蒸留水槽5の蒸留水は、別の液体クロマトグラフィー用高圧ポンプ6により、流量55ml/minで、管型電気炉7に送液され、そこで、蒸留水は、原料溶液の加熱に必要な超臨界水とした。金属イオン含有混合水溶液と、水酸化カリウム水溶液は、混合点1にて混合され、前記超臨界水と、混合点2にて接触し、急速に反応温度まで昇温させ、水熱反応を開始させた。 On the other hand, the distilled water in the distilled water tank 5 is sent to the tubular electric furnace 7 at a flow rate of 55 ml / min by another high pressure pump 6 for liquid chromatography, where the distilled water is necessary for heating the raw material solution. Supercritical water was used. The metal ion-containing mixed aqueous solution and the potassium hydroxide aqueous solution are mixed at the mixing point 1, contacted with the supercritical water at the mixing point 2, rapidly raised to the reaction temperature, and the hydrothermal reaction is started. It was.
前記反応液は、管状の電気炉によって、一定温度に保持された反応管8に一定時間滞在後、反応管出口の2重管型の熱交換器11により冷却した後、背圧弁12にて降圧し、回収容器13に捕集した。 The reaction liquid stays in the reaction tube 8 held at a constant temperature by a tubular electric furnace for a certain period of time, is cooled by a double-tube heat exchanger 11 at the outlet of the reaction tube, and is lowered by a back pressure valve 12. And collected in a collection container 13.
(2)触媒の合成
流通式水熱合成反応装置により、チタニアゾル、硝酸カルシウム、硝酸ストロンチュウム、硝酸鉄、及び、水酸化カリウムの各原料溶液の濃度が、それぞれ、0.045M、0.04M、0.01M、0.005M、1.00Mで、これらの混合塩溶液と、水酸化カリウム溶液を、各流量10ml/minで送液し、反応温度400℃、反応圧力30MPa、滞在時間11秒の条件で、一方、硝酸ニッケルを、原料溶液の濃度として0.025Mで送液し、反応温度362℃、反応圧力30MPa、滞在時間0.2秒の条件で、水熱合成反応を行い、生成物として、構造が、一般式
0.5Ni/Ca0.8Sr0.2Ti0.9Fe0.1O3−δ
(式中のδは0.05〜0.15の数である)で表される本発明製品のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を得た。
(2) Catalyst synthesis Using flow-through hydrothermal synthesis reactors, the concentrations of the titania sol, calcium nitrate, strontium nitrate, iron nitrate, and potassium hydroxide raw material solutions were 0.045M and 0.04M, respectively. , 0.01M, 0.005M, and 1.00M, these mixed salt solution and potassium hydroxide solution are fed at a flow rate of 10 ml / min, reaction temperature is 400 ° C., reaction pressure is 30 MPa, and residence time is 11 seconds. On the other hand, nickel nitrate is fed at 0.025M as the concentration of the raw material solution, and a hydrothermal synthesis reaction is performed under the conditions of a reaction temperature of 362 ° C., a reaction pressure of 30 MPa, and a residence time of 0.2 seconds. As a product, the structure has the general formula 0.5Ni / Ca 0.8 Sr 0.2 Ti 0.9 Fe 0.1 O 3-δ
A cation partially substituted calcium titanate-supported nickel catalyst of the product of the present invention represented by (δ in the formula is a number from 0.05 to 0.15) was obtained.
図2に、得られた生成物の電子顕微鏡像を示す。図より、置換型チタン酸カルシウム粒子径は、50nm以下であり、粒子ひとつひとつが分離しており、凝集していないことが分かる。電子線回折像からも、これらの粒子の結晶構造は、斜方晶チタン酸カルシウムに帰属されるものであり、ストロンチウムと鉄のドーパントが、カルシウムとチタンのサイトに置換されていることが確認された。また、ニッケル触媒の粒子径は、10nm以下であり、置換型チタン酸カルシウム粒子と混ざっていた。また、本発明によって生成した部分置換型チタン酸カルシウム担持ニッケル触媒材料の表面積は、91.4平方メートル/gであった。 FIG. 2 shows an electron microscope image of the obtained product. From the figure, it can be seen that the particle diameter of the substituted calcium titanate is 50 nm or less, and each particle is separated and not aggregated. The electron diffraction pattern also confirms that the crystal structure of these particles is attributed to orthorhombic calcium titanate, and that the strontium and iron dopants are replaced by calcium and titanium sites. It was. Moreover, the particle diameter of the nickel catalyst was 10 nm or less, and was mixed with substituted calcium titanate particles. The surface area of the partially substituted calcium titanate-supported nickel catalyst material produced according to the present invention was 91.4 square meters / g.
実施例1において、硝酸ニッケルの原料溶液の濃度を0.05、0.01Mとした以外は、実施例1と同様の条件で水熱合成反応を行った。図3に、硝酸ニッケルの原料溶液の濃度を変化させたときの生成物のXRDチャート(プロファイル)を示す。いずれも、置換型チタン酸カルシウム担持ニッケル触媒材料ができていることが確認された。ここで、硝酸ニッケルの原料溶液の濃度を0.05、及び、0.01Mとした条件で水熱合成反応を行って生成した部分置換型チタン酸カルシウム担持ニッケル触媒材料の表面積は、それぞれ117.8、及び、75.5平方メートル/gであった。 In Example 1, the hydrothermal synthesis reaction was performed under the same conditions as in Example 1 except that the concentration of the nickel nitrate raw material solution was changed to 0.05 and 0.01M. FIG. 3 shows an XRD chart (profile) of the product when the concentration of the nickel nitrate raw material solution is changed. In both cases, it was confirmed that a substituted calcium titanate-supported nickel catalyst material was formed. Here, the surface area of the partially substituted calcium titanate-carrying nickel catalyst material produced by performing the hydrothermal synthesis reaction under the condition that the concentration of the nickel nitrate raw material solution is 0.05 and 0.01 M, respectively, is 117. 8 and 75.5 square meters / g.
流通式水熱合成反応装置により、チタニアゾル、硝酸カルシウム、硝酸ストロンチュウム、硝酸鉄、硝酸ニッケル、及び、水酸化カリウムの各原料溶液の濃度が、それぞれ、0.045M、0.04M、0.01M、0.005M、0.025M、1.00Mで、これらの混合塩溶液と水酸化カリウム溶液を、各流量10ml/minで送液し、反応温度400℃、反応圧力30MPa、滞在時間11秒の条件で、水熱合成反応を行い、生成物として、基本構造が、一般式
0.5Ni/Ca0.8Sr0.2Ti0.9Fe0.1O3−δ
(式中のδは0.05〜0.15の数である)で表される本発明製品のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を得た。
The concentration of each raw material solution of titania sol, calcium nitrate, strontium nitrate, iron nitrate, nickel nitrate, and potassium hydroxide was 0.045M, 0.04M,. These mixed salt solution and potassium hydroxide solution were fed at a flow rate of 10 ml / min at 01M, 0.005M, 0.025M, and 1.00M, reaction temperature 400 ° C., reaction pressure 30 MPa, residence time 11 seconds. The hydrothermal synthesis reaction is performed under the conditions: and the product has a basic structure of the general formula 0.5Ni / Ca 0.8 Sr 0.2 Ti 0.9 Fe 0.1 O 3-δ
A cation partially substituted calcium titanate-supported nickel catalyst of the product of the present invention represented by (δ in the formula is a number from 0.05 to 0.15) was obtained.
図4に、得られた生成物の電子顕微鏡像を示す。図より、置換型チタン酸カルシウム粒子径は、50nm以下であり、粒子ひとつひとつが分離しており、凝集していないことが分かる。電子線回折像からも、これらの粒子の結晶構造は、斜方晶チタン酸カルシウムに帰属されるものであり、ストロンチウムと鉄のドーパントが、カルシウムとチタンのサイトに置換されていることが確認された。また、ニッケル触媒の粒子径は、10nm以下であり、置換型チタン酸カルシウム粒子と混ざっていた。また、本発明によって生成した部分置換型チタン酸カルシウム担持ニッケル触媒材料の表面積は、99.02平方メートル/gであった。 FIG. 4 shows an electron microscope image of the obtained product. From the figure, it can be seen that the particle diameter of the substituted calcium titanate is 50 nm or less, and each particle is separated and not aggregated. The electron diffraction pattern also confirms that the crystal structure of these particles is attributed to orthorhombic calcium titanate, and that the strontium and iron dopants are replaced by calcium and titanium sites. It was. Moreover, the particle diameter of the nickel catalyst was 10 nm or less, and was mixed with substituted calcium titanate particles. The surface area of the partially substituted calcium titanate-carrying nickel catalyst material produced according to the present invention was 99.02 square meters / g.
実施例3において、硝酸ニッケルの原料溶液の濃度を0.05、0.01Mとした以外は、実施例3と同様の条件で水熱合成反応を行った。図5に、硝酸ニッケルの原料溶液の濃度を変化させたときの生成物のXRDチャート(プロファイル)を示す。いずれも、置換型チタン酸カルシウム担持ニッケル触媒材料ができていることが確認された。 In Example 3, the hydrothermal synthesis reaction was performed under the same conditions as in Example 3 except that the concentration of the nickel nitrate raw material solution was changed to 0.05 and 0.01M. FIG. 5 shows an XRD chart (profile) of the product when the concentration of the nickel nitrate raw material solution is changed. In both cases, it was confirmed that a substituted calcium titanate-supported nickel catalyst material was formed.
実施例1に示した部分置換型チタン酸カルシウム担持ニッケル触媒の19〜150mgを、石英反応管に充填、固定し、流通式水熱合成反応装置により、反応評価を行った。反応評価に先立ち、触媒を、反応に用いる炭化水素(CH4)気流中に、1173Kで、7.5〜60分間保持し、触媒の活性化処理を行った。反応評価は、873〜1173Kにおいて、導入ガス全流量F(ml/hr)と、触媒重量W(g)との比であるF/Wが、35000〜280000(ml/g・hr)にて炭化水素を供給した時の、反応管出口ガスの分析から、触媒の活性を評価した。生成物は、一酸化炭素と水素が大部分であり、他は、少量の水と二酸化炭素であった。 19 to 150 mg of the partially substituted type calcium titanate-carrying nickel catalyst shown in Example 1 was filled and fixed in a quartz reaction tube, and the reaction was evaluated by a flow-type hydrothermal synthesis reactor. Prior to the reaction evaluation, the catalyst was kept at 1173 K for 7.5 to 60 minutes in a hydrocarbon (CH 4 ) gas stream used for the reaction to activate the catalyst. In the reaction evaluation, at 873 to 1173K, the F / W, which is the ratio between the total flow rate F (ml / hr) of the introduced gas and the catalyst weight W (g), is 35000 to 280000 (ml / g · hr). From the analysis of the reaction tube outlet gas when hydrogen was supplied, the activity of the catalyst was evaluated. The product was mostly carbon monoxide and hydrogen, the other being a small amount of water and carbon dioxide.
図6に、F/Wに対する、873〜1173Kにおける、CH4転化率を示した。反応中のCH4転化率、CO選択率及びH2/CO比は、それぞれ7〜100%、94〜99%及び1.8〜2.0であった。ここで、CH4転化率は、CH4の供給量と排出量の差を、供給量で除したものである。また、1173Kにおいて、6hr、触媒反応の実験を実施した後、回収された触媒サンプルには、反応前の触媒重量の0.9wt%となる、ごく微少な炭素の析出が観察された。 FIG. 6 shows the CH 4 conversion rate at 873 to 1173K with respect to F / W. The CH 4 conversion, CO selectivity and H 2 / CO ratio during the reaction were 7 to 100%, 94 to 99% and 1.8 to 2.0, respectively. Here, the CH 4 conversion rate is obtained by dividing the difference between the supply amount and discharge amount of CH 4 by the supply amount. Further, after conducting the catalytic reaction experiment at 1173 K for 6 hr, a very small amount of carbon was observed in the recovered catalyst sample, which was 0.9 wt% of the catalyst weight before the reaction.
実施例3に示した部分置換型チタン酸カルシウム担持ニッケル触媒の19〜150mgを、石英反応管に充填、固定し、流通式水熱合成反応装置により、反応評価を行った。反応評価に先立ち、触媒を、反応に用いる炭化水素(CH4)気流中に、1173Kで、7.5〜60分間保持し、触媒の活性化処理を行った。反応評価は、873〜1173Kにおいて、導入ガス全流量F(ml/hr)と、触媒重量W(g)との比である、F/Wが35000〜280000(ml/g・hr)にて炭化水素を供給した時の、反応管出口ガスの分析から、触媒の活性を評価した。生成物は、一酸化炭素と水素が大部分であり、他は、少量の水と二酸化炭素であった。 19 to 150 mg of the partially substituted type calcium titanate-carrying nickel catalyst shown in Example 3 was filled and fixed in a quartz reaction tube, and the reaction was evaluated by a flow-type hydrothermal synthesis reactor. Prior to the reaction evaluation, the catalyst was kept at 1173 K for 7.5 to 60 minutes in a hydrocarbon (CH 4 ) gas stream used for the reaction to activate the catalyst. The reaction evaluation was conducted at 873 to 1173K at a ratio F / W of 35,000 to 280000 (ml / g · hr), which is a ratio of the total flow rate F (ml / hr) of the introduced gas and the catalyst weight W (g). From the analysis of the reaction tube outlet gas when hydrogen was supplied, the activity of the catalyst was evaluated. The product was mostly carbon monoxide and hydrogen, the other being a small amount of water and carbon dioxide.
図7に、F/Wに対する、873〜1173Kにおける、CH4転化率を示した。反応中のCH4転化率、CO選択率及びH2/CO比は、それぞれ5〜100%、89〜99%及び1.9〜2.0であった。ここで、CH4転化率は、CH4の供給量と排出量の差を供給量で除したものである。また、1173Kにおいて、6hr、触媒反応の実験を実施した後、回収された触媒サンプルには、反応前の触媒重量の0.4wt%となる、ごく微少な炭素の析出が観察された。 FIG. 7 shows the CH 4 conversion rate at 873 to 1173K with respect to F / W. CH 4 conversion, CO selectivity and H 2 / CO ratio during the reaction were 5 to 100%, 89 to 99% and 1.9 to 2.0, respectively. Here, the CH 4 conversion rate is obtained by dividing the difference between the supply amount and the discharge amount of CH 4 by the supply amount. Further, after conducting the catalytic reaction experiment at 1173 K for 6 hr, a very small amount of carbon was observed in the recovered catalyst sample, which was 0.4 wt% of the catalyst weight before the reaction.
比較例1
ゾルゲル法により、触媒成分の原液を、以下の手順で調製した。クエン酸63gとエチレングリコール56mlを、約350mlの水に溶かし、この水溶液に、炭酸カルシウム10gを徐々に溶解後、全量を水で1,000mlとした溶液を、カルシウム原液とした。クエン酸63gとエチレングリコール56mlを、約350mlの水に溶かし、この水溶液に、炭酸ストロンチュウム14.76gを徐々に溶解後、全量を水で1,000mlとした溶液を、ストロンチュウム原液とした。
Comparative Example 1
A stock solution of catalyst components was prepared by the following procedure by the sol-gel method. A solution obtained by dissolving 63 g of citric acid and 56 ml of ethylene glycol in about 350 ml of water, gradually dissolving 10 g of calcium carbonate in this aqueous solution, and making the total amount 1,000 ml with water was used as a calcium stock solution. A solution obtained by dissolving 63 g of citric acid and 56 ml of ethylene glycol in about 350 ml of water, gradually dissolving 14.76 g of strontium carbonate in this aqueous solution, and then making the total amount 1,000 ml with water, did.
クエン酸105gとエチレングリコール112mlを、約350mlの水に溶かし、この水溶液に、オルトチタン酸テトライソプロピル28.4gを加えた。溶液を激しく撹拌すると、生じた白色沈殿は、徐々に溶解して、透明な溶液となった。これに、水を加えて、全量を500mlとしたものを、チタン原液とした。クエン酸42gとエチレングリコール84mlを、約200mlの水に溶かし、この水溶液に、クエン酸鉄42.0gを溶解後、全量を水で500mlとした溶液を、鉄原液とした。 105 g of citric acid and 112 ml of ethylene glycol were dissolved in about 350 ml of water, and 28.4 g of tetraisopropyl orthotitanate was added to this aqueous solution. When the solution was vigorously stirred, the resulting white precipitate gradually dissolved and became a clear solution. To this was added water to make a total volume of 500 ml, which was used as a titanium stock solution. 42 g of citric acid and 84 ml of ethylene glycol were dissolved in about 200 ml of water, and 42.0 g of iron citrate was dissolved in this aqueous solution, and then the total amount was made 500 ml with water to obtain an iron stock solution.
クエン酸252gとエチレングリコール336mlを、約600mlの水に溶かし、この水溶液に、塩基性炭酸ニッケル4水和物50.0gを溶解後、全量を水で1,000mlとした溶液を、ニッケル原液とした。このようにして得られた原液から、次の手順で、触媒を調製した。カルシウム原液400ml、ストロンチウム原液100ml、チタン原液225ml、鉄原液25ml、及びニッケル原液125mlを、混合し、ロータリエバポレーターで濃縮した後に、ホットプレート上で乾固した。これを、電気炉に入れて、空気中500℃に加熱して、5時間焼成した。 Dissolve 252 g of citric acid and 336 ml of ethylene glycol in about 600 ml of water, dissolve 50.0 g of basic nickel carbonate tetrahydrate in this aqueous solution, and then add a total solution of 1,000 ml with water to a nickel stock solution. did. A catalyst was prepared from the stock solution thus obtained by the following procedure. 400 ml of calcium stock solution, 100 ml of strontium stock solution, 225 ml of titanium stock solution, 25 ml of iron stock solution, and 125 ml of nickel stock solution were mixed, concentrated with a rotary evaporator, and then dried on a hot plate. This was put into an electric furnace, heated to 500 ° C. in air, and baked for 5 hours.
ここで得られた固形物を、乳鉢で粉末にし、良く混合した。再度、空気中850℃で、5時間焼成し、基本構造が、一般式
Ni/Ca0.8Sr0.2Ti0.9Fe0.1O3−δ
(式中のδは0.05〜0.15の数である)で表される、部分置換型チタン酸カルシウム担持ニッケル触媒を得た。ゾルゲル法により調製した置換型チタン酸カルシウムの粒子径は、100nm以上と大きく、不定形であった。また、その表面積は、6.13平方メートル/gと、低い値しか得られなかった。
The solid obtained here was powdered in a mortar and mixed well. Again, calcination was performed in air at 850 ° C. for 5 hours, and the basic structure was the general formula Ni / Ca 0.8 Sr 0.2 Ti 0.9 Fe 0.1 O 3-δ
A partially substituted calcium titanate-supported nickel catalyst represented by the formula (where δ is a number from 0.05 to 0.15) was obtained. The particle size of the substituted calcium titanate prepared by the sol-gel method was as large as 100 nm or more and was indefinite. Further, the surface area was as low as 6.13 square meters / g.
比較例2
比較例1に示した部分置換型チタン酸カルシウム担持ニッケル触媒を用いて、実施例5及び実施例6に示したものと同じ方法により、触媒反応の実験を実施した。図8に、導入ガス全流量F(ml/hr)と、触媒重量W(g)との比であるF/Wに対する、873〜1173Kにおける、CH4転化率を示した。反応中のCH4転化率、CO選択率及びH2/CO比は、それぞれ、5〜99%、79〜99%及び1.7〜2.0であった。
Comparative Example 2
Using the partially substituted calcium titanate-carrying nickel catalyst shown in Comparative Example 1, a catalytic reaction experiment was performed in the same manner as shown in Example 5 and Example 6. FIG. 8 shows the CH 4 conversion rate at 873 to 1173 K with respect to F / W, which is the ratio of the total flow rate F (ml / hr) of the introduced gas and the catalyst weight W (g). The CH 4 conversion, CO selectivity, and H 2 / CO ratio during the reaction were 5 to 99%, 79 to 99%, and 1.7 to 2.0, respectively.
本発明製品を用いた実施例5及び実施例6に示したものより、反応温度が、より高温か、あるいは、F/Wがより小さくなければ、充分な改質能を示すことができなかった。また、1173Kにおいて、6hr、触媒反応の実験を実施した後、回収された触媒サンプルには、反応前の触媒重量の0.5wt%となる、ごく微少な炭素の析出が観察された。 If the reaction temperature is higher or the F / W is smaller than those shown in Example 5 and Example 6 using the product of the present invention, sufficient reforming ability could not be shown. . Further, after carrying out the catalytic reaction experiment at 1173 K for 6 hr, a very small amount of carbon deposition, which was 0.5 wt% of the catalyst weight before the reaction, was observed in the recovered catalyst sample.
以上、本発明の実施の形態を、図面により具体的に説明したが、本発明は、これら実施例に限定されるものではなく、本発明の主旨を逸脱しない範囲においてこれらの実施例における変更や追加があっても、本発明の範囲に包含されるものであることは言うまでもない。 Although the embodiments of the present invention have been specifically described with reference to the drawings, the present invention is not limited to these examples, and modifications and changes in these examples can be made without departing from the spirit of the present invention. Needless to say, the addition is included in the scope of the present invention.
以上詳述したように、本発明は、部分置換型チタン酸カルシウム担持ニッケル触媒材料及びその製造方法に係るものであり、本発明により、例えば、部分置換型チタン酸カルシウムを担体とした触媒の調製の際に、結晶化度向上のための加熱処理が不要であり、触媒の反応性に大きな影響を及ぼす高表面積化が可能となる。本発明によれば、結晶化度が高く、かつ表面積が75〜120平方メートル/g程度の部分置換型チタン酸カルシウム担持ニッケル触媒材料を、比較的低温で、かつ、短時間に、簡単に製造することができる。本発明の部分置換型チタン酸カルシウム微粒子を使用することにより、天然ガスなどの改質用触媒として、ニッケルを担持することで、触媒の表面積が70平方メートル/g以上で粒子サイズが数十ナノメートル程度のものを調製することができる。 As described above in detail, the present invention relates to a partially substituted calcium titanate-supported nickel catalyst material and a method for producing the same. According to the present invention, for example, preparation of a catalyst using partially substituted calcium titanate as a carrier is provided. In this case, heat treatment for improving the degree of crystallinity is unnecessary, and it is possible to increase the surface area that greatly affects the reactivity of the catalyst. According to the present invention, a partially substituted type calcium titanate-carrying nickel catalyst material having a high crystallinity and a surface area of about 75 to 120 square meters / g is easily produced at a relatively low temperature and in a short time. be able to. By using the partially substituted calcium titanate fine particles of the present invention, nickel is supported as a reforming catalyst for natural gas and the like, so that the surface area of the catalyst is 70 square meters / g or more and the particle size is several tens of nanometers. To the extent that it can be prepared.
本発明は、改質用触媒として、本発明による部分置換型チタン酸カルシウム担持ニッケル触媒を用いた合成ガスの製造方法を提供することを可能とするものであり、本発明によれば、例えば、従来のゾルゲル法より、反応温度がより低温でも、あるいは、導入ガス全流量Fと触媒重量Wとの比である、F/Wがより大きくても、すぐれた改質能を示すことができる。本発明は、各種工業原料を効率よく合成するのに好適な合成ガスを製造することを可能とする改質用触媒を提供するものとして有用である。 The present invention makes it possible to provide a method for producing synthesis gas using a partially substituted calcium titanate-supported nickel catalyst according to the present invention as a reforming catalyst. According to the present invention, for example, As compared with the conventional sol-gel method, excellent reforming ability can be exhibited even when the reaction temperature is lower or the F / W, which is the ratio of the total flow rate F of the introduced gas and the catalyst weight W, is larger. INDUSTRIAL APPLICABILITY The present invention is useful for providing a reforming catalyst that can produce a synthesis gas suitable for efficiently synthesizing various industrial raw materials.
1 原料混合溶液1
2 液体クロマトグラフィー用高圧ポンプ
3 水酸化カリウム水溶液
4 液体クロマトグラフィー用高圧ポンプ
5 蒸留水槽
6 液体クロマトグラフィー用高圧ポンプ
7 電気炉
8 反応管
9 ニッケル水溶液
10 液体クロマトグラフィー用高圧ポンプ
11 二重冷却管
12 背圧弁
13 収容器
1 Raw material mixed solution 1
2 High pressure pump for liquid chromatography 3 Potassium hydroxide aqueous solution 4 High pressure pump for liquid chromatography 5 Distilled water tank 6 High pressure pump for liquid chromatography 7 Electric furnace 8 Reaction tube 9 Nickel aqueous solution 10 High pressure pump for liquid chromatography 11 Double cooling tube 12 Back pressure valve 13 Container
Claims (8)
Ni/Ca0.8Sr0.2Ti1−xFexO3−δ
(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒であって、
上記Ca0.8Sr0.2Ti1−xFexO3−δは、一次粒子径が0超〜50nmの小さい微粒子の担持体であり、該担持体に、一次粒子径が0超〜10nmで、原子比Ni/(Ca+Sr)が0.2〜1.0であるNi触媒を担持し、少なくとも表面積が70平方メートル/gの高表面積で、凝集がなく、結晶化度が高い、高結晶性のカチオン部分置換型チタン酸カルシウム担持ニッケル触媒。 The basic structure of the general formula Ni / Ca 0.8 Sr 0.2 Ti 1 -x Fe x O 3-δ
(Wherein x is a number from 0.1 to 0.3, δ is a number from 0.05 to 0.15),
The Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ is a small fine particle carrier having a primary particle diameter of more than 0 to 50 nm, and the primary particle diameter is more than 0 to A high crystal supporting Ni catalyst having an atomic ratio of Ni / (Ca + Sr) of 0.2 to 1.0 at 10 nm, having a high surface area of at least 70 square meters / g, no aggregation, and high crystallinity. Cationic partially substituted calcium titanate-supported nickel catalyst.
Ca0.8Sr0.2Ti1−xFexO3−δ
(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム微粒子を製造し、その後、ニッケル塩水溶液を添加し、亜臨界ないし超臨界状態の水中にて水熱反応することにより、基本構造が、一般式
Ni/Ca0.8Sr0.2Ti1−xFexO3−δ
で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造することを特徴とするカチオン部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法。 The basic structure is obtained by mixing a titanium compound aqueous solution, a calcium salt aqueous solution, a strontium salt aqueous solution, and an iron salt aqueous solution, adding an alkaline aqueous solution, and then hydrothermally reacting in subcritical or supercritical water. , general formula Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ
(Wherein x is a number from 0.1 to 0.3, and δ is a number from 0.05 to 0.15). By adding and hydrothermally reacting in subcritical or supercritical water, the basic structure has the general formula Ni / Ca 0.8 Sr 0.2 Ti 1-x Fe x O 3-δ
A method for producing a cation partially-substituted calcium titanate-supported nickel catalyst represented by the formula:
Ni/Ca0.8Sr0.2Ti1−xFexO3−δ
(式中のxは0.1〜0.3、δは0.05〜0.15の数である)で表されるカチオン部分置換型チタン酸カルシウム担持ニッケル触媒を製造することを特徴とするカチオン部分置換型チタン酸カルシウム担持ニッケル触媒の製造方法。 By mixing a titanium compound aqueous solution, calcium salt aqueous solution, strontium salt aqueous solution, iron salt aqueous solution, and nickel salt aqueous solution, adding an alkaline aqueous solution, and then hydrothermally reacting in subcritical or supercritical water. the basic structure has the general formula Ni / Ca 0.8 Sr 0.2 Ti 1 -x Fe x O 3-δ
(Wherein x is a number from 0.1 to 0.3, and δ is a number from 0.05 to 0.15). A method for producing a cation partially substituted calcium titanate-supported nickel catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008283741A JP2010110671A (en) | 2008-11-04 | 2008-11-04 | PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008283741A JP2010110671A (en) | 2008-11-04 | 2008-11-04 | PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010110671A true JP2010110671A (en) | 2010-05-20 |
Family
ID=42299675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008283741A Pending JP2010110671A (en) | 2008-11-04 | 2008-11-04 | PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010110671A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102583514A (en) * | 2012-01-04 | 2012-07-18 | 中南大学 | Nano linear calcium titanate and synthesis method thereof |
WO2012108402A1 (en) * | 2011-02-08 | 2012-08-16 | 国立大学法人岡山大学 | Catalyst and process for production thereof |
JP2012153588A (en) * | 2011-01-28 | 2012-08-16 | Idemitsu Kosan Co Ltd | Method for manufacturing high crystallinity metal oxide fine particle, and high crystallinity metal oxide fine particle obtained by the method |
JP2012251082A (en) * | 2011-06-03 | 2012-12-20 | National Institute Of Advanced Industrial Science & Technology | Phosphor fine particle, method of manufacturing the same, phosphor thin film, and el device |
JP2014161811A (en) * | 2013-02-26 | 2014-09-08 | Okayama Univ | Ferroelectric carrier catalyst |
JP2015504836A (en) * | 2011-12-15 | 2015-02-16 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method for preparing a sol-gel from at least three metal salts and use of the method for preparing a ceramic membrane |
CN115337939A (en) * | 2021-05-13 | 2022-11-15 | 中国石油天然气股份有限公司 | Sulfurized aromatic hydrocarbon saturation catalyst, preparation method thereof and distillate oil hydrofining method |
US11883800B2 (en) * | 2016-09-12 | 2024-01-30 | North Carolina State University | Redox catalysts for the oxidative cracking of hydrocarbons, methods of making, and methods of use thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0971401A (en) * | 1995-09-05 | 1997-03-18 | Agency Of Ind Science & Technol | Catalyst for producing synthesis gas and production of synthesis gas |
JP2006061760A (en) * | 2004-08-24 | 2006-03-09 | Toda Kogyo Corp | Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst |
JP2008522801A (en) * | 2004-12-10 | 2008-07-03 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Catalytic membrane reactor |
-
2008
- 2008-11-04 JP JP2008283741A patent/JP2010110671A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0971401A (en) * | 1995-09-05 | 1997-03-18 | Agency Of Ind Science & Technol | Catalyst for producing synthesis gas and production of synthesis gas |
JP2006061760A (en) * | 2004-08-24 | 2006-03-09 | Toda Kogyo Corp | Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst |
JP2008522801A (en) * | 2004-12-10 | 2008-07-03 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Catalytic membrane reactor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012153588A (en) * | 2011-01-28 | 2012-08-16 | Idemitsu Kosan Co Ltd | Method for manufacturing high crystallinity metal oxide fine particle, and high crystallinity metal oxide fine particle obtained by the method |
WO2012108402A1 (en) * | 2011-02-08 | 2012-08-16 | 国立大学法人岡山大学 | Catalyst and process for production thereof |
JP2012161751A (en) * | 2011-02-08 | 2012-08-30 | Okayama Univ | Catalyst and method for producing the same |
JP2012251082A (en) * | 2011-06-03 | 2012-12-20 | National Institute Of Advanced Industrial Science & Technology | Phosphor fine particle, method of manufacturing the same, phosphor thin film, and el device |
JP2015504836A (en) * | 2011-12-15 | 2015-02-16 | レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Method for preparing a sol-gel from at least three metal salts and use of the method for preparing a ceramic membrane |
CN102583514A (en) * | 2012-01-04 | 2012-07-18 | 中南大学 | Nano linear calcium titanate and synthesis method thereof |
JP2014161811A (en) * | 2013-02-26 | 2014-09-08 | Okayama Univ | Ferroelectric carrier catalyst |
US11883800B2 (en) * | 2016-09-12 | 2024-01-30 | North Carolina State University | Redox catalysts for the oxidative cracking of hydrocarbons, methods of making, and methods of use thereof |
CN115337939A (en) * | 2021-05-13 | 2022-11-15 | 中国石油天然气股份有限公司 | Sulfurized aromatic hydrocarbon saturation catalyst, preparation method thereof and distillate oil hydrofining method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mulewa et al. | MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production | |
Sheng et al. | Ni x Co y nanocatalyst supported by ZrO2 hollow sphere for dry reforming of methane: synergetic catalysis by Ni and Co in alloy | |
Al-Swai et al. | Syngas production via methane dry reforming over ceria–magnesia mixed oxide-supported nickel catalysts | |
Dong et al. | Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts | |
González et al. | Dry reforming of methane on Ni–Mg–Al nano-spheroid oxide catalysts prepared by the sol–gel method from hydrotalcite-like precursors | |
JP2010110671A (en) | PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL | |
EP3967395B1 (en) | Preparation method for a perovskite metal oxide catalyst, in which metal ion is substituted | |
CN105188915B (en) | Alkaline earth metal/metal oxide supported catalyst | |
Baamran et al. | Effect of support size for stimulating hydrogen production in phenol steam reforming using Ni-embedded TiO2 nanocatalyst | |
CN107646027A (en) | The low entry temperature of methane oxidation coupling | |
Sagar et al. | Syngas production by CO 2 reforming of methane on LaNi x Al 1-x O 3 perovskite catalysts: Influence of method of preparation | |
Zhang et al. | Controlling product selectivity by surface defects over MoOx-decorated Ni-based nanocatalysts for γ-valerolactone hydrogenolysis | |
Jana et al. | Mild temperature hydrogen production by methane decomposition over cobalt catalysts prepared with different precipitating agents | |
Larimi et al. | Highly selective doped PtMgO nano-sheets for renewable hydrogen production from APR of glycerol | |
WO2010143676A1 (en) | Hydrocarbon gas reforming catalyst, method for producing same, and method for producing synthetic gas | |
Sukri et al. | Effect of cobalt loading on suppression of carbon formation in carbon dioxide reforming of methane over Co/MgO catalyst | |
Jiang et al. | Highly stable and selective CoxNiyTiO3 for CO2 methanation: Electron transfer and interface interaction | |
Borges et al. | Hydrogen production by steam reforming of LPG using supported perovskite type precursors | |
Liu et al. | Highly Stable Bimetal Ni–Co on Alumina-Covered Spinel Oxide Derived from High Entropy Oxide for CO2 Methanation | |
CN111450834B (en) | Ceria-supported cobalt-based catalyst for autothermal reforming of acetic acid for hydrogen production | |
JP2008303131A (en) | Method for producing partially substituted calcium titanate fine particles and material obtained thereby | |
KR101799747B1 (en) | Cu-Zn-Al based catalyst for methanol synthesis and its preparation method via alcohol | |
An et al. | Novel highly dispersed Ni-based oxides catalysts for ethanol steam reforming | |
Zhukova et al. | CO2 Reforming of Ethanol over Ni/Al2O3-(Zr–Yb) O2 Catalysts: The Effect of Zr: Al Ratio on Nickel Activity and Carbon Formation | |
KR102092736B1 (en) | Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120110 |