[go: up one dir, main page]

JP2010108626A - Membrane electrode assembly - Google Patents

Membrane electrode assembly Download PDF

Info

Publication number
JP2010108626A
JP2010108626A JP2008276718A JP2008276718A JP2010108626A JP 2010108626 A JP2010108626 A JP 2010108626A JP 2008276718 A JP2008276718 A JP 2008276718A JP 2008276718 A JP2008276718 A JP 2008276718A JP 2010108626 A JP2010108626 A JP 2010108626A
Authority
JP
Japan
Prior art keywords
electrode assembly
membrane
binder
catalyst
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008276718A
Other languages
Japanese (ja)
Inventor
Naoki Asano
直紀 浅野
Koichi Uejima
浩一 上島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008276718A priority Critical patent/JP2010108626A/en
Publication of JP2010108626A publication Critical patent/JP2010108626A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane electrode assembly having a high catalyst utilization ratio and excellent adhesiveness between a membrane and an electrode by using a hydrocarbon system binder as an electrode for the MEA in which a hydrocarbon system electrolyte membrane is used. <P>SOLUTION: In the membrane electrode assembly in which a hydrocarbon system electrolyte membrane is used, a hydrocarbon system binder is used for an electrode. The hydrocarbon system binder contains a structural unit as shown in a general formula (1), wherein A is alkylene group having carbon numbers 5 to 20 and B, C, D and E are hydrogen and fluorine. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、膜電極接合体(以下、「MEA」(Membrane Electrode Assemble)と言う。)に関する。   The present invention relates to a membrane electrode assembly (hereinafter referred to as “MEA” (Mebrane Electrode Assembly)).

燃料電池は、発電効率が高く、環境性に優れており、現在大きな課題となっている環境問題、エネルギ問題の解決に貢献可能な、次世代の発電装置として期待されている。
この燃料電池の中でも、固体高分子型燃料電池は、他の何れの方式に比べても、小型且つ高出力であり、小規模オンサイト型、移動体(車載)用、携帯用の燃料電池として次世代の主力とされている。
A fuel cell is expected as a next-generation power generation device that has high power generation efficiency and excellent environmental properties, and can contribute to solving environmental problems and energy problems that are currently a major issue.
Among these fuel cells, the polymer electrolyte fuel cell is smaller and has higher output than any other system, and is a small-sized on-site, mobile (on-vehicle), portable fuel cell. It is considered as the next generation mainstay.

現状では、固体高分子型燃料電池は、まだ実用段階に至っていないものの、試作、あるいはテスト段階で用いられている燃料電池の高分子電解質膜としては、パーフルオロアルキレン基を主骨格とし、一部にパーフルオロビニルエーテル側鎖の末端に、スルホン酸基、カルボン酸基等のイオン交換基を有するフッ素系の高分子電解質膜として、「ナフィオン(デュポン株式会社製、商品名)」、「フレミオン(旭ガラス株式会社製、商品名)」等が知られている。   At present, solid polymer fuel cells have not yet reached the practical stage, but the polymer electrolyte membranes of fuel cells that are used in trial production or test stages have perfluoroalkylene groups as the main skeleton. As a fluorine-based polymer electrolyte membrane having an ion exchange group such as a sulfonic acid group or a carboxylic acid group at the end of the perfluorovinyl ether side chain, “Nafion (DuPont, product name)”, “Flemion (Asahi) “Glass Co., Ltd., trade name)” is known.

しかし、現状用いられている燃料電池の高分子電解質膜である「ナフィオン(デュポン株式会社製、商品名)」等では、100℃を超える条件で運転しようとすると、高分子電解質膜の含水率が急激に低下する他、高分子電解質膜の軟化も顕著となり、特に将来が期待されている、直接メタノール型燃料電池では、従来の「ナフィオン(デュポン株式会社製、商品名)」の様な、フッ素系プロトン伝導性高分子材料を、電解質として用いた場合、アノードを通リ抜けたメタノールが電解質中を拡散して、カソードに到達し、そこで、カソード触媒上で酸化剤(O)と直接反応するという短絡現象(クロスオーバー)を起こし、電池性能を著しく低下させることから、十分な性能を発揮することができないという問題がある。 However, in the currently used fuel cell polymer electrolyte membrane “Nafion (DuPont, product name)” and the like, the moisture content of the polymer electrolyte membrane increases when it is operated at a temperature exceeding 100 ° C. In addition to the rapid decrease, the softening of the polymer electrolyte membrane has become remarkable, and in the direct methanol fuel cell, where the future is especially expected, fluorine like the conventional “Nafion (DuPont, product name)” When proton-based proton conductive polymer material is used as an electrolyte, methanol that has passed through the anode diffuses in the electrolyte and reaches the cathode, where it directly reacts with the oxidant (O 2 ) on the cathode catalyst. This causes a short-circuit phenomenon (crossover) and significantly lowers the battery performance, so that there is a problem that sufficient performance cannot be exhibited.

このような問題を解決するため、従来からフッ素系膜の代わりとなる耐熱性の芳香族ポリマーに、プロトン伝導性を付与するためのスルホン酸基を導入した高分子電解質膜の検討が種々行なわれており、高分子電解質膜の耐熱性や化学的安定性の観点から、スルホン化芳香族ポリエーテルケトン類、スルホン化芳香族ポリエーテルスルホン類、スルホン化ポリフェニレン類等が報告されている(例えば、特許文献1〜3を参照)。
しかし、上記炭化水素系電解質膜をMEA化する際、通常電極の結着物質として用いられている「ナフィオン(デュポン株式会社製、商品名)」は、フッ素系ポリマーであるため、異種間の接合になり、接着性が良好でないことが一般的に知られている。
この問題を解決するため、電解質膜上に電解質ポリマーをコートし、接合性を改良する方法が検討されている(特許文献4参照)。
特開平6−93114号公報 特許第3861367号公報 特開2001−329053号公報 特開2006−85955号公報
In order to solve such problems, various studies have been made on polymer electrolyte membranes in which a sulfonic acid group for imparting proton conductivity is introduced to a heat-resistant aromatic polymer used as a substitute for a fluorine-based membrane. From the viewpoint of heat resistance and chemical stability of the polymer electrolyte membrane, sulfonated aromatic polyether ketones, sulfonated aromatic polyether sulfones, sulfonated polyphenylenes and the like have been reported (for example, (See Patent Documents 1 to 3).
However, when the hydrocarbon electrolyte membrane is made into MEA, “Nafion (trade name, manufactured by DuPont), which is usually used as a binder for electrodes, is a fluorine-based polymer. It is generally known that the adhesion is not good.
In order to solve this problem, a method has been studied in which an electrolyte polymer is coated on the electrolyte membrane to improve bondability (see Patent Document 4).
JP-A-6-93114 Japanese Patent No. 3861367 JP 2001-329053 A JP 2006-85955 A

しかしながら、特許文献4に記載される電解質膜では、スルホン酸基の増加により膨潤率が高くなり、電解質膜との接合性が低下し、長期耐久性に問題がある。そのため、炭化水素系樹脂をバインダに用いた検討がなされているが、電極における反応サイトである触媒の利用率が低い問題がある(特開2005−197071号公報参照)。   However, in the electrolyte membrane described in Patent Document 4, the swelling rate is increased due to an increase in the sulfonic acid group, the bonding property with the electrolyte membrane is lowered, and there is a problem in long-term durability. For this reason, studies have been made using a hydrocarbon-based resin as a binder, but there is a problem that the utilization rate of a catalyst which is a reaction site in an electrode is low (see Japanese Patent Application Laid-Open No. 2005-197071).

本発明は、上記事情に鑑みて、炭化水素系電解質膜を用いたMEA(膜電極接合体)の電極に、炭化水素系バインダを用いることで、触媒利用率が高く、膜/電極間の接合性が良好なMEAを提供することを目的とする。   In view of the above circumstances, the present invention uses a hydrocarbon-based binder as an electrode of an MEA (membrane electrode assembly) using a hydrocarbon-based electrolyte membrane, so that the catalyst utilization rate is high and the membrane / electrode bonding is performed. It aims at providing MEA with good property.

本発明は、以下のものに関する。
(1)炭化水素系電解質膜を用いる膜電極接合体。
(2)項(1)において、電極が、炭化水素系バインダを用いる膜電極接合体。
(3)項(2)において、炭化水素系バインダが、下記の一般式(1)の構造単位を含む膜電極接合体。
The present invention relates to the following.
(1) A membrane electrode assembly using a hydrocarbon electrolyte membrane.
(2) The membrane electrode assembly according to item (1), wherein the electrode uses a hydrocarbon binder.
(3) The membrane electrode assembly according to item (2), wherein the hydrocarbon binder includes a structural unit represented by the following general formula (1).

Figure 2010108626
[式中Aは炭素数5〜20のアルキレン基を示す。B、C、D、Eは水素、フッ素を示す。]
Figure 2010108626
[Wherein A represents an alkylene group having 5 to 20 carbon atoms. B, C, D, and E represent hydrogen and fluorine. ]

(4)項(2)又は(3)において、炭化水素系バインダが、スルホン酸基、リン酸基、又はカルボキシル基のいずれか1以上を含む親水性部とスルホン酸基、リン酸基、又はカルボキシル基を含まない疎水性部との共重合体である膜電極接合体。
(5)項(2)乃至(4)の何れかにおいて、炭化水素系バインダの共重合成分が、下記の一般式(2)である膜電極接合体。
(4) In the item (2) or (3), the hydrocarbon binder contains a hydrophilic part containing any one or more of a sulfonic acid group, a phosphoric acid group, or a carboxyl group, a sulfonic acid group, a phosphoric acid group, or A membrane electrode assembly, which is a copolymer with a hydrophobic part not containing a carboxyl group.
(5) The membrane electrode assembly according to any one of items (2) to (4), wherein the copolymerization component of the hydrocarbon binder is the following general formula (2).

Figure 2010108626
[式中Aは炭素数5〜20のアルキレン基を示す。xは、モル%である。]
Figure 2010108626
[Wherein A represents an alkylene group having 5 to 20 carbon atoms. x is mol%. ]

(6)項(1)乃至(5)の何れかにおいて、炭化水素系電解質膜上に、スプレーコート法、GDE法又は転写法を用いて電極が形成された膜電極接合体。
(7)項(1)乃至(6)の何れかにおいて、炭化水素系電解質膜上に、貴金属触媒を含有する触媒スラリーを噴霧塗布し、直接電解質膜上に電極が形成された膜電極接合体。
(8)項(7)において、触媒スラリーが、貴金属触媒、電解質バインダ及び溶媒を含み、貴金属触媒、電解質バインダが溶媒に溶解又は分散した膜電極接合体。
(6) The membrane electrode assembly according to any one of items (1) to (5), wherein an electrode is formed on the hydrocarbon electrolyte membrane using a spray coating method, a GDE method, or a transfer method.
(7) The membrane electrode assembly according to any one of items (1) to (6), wherein a catalyst slurry containing a noble metal catalyst is spray-coated on a hydrocarbon electrolyte membrane, and an electrode is directly formed on the electrolyte membrane. .
(8) The membrane electrode assembly according to item (7), wherein the catalyst slurry contains a noble metal catalyst, an electrolyte binder, and a solvent, and the noble metal catalyst and the electrolyte binder are dissolved or dispersed in the solvent.

本発明は、炭化水素系電解質膜を用いた膜電極接合体の電極に、炭化水素系材料を有するバインダを用いることで、触媒利用率及び膜/電極間の接合性が良好な、膜電極接合体を提供する。   The present invention uses a binder having a hydrocarbon-based material as an electrode of a membrane-electrode assembly using a hydrocarbon-based electrolyte membrane, so that the catalyst utilization rate and the membrane / electrode bondability are good. Provide the body.

以下、本発明について詳述する。
上記目的を達成するために、鋭意研究を行ったところ、電極に本発明の炭化水素系材料を有するバインダを用いることで、触媒利用率が向上し、膜/電極間の接合性が良好であることが分かった。
また、本発明の炭化水素系バインダは、電極の中に存在する。バインダの役割としては、電極と電解質膜との結合を、促進及び電極構成物質(例えば、触媒担持カーボン、ガス拡散層)同士の接着性を担う。更に、触媒の反応サイトからのプロトン移動の機能も有し、反応サイト向上の役割も果たす。
Hereinafter, the present invention will be described in detail.
As a result of diligent research to achieve the above object, the use of the binder having the hydrocarbon-based material of the present invention for the electrode improves the catalyst utilization rate and provides good membrane / electrode bondability. I understood that.
The hydrocarbon binder of the present invention is present in the electrode. As the role of the binder, it promotes the bonding between the electrode and the electrolyte membrane and bears the adhesion between the electrode constituent materials (for example, catalyst-supporting carbon and gas diffusion layer). Further, it also has a function of proton transfer from the reaction site of the catalyst and plays a role of improving the reaction site.

<炭化水素系電解質膜>
炭化水素系電解質膜の主骨格としては、ポリエーテルエーテルケトン、ポリフェニレン、ポリイミド、ポリエーテル、ポリエーテルスルホン等が挙げられる。
炭化水素系電解質膜のプロトン伝導性基としては、スルホン酸基、リン酸基、カルボキシル基が挙げられる。中でも、スルホン酸基が酸解離度の点で好適であるが、他の置換基を用いてもかまわない。
炭化水素系電解質膜のプロトン酸基量は、特に制限は無いが、プロトン伝導性と耐久性の観点から、イオン交換当量質量(EW値)の値で、300〜1000が好ましく、350〜900がより好ましく、400〜800が更に好ましい。
ここでイオン交換当量質量(EW値)とは、プロトン酸基1モル当りの共重合体の重量(g)を言う。EW値は、300以上であれば、耐久性が低下することもなく、1000以下であれば、プロトン伝導性が良好となる
<Hydrocarbon electrolyte membrane>
Examples of the main skeleton of the hydrocarbon electrolyte membrane include polyetheretherketone, polyphenylene, polyimide, polyether, polyethersulfone, and the like.
Examples of the proton conductive group of the hydrocarbon electrolyte membrane include a sulfonic acid group, a phosphoric acid group, and a carboxyl group. Among these, a sulfonic acid group is preferable in terms of the degree of acid dissociation, but other substituents may be used.
The amount of protonic acid groups in the hydrocarbon-based electrolyte membrane is not particularly limited, but from the viewpoint of proton conductivity and durability, the value of ion exchange equivalent mass (EW value) is preferably 300 to 1,000, and preferably 350 to 900. More preferred is 400 to 800.
Here, the ion exchange equivalent mass (EW value) refers to the weight (g) of the copolymer per mole of proton acid groups. If the EW value is 300 or more, the durability does not deteriorate. If the EW value is 1000 or less, the proton conductivity is good.

<炭化水素系バインダ>
本発明に用いる炭化水素系バインダは、上記の一般式(1)の構造単位であるものが好ましい。また、下記化学式、1−1〜8に示すものを、用いることもできる。
<Hydrocarbon binder>
The hydrocarbon binder used in the present invention is preferably a structural unit of the above general formula (1). Moreover, what is shown to the following chemical formula and 1-1-8 can also be used.

Figure 2010108626
Figure 2010108626

炭化水素系バインダの主骨格としては、ポリエーテルエーテルケトン、ポリフェニレン、ポリイミド、ポリエーテル、ポリエーテルスルホン等が挙げられるが、ガス透過性の観点からポリエーテルスルホンが好適である。
炭化水素系電解質膜のプロトン伝導性基としては、スルホン酸基、リン酸基、カルボキシル基が挙げられる。中でも、スルホン酸基が酸解離度の点で好適であるが、他の置換基を用いてもかまわない。
Examples of the main skeleton of the hydrocarbon binder include polyether ether ketone, polyphenylene, polyimide, polyether, polyether sulfone, and the like, but polyether sulfone is preferable from the viewpoint of gas permeability.
Examples of the proton conductive group of the hydrocarbon electrolyte membrane include a sulfonic acid group, a phosphoric acid group, and a carboxyl group. Among these, a sulfonic acid group is preferable in terms of the degree of acid dissociation, but other substituents may be used.

炭化水素系バインダのプロトン酸基量は、特に制限は無いが、プロトン伝導性と耐久性の観点から、イオン交換当量質量(EW値)の値で、300〜1000が好ましく、350〜900がより好ましく、400〜800が更に好ましい。ここでイオン交換当量質量(EW値)とは、プロトン酸基1モル当りの共重合体の重量(g)を言う。EW値が300以上であれば、耐久性が低下することもなく、1000以下であれば、プロトン伝導性が良好となる   The amount of protonic acid groups in the hydrocarbon binder is not particularly limited, but from the viewpoint of proton conductivity and durability, the value of ion exchange equivalent mass (EW value) is preferably 300 to 1000, more preferably 350 to 900. 400-800 are more preferable. Here, the ion exchange equivalent mass (EW value) refers to the weight (g) of the copolymer per mole of proton acid groups. If the EW value is 300 or more, the durability does not deteriorate, and if it is 1000 or less, the proton conductivity is good.

共重合体の合成に用いる溶媒としては、使用するモノマーが溶解するものであれば特に制限は無いが、具体的な反応溶媒としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、ヘキサメチルホスホンアミド、γ−ブチロラクトン等の、非プロトン極性溶媒から適切なものを選ぶことができる。これらの溶媒は、可能な範囲で複数を混合して使用してもよい。
溶媒量は、反応させるモノマー及び触媒の総質量に対して、0.1〜100倍の範囲で用いることができる。
共重合体の反応温度としては、80℃〜210℃が好ましく、90℃〜200℃がより好ましく、100℃〜190℃が更に好ましい、80℃以上であれば共重合反応が不十分になることも無く、210℃以下であれば、共重合体の分解も無い。
尚、本発明の共重合体は、必要に応じて、例えば、酸化防止剤、熱安定剤、滑剤、粘着付与剤、可塑剤、架橋剤、粘度調整剤、静電気防止剤、抗菌剤、消泡剤、分散剤、重合禁止剤、等の各種添加剤を含んでいてもよい。
The solvent used for synthesizing the copolymer is not particularly limited as long as the monomer used is soluble, but specific reaction solvents include N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl. A suitable one can be selected from aprotic polar solvents such as sulfoxide, N-methyl-2-pyrrolidone, hexamethylphosphonamide, and γ-butyrolactone. A plurality of these solvents may be used as a mixture within a possible range.
The amount of solvent can be used in the range of 0.1 to 100 times the total mass of the monomer and catalyst to be reacted.
The reaction temperature of the copolymer is preferably 80 ° C. to 210 ° C., more preferably 90 ° C. to 200 ° C., further preferably 100 ° C. to 190 ° C. If 80 ° C. or higher, the copolymerization reaction will be insufficient. If it is 210 degrees C or less, there is no decomposition | disassembly of a copolymer.
The copolymer of the present invention can be used, for example, as necessary, for example, antioxidants, heat stabilizers, lubricants, tackifiers, plasticizers, crosslinking agents, viscosity modifiers, antistatic agents, antibacterial agents, antifoaming agents. Various additives such as an agent, a dispersant, and a polymerization inhibitor may be included.

<触媒層>
触媒層に使用される触媒物質としては、例えば、白金,ロジウム,ルテニウム,イリジウム,パラジウム,オスニウム等の白金族金属及びその合金が適している。これら触媒物質及び触媒物質の塩類を、単独又は混合して用いてもよい。中でも、金属塩や錯体、特に[Pt(NH]X又は[Pt(NH]X(Xは1価の陰イオン)であらわされるアンミン錯体が好ましい。
また、触媒として金属化合物を用いる場合、いくつかの化合物の混合物を用いても良いし、複塩でもよい。例えば、白金化合物とルテニウム化合物を混ぜて用いることで、還元工程により、白金−ルテニウム合金の形成が期待できる。
<Catalyst layer>
As the catalyst material used in the catalyst layer, for example, platinum group metals such as platinum, rhodium, ruthenium, iridium, palladium, osnium, and alloys thereof are suitable. These catalyst materials and salts of the catalyst materials may be used alone or in combination. Among them, metal salts and complexes, particularly ammine complexes represented by [Pt (NH 3 ) 4 ] X 2 or [Pt (NH 3 ) 6 ] X 4 (X is a monovalent anion) are preferable.
Moreover, when using a metal compound as a catalyst, the mixture of several compounds may be used and double salt may be sufficient. For example, by using a mixture of a platinum compound and a ruthenium compound, formation of a platinum-ruthenium alloy can be expected by a reduction process.

触媒の粒径は、特に限定されないが、触媒活性の大きくなる適当な大きさの観点から、平均粒径が、0.5〜20nmであることが好ましい。尚、K. Kinoshita等の研究(J. Electrochem. Soc., 137, 845(1990))では、酸素の還元に対して、活性の高い白金の粒径は、3nm程度であることが報告されている。   The particle size of the catalyst is not particularly limited, but it is preferable that the average particle size is 0.5 to 20 nm from the viewpoint of an appropriate size that increases the catalyst activity. K.K. In a study by Kinoshita et al. (J. Electrochem. Soc., 137, 845 (1990)), it is reported that the particle size of platinum having a high activity for oxygen reduction is about 3 nm.

本発明で用いる触媒には、更に助触媒を添加することができる。助触媒としては、微粉状炭素が挙げられる。微粉状炭素としては、共存する触媒が高い活性を示すものが好ましく、例えば、触媒として白金族金属の化合物を用いる場合には、Denka Black, Valcan XC−72,Black Pearl 2000等の、アセチレンブラック等が適当である。   A cocatalyst can be further added to the catalyst used in the present invention. Examples of the cocatalyst include finely divided carbon. The finely divided carbon is preferably one in which the coexisting catalyst exhibits high activity. For example, when a platinum group metal compound is used as the catalyst, acetylene black such as Denka Black, Valcan XC-72, Black Pearl 2000, etc. Is appropriate.

触媒の量は、付着方法等により異なるが、ガス拡散層の表面に例えば、0.02〜20mg/cmの範囲で付着されていることが適当である。また、電極の総量に対し、例えば、0.01〜10質量%、好ましくは、0.3〜5質量%の量で存在することが適当である。 The amount of the catalyst varies depending on the deposition method and the like, but it is appropriate that the catalyst is deposited on the surface of the gas diffusion layer in the range of 0.02 to 20 mg / cm 2 , for example. Moreover, it is appropriate that it exists in the quantity of 0.01-10 mass% with respect to the total amount of an electrode, for example, Preferably, it is 0.3-5 mass%.

<ガス拡散層>
ガス拡散層としては、例えば、カーボン繊維織布、カーボンペーパー等、通気性を有する既知の基体が使用され得る。好ましくは、これらの基体等を撥水処理したものが使用される。撥水処理は、例えば、これら基体を、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体等の、フッ素樹脂等からなる撥水剤の水溶液中に浸漬し、乾燥し、焼成することにより行われる。
<Gas diffusion layer>
As the gas diffusion layer, for example, a known substrate having air permeability such as a carbon fiber woven fabric or carbon paper can be used. Preferably, those substrates and the like that have been subjected to water repellent treatment are used. The water repellent treatment is performed, for example, by immersing these substrates in an aqueous solution of a water repellent made of fluororesin such as polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, drying, and firing. Is done.

<電極>
電極は、ガス拡散層と、このガス拡散層上及び/又は内部に設けた触媒層とを有する。
得られる電極は、多孔質である。電極の平均孔直径は、例えば、0.01〜50μm、好ましくは0.1〜40μmであることが適当である。更に、電極の間隙率は、例えば、10〜99%、好適には、10〜60%であることが適当である。
<Electrode>
The electrode includes a gas diffusion layer and a catalyst layer provided on and / or in the gas diffusion layer.
The resulting electrode is porous. The average pore diameter of the electrode is, for example, 0.01 to 50 μm, preferably 0.1 to 40 μm. Furthermore, the porosity of the electrode is, for example, 10 to 99%, preferably 10 to 60%.

<膜電極接合体>
本発明の膜電極接合体は、電解質膜上に、上記電極を設けることにより製造される。好ましくは、電解質膜側に電極の触媒層側が接合される。この、膜電極接合体の製造方法としては、たとえば以下の3つの方法が挙げられる。
(A)スプレーコート法:電解質膜上に、直接触媒物質を適用して触媒層を形成し、更に、形成した触媒層上にガス拡散層を形成する方法。例えば、特表2000−516014号公報に記載の方法により、イオン交換基を有するパーフルオロカーボンポリマー、白金族触媒、微粉状炭素(カーボンブラック)その他添加物を含む触媒物質を、電解質膜上に塗布、噴霧、印刷等することにより触媒層を形成し、この触媒層上に、ガス拡散層を熱プレス等により加熱圧着する方法がある。
(B)GDEの接合:ガス拡散層を触媒物質の溶液に浸漬等させて、予め電極を作製し、得られた電極を電解質膜上に設ける方法。例えば、可溶性白金族塩の溶液(ペースト)に、ガス拡散層を浸漬し、可溶性白金族塩をガス拡散層上及び内に吸着(イオン交換)させる。次いで、ヒドラジン、NaBOのような、還元剤溶液に浸漬してガス拡散層上に触媒となる金属を析出させる方法がある。
(C)転写法:予め基板上に触媒物質を適用して触媒層を作製し、得られた触媒層を電解質膜上に転写し、更に形成した触媒層上にガス拡散層を形成する方法。例えば、予めポリ四弗化エチレンと、トーマス法等で合成した白金黒とを均一に混合し、フッ素樹脂シート基板上に適用して加圧成形した後、電解質膜上に転写し、更にガス拡散層を配置し、得られた積層物を加圧圧着する方法がある。
<Membrane electrode assembly>
The membrane / electrode assembly of the present invention is produced by providing the electrode on an electrolyte membrane. Preferably, the catalyst layer side of the electrode is joined to the electrolyte membrane side. Examples of the method for producing the membrane electrode assembly include the following three methods.
(A) Spray coating method: a method in which a catalyst layer is directly formed on an electrolyte membrane to form a catalyst layer, and further a gas diffusion layer is formed on the formed catalyst layer. For example, according to the method described in JP 2000-516014 A, a catalyst material containing a perfluorocarbon polymer having an ion exchange group, a platinum group catalyst, finely divided carbon (carbon black) and other additives is applied on the electrolyte membrane. There is a method in which a catalyst layer is formed by spraying, printing or the like, and a gas diffusion layer is thermocompression-bonded on the catalyst layer by hot pressing or the like.
(B) GDE bonding: A method in which an electrode is prepared in advance by immersing the gas diffusion layer in a catalyst material solution, and the obtained electrode is provided on the electrolyte membrane. For example, the gas diffusion layer is immersed in a solution (paste) of a soluble platinum group salt to adsorb (ion exchange) the soluble platinum group salt on and in the gas diffusion layer. Next, there is a method in which a metal serving as a catalyst is deposited on the gas diffusion layer by dipping in a reducing agent solution such as hydrazine or Na 2 BO 4 .
(C) Transfer method: A method in which a catalyst layer is prepared in advance on a substrate to produce a catalyst layer, the obtained catalyst layer is transferred onto an electrolyte membrane, and a gas diffusion layer is formed on the formed catalyst layer. For example, polytetrafluoroethylene in advance and platinum black synthesized by the Thomas method, etc., are uniformly mixed, applied onto a fluororesin sheet substrate, press-molded, transferred onto the electrolyte membrane, and further gas diffusion There is a method in which layers are arranged and the obtained laminate is pressure-bonded.

より好ましい本発明の膜電極接合体の製造方法としては、触媒物質とガス拡散層材料とを含む電極材料を、直接電解質膜上に適用する方法が挙げられる。具体的には、触媒物質として、白金−ルテニウム(Pt−Ru)、白金(Pt)等の触媒物質を担持した触媒担持カーボン粒子又は触媒黒を用い、この触媒物質を、水のような溶媒、電解質のような結着剤、及び任意にガス拡散層の製造に使用されるポリテトラフルオロエチレン(PTFE)粒子のような撥水剤と共に混合して触媒スラリーを作製する。この触媒スラリーを、直接本発明の電解質膜上に塗布あるいは噴霧により適用して製膜し、その後、加熱乾燥して、電解質膜上に触媒層(撥水剤を含む場合は、ガス拡散層の一部をなす撥水性層を含む)を形成する。この触媒層上に、任意に撥水処理された、カーボンペーパー等のガス拡散層を熱プレス等することによって、電極が作製される。   A more preferable method for producing a membrane / electrode assembly of the present invention includes a method in which an electrode material containing a catalyst substance and a gas diffusion layer material is directly applied on an electrolyte membrane. Specifically, catalyst-supported carbon particles or catalyst black supporting a catalyst material such as platinum-ruthenium (Pt-Ru) or platinum (Pt) is used as the catalyst material. A catalyst slurry is made by mixing with a binder such as an electrolyte and optionally a water repellent such as polytetrafluoroethylene (PTFE) particles used in the manufacture of the gas diffusion layer. The catalyst slurry is directly applied or sprayed onto the electrolyte membrane of the present invention to form a film, and then heated and dried to form a catalyst layer on the electrolyte membrane (in the case of containing a water repellent, the gas diffusion layer). A part of the water-repellent layer is formed). On this catalyst layer, an electrode is produced by subjecting a gas diffusion layer, such as carbon paper, optionally subjected to water repellent treatment to hot pressing.

このときの触媒層の厚さは、例えば、0.1〜1000μm、好ましくは、1〜500μm、より好ましくは2〜200μmであることが適当である。
上記触媒スラリーは、粘度を、0.1〜1000Pa・sの範囲に調節しておくことが望ましい。この粘度は、(a)各粒子サイズを選択するか、(b)触媒の粒子と結着剤との組成を調節するか、(c)水の含有量を調節するか、或は(d)好適には粘度調節剤、例えばカルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース又はセルロース等、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム又はポリメチルビニルエーテル等を、添加すること等で調節可能である。
The thickness of the catalyst layer at this time is suitably, for example, 0.1 to 1000 μm, preferably 1 to 500 μm, more preferably 2 to 200 μm.
As for the said catalyst slurry, it is desirable to adjust the viscosity to the range of 0.1-1000 Pa.s. This viscosity is either (a) selecting each particle size, (b) adjusting the composition of the catalyst particles and the binder, (c) adjusting the water content, or (d) Preferably, it can be adjusted by adding a viscosity modifier such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose or cellulose, polyethylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate or polymethyl vinyl ether.

以下、実施例を挙げて、本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。本実施例で得られたMEAの評価方法を以下に示す。
<測定方法および評価方法>
(1)イオン交換当量質量の測定
スルホン酸型にしたポリマーフィルムを、100℃で24時間減圧乾燥後、アルゴン雰囲気のグローブボックス中に移し、30分放置してから質量を測定した。これを1.0mol/l(リットル)の食塩水中に加え、水酸化カリウムの、0.05mol/l(リットル)エタノール溶液で滴定を行った。pH7になった時点を当量点とし、そのとき加えた水酸化カリウムの量から、イオン交換容量を算出した。
イオン交換容量の計算式:
イオン交換容量[meq/g]=0.05[mmol/ml]×水酸化カリウムの滴定量[ml]/ポリマーフィルムの重量[g]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these. An evaluation method of MEA obtained in this example is shown below.
<Measurement method and evaluation method>
(1) Measurement of ion exchange equivalent mass The polymer film made into the sulfonic acid type was dried under reduced pressure at 100 ° C for 24 hours, then transferred to a glove box in an argon atmosphere, and allowed to stand for 30 minutes, and then the mass was measured. This was added to 1.0 mol / l (liter) saline and titrated with a 0.05 mol / l (liter) ethanol solution of potassium hydroxide. The time when the pH reached 7 was taken as the equivalent point, and the ion exchange capacity was calculated from the amount of potassium hydroxide added at that time.
Formula for calculating ion exchange capacity:
Ion exchange capacity [meq / g] = 0.05 [mmol / ml] × potassium hydroxide titration [ml] / weight of polymer film [g]

(実施例1)
<共重合体の合成>
ディーンスタークトラップ、コンデンサー、撹拌機及び窒素供給管を備えた200mLの4つ口丸底フラスコに、4,4’−ジクロロ−3,3’−ジスルホン酸ナトリウムジフェニルスルホン:1水和物(15.28g、0.03モル)、4,4’−ジクロロジフェニルスルホン(5.74g、0.02モル)、BisP−DED(本州化学工業株式会社製商品名、16.32g、0.05モル)、炭酸カリウム(8.29g、0.06モル)、N−メチルピロリドン:55mL、トルエン:43mLを入れ、160℃に加熱して2時間撹拌した後、温度を190℃に昇温して、トルエンを留去しながら16時間撹拌した。冷却後、この溶液を1000mLの水中に注ぎ、化合物を析出させた後、ろ過し精製水で十分に洗浄後、140℃の熱風乾燥機で5時間乾燥することで、目的物である共重合体を得た。
収量:13.1g、収率:39.5%、数平均分子量:54000、分散度:4.5
イオン交換当量質量値(EW値):485
構造式:以下の化学式(4)のとおり。
Example 1
<Synthesis of copolymer>
A 200 mL 4-neck round bottom flask equipped with a Dean-Stark trap, condenser, stirrer and nitrogen supply tube was charged with sodium 4,4′-dichloro-3,3′-disulfonate diphenylsulfone monohydrate (15. 28 g, 0.03 mol), 4,4′-dichlorodiphenyl sulfone (5.74 g, 0.02 mol), BisP-DED (trade name, 16.32 g, 0.05 mol) manufactured by Honshu Chemical Industry Co., Ltd. Potassium carbonate (8.29 g, 0.06 mol), N-methylpyrrolidone: 55 mL, toluene: 43 mL were added, heated to 160 ° C. and stirred for 2 hours, then the temperature was raised to 190 ° C. and toluene was added. The mixture was stirred for 16 hours while distilling off. After cooling, the solution is poured into 1000 mL of water to precipitate the compound, filtered, sufficiently washed with purified water, and then dried in a hot air dryer at 140 ° C. for 5 hours to obtain the desired copolymer. Got.
Yield: 13.1 g, Yield: 39.5%, Number average molecular weight: 54000, Dispersity: 4.5
Ion exchange equivalent mass value (EW value): 485
Structural formula: As shown in the following chemical formula (4).

Figure 2010108626
Figure 2010108626

<バインダワニスの調製>
実施例1で得られた共重合体:5gに、メチルセルソルブ:45g加え、室温(25℃)で24時間撹拌し、溶解させ、5質量%になるようにバインダワニスを調製した。
<Preparation of binder varnish>
45 g of methyl cellosolve was added to 5 g of the copolymer obtained in Example 1, and the mixture was stirred for 24 hours at room temperature (25 ° C.), dissolved, and a binder varnish was prepared to 5 mass%.

<電解質膜の調製>
ディーンスタークトラップ、コンデンサー、撹拌機及び窒素供給管を備えた1000mLの4つ口丸底フラスコに、4,4’−ジクロロ−3,3’−ジスルホン酸ナトリウムジフェニルスルホン:1水和物(76.4g、0.150モル)、4,4’−ジクロロジフェニルスルホン(21.54g、0.750モル)、4,4’−ジヒドロキシビフェニル(46.55g、0.250モル)、炭酸カリウム(41.46g、0.30モル)、N−メチルピロリドン:230mL、トルエン:270mLを入れ、160℃に加熱して2時間撹拌した後、温度を190℃に昇温して、トルエンを留去しながら16時間撹拌した。この時のポリマーの数平均分子量は、1770であった。110℃に冷却し、ジフルオロビフェニルスルホン(6.36g、0.025モル)と、N−メチルピロリドン:230mLを加え、1時間撹拌した後、180℃で25時間撹拌した。冷却後、この溶液を、2500mLの水中に注ぎ、化合物を析出させた後、ろ過し精製水で十分に洗浄後、140℃の熱風乾燥機で5時間乾燥することで、目的物である共重合体を得た。
収量:137.7g、収率:93.5%、数平均分子量:141390、分散度:6.2
イオン交換当量質量値(EW値):414
構造式:以下の化学式(5)のとおり。
<Preparation of electrolyte membrane>
To a 1000 mL four-necked round bottom flask equipped with a Dean-Stark trap, condenser, stirrer and nitrogen supply tube was added sodium 4,4′-dichloro-3,3′-disulfonate diphenylsulfone monohydrate (76.76). 4 g, 0.150 mol), 4,4′-dichlorodiphenylsulfone (21.54 g, 0.750 mol), 4,4′-dihydroxybiphenyl (46.55 g, 0.250 mol), potassium carbonate (41.4 mol). 46 g, 0.30 mol), N-methylpyrrolidone: 230 mL, toluene: 270 mL, heated to 160 ° C. and stirred for 2 hours, then the temperature was raised to 190 ° C., while toluene was distilled off. Stir for hours. The number average molecular weight of the polymer at this time was 1770. After cooling to 110 ° C., difluorobiphenyl sulfone (6.36 g, 0.025 mol) and N-methylpyrrolidone: 230 mL were added and stirred for 1 hour, and then stirred at 180 ° C. for 25 hours. After cooling, this solution is poured into 2500 mL of water to precipitate the compound, filtered, sufficiently washed with purified water, and then dried in a hot air dryer at 140 ° C. for 5 hours, whereby the target co-polymer is recovered. Coalescence was obtained.
Yield: 137.7 g, Yield: 93.5%, Number average molecular weight: 141390, Dispersity: 6.2
Ion exchange equivalent mass value (EW value): 414
Structural formula: As shown in the following chemical formula (5).

Figure 2010108626
Figure 2010108626

<電解質膜の作製>
得られた共重合体:15gを、N−メチルピロリドン:85gに溶解させた後、1000メッシュのフィルターを用いて加圧濾過し、更に遊星攪拌型の脱泡装置で脱泡した。この溶液をガラス板上に、ギャップ400μmのバーコーターを用いて流延した後、熱風型乾燥機で、60℃−15分、80℃−15分、100℃−15分乾燥させた。
乾燥機から取り出した後、膜をガラス板から剥離し、ステンレス製の枠に固定して、再び乾燥機の中に投じ、160℃−30分、200℃−30分乾燥した。室温(25℃)に冷却後、膜を枠から取り外し、10質量%硫酸水溶液に、12時間室温(25℃)で含浸した。蒸留水で洗浄した後、膜に付着した水分を濾紙(No.5A)で拭き取り電解質膜を作製した。
<Preparation of electrolyte membrane>
After 15 g of the obtained copolymer was dissolved in 85 g of N-methylpyrrolidone, it was filtered under pressure using a 1000 mesh filter and further defoamed with a planetary stirring type defoaming device. This solution was cast on a glass plate using a bar coater having a gap of 400 μm, and then dried with a hot air dryer at 60 ° C. for 15 minutes, 80 ° C. for 15 minutes, and 100 ° C. for 15 minutes.
After taking out from the dryer, the film was peeled off from the glass plate, fixed to a stainless steel frame, poured again into the dryer, and dried at 160 ° C.-30 minutes and 200 ° C.-30 minutes. After cooling to room temperature (25 ° C.), the membrane was removed from the frame and impregnated with a 10% by mass sulfuric acid aqueous solution for 12 hours at room temperature (25 ° C.). After washing with distilled water, the water adhering to the membrane was wiped off with filter paper (No. 5A) to produce an electrolyte membrane.

<膜電極接合体の調製>
白金担持量が、50質量%である触媒担持カーボン粒子(田中貴金属株式会社製、商品名:TEC10V50E):1.0gを水に湿らせた後に、ナフィオン(デュポン株式会社製商品名)溶液(5質量%):10gを、均一になるように混合分散することによって、触媒ペーストA(粘度:3.0Pa・s)を調製した。
次いで、スプレーコーター(ノードソン株式会社製、商品名:スラリー塗布装置III)を用いて、この触媒ペーストAを、実施例1で得られた電解質膜上の片側に塗布、乾燥することにより、触媒層Aを形成した。また、白金担持量が、30質量%、ルテニウム担持量が、24質量%である触媒担持カーボン粒子(田中貴金属株式会社製、商品名:TEC61E54):1.0gを水に湿らせた後に、実施例1で得られたバインダワニス:8gを、均一になるように混合分散することによって、触媒ペーストB(粘度:3.5Pa・s)を調製した。この触媒ペーストBを、スプレーコーターを用いて塗布、乾燥することにより、実施例1で得られた電解質膜上の触媒層Aの反対側に、触媒層Bを形成し、実施例1で得られた電解質膜の両側に触媒層A及びBを形成し、膜電極接合体を得た。
続けて、平板プレスのプレス板の間に、調製した膜電極接合体を挟持し、120℃、5MPaの条件で、3分間挟持することで、膜電極接合体1(触媒層A膜厚:150μm、触媒層B膜厚:150μm)を調製した。
<Preparation of membrane electrode assembly>
Catalyst supported carbon particles having a platinum loading of 50% by mass (trade name: TEC10V50E, manufactured by Tanaka Kikinzoku Co., Ltd.): After 1.0 g is dampened in water, a Nafion (trade name, manufactured by DuPont Co., Ltd.) solution (5 (Mass%): Catalyst paste A (viscosity: 3.0 Pa · s) was prepared by mixing and dispersing 10 g in a uniform manner.
Then, using a spray coater (manufactured by Nordson Co., Ltd., trade name: slurry coating apparatus III), the catalyst paste A is applied to one side on the electrolyte membrane obtained in Example 1 and dried to form a catalyst layer. A was formed. In addition, the catalyst-carrying carbon particles (trade name: TEC61E54, manufactured by Tanaka Kikinzoku Co., Ltd.) having a platinum-carrying amount of 30% by mass and a ruthenium-carrying amount of 24% by mass were wetted with 1.0 g. Catalyst paste B (viscosity: 3.5 Pa · s) was prepared by mixing and dispersing 8 g of the binder varnish obtained in Example 1 so as to be uniform. By applying and drying this catalyst paste B using a spray coater, a catalyst layer B is formed on the opposite side of the catalyst layer A on the electrolyte membrane obtained in Example 1, and obtained in Example 1. Catalyst layers A and B were formed on both sides of the electrolyte membrane to obtain a membrane electrode assembly.
Subsequently, the prepared membrane electrode assembly is sandwiched between press plates of a flat plate press, and is sandwiched for 3 minutes at 120 ° C. and 5 MPa, whereby the membrane electrode assembly 1 (catalyst layer A film thickness: 150 μm, catalyst) Layer B film thickness: 150 μm) was prepared.

<燃料電池の作製>
図1に示すように、実施例1で得られた膜電極接合体(MEA1)の両側に、燃料漏れ防止用のシール材(ポリテトラフルオロエチレンシート)2を配置し、このシール材2の一方にアノード側のセパレータ3、他方にカソード側のセパレータ3を設置し、このセパレータ3の各々に集電板4を、配置する。
最後に全体を専用のボルトで固定し、燃料電池(Electrochem,Inc.製、商品名:FC05−01SP−REF、電極面積:5cm、電極平均細孔径:2μm、電極間隙率:40%、サーペンタインフロー)を作製した。
<Fabrication of fuel cell>
As shown in FIG. 1, a sealing material (polytetrafluoroethylene sheet) 2 for preventing fuel leakage is disposed on both sides of the membrane electrode assembly (MEA1) obtained in Example 1, and one of the sealing materials 2 is disposed. The separator 3 on the anode side is disposed on the cathode side, the separator 3 on the cathode side is disposed on the other side, and the current collector plate 4 is disposed on each separator 3.
Finally, the whole was fixed with a special bolt, and a fuel cell (manufactured by Electrochem, Inc., trade name: FC05-01SP-REF, electrode area: 5 cm 2 , electrode average pore diameter: 2 μm, electrode porosity: 40%, serpentine Flow).

(実施例2)
<共重合体の合成>
ディーンスタークトラップ、コンデンサー、撹拌機及び窒素供給管を備えた200mLの4つ口丸底フラスコに、4,4’−ジクロロ−3,3’−ジスルホン酸ナトリウムジフェニルスルホン:1水和物(15.28g、0.03モル)、4,4’−ジクロロジフェニルスルホン(5.74g、0.02モル)、4,4’−(2−エチルヘキシリデン)ジフェノール(14.92g、0.05モル)、炭酸カリウム(8.29g、0.06モル)、N−メチルピロリドン:55mL、トルエン:43mLを入れ、160℃に加熱して2時間撹拌した後、温度を190℃に昇温して、トルエンを留去しながら15時間撹拌した。冷却後、この溶液を1000mLの水中に注ぎ、化合物を析出させた後、ろ過し精製水で十分に洗浄後、140℃の熱風乾燥機で5時間乾燥することで、目的物である共重合体を得た。
収量:29.2g、収率:91.9%、数平均分子量:37800、分散度:2.3
イオン交換当量質量値(EW値):632
構造式:以下の化学式(6)のとおり。
(Example 2)
<Synthesis of copolymer>
A 200 mL 4-neck round bottom flask equipped with a Dean-Stark trap, condenser, stirrer and nitrogen supply tube was charged with sodium 4,4′-dichloro-3,3′-disulfonate diphenylsulfone monohydrate (15. 28 g, 0.03 mol), 4,4′-dichlorodiphenylsulfone (5.74 g, 0.02 mol), 4,4 ′-(2-ethylhexylidene) diphenol (14.92 g, 0.05) Mol), potassium carbonate (8.29 g, 0.06 mol), N-methylpyrrolidone: 55 mL, toluene: 43 mL, heated to 160 ° C. and stirred for 2 hours, then the temperature was raised to 190 ° C. The mixture was stirred for 15 hours while distilling off toluene. After cooling, the solution is poured into 1000 mL of water to precipitate the compound, filtered, sufficiently washed with purified water, and then dried in a hot air dryer at 140 ° C. for 5 hours to obtain the desired copolymer. Got.
Yield: 29.2 g, Yield: 91.9%, Number average molecular weight: 37800, Dispersity: 2.3
Ion exchange equivalent mass value (EW value): 632
Structural formula: As shown in chemical formula (6) below.

Figure 2010108626
Figure 2010108626

<バインダワニスの調製>
実施例1で得られた共重合体の代わりに、前述した実施例2で得られた共重合体を用いた以外は、実施例1と同様にして、バインダワニスを調製した。
<Preparation of binder varnish>
A binder varnish was prepared in the same manner as in Example 1, except that the copolymer obtained in Example 2 was used instead of the copolymer obtained in Example 1.

<膜電極接合体の調製>
実施例1で得られたバインダワニスの代わりに、実施例2で得られたバインダワニスを用いた以外は、実施例1と同様にして、膜電極接合体2を作製した。
<Preparation of membrane electrode assembly>
A membrane / electrode assembly 2 was produced in the same manner as in Example 1, except that the binder varnish obtained in Example 2 was used instead of the binder varnish obtained in Example 1.

<燃料電池の作製>
実施例2で得られた膜電極接合体2を用いた以外は、実施例1と同様にして燃料電池を作製した。
<Fabrication of fuel cell>
A fuel cell was produced in the same manner as in Example 1 except that the membrane / electrode assembly 2 obtained in Example 2 was used.

(比較例1)
<共重合体の合成>
ディーンスタークトラップ、コンデンサー、撹拌機及び窒素供給管を備えた1000mLの4つ口丸底フラスコに、4,4’−ジクロロ−3,3’−ジスルホン酸ナトリウムジフェニルスルホン:1水和物(76.4g、0.150モル)、4,4’−ジクロロジフェニルスルホン(21.54g、0.750モル)、4,4’−ジヒドロキシビフェニル(46.55g、0.250モル)、炭酸カリウム(41.46g、0.30モル)、N−メチルピロリドン:230mL、トルエン:270mLを入れ、160℃に加熱して2時間撹拌した後、温度を190℃に昇温して、トルエンを留去しながら16時間撹拌した。この時のポリマーの数平均分子量は、1770であった。110℃に冷却し、ジフルオロビフェニルスルホン(6.36g、0.025モル)と、N−メチルピロリドン:230mLを加え、1時間撹拌した後、180℃で25時間撹拌した。冷却後、この溶液を2500mLの水中に注ぎ、化合物を析出させた後、ろ過し精製水で十分に洗浄後、140℃の熱風乾燥機で5時間乾燥することで、目的物である共重合体を得た。
収量:137.7g、収率:93.5%、数平均分子量:141390、分散度:6.2
イオン交換当量質量値(EW値):414
構造式:以下の一般式(7)のとおり。
(Comparative Example 1)
<Synthesis of copolymer>
To a 1000 mL four-necked round bottom flask equipped with a Dean-Stark trap, condenser, stirrer and nitrogen supply tube was added sodium 4,4′-dichloro-3,3′-disulfonate diphenylsulfone monohydrate (76.76). 4 g, 0.150 mol), 4,4′-dichlorodiphenylsulfone (21.54 g, 0.750 mol), 4,4′-dihydroxybiphenyl (46.55 g, 0.250 mol), potassium carbonate (41.4 mol). 46 g, 0.30 mol), N-methylpyrrolidone: 230 mL, toluene: 270 mL, heated to 160 ° C. and stirred for 2 hours, then the temperature was raised to 190 ° C., while toluene was distilled off. Stir for hours. The number average molecular weight of the polymer at this time was 1770. After cooling to 110 ° C., difluorobiphenyl sulfone (6.36 g, 0.025 mol) and N-methylpyrrolidone: 230 mL were added and stirred for 1 hour, and then stirred at 180 ° C. for 25 hours. After cooling, this solution is poured into 2500 mL of water, the compound is precipitated, filtered, sufficiently washed with purified water, and then dried in a hot air dryer at 140 ° C. for 5 hours to obtain the desired copolymer. Got.
Yield: 137.7 g, Yield: 93.5%, Number average molecular weight: 141390, Dispersity: 6.2
Ion exchange equivalent mass value (EW value): 414
Structural formula: As shown in the following general formula (7).

Figure 2010108626
Figure 2010108626

<バインダワニスの調製>
実施例1で得られた共重合体の代わりに、比較例1で得られた共重合体を用いた以外は、実施例1と同様にして、バインダワニスを調製した。
<Preparation of binder varnish>
A binder varnish was prepared in the same manner as in Example 1 except that the copolymer obtained in Comparative Example 1 was used instead of the copolymer obtained in Example 1.

<膜電極接合体の調製>
実施例1で得られたバインダワニスの代わりに、比較例1で得られたバインダワニスを用いた以外は、実施例1と同様にして、膜電極接合体3を作製した。
<Preparation of membrane electrode assembly>
A membrane / electrode assembly 3 was produced in the same manner as in Example 1 except that the binder varnish obtained in Comparative Example 1 was used instead of the binder varnish obtained in Example 1.

<燃料電池の作製>
比較例1で得られた膜電極接合体3を用いた以外は、実施例1と同様にして燃料電池を作製した。
<Fabrication of fuel cell>
A fuel cell was produced in the same manner as in Example 1 except that the membrane / electrode assembly 3 obtained in Comparative Example 1 was used.

(比較例2)
<共重合体の合成>
ディーンスタークトラップ、コンデンサー、撹拌機及び窒素供給管を備えた200mLの4つ口丸底フラスコに、4,4’−ジクロロ−3,3’−ジスルホン酸ナトリウムジフェニルスルホン:1水和物(15.28g、0.03モル)、4,4’−ジクロロジフェニルスルホン(5.74g、0.02モル)、BisP−AP(本州化学工業株式会社製商品名、14.52g、0.05モル)、炭酸カリウム(8.29g、0.06モル)、N−メチルピロリドン:55mL、トルエン:43mLを入れ、160℃に加熱して2時間撹拌した後、温度を190℃に昇温して、トルエンを留去しながら16時間撹拌した。冷却後、この溶液を1000mLの水中に注ぎ、化合物を析出させた後、ろ過し精製水で十分に洗浄後、140℃の熱風乾燥機で5時間乾燥することで、目的物である共重合体を得た。
収量:28.1g、収率:89.5%、数平均分子量:48500、分散度:2.7
イオン交換当量質量値(EW値):634
構造式:以下の一般式(8)のとおり。
(Comparative Example 2)
<Synthesis of copolymer>
A 200 mL 4-neck round bottom flask equipped with a Dean-Stark trap, condenser, stirrer and nitrogen supply tube was charged with sodium 4,4′-dichloro-3,3′-disulfonate diphenylsulfone monohydrate (15. 28 g, 0.03 mol), 4,4′-dichlorodiphenyl sulfone (5.74 g, 0.02 mol), BisP-AP (trade name, 14.52 g, 0.05 mol manufactured by Honshu Chemical Industry Co., Ltd.), Potassium carbonate (8.29 g, 0.06 mol), N-methylpyrrolidone: 55 mL, toluene: 43 mL were added, heated to 160 ° C. and stirred for 2 hours, then the temperature was raised to 190 ° C. and toluene was added. The mixture was stirred for 16 hours while distilling off. After cooling, the solution is poured into 1000 mL of water to precipitate the compound, filtered, sufficiently washed with purified water, and then dried in a hot air dryer at 140 ° C. for 5 hours to obtain the desired copolymer. Got.
Yield: 28.1 g, Yield: 89.5%, Number average molecular weight: 48500, Dispersity: 2.7
Ion exchange equivalent mass value (EW value): 634
Structural formula: As shown in the following general formula (8).

Figure 2010108626
Figure 2010108626

<バインダワニスの調製>
実施例1で得られた共重合体の代わりに、比較例2で得られた共重合体を用いた以外は、実施例1と同様にして、バインダワニスを調製した。
<Preparation of binder varnish>
A binder varnish was prepared in the same manner as in Example 1 except that the copolymer obtained in Comparative Example 2 was used instead of the copolymer obtained in Example 1.

<膜電極接合体の調製>
実施例1で得られたバインダワニスの代わりに、比較例2で得られたバインダワニスを用いた以外は、実施例1と同様にして、膜電極接合体4を作製した。
<Preparation of membrane electrode assembly>
A membrane / electrode assembly 4 was produced in the same manner as in Example 1 except that the binder varnish obtained in Comparative Example 2 was used instead of the binder varnish obtained in Example 1.

<燃料電池の作製>
比較例2で得られた膜電極接合体4を用いた以外は、実施例1と同様にして燃料電池を作製した。
<Fabrication of fuel cell>
A fuel cell was produced in the same manner as in Example 1 except that the membrane electrode assembly 4 obtained in Comparative Example 2 was used.

実施例1、2及び比較例1、2で作製した燃料電池のカソード側に水素、アノード側に窒素を流し、アノード触媒層中のPtの有効触媒表面積を測定した。その結果を表1にまとめて示す。   Hydrogen was supplied to the cathode side and nitrogen was supplied to the anode side of the fuel cells prepared in Examples 1 and 2 and Comparative Examples 1 and 2, and the effective catalyst surface area of Pt in the anode catalyst layer was measured. The results are summarized in Table 1.

Figure 2010108626
Figure 2010108626

図2に実施例1、2及び比較例1の膜電極接合体を用いた燃料電池について、アノード側に、10質量%メタノール水溶液を1ml/分、カソード側に、空気を300ml/分、セル温度60℃の条件下での出力特性を示す。   For the fuel cells using the membrane electrode assemblies of Examples 1 and 2 and Comparative Example 1 in FIG. 2, 10% by mass methanol aqueous solution is 1 ml / min on the anode side, air is 300 ml / min on the cathode side, cell temperature The output characteristics under the condition of 60 ° C. are shown.

本発明の燃料電池の構造を示す概略斜視図である。It is a schematic perspective view which shows the structure of the fuel cell of this invention. 電流密度と出力密度との関係を示す図である。It is a figure which shows the relationship between a current density and an output density.

符号の説明Explanation of symbols

1…MEA、2…シール材、3…セパレータ、4…集電板 DESCRIPTION OF SYMBOLS 1 ... MEA, 2 ... Sealing material, 3 ... Separator, 4 ... Current collecting plate

Claims (8)

炭化水素系電解質膜を用いる膜電極接合体。   A membrane electrode assembly using a hydrocarbon electrolyte membrane. 請求項1において、電極に、炭化水素系バインダを用いる膜電極接合体。   2. The membrane electrode assembly according to claim 1, wherein a hydrocarbon binder is used for the electrode. 請求項2において、炭化水素系バインダが、下記の一般式(1)の構造単位を含む膜電極接合体。
Figure 2010108626
[式中Aは炭素数5〜20のアルキレン基を示す。B、C、D、Eは水素、フッ素を示す。]
3. The membrane electrode assembly according to claim 2, wherein the hydrocarbon binder includes a structural unit represented by the following general formula (1).
Figure 2010108626
[Wherein A represents an alkylene group having 5 to 20 carbon atoms. B, C, D, and E represent hydrogen and fluorine. ]
請求項2又は3において、炭化水素系バインダが、スルホン酸基、リン酸基、カルボキシル基のいずれか1以上を含む親水性部とスルホン酸基、リン酸基、又はカルボキシル基を含まない疎水性部との共重合体である膜電極接合体。   The hydrophobic binder according to claim 2 or 3, wherein the hydrocarbon binder does not contain a hydrophilic part containing at least one of a sulfonic acid group, a phosphoric acid group and a carboxyl group and a sulfonic acid group, a phosphoric acid group or a carboxyl group. Membrane electrode assembly which is a copolymer with a part. 請求項2乃至4の何れかにおいて、炭化水素系バインダの共重合成分が、下記の一般式(2)である膜電極接合体。
Figure 2010108626
[式中Aは炭素数5〜20のアルキレン基を示す。xはモル%。]
The membrane electrode assembly according to any one of claims 2 to 4, wherein the copolymerization component of the hydrocarbon binder is represented by the following general formula (2).
Figure 2010108626
[Wherein A represents an alkylene group having 5 to 20 carbon atoms. x is mol%. ]
請求項1乃至5の何れかにおいて、炭化水素系電解質膜上に、スプレーコート法、GDE法又は転写法を用いて電極が形成された膜電極接合体。   6. The membrane electrode assembly according to claim 1, wherein an electrode is formed on the hydrocarbon electrolyte membrane by using a spray coating method, a GDE method, or a transfer method. 請求項1乃至6の何れかにおいて、炭化水素系電解質膜上に、貴金属触媒を含有する触媒スラリーを噴霧塗布し、直接電解質膜上に電極が形成された膜電極接合体。   7. The membrane electrode assembly according to claim 1, wherein a catalyst slurry containing a noble metal catalyst is spray-coated on a hydrocarbon electrolyte membrane, and an electrode is directly formed on the electrolyte membrane. 請求項7において、触媒スラリーが、貴金属触媒、電解質バインダ及び溶媒を含み、貴金属触媒、電解質バインダが溶媒に溶解又は分散した膜電極接合体。   8. The membrane electrode assembly according to claim 7, wherein the catalyst slurry includes a noble metal catalyst, an electrolyte binder, and a solvent, and the noble metal catalyst and the electrolyte binder are dissolved or dispersed in the solvent.
JP2008276718A 2008-10-28 2008-10-28 Membrane electrode assembly Pending JP2010108626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008276718A JP2010108626A (en) 2008-10-28 2008-10-28 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008276718A JP2010108626A (en) 2008-10-28 2008-10-28 Membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2010108626A true JP2010108626A (en) 2010-05-13

Family

ID=42297896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008276718A Pending JP2010108626A (en) 2008-10-28 2008-10-28 Membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2010108626A (en)

Similar Documents

Publication Publication Date Title
US10135074B2 (en) Carbon powder for catalyst, catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using the carbon powder
US8399148B2 (en) Varnish for a solid polymer fuel cell
JP3737751B2 (en) Fuel cell, polymer electrolyte and ion-exchange resin used therefor
US10573901B2 (en) Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst
CA2910374C (en) Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst
US20160064744A1 (en) Catalyst and electrode catalyst layer for fuel cell having the catalyst
EP2991142A1 (en) Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US20080118808A1 (en) Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US20060280982A1 (en) Membrane-electrode assembly for solid polymer electrolyte fuel cell
US7754843B2 (en) Proton conducting aromatic polyether type copolymers bearing main and side chain pyridine groups for use in proton exchange membrane fuel cells
JP5032175B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
US9162220B2 (en) Catalyst support material comprising polyazole, electrochemical catalyst, and the preparation of a gas diffusion electrode and a membrane-electrode assembly therefrom
EP2036927B1 (en) Ionic polymer particle dispersion liquid and method for producing the same
US9095845B2 (en) Catalyst support material comprising polyazole salt, electrochemical catalyst, and the preparation of a gas diffusion electrode and a membrane-electrode assembly therefrom
JP4896435B2 (en) Electrolyte for electrode of polymer electrolyte fuel cell
JP2007207537A (en) Fuel cell, polymer electrolyte and ion-exchange resin used therefor
JP5609475B2 (en) Electrode catalyst layer, method for producing electrode catalyst layer, and polymer electrolyte fuel cell using the electrode catalyst layer
JP2008166004A (en) Membrane-electrode assembly for polymer electrolyte fuel cell
JP2010108626A (en) Membrane electrode assembly
JP2011210572A (en) Binder for membrane-electrode assembly, and membrane-electrode assembly for fuel cell
Punyawudho et al. Advancements and Challenges in Electrode and Electrolyte Materials for Proton Exchange Membrane Fuel Cells: A Comprehensive Review
US20240191373A1 (en) Catalyst ink composition and catalyst coated membranes for electrolysis
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
US20230366108A1 (en) Catalyst coated ionically conductive membrane comprising conductive polymer for water electrolysis