[go: up one dir, main page]

JP2010102206A - Solar lens - Google Patents

Solar lens Download PDF

Info

Publication number
JP2010102206A
JP2010102206A JP2008274977A JP2008274977A JP2010102206A JP 2010102206 A JP2010102206 A JP 2010102206A JP 2008274977 A JP2008274977 A JP 2008274977A JP 2008274977 A JP2008274977 A JP 2008274977A JP 2010102206 A JP2010102206 A JP 2010102206A
Authority
JP
Japan
Prior art keywords
lens
light
auxiliary
solar
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008274977A
Other languages
Japanese (ja)
Inventor
Motoaki Masuda
元昭 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008274977A priority Critical patent/JP2010102206A/en
Publication of JP2010102206A publication Critical patent/JP2010102206A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Lenses (AREA)

Abstract

【課題】太陽の方位や高度に関係なく太陽光線を集光する方法として光の全反射を応用した太陽レンズが提案されているが、逆円錐台形の主レンズの底面に円錐形の補助レンズを同軸で埋め込んだ形状の太陽レンズでは、太陽光線の高度に関係なく一部の光線が集光できずに損失する不都合があった。損失光線をより少なくできる太陽レンズを提供すること。
【解決手段】補助レンズ3の斜面7をかさ歯車のような鋸歯状に形成することで、補助斜面7に向かって進行する光線を全反射で出光面の主レンズ2側に集光させるように構成することで損失光線を抑制するものである。また、かさ歯車状の補助レンズ3にすることによって、太陽レンズ1を多段に積層した場合の表面反射損失を抑制し前記課題を解決するものである。
【選択図】図1
[PROBLEMS] To propose a solar lens that applies total reflection of light as a method of concentrating solar rays regardless of the azimuth or altitude of the sun. A conical auxiliary lens is provided on the bottom of an inverted frustoconical main lens. In the case of a solar lens embedded in the same axis, there is a disadvantage that a part of the light rays cannot be condensed and lost regardless of the altitude of the sunlight. To provide a solar lens that can reduce lost light rays.
By forming a slope 7 of an auxiliary lens 3 in a sawtooth shape like a bevel gear, a light beam traveling toward the auxiliary slope 7 is totally reflected and condensed on the main lens 2 side of the light exit surface. By configuring, the loss of light is suppressed. Further, by using the bevel gear-shaped auxiliary lens 3, the surface reflection loss when the solar lenses 1 are stacked in multiple stages is suppressed, and the above-described problem is solved.
[Selection] Figure 1

Description

本発明は、高度と方位が常に移動している太陽光線を、静止したレンズで受光面積よりも狭い一定の範囲に集光することを目的とした太陽レンズの改良に関するものである。   The present invention relates to an improvement of a solar lens aimed at condensing a sunlight ray whose altitude and azimuth are constantly moving in a certain range narrower than a light receiving area with a stationary lens.

太陽の方位や高度に関係なく太陽光線を集光する方法として光の全反射を応用した集光方法が提案されている。
特願2007−248288 太陽レンズ
As a method for concentrating sunlight rays regardless of the direction and altitude of the sun, a condensing method using total reflection of light has been proposed.
Japanese Patent Application No. 2007-248288 Solar Lens

前記特許文献1の方法は、逆円錐台形の主レンズの底面に円錐形の補助レンズを同軸で埋め込んだ形状の太陽レンズであり、主レンズの外斜面と補助レンズの斜面がV字形に対面した単純な形状であるため、相互間で全反射を繰返した光線が主レンズの外斜面を透過して損失する割合が多く集光性能が低い欠点があった。また、集光倍率を高める場合に多段に積層すると、積層面での表面反射損失も加わって著しく性能が低下する欠点があった。本発明はこの光線損失を低減することが課題である。   The method of Patent Document 1 is a solar lens in which a conical auxiliary lens is coaxially embedded in the bottom surface of an inverted frustoconical main lens, and the outer slope of the main lens and the slope of the auxiliary lens face each other in a V shape. Since it has a simple shape, there is a drawback in that the light collection performance is low due to the large proportion of light rays that have undergone total reflection between them transmitted through the outer slope of the main lens. In addition, when the light collecting magnification is increased, if it is laminated in multiple stages, there is a drawback that the performance is remarkably lowered due to the addition of surface reflection loss on the laminated surface. An object of the present invention is to reduce this light loss.

補助レンズの斜面をかさ歯車のような鋸歯状に形成することで、主レンズから補助レンズに向かって進行する光線をこの鋸歯状の補助斜面で全反射を繰返させ、鋸歯状に分割された主レンズと補助レンズの境界の主レンズ側の出光面に主として集光するように構成することで前記課題を解決するものである。   By forming the inclined surface of the auxiliary lens in a sawtooth shape like a bevel gear, the light traveling from the main lens toward the auxiliary lens is repeatedly totally reflected by the auxiliary inclined surface of the sawtooth, and is divided into a sawtooth shape. The above-described problem is solved by concentrating mainly on the light exit surface on the main lens side at the boundary between the lens and the auxiliary lens.

円錐形の補助レンズでは主レンズの外斜面との間で全反射を繰返すのに対して、鋸歯状の補助レンズの補助斜面相互で全反射を繰返すことになるため、殆どの光線を出光面の主レンズ側に集光でき、主レンズの外斜面から透過して損失する光線を阻止することができる。また、太陽レンズを積層した場合に、出光面の主レンズ側と次段の主レンズを一体に形成できるため、円錐形の補助レンズで構成された太陽レンズを積層する方法に比べて段間の表面反射損失がなくなるから、多段に積層しても集光性能の低下を抑制することができる利点がある。   The conical auxiliary lens repeats total reflection with the outer slope of the main lens, whereas it repeats total reflection between the auxiliary slopes of the sawtooth auxiliary lens. Light that can be condensed on the main lens side and transmitted through the outer slope of the main lens to be lost can be blocked. In addition, when the solar lens is laminated, the main lens side of the light exit surface and the main lens of the next stage can be formed integrally, so that the interstage is larger than the method of laminating the solar lens composed of conical auxiliary lenses. Since there is no surface reflection loss, there is an advantage that deterioration of the light collecting performance can be suppressed even when stacked in multiple stages.

図1は本発明による太陽レンズ1の縦断面を示すもので、逆円錐台形の主レンズ2の底面に、円錐形の補助レンズ3を突き刺すように同軸で埋め込んで形成した断面がW字形の太陽レンズで、補助レンズの補助斜面7はかさ歯車のように鋸歯状の斜面を形成しており、主レンズと補助レンズは微少な空隙9(図示せず)で光学的に分離された構成にある。   FIG. 1 shows a longitudinal section of a solar lens 1 according to the present invention. A sun-shaped solar lens 1 having a W-shaped section formed by concentrically embedding a conical auxiliary lens 3 into the bottom surface of an inverted frustoconical main lens 2. In the lens, the auxiliary inclined surface 7 of the auxiliary lens forms a saw-toothed inclined surface like a bevel gear, and the main lens and the auxiliary lens are optically separated by a minute gap 9 (not shown). .

太陽レンズは主レンズの上面を入光面4として入射する太陽光線を、主レンズの外斜面6と補助レンズの補助斜面7で全反射をさせて太陽レンズ下面の出光面5に集光させるように構成したもので、主レンズの外斜面6と補助レンズの補助斜面7の傾斜角度α1は進行光線が全反射を繰返した後で外斜面を透過して散逸しないように適切に設定されており、全体は透明な材料で形成されている。なお、以下の説明における主レンズや補助レンズの外斜面や補助斜面の傾斜角度および光線の傾斜角度は、特に断らない限り太陽レンズを水平に設置した状態での鉛直面に対する傾斜角度で示すものとする。   In the solar lens, the incident sunlight 4 with the upper surface of the main lens as the light incident surface 4 is totally reflected on the outer inclined surface 6 of the main lens and the auxiliary inclined surface 7 of the auxiliary lens so as to be condensed on the light emitting surface 5 on the lower surface of the solar lens. The inclination angle α1 between the outer slope 6 of the main lens and the auxiliary slope 7 of the auxiliary lens is appropriately set so that the traveling light beam does not diffuse through the outer slope after repeated total reflection. The whole is made of transparent material. In the following explanation, the inclination angle of the outer and auxiliary slopes of the main lens and auxiliary lens, and the inclination angle of the light beam are indicated by the inclination angle with respect to the vertical plane when the solar lens is installed horizontally unless otherwise specified. To do.

入光面から入射する光線は、直接または主レンズの外斜面で全反射をして補助レンズの補助斜面に向かって進行することになるが、図3、図4は光線の経路を説明するために、地点m1、m2から進入する光線p1、p2の経路を、図3の下向きの成分と図4の円周方向の成分とに分けて表示したものである。   A light ray incident from the light incident surface is either directly or totally reflected at the outer slope of the main lens and travels toward the auxiliary slope of the auxiliary lens. FIGS. 3 and 4 illustrate the path of the light beam. In addition, the paths of the light rays p1 and p2 entering from the points m1 and m2 are displayed separately for the downward component in FIG. 3 and the circumferential component in FIG.

入光面に対する太陽光線の傾斜角度は最大で90度(日の出日没)であるから入光面が水平の場合、入光面から主レンズに進入する光線の傾斜角度は構成素材の臨界屈折角以下の角度で進行することになる。例えば、臨界屈折角が42度(屈折率約1.5)のアクリル樹脂を使った太陽レンズで、主レンズ外斜面の傾斜角α1が6度、入光面の傾斜角α2が90度の水平で、入射光線としては最大に屈折する水平方向からの光線(朝陽)が地点m2から半径方向に進行して外斜面に当たる場合、図3、図4の光線軌跡のように傾斜角42度で外斜面で全反射したあと反転して54度の傾斜角で補助斜面に進行する。   The maximum tilt angle of the sun rays with respect to the light entrance surface is 90 degrees (sunrise / sunset), so when the light entrance surface is horizontal, the tilt angle of the light rays entering the main lens from the light entrance surface is the critical refraction angle of the constituent material. It will proceed at the following angles. For example, in a solar lens using an acrylic resin having a critical refraction angle of 42 degrees (refractive index of about 1.5), the main lens outer slope has an inclination angle α1 of 6 degrees and a light incident surface has an inclination angle α2 of 90 degrees. When the light ray from the horizontal direction (Chaoyang) that refracts to the maximum as the incident ray travels in the radial direction from the point m2 and hits the outer slope, the incident ray goes out at an inclination angle of 42 degrees as shown in the ray trajectory of FIGS. After being totally reflected on the slope, it reverses and proceeds to the auxiliary slope at an inclination angle of 54 degrees.

補助斜面に当たる位置によって光線は様々な方向に進行するが、補助斜面は鋸歯状に全周で細かく分割されているので斜面の傾斜角度は小さく、そのために全反射を繰返したあとの光線はその殆どが出光面の主レンズ側に到達する。   The light beam travels in various directions depending on the position where it hits the auxiliary slope, but since the auxiliary slope is finely divided in a sawtooth shape around the entire circumference, the inclination angle of the slope is small, so most of the light rays after repeated total reflection Reaches the main lens side of the light exit surface.

また、補助斜面を透過して補助レンズ内に進入する一部の光線は補助レンズの内側から補助斜面で全反射を繰返す光線と、補助斜面を再び透過して外斜面に到達する光線に分けられるが、補助レンズが全体として円錐形であるため、内側で全反射を繰返す光線の傾斜角度は次第に縮小して出光面の補助レンズ側に到達して集光される。   In addition, some light rays that pass through the auxiliary slope and enter the auxiliary lens are divided into light rays that repeat total reflection on the auxiliary slope from the inside of the auxiliary lens and light rays that pass through the auxiliary slope again and reach the outer slope. However, since the auxiliary lens has a conical shape as a whole, the inclination angle of the light beam that repeats total internal reflection gradually decreases and reaches the auxiliary lens side of the light exit surface to be condensed.

補助斜面では円周方向にも全反射するため、補助レンズを再び透過して外斜面に到達する光線もその多くは外斜面で再び全反射して補助斜面に向かうが、一部は外斜面をも透過して損失光線となる。   The auxiliary slope is also totally reflected in the circumferential direction, so many of the rays that pass through the auxiliary lens again and reach the outer slope are mostly totally reflected again on the outer slope and head toward the auxiliary slope. Also passes through and becomes a lost light beam.

補助レンズが単なる円錐形の太陽レンズでは、入射光線の傾斜角度に関係なく(太陽の高度に関係なく)光線の一部が損失光線となるのに比べて、かさ歯車状の補助レンズにおいては、朝夕陽などのほぼ水平方向から入射する傾斜角度の大きい光線に限って損失が発生する可能性がある。これらの損失光線を抑制するには、主レンズ外斜面の傾斜角度や補助レンズの傾斜角度を適切に選択することで殆ど調整することができるが、かさ歯車状の補助レンズの鋸歯の形状をより鋭角にすることが有効と考えられる。   In the case of a bevel gear-shaped auxiliary lens, the auxiliary lens is simply a conical sun lens, whereas a part of the light beam is a lost light beam regardless of the tilt angle of the incident light beam (regardless of the altitude of the sun). Loss may occur only for light rays with a large inclination angle that enter from a substantially horizontal direction, such as morning and evening. In order to suppress these lost rays, it is possible to adjust most by appropriately selecting the inclination angle of the outer slope of the main lens and the inclination angle of the auxiliary lens. An acute angle is considered effective.

本太陽レンズの集光倍率は入光面と出光面の面積比で表すことができるが、集光倍率を高めるためには太陽レンズを複数段に積層すればよい。図5は3段に積層した場合を示している。この場合の集光倍率は単体での集光倍率の3(積層段数)乗倍となる。   The condensing magnification of the present sun lens can be expressed by the area ratio of the light incident surface and the light exit surface, but in order to increase the light condensing magnification, the solar lenses may be stacked in a plurality of stages. FIG. 5 shows a case where three layers are stacked. In this case, the condensing magnification is 3 (number of stacked layers) times the condensing magnification of the single unit.

また、図6は別の応用例の断面図である。図1における太陽レンズの入光面に主レンズと同じ傾斜角度の円錐筒10(h2の仕切線より上の部分)を主レンズ並びに補助レンズに連続するようにつなぎ合わせたものである。入射する太陽光線は図中のp3、p4で示すような経路を通って図1の場合と同様に集光される。集光倍率は延長して形成されたより広い入光面と出光面との面積比となるが、円錐筒の空間部分9は有効には機能しないので除外する必要がある。   FIG. 6 is a cross-sectional view of another application example. The conical cylinder 10 (portion above the partition line of h2) having the same inclination angle as that of the main lens is connected to the light incident surface of the sun lens in FIG. 1 so as to be continuous with the main lens and the auxiliary lens. Incident sunlight rays are collected in the same manner as in FIG. 1 through paths indicated by p3 and p4 in the figure. The condensing magnification is an area ratio between a wider light incident surface and a light exit surface formed by extending, but the space portion 9 of the conical cylinder does not function effectively and needs to be excluded.

なお、図1における太陽レンズを仕切線hで水平に切断してその上側部分を取り除いても太陽レンズとしての機能は変わらない。この場合、補助レンズの先端部分が空洞になるから、集光倍率は切断面の面積から空洞部分の面積を除いた面積と出光面の面積比となる。   Note that the function of the solar lens does not change even if the solar lens in FIG. 1 is cut horizontally along the partition line h and the upper portion thereof is removed. In this case, since the tip portion of the auxiliary lens becomes a cavity, the condensing magnification is the ratio of the area of the light exit surface to the area obtained by subtracting the area of the cavity from the area of the cut surface.

以上の説明においては、外斜面から最も漏れやすいレンズの中心から半径方向に最大の傾斜角度で入射する光線p1、p2を例に説明したが、例えば地点m5のように、中心からずれた方向に入射する光線が外斜面で全反射すると、中心から半径方向に向かう光線の場合に比べて傾斜角度が小さくなるから、外斜面を透過して損失する恐れがなく確実に集光できることになる。   In the above description, the light rays p1 and p2 that are incident at the maximum inclination angle in the radial direction from the center of the lens that is most likely to leak from the outer slope have been described as an example. When the incident light beam is totally reflected by the outer slope, the tilt angle becomes smaller than that of the light beam traveling from the center in the radial direction, so that the light can be reliably collected without being lost through the outer slope.

図7は入光面を半球状に盛り上げたり、図6で説明した複数の主レンズを微小な空隙を介して同心で積層したり、その円錐筒の斜面を素材の屈折率に対応する曲率半径で湾曲させた別の応用例を示すものである。入射光線は全反射で光線p6やp7のような経路で進行し、補助レンズに到達した後は図3、図4における光線p1、p2とほぼ同様の経路で集光される。   FIG. 7 shows a hemispherical surface of the light incident surface, a plurality of main lenses described in FIG. 6 are stacked concentrically through a minute gap, and the slope of the conical cylinder has a radius of curvature corresponding to the refractive index of the material. It shows another application example curved by. The incident light beam travels through a path such as the light beams p6 and p7 by total reflection, and after reaching the auxiliary lens, it is collected through a path substantially similar to the light beams p1 and p2 in FIGS.

主レンズを図7のように半球状に突出した形状にすることで投影面積が拡大するため高度の低い太陽光線を集光しやすくなる。また、主レンズを朝顔のように広がった形状にすることで相対的に太陽レンズの長さを短縮することができる。主レンズを複数に分割して積層することで相対的に主レンズの肉厚を薄くすることができるから、主レンズ斜面の曲率半径をより小さくすることができ、全体として太陽レンズを小型化できることになる。しかし、湾曲した円錐筒を積層するには円錐筒の肉厚を中心部に向かって徐々に薄くする必要があるから、損失なく集光するには外斜面の傾斜には限界がある。   By making the main lens into a hemispherical shape as shown in FIG. 7, the projection area is enlarged, so that it is easy to collect sunlight with a low altitude. Moreover, the length of the sun lens can be relatively shortened by making the main lens have a shape that expands like a morning glory. By dividing the main lens into multiple layers, the thickness of the main lens can be relatively reduced, so that the radius of curvature of the main lens slope can be made smaller, and the sun lens can be made smaller overall. become. However, in order to stack curved conical cylinders, it is necessary to gradually reduce the thickness of the conical cylinders toward the center, and therefore there is a limit to the inclination of the outer slope in order to collect light without loss.

主レンズと補助レンズの空隙(図示せず)や同心で積層される主レンズ相互の空隙は光学的に相互を分離するためのものであるから、空隙の幅は相互の境界で全反射が起こる状態であれば1ミクロン以下の微小な隙間でもよい。空隙を保つためには主レンズと補助レンズの表面に適当な間隔で微小な突起を設けたり、微粉末を荒目の間隔で散布するなどの方法が考えられる。   Since the gap between the main lens and the auxiliary lens (not shown) and the gap between the main lenses stacked concentrically are for optically separating each other, total reflection occurs at the boundary between the gaps. If it is in a state, it may be a minute gap of 1 micron or less. In order to maintain the air gap, methods such as providing minute protrusions at appropriate intervals on the surfaces of the main lens and the auxiliary lens, or spraying fine powder at rough intervals can be considered.

このように本発明の太陽レンズは補助レンズがかさ歯車のような鋸歯状の斜面で形成されているため、単に円錐形の補助レンズで構成した太陽レンズに比べて殆どの入射光線を損失なく集光できる利点がある。また、集光倍率を高めるために多段に積層しても、相互に連続した主レンズを通して集光ができるため、表面反射損失を抑制できるものである。   As described above, in the solar lens of the present invention, the auxiliary lens is formed with a sawtooth-like slope like a bevel gear, so that most incident light rays are collected without loss as compared with a solar lens constituted simply by a conical auxiliary lens. There is an advantage of being able to shine. Moreover, even if it is laminated in multiple stages in order to increase the light collection magnification, it is possible to condense through the main lenses that are continuous with each other.

太陽レンズの縦断面図である。It is a longitudinal cross-sectional view of a solar lens. 太陽レンズの下面図である。It is a bottom view of a solar lens. 軸方向の光線経路を説明するための断面説明図である。It is sectional explanatory drawing for demonstrating the beam path of an axial direction. 半径方向の光線経路を説明するための平面説明図である。It is plane explanatory drawing for demonstrating the beam path of a radial direction. 多段に積層した太陽レンズの断面説明図である。It is sectional explanatory drawing of the solar lens laminated | stacked in multiple steps. 別の実施例の断面説明図である。It is sectional explanatory drawing of another Example. 異なる実施例の断面説明図である。It is sectional explanatory drawing of a different Example.

符号の説明Explanation of symbols

1、太陽レンズ
2、主レンズ
3、補助レンズ
4、入光面
5、出光面
6、外斜面
7、補助斜面
8、空隙
9、空間部分
10、円錐筒
DESCRIPTION OF SYMBOLS 1, Sun lens 2, Main lens 3, Auxiliary lens 4, Light entrance surface 5, Light exit surface 6, Outer slope 7, Auxiliary slope 8, Gap 9, Space portion 10, Conical cylinder

Claims (1)

逆円錐台形の主レンズの底面に、円錐形の補助レンズを突き刺すように同軸で埋め込んで形成した断面がW字形の太陽レンズにおいて、補助レンズの補助斜面をかさ歯車のような鋸歯状に形成し、主レンズの入光面から入射する光線を全反射で出光面に集光させるように構成したことを特徴とする太陽レンズ。   In a sun lens with a W-shaped cross section formed by concentrically embedding the conical auxiliary lens into the bottom of the inverted frustoconical main lens, the auxiliary inclined surface of the auxiliary lens is formed in a sawtooth shape like a bevel gear. A solar lens characterized in that a light beam incident from the light incident surface of the main lens is condensed on the light output surface by total reflection.
JP2008274977A 2008-10-25 2008-10-25 Solar lens Pending JP2010102206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274977A JP2010102206A (en) 2008-10-25 2008-10-25 Solar lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274977A JP2010102206A (en) 2008-10-25 2008-10-25 Solar lens

Publications (1)

Publication Number Publication Date
JP2010102206A true JP2010102206A (en) 2010-05-06

Family

ID=42292889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274977A Pending JP2010102206A (en) 2008-10-25 2008-10-25 Solar lens

Country Status (1)

Country Link
JP (1) JP2010102206A (en)

Similar Documents

Publication Publication Date Title
CN105842762B (en) Lens and the light-emitting device using the lens
US8132375B2 (en) Skylight cover with prismatic dome and cylinder portions
US8749898B2 (en) Stepped flow-line concentrators and collimators
US8269202B2 (en) Optical sensor device
TWI523245B (en) Secondary lens and collector type solar power generation module
US8678628B2 (en) Projection lens for a vehicle light
EP2519978A1 (en) Photovoltaic concentrator with optical stepped lens and optical stepped lens
CA2681649A1 (en) Light distribution panel having light distribution curves formed of multiple faces
US5002379A (en) Bypass mirrors
CN105026830A (en) An arrangement comprising an optical device and a reflector
TW201335629A (en) Non-imaging optical lens and lighting device with the lens
EP2343578A1 (en) A fresnel-type lens
CN102122060B (en) Compound Concentrating Device
JP2009258246A (en) Fresnel lens and solar system
TWI414827B (en) Compound light concentrating apparatus
JP2010117535A (en) Solar lens
JP2010102206A (en) Solar lens
JP2018072826A (en) Light collector unit and sunlight receiver apparatus
US9575298B2 (en) Light collector
JPWO2013058381A1 (en) Condensing device, photovoltaic power generation device, and photothermal conversion device
JP2009086059A (en) Laminated solar lens
US6276817B1 (en) Discontinuous light-beam condenser lens
JP2009198524A (en) Solar lens
JP2009080215A (en) Solar lens
JP2010014826A (en) Solar lens