JP2010109355A - Electrical double-layer capacitor - Google Patents
Electrical double-layer capacitor Download PDFInfo
- Publication number
- JP2010109355A JP2010109355A JP2009229052A JP2009229052A JP2010109355A JP 2010109355 A JP2010109355 A JP 2010109355A JP 2009229052 A JP2009229052 A JP 2009229052A JP 2009229052 A JP2009229052 A JP 2009229052A JP 2010109355 A JP2010109355 A JP 2010109355A
- Authority
- JP
- Japan
- Prior art keywords
- layer capacitor
- double layer
- electric double
- polarizable electrode
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
本発明は、非水電解液を用いた電気二重層キャパシタに関する。 The present invention relates to an electric double layer capacitor using a non-aqueous electrolyte.
電気二重層キャパシタは、一般に、アルミニウム箔などの集電体上に分極性電極層(例えばカーボン層)が設けられた一対の分極性電極体の間にセパレ−タを介在させて巻回又は積層することによりキャパシタセルを得、このキャパシタセルに電解液を含浸させて金属ケ−ス内に収納し、開口端部を密封することにより製造される。 In general, an electric double layer capacitor is wound or laminated by interposing a separator between a pair of polarizable electrode bodies in which a polarizable electrode layer (for example, a carbon layer) is provided on a current collector such as an aluminum foil. Thus, a capacitor cell is obtained, and the capacitor cell is impregnated with an electrolytic solution and accommodated in a metal case, and the opening end is sealed.
このような電気二重層キャパシタには、高い容量と優れた長期信頼性が要求されるが、従来の電気二重層キャパシタでは、プロピレンカーボネートなどのカーボネート系溶媒を使用した非水電解液が用いられてきた。カーボネート系溶媒の使用により、高容量で、しかも高温下での負荷特性に優れる電気二重層キャパシタを得ることができるからである。 Such an electric double layer capacitor is required to have a high capacity and excellent long-term reliability. However, in the conventional electric double layer capacitor, a nonaqueous electrolytic solution using a carbonate-based solvent such as propylene carbonate has been used. It was. This is because an electric double layer capacitor having a high capacity and excellent load characteristics under high temperature can be obtained by using a carbonate-based solvent.
ところが、カーボネート系溶媒を含む電解液を高温下で用いると、溶媒の分解により一酸化炭素(CO)ガスが発生するため、分極性電極体や電解液等を収容している容器の内圧が上昇するという問題が生じる。このため、このような電気二重層キャパシタの最高使用温度は60℃が限界であり、70〜85℃というさらなる高温使用には対応することができないという問題点があった。これに対して、電気分解によるガス発生が起こりにくいγ−ブチロラクトンを溶媒として用いることにより、電気二重層キャパシタの70℃での使用を可能にしようという試みがある(特許文献1)。 However, when an electrolytic solution containing a carbonate-based solvent is used at a high temperature, carbon monoxide (CO) gas is generated due to the decomposition of the solvent, so that the internal pressure of the container containing the polarizable electrode body or the electrolytic solution increases. Problem arises. For this reason, the maximum use temperature of such an electric double layer capacitor is limited to 60 ° C., and there is a problem that it cannot cope with further high temperature use of 70 to 85 ° C. On the other hand, there is an attempt to enable use of an electric double layer capacitor at 70 ° C. by using γ-butyrolactone, which is less likely to generate gas due to electrolysis, as a solvent (Patent Document 1).
特許文献1に開示された電気二重層キャパシタは、70℃で分極性電極体間に2.5Vを印加する高温負荷試験において、キャパシタ内の内圧が増加していない。しかしながら、発明者らが検討した結果、γ−ブチロラクトンを溶媒とした非水電解液を用いた電気二重層キャパシタについて、85℃での負荷試験を行うと、耐久性のばらつきが大きく、キャパシタ特性が劣化するものが多かった。 In the electric double layer capacitor disclosed in Patent Document 1, the internal pressure in the capacitor does not increase in a high-temperature load test in which 2.5 V is applied between polarizable electrode bodies at 70 ° C. However, as a result of investigations by the inventors, when a load test at 85 ° C. is performed on an electric double layer capacitor using a non-aqueous electrolytic solution using γ-butyrolactone as a solvent, the variation in durability is large, and the capacitor characteristics are large. There were many things that deteriorated.
そこで、本発明は、この問題を解決し、85℃で使用可能な電気二重層キャパシタを提供することを目的とする。 Therefore, an object of the present invention is to solve this problem and provide an electric double layer capacitor that can be used at 85 ° C.
発明者らは、鋭意検討した結果、γ−ブチロラクトンを主溶媒とした非水電解液を用いた電気二重層キャパシタの85℃負荷試験の耐久性のばらつきは、電解液の水分含有率のばらつきに起因し、水分含有率の低い電解液を使用することにより、耐久性のばらつきを抑制することができ、85℃負荷試験においてもキャパシタ特性の安定な電気二重層キャパシタが得られることを発見した。 As a result of intensive studies, the inventors found that the variation in durability of the 85 ° C. load test of the electric double layer capacitor using the non-aqueous electrolyte containing γ-butyrolactone is the variation in the moisture content of the electrolyte. As a result, it was discovered that by using an electrolyte solution having a low water content, variation in durability can be suppressed, and an electric double layer capacitor having stable capacitor characteristics can be obtained even in an 85 ° C. load test.
したがって、本発明は、一対の分極性電極体とこれらの分極性電極体の間に配置された電解液を保持したセパレータとを有する電気二重層キャパシタにおいて、上記電解液の溶媒がγ−ブチロラクトンを含む有機溶媒であり、上記電解液の水分含有率が電解液全体の1000質量ppm以下であることを特徴とする。 Therefore, the present invention provides an electric double layer capacitor having a pair of polarizable electrode bodies and a separator holding the electrolytic solution disposed between these polarizable electrode bodies, wherein the solvent of the electrolytic solution is γ-butyrolactone. And an organic solvent, wherein the water content of the electrolytic solution is 1000 mass ppm or less of the whole electrolytic solution.
本発明の電気二重層キャパシタでは、γ−ブチロラクトンを主溶媒とした電解液を使用しているため、溶媒の電気分解によるキャパシタ特性の劣化が抑制され、電解液の水分含有率が極めて低いため、水分が原因となる劣化が抑制され、その結果、85℃負荷試験においても安定したキャパシタ特性が得られる。本発明の電気二重層キャパシタの電解液における1000質量ppm以下の水分含有率は、電気二重層キャパシタの組み立てにおいて使用する分極性電極体(両極)の水分含有率を分極性電極体全体の150ppm以下に低下させることにより、好適に達成することができる。 In the electric double layer capacitor of the present invention, since an electrolytic solution using γ-butyrolactone as a main solvent is used, deterioration of capacitor characteristics due to electrolysis of the solvent is suppressed, and the moisture content of the electrolytic solution is extremely low. Deterioration caused by moisture is suppressed, and as a result, stable capacitor characteristics can be obtained even in an 85 ° C. load test. The water content of 1000 mass ppm or less in the electrolytic solution of the electric double layer capacitor of the present invention is that the water content of the polarizable electrode body (both electrodes) used in the assembly of the electric double layer capacitor is 150 ppm or less of the entire polarizable electrode body. This can be suitably achieved.
本発明では、γ−ブチロラクトンを主溶媒とした電解液が使用されており、さらに電解液に含まれる水分が極めて低濃度であるため、溶媒の電気分解によるキャパシタ特性の劣化が抑制される上に、水分が原因となるキャパシタ特性の劣化も抑制され、85℃での使用においても安定したキャパシタ特性を有する電気二重層キャパシタが得られる。 In the present invention, an electrolytic solution using γ-butyrolactone as a main solvent is used, and the moisture contained in the electrolytic solution is extremely low, so that deterioration of capacitor characteristics due to electrolysis of the solvent is suppressed. Further, deterioration of capacitor characteristics caused by moisture is suppressed, and an electric double layer capacitor having stable capacitor characteristics even when used at 85 ° C. can be obtained.
本発明の電気二重層キャパシタは、アルミニウム箔などの集電体上に分極性電極層が設けられた一対の分極性電極体をセパレータを介して対向させてキャパシタセルを作製し、このキャパシタセルに電解液を含浸させた状態で外装ケース内に収容する工程により得られる。本発明の電気二重層キャパシタは、コイン型、巻回型、積層型等の公知の形状のいずれであっても良い。 In the electric double layer capacitor of the present invention, a pair of polarizable electrode bodies each having a polarizable electrode layer provided on a current collector such as an aluminum foil are opposed to each other via a separator, and a capacitor cell is manufactured. It is obtained by the step of housing in the outer case in a state impregnated with the electrolytic solution. The electric double layer capacitor of the present invention may be of any known shape such as a coin type, a wound type, and a laminated type.
集電体としては、アルミニウム、チタン、ステンレス鋼などの導電性薄膜を用いることができ、アルミニウムエッチング箔を好適に用いることができる。アルミニウム箔としては、純度99.9%以上の高純度のアルミニウム箔であって、通常10〜50μm程度の厚さのアルミニウム箔を用いる。 As the current collector, a conductive thin film such as aluminum, titanium, or stainless steel can be used, and an aluminum etching foil can be suitably used. As the aluminum foil, a high-purity aluminum foil having a purity of 99.9% or more, and usually an aluminum foil having a thickness of about 10 to 50 μm is used.
この集電体に分極性電極層を形成することにより分極性電極体を得る。本発明では、例えば、活性炭粉末と導電助剤とバインダとを有機溶剤或いは水などの溶媒と混合して得たペーストを集電体に塗布し、100〜300℃で10〜60分間乾燥することにより、分極性電極体を得ることができる。また、上記ペーストをシート状に成形し、このシートを集電体に圧接し、100〜300℃で10〜60分間乾燥することにより、分極性電極体とすることができる。 A polarizable electrode body is obtained by forming a polarizable electrode layer on the current collector. In the present invention, for example, a paste obtained by mixing activated carbon powder, a conductive additive and a binder with an organic solvent or a solvent such as water is applied to a current collector and dried at 100 to 300 ° C. for 10 to 60 minutes. Thus, a polarizable electrode body can be obtained. Moreover, it can be set as a polarizable electrode body by shape | molding the said paste in a sheet form, press-contacting this sheet | seat to a collector, and drying for 10 to 60 minutes at 100-300 degreeC.
分極性電極層を構成する活性炭の原料は、植物系の木材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石炭、石油重質油、或いはそれらを熱分解した石炭及び石油系ピッチ、石油コークス等である。活性炭は、これらの原料を炭化後、賦活処理することにより得られる。 The raw material of activated carbon constituting the polarizable electrode layer is plant-based wood, sawdust, coconut husk, pulp waste liquor, fossil fuel-based coal, petroleum heavy oil, or coal and petroleum-based pitch obtained by pyrolyzing them, For example, petroleum coke. Activated carbon is obtained by carbonizing these raw materials and then activating them.
導電助剤としては、導電性を有する炭素材料である、カーボンブラック、グラファイトを用いることができる。カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、サーマルブラック等が挙げられる。これらは、単独で使用しても良く、2種以上を混合して使用しても良い。特に、中空シェル構造を有するケッチェンブラックを使用するのが好ましい。グラファイトとしては、例えば、天然グラファイト、人造グラファイト等が挙げられる。 As the conductive assistant, carbon black and graphite, which are conductive carbon materials, can be used. Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, and thermal black. These may be used alone or in combination of two or more. In particular, it is preferable to use ketjen black having a hollow shell structure. Examples of graphite include natural graphite and artificial graphite.
バインダとしては、通常用いられるものであればいずれであっても良く、例えばフッ素系ゴム、ジエン系ゴム、スチレン系ゴム等のゴム類、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどの含フッ素ポリマー、その他、ポリオレフィン樹脂、アクリル樹脂、ニトリル樹脂、ポリエステル樹脂、フェノール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、エポキシ樹脂などを挙げることができる。これらは、単独で使用しても良く、2種以上を混合して使用しても良い。 Any binder may be used as long as it is usually used, for example, rubbers such as fluorine rubber, diene rubber and styrene rubber, fluorine-containing polymers such as polytetrafluoroethylene and polyvinylidene fluoride, and the like. , Polyolefin resin, acrylic resin, nitrile resin, polyester resin, phenol resin, polyvinyl acetate resin, polyvinyl alcohol resin, epoxy resin and the like. These may be used alone or in combination of two or more.
本発明において、電気二重層キャパシタの組み立てにおいて使用する分極性電極体の水分含有率は、分極性電極体全体の150質量ppm以下であり、好ましくは120質量ppm以下である。分極性電極体の水分含有率が150質量ppmを超えると、この水分が電解液中に移行し、水分が原因となるキャパシタ特性の劣化が顕著になる。分極性電極体の水分含水率は少ないほど良いが、上述した製法によると、通常70質量ppm程度の水分が含まれる。分極性電極体の水分含有率は、分極性電極体をカールフィッシャー装置の水分気化装置内に配置し、加熱して水分を気化させ、気化させた水分を乾燥した不活性ガスでカールフィッシャー滴定セルに導入することによって測定することができる。 In the present invention, the water content of the polarizable electrode body used in the assembly of the electric double layer capacitor is 150 mass ppm or less, preferably 120 mass ppm or less of the entire polarizable electrode body. When the water content of the polarizable electrode body exceeds 150 mass ppm, this water moves into the electrolytic solution, and the deterioration of capacitor characteristics caused by the water becomes remarkable. The lower the moisture content of the polarizable electrode body, the better. However, according to the above-described manufacturing method, water of about 70 ppm by mass is usually contained. The water content of the polarizable electrode body is determined by placing the polarizable electrode body in the water vaporizer of the Karl Fischer device and heating it to vaporize the water. It can be measured by introducing it into.
本発明において、非水電解液の溶媒として、γ−ブチロラクトンを含有する有機溶媒を用いる。溶媒がγ−ブチロラクトンのみであるのが好ましいが、本発明の効果を損なわない限り、他の有機溶媒との混合溶媒を使用しても良い。副溶媒として、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類;ジメチルスルホキシドなどのスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソランなどのオキソラン類;アセトニトリルやニトロメタンなどの含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどの有機酸エステル類;リン酸トリエステルや炭酸ジメチル、炭酸ジエチル、炭酸ジプロピルのような炭酸ジエステルなどの無機酸エステル類;ジグライム類;トリグライム類;スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン等のスルホン類;3−メチル−2−オキサゾリジノンなどのオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトンなどのスルトン類等を用いることができる。これらの副溶媒は、単独で使用されていても良く、2種以上が使用されていても良い。溶媒におけるγ−ブチロラクトンの含有率は、溶媒全体の一般的には90質量%以上、好ましくは98質量%以上、特に好ましくは100質量%である。 In the present invention, an organic solvent containing γ-butyrolactone is used as a solvent for the nonaqueous electrolytic solution. The solvent is preferably only γ-butyrolactone, but a mixed solvent with another organic solvent may be used as long as the effects of the present invention are not impaired. As a co-solvent, carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate; trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, etc. Ethers; sulfoxides such as dimethyl sulfoxide; oxolanes such as 1,3-dioxolane and 4-methyl-1,3-dioxolane; nitrogen-containing compounds such as acetonitrile and nitromethane; methyl formate, methyl acetate, ethyl acetate, butyl acetate Organic acid esters such as methyl propionate and ethyl propionate; inorganic acid esters such as phosphoric acid triesters and carbonic acid diesters such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate Diglymes; triglymes; sulfones such as sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane; oxazolidinones such as 3-methyl-2-oxazolidinone; 1,3-propane sultone, 1,4- Sultone such as butane sultone and naphtha sultone can be used. These subsolvents may be used independently and 2 or more types may be used. The content of γ-butyrolactone in the solvent is generally 90% by mass or more, preferably 98% by mass or more, particularly preferably 100% by mass, based on the entire solvent.
上記溶媒中に溶解する電解質としては、金属の陽イオン、4級アンモニウムカチオン、カルボニウムカチオン等のカチオンと、BF4 -、PF6 -、ClO4 -、AsF6 -、SbF6 -、AlCl4 -、又はRfSO3 -、(RfSO2)2N-、RfCO2 -(Rfは炭素数1〜8のフルオロアルキル基)から選ばれるアニオンの塩を挙げることができる。これらは、単独で使用しても良く、2種以上を混合して使用しても良い。 Examples of the electrolyte dissolved in the solvent include metal cations, quaternary ammonium cations, carbonium cations, and the like, BF 4 − , PF 6 − , ClO 4 − , AsF 6 − , SbF 6 − , and AlCl 4. -, or RfSO 3 -, (RfSO 2) 2 N -, RfCO 2 - (Rf is a fluoroalkyl group having 1 to 8 carbon atoms) can be exemplified salts of anions selected from. These may be used alone or in combination of two or more.
本発明では、γ−ブチロラクトンを主体とする有機溶媒に電解質を溶解した電解液の水分含有率は、電解液全体の1000質量ppm以下、好ましくは500質量ppm以下である。電解液の水分含有率が電解液全体の1000質量ppmを超えると、水分が原因となるキャパシタ特性の劣化が顕著になる。電解液の水分含水率は少ないほど良いが、一般には10質量ppm程度の水分が含まれている。電解液の水分含有率は、組み上げられた電気二重層キャパシタを分解した後、電解液を含有している状態のキャパシタセルを遠心分離にかけることによって電解液を採集し、採集した電解液についてカールフィッシャー滴定を行うことによって測定することができる。 In the present invention, the water content of an electrolytic solution obtained by dissolving an electrolyte in an organic solvent mainly composed of γ-butyrolactone is 1000 ppm by mass or less, preferably 500 ppm by mass or less of the entire electrolytic solution. When the water content of the electrolytic solution exceeds 1000 mass ppm of the entire electrolytic solution, the deterioration of the capacitor characteristics due to the water becomes remarkable. The smaller the moisture content of the electrolyte solution, the better, but generally about 10 ppm by weight of moisture is contained. The water content of the electrolytic solution is determined by disassembling the assembled electric double layer capacitor, collecting the electrolytic solution by centrifuging the capacitor cell containing the electrolytic solution, and curling the collected electrolytic solution. It can be measured by performing a Fisher titration.
本発明の電気二重層キャパシタは、溶媒の電気分解によるキャパシタ特性の劣化が抑制される上に、水分が原因となるキャパシタ特性の劣化も抑制され、85℃負荷試験においても安定したキャパシタ特性を示す。 The electric double layer capacitor of the present invention suppresses the deterioration of the capacitor characteristics due to the electrolysis of the solvent, and also suppresses the deterioration of the capacitor characteristics caused by moisture, and exhibits stable capacitor characteristics even in the 85 ° C. load test. .
以下の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されない。 The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to the following examples.
1:電気二重層キャパシタの作成
実施例1
カルボキシメチルセルロース(CMC)水溶液中で活性炭とケッチェンブラックとを攪拌し、その溶液にアクリル系エラストマーを混合することによりスラリーを作製し、得られたスラリーを、塗工機を用いて、集電体であるアルミニウムエッチング箔の両面に乾燥後の塗膜片面の厚みがそれぞれ160μmになるように塗布し、シートを作製した。さらに、このシートに対して塗膜片面の厚みが150μmになるようにロールプレスを施し、空気中、150℃で20分間乾燥し、正極・負極となる分極性電極体を得た。得られた分極性電極体をカールフィッシャー装置の水分気化装置内に配置し、200℃で60分間加熱して水分を気化させ、気化させた水分を乾燥した不活性ガスでカールフィッシャー滴定セルに導入することによって、分極性電極体の水分含有率を測定したところ、100質量ppmであった。
1: Preparation of an electric double layer capacitor Example 1
A slurry is prepared by stirring activated carbon and ketjen black in an aqueous carboxymethyl cellulose (CMC) solution and mixing an acrylic elastomer into the solution. The resulting slurry is collected using a coating machine. A sheet was prepared by coating the both sides of the aluminum etching foil with a thickness of 160 μm on one side of the coated film after drying. Further, this sheet was roll-pressed so that the thickness of one surface of the coating film was 150 μm, and dried in air at 150 ° C. for 20 minutes to obtain a polarizable electrode body serving as a positive electrode and a negative electrode. The obtained polarizable electrode body is placed in the moisture vaporizer of the Karl Fischer device, heated at 200 ° C. for 60 minutes to vaporize the moisture, and the vaporized moisture is introduced into the Karl Fischer titration cell with a dry inert gas. When the water content of the polarizable electrode body was measured, it was 100 ppm by mass.
次いで、分極性電極体に接続端子を接続し、正極・負極のシート状の2枚の分極電極体を対向するように配置し、その間にセルロース系セパレータを介在して巻回し、キャパシタセルを作成した。 Next, a connection terminal is connected to the polarizable electrode body, and two sheet-like polarized electrode bodies of positive and negative electrodes are arranged so as to face each other, and a cell separator is interposed between them to create a capacitor cell. did.
このキャパシタセルに、電解液として、1.5M四フッ化ホウ素トリエチルメチルアンモニウム/γ−ブチロラクトン溶液を含浸させ、さらに開口端部を有する円筒状のアルミニウム製外装ケースに挿入し、封口部材で開口部を封止し、分極性電極体のアルミニウムエッチング箔に設けられた接続端子を封口部材の外部端子に接合した。電圧を印加してエージングした後に放電させ、直径35mm、長さ105mmの電気二重層キャパシタを作製した。この電気二重層キャパシタを分解し、電解液を含有している状態のキャパシタセルを遠心分離にかけることによって電解液を採集し、採集した電解液についてカールフィッシャー滴定を行うことにより、電解液の水分含有率を測定したところ、100質量ppmであった。 This capacitor cell is impregnated with 1.5M boron tetrafluoride triethylmethylammonium / γ-butyrolactone solution as an electrolytic solution, and further inserted into a cylindrical aluminum outer case having an open end, and the opening is opened by a sealing member. The connection terminal provided on the aluminum etching foil of the polarizable electrode body was joined to the external terminal of the sealing member. An electric double layer capacitor having a diameter of 35 mm and a length of 105 mm was produced by discharging after applying voltage and aging. The electrolytic double layer capacitor is disassembled, the electrolytic solution is collected by centrifuging the capacitor cell containing the electrolytic solution, and the collected electrolytic solution is subjected to Karl Fischer titration to obtain the moisture content of the electrolytic solution. When the content rate was measured, it was 100 mass ppm.
実施例2〜3、比較例1〜3
乾燥条件の異なる分極性電極体を使用して実施例1の手順を繰り返した。比較例3は、分極性電極体の乾燥処理を行わなかった例である。以下の表1に、電気二重層キャパシタ作成時に使用した分極性電極体の水分含有率と、電気二重層キャパシタを分解して採集した電解液の水分含有率とをまとめて示す。分極性電極体の水分含有率が増加すると、電解液の水分含有率も増加する傾向にあるが、実施例1と実施例2では、分極性電極体の水分含有率が同じであるものの電解液の水分含有率が異なっており、比較例1と比較例2では、電解液の水分含有率が同じであるものの分極性電極体の水分含有率が異なっている。これは、電気二重層キャパシタの作成工程において電解液に混入した水分量の差を反映したものと考えられる。
Examples 2-3 and Comparative Examples 1-3
The procedure of Example 1 was repeated using polarizable electrode bodies with different drying conditions. Comparative Example 3 is an example in which the polarizable electrode body was not dried. Table 1 below collectively shows the water content of the polarizable electrode body used when the electric double layer capacitor was prepared and the water content of the electrolytic solution collected by disassembling the electric double layer capacitor. As the water content of the polarizable electrode body increases, the water content of the electrolytic solution also tends to increase. In Example 1 and Example 2, although the water content of the polarizable electrode body is the same, the electrolytic solution In Comparative Example 1 and Comparative Example 2, the water content of the polarizable electrode body is different, although the water content of the electrolyte solution is the same. This is considered to reflect the difference in the amount of water mixed in the electrolyte in the process of producing the electric double layer capacitor.
実施例4
アクリル系エラストマーの代わりにスチレンブタジエン系エラストマーを使用し、実施例2で使用した分極性電極体を使用して、実施例1の手順を繰り返した。以下の表1に、電気二重層キャパシタ作成時に使用した分極性電極体の水分含有率と、電気二重層キャパシタを分解して採集した電解液の水分含有率とを示す。
Example 4
The procedure of Example 1 was repeated using styrene butadiene elastomer instead of acrylic elastomer and using the polarizable electrode body used in Example 2. Table 1 below shows the moisture content of the polarizable electrode body used at the time of producing the electric double layer capacitor and the moisture content of the electrolyte collected by disassembling the electric double layer capacitor.
実施例5
アクリル系エラストマーの代わりにスチレンブタジエン系エラストマーを使用し、実施例3で使用した分極性電極体を使用して、実施例1の手順を繰り返した。以下の表1に、電気二重層キャパシタ作成時に使用した分極性電極体の水分含有率と、電気二重層キャパシタを分解して採集した電解液の水分含有率とを示す。
Example 5
The procedure of Example 1 was repeated by using a styrene butadiene elastomer instead of the acrylic elastomer and using the polarizable electrode body used in Example 3. Table 1 below shows the moisture content of the polarizable electrode body used at the time of producing the electric double layer capacitor and the moisture content of the electrolyte collected by disassembling the electric double layer capacitor.
(従来例)
電解液として、1M四フッ化ホウ素テトラエチルアンモニウム/プロピレンカーボネート溶液を用い、実施例1と同様の電気二重層キャパシタを作製した。
(Conventional example)
A 1M boron tetrafluoride tetraethylammonium / propylene carbonate solution was used as the electrolyte, and an electric double layer capacitor similar to that of Example 1 was produced.
2:85℃負荷試験
上記の方法により得られた実施例1〜3、比較例1〜3及び従来例の電気二重層キャパシタについて、85℃で2.3Vを印加する負荷試験を行った。従来例の電気二重層キャパシタについては、60℃で2.5Vを印加する負荷試験も行った。負荷試験開始から500時間後及び1000時間経過後の静電容量(Cap)の増加率、直流内部抵抗(DCIR)の増加率を測定した。結果を表1に示す。
従来例の電気二重層キャパシタは、85℃負荷試験では全数が開弁した。表1における従来例の電気二重層キャパシタの静電容量(Cap)の増加率、直流内部抵抗(DCIR)の増加率の値は、60℃負荷試験における値である。 All of the conventional electric double layer capacitors were opened in the 85 ° C. load test. The values of the increase rate of capacitance (Cap) and the increase rate of DC internal resistance (DCIR) of the conventional electric double layer capacitor in Table 1 are values in a 60 ° C. load test.
表1から把握されるように、本発明の電気二重層キャパシタは、85℃負荷試験において、電解液中の水分含有率が電解液全体の1000ppm以下であり、また分極性電極体の水分含有率が電極体全体の150ppm以下であると、従来例の電気二重層キャパシタの60℃負荷試験時の特性安定性と同等の優れた特性安定性を示した。したがって、本発明により、電気二重層キャパシタの使用温度が85℃まで向上したことがわかる。また、バインダとして、スチレンブタジエン系エラストマーを使用する(実施例4,5)と、アクリル系エラストマーを使用した場合(実施例2,3)に比較して、直流内部抵抗(DCIR)の増加が抑制されることがわかった。 As can be seen from Table 1, in the electric double layer capacitor of the present invention, in the 85 ° C. load test, the moisture content in the electrolyte is 1000 ppm or less of the entire electrolyte, and the moisture content of the polarizable electrode body When it was 150 ppm or less of the whole electrode body, excellent characteristic stability equivalent to the characteristic stability at the time of a 60 ° C. load test of the electric double layer capacitor of the conventional example was shown. Therefore, it can be seen that the use temperature of the electric double layer capacitor is improved to 85 ° C. by the present invention. In addition, when the styrene butadiene elastomer is used as the binder (Examples 4 and 5), the increase in direct current internal resistance (DCIR) is suppressed as compared with the case where the acrylic elastomer is used (Examples 2 and 3). I found out that
本発明により、85℃でも使用可能な電気二重層キャパシタが提供される。 The present invention provides an electric double layer capacitor that can be used even at 85 ° C.
Claims (2)
前記電解液の溶媒が、γ−ブチロラクトンを含む有機溶媒であり、
前記電解液の水分含有率が、電解液全体の1000質量ppm以下である
ことを特徴とする電気二重層キャパシタ。 In an electric double layer capacitor having a pair of polarizable electrode bodies and a separator holding an electrolytic solution disposed between these polarizable electrode bodies,
The solvent of the electrolytic solution is an organic solvent containing γ-butyrolactone,
The electric double layer capacitor characterized in that the water content of the electrolytic solution is 1000 mass ppm or less of the entire electrolytic solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009229052A JP2010109355A (en) | 2008-09-30 | 2009-09-30 | Electrical double-layer capacitor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008255848 | 2008-09-30 | ||
JP2009229052A JP2010109355A (en) | 2008-09-30 | 2009-09-30 | Electrical double-layer capacitor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014104914A Division JP5839303B2 (en) | 2008-09-30 | 2014-05-21 | Manufacturing method of electric double layer capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010109355A true JP2010109355A (en) | 2010-05-13 |
Family
ID=42298444
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009229052A Pending JP2010109355A (en) | 2008-09-30 | 2009-09-30 | Electrical double-layer capacitor |
JP2014104914A Active JP5839303B2 (en) | 2008-09-30 | 2014-05-21 | Manufacturing method of electric double layer capacitor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014104914A Active JP5839303B2 (en) | 2008-09-30 | 2014-05-21 | Manufacturing method of electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP2010109355A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012084612A (en) * | 2010-10-07 | 2012-04-26 | Nippon Chemicon Corp | Current collector for electric double layer capacitor and electric double layer capacitor |
WO2016002564A1 (en) * | 2014-07-01 | 2016-01-07 | 住友電気工業株式会社 | Cathode for capacitor and method for producing capacitor |
JP2017152733A (en) * | 2011-07-08 | 2017-08-31 | ファーストキャップ・システムズ・コーポレイションFa | High temperature energy storage device |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US11127537B2 (en) | 2015-01-27 | 2021-09-21 | Fastcap Systems Corporation | Wide temperature range ultracapacitor |
US11250995B2 (en) | 2011-07-08 | 2022-02-15 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6774175B2 (en) * | 2015-10-09 | 2020-10-21 | 株式会社名城ナノカーボン | Non-conductive materials and paints |
GB2548128B (en) | 2016-03-09 | 2021-12-15 | Zapgo Ltd | Method of reducing outgassing |
JPWO2018235884A1 (en) * | 2017-06-20 | 2020-04-23 | 日本ケミコン株式会社 | Gel electrolytic capacitor |
JP2024142981A (en) * | 2023-03-30 | 2024-10-11 | パナソニックIpマネジメント株式会社 | Capacitor and electrode active material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182910A (en) * | 1998-12-15 | 2000-06-30 | Ngk Insulators Ltd | Electric double-layered capacitor and manufacture thereof |
JP2001217150A (en) * | 2000-01-31 | 2001-08-10 | Hitachi Maxell Ltd | Electric double-layer capacitor |
JP2003525522A (en) * | 1999-08-18 | 2003-08-26 | マックスウェル エレクトロニック コンポーネンツ グループ インコーポレイテッド | Multi-electrode double-layer capacitor with hermetic electrolyte seal |
JP2004349529A (en) * | 2003-05-23 | 2004-12-09 | Nippon Zeon Co Ltd | Electrode material for electric double layer capacitor and method of manufacturing the same |
JP2006256883A (en) * | 2005-03-15 | 2006-09-28 | Sanyo Chem Ind Ltd | Method for production of tetrafluoroborate |
JP2007227519A (en) * | 2006-02-22 | 2007-09-06 | Japan Pionics Co Ltd | Manufacturing method of electric double layer capacitor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11102844A (en) * | 1997-07-28 | 1999-04-13 | Matsushita Electric Ind Co Ltd | Electrical double layer capacitor and manufacture thereof |
JP4618929B2 (en) * | 2000-05-09 | 2011-01-26 | 三菱化学株式会社 | Activated carbon for electric double layer capacitors |
JP2003031446A (en) * | 2001-07-13 | 2003-01-31 | Asahi Glass Co Ltd | Secondary power supply |
JP4728647B2 (en) * | 2004-01-15 | 2011-07-20 | パナソニック株式会社 | Electric double layer capacitor or secondary battery containing non-aqueous electrolyte |
JP2006324284A (en) * | 2005-05-17 | 2006-11-30 | Tdk Corp | Method for manufacturing electrochemical capacitor |
JP2007194614A (en) * | 2005-12-21 | 2007-08-02 | Showa Denko Kk | Electric double layer capacitor |
JP2007201389A (en) * | 2005-12-28 | 2007-08-09 | Du Pont Teijin Advanced Paper Kk | Nonaqueous capacitor and method for manufacturing the same |
-
2009
- 2009-09-30 JP JP2009229052A patent/JP2010109355A/en active Pending
-
2014
- 2014-05-21 JP JP2014104914A patent/JP5839303B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182910A (en) * | 1998-12-15 | 2000-06-30 | Ngk Insulators Ltd | Electric double-layered capacitor and manufacture thereof |
JP2003525522A (en) * | 1999-08-18 | 2003-08-26 | マックスウェル エレクトロニック コンポーネンツ グループ インコーポレイテッド | Multi-electrode double-layer capacitor with hermetic electrolyte seal |
JP2001217150A (en) * | 2000-01-31 | 2001-08-10 | Hitachi Maxell Ltd | Electric double-layer capacitor |
JP2004349529A (en) * | 2003-05-23 | 2004-12-09 | Nippon Zeon Co Ltd | Electrode material for electric double layer capacitor and method of manufacturing the same |
JP2006256883A (en) * | 2005-03-15 | 2006-09-28 | Sanyo Chem Ind Ltd | Method for production of tetrafluoroborate |
JP2007227519A (en) * | 2006-02-22 | 2007-09-06 | Japan Pionics Co Ltd | Manufacturing method of electric double layer capacitor |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012084612A (en) * | 2010-10-07 | 2012-04-26 | Nippon Chemicon Corp | Current collector for electric double layer capacitor and electric double layer capacitor |
US11250995B2 (en) | 2011-07-08 | 2022-02-15 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
JP2017152733A (en) * | 2011-07-08 | 2017-08-31 | ファーストキャップ・システムズ・コーポレイションFa | High temperature energy storage device |
US10714271B2 (en) | 2011-07-08 | 2020-07-14 | Fastcap Systems Corporation | High temperature energy storage device |
US11482384B2 (en) | 2011-07-08 | 2022-10-25 | Fastcap Systems Corporation | High temperature energy storage device |
US11776765B2 (en) | 2011-07-08 | 2023-10-03 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
US11901123B2 (en) | 2011-07-08 | 2024-02-13 | Fastcap Systems Corporation | High temperature energy storage device |
US12165806B2 (en) | 2011-07-08 | 2024-12-10 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US11488787B2 (en) | 2013-10-09 | 2022-11-01 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
WO2016002564A1 (en) * | 2014-07-01 | 2016-01-07 | 住友電気工業株式会社 | Cathode for capacitor and method for producing capacitor |
US11127537B2 (en) | 2015-01-27 | 2021-09-21 | Fastcap Systems Corporation | Wide temperature range ultracapacitor |
US11756745B2 (en) | 2015-01-27 | 2023-09-12 | Fastcap Systems Corporation | Wide temperature range ultracapacitor |
Also Published As
Publication number | Publication date |
---|---|
JP5839303B2 (en) | 2016-01-06 |
JP2014179646A (en) | 2014-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5839303B2 (en) | Manufacturing method of electric double layer capacitor | |
US9997301B2 (en) | Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode | |
US8848338B2 (en) | Electric double layer capacitor | |
US20130194721A1 (en) | Activated carbon for lithium ion capacitor, electrode including the activated carbon as active material, and lithium ion capacitor using the electrode | |
WO2012056050A2 (en) | An electrical double layer capacitor with enhanced working voltage | |
US10504661B2 (en) | Hybrid capacitor and separator for hybrid capacitors | |
JP2005129924A (en) | Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it | |
JPWO2009041074A1 (en) | Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same | |
EP1296338B1 (en) | Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor | |
JP2010245070A (en) | Electric double-layer capacitor | |
JP2016197649A (en) | Separator for electric double layer capacitor and electric double layer capacitor | |
CN116057655A (en) | electric double layer capacitor | |
JP6623538B2 (en) | Hybrid capacitor separator and hybrid capacitor | |
JP4957373B2 (en) | Electric double layer capacitor | |
JP2010245068A (en) | Electric double-layer capacitor | |
JP2015037125A (en) | Electrode active material and electrochemical device including the same | |
JP2010245071A (en) | Electric double-layer capacitor | |
JP2016197648A (en) | Electric double layer capacitor | |
JP2009099978A (en) | Polarizable electrode for electric double layer capacitor and electric double layer capacitor using the same | |
JP6829573B2 (en) | Winding non-aqueous lithium storage element | |
JP6754659B2 (en) | Non-aqueous lithium storage element | |
WO2011040040A1 (en) | Electric double-layer capacitor, and current collector for electric double-layer capacitor | |
WO2024189961A1 (en) | Electrochemical device | |
JP2010283309A (en) | Electrolyte for electrochemical capacitor, and electrochemical capacitor using the same | |
JP2018056401A (en) | Nonaqueous lithium power storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130911 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140221 |