[go: up one dir, main page]

JP2010089023A - Method for volume-reducing waste sludge - Google Patents

Method for volume-reducing waste sludge Download PDF

Info

Publication number
JP2010089023A
JP2010089023A JP2008262386A JP2008262386A JP2010089023A JP 2010089023 A JP2010089023 A JP 2010089023A JP 2008262386 A JP2008262386 A JP 2008262386A JP 2008262386 A JP2008262386 A JP 2008262386A JP 2010089023 A JP2010089023 A JP 2010089023A
Authority
JP
Japan
Prior art keywords
sludge
excess sludge
waste sludge
volume
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008262386A
Other languages
Japanese (ja)
Inventor
Koresuke Ioka
惟祐 井岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUIWA KK
Original Assignee
SUIWA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUIWA KK filed Critical SUIWA KK
Priority to JP2008262386A priority Critical patent/JP2010089023A/en
Publication of JP2010089023A publication Critical patent/JP2010089023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Landscapes

  • Fertilizers (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for volume-reducing waste sludge efficiently while dispensing with large equipment without causing an increase in the running cost. <P>SOLUTION: The method for volume-reducing waste sludge, which is generated when organic matter is treated with an aerobic microbe, comprises: a pretreatment step of adding one or a plurality of pretreating agents selected from the group consisting of inorganic acids, organic acids and alcohols to the waste sludge to be treated to decrease the adhesion force of microbes in the waste sludge, thin the epidermis of each microbe and lower the pH of the waste sludge and separating water from the waste sludge to concentrate the waste sludge; and a post-treatment step of volume-reducing the waste sludge concentrated at the pretreatment step. The volume reduction of the waste sludge is preferably attained by performing a hydrothermal reaction in a subcritical state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は余剰汚泥の減容化方法に関し、特に多大な設備を必要とせず、ランニングコスト高を招来することなく、余剰汚泥を予め濃縮することによって効率よく減量できるようにした方法に関する。   The present invention relates to a method for reducing the volume of excess sludge, and particularly to a method capable of reducing the amount efficiently by concentrating excess sludge in advance without requiring a large amount of equipment and incurring high running costs.

有機性排水の処理法としては、生物処理法が最も一般的であり、その中でも好気性微生物を用いる方法が多く採用されている。好気性微生物を用いる処理法の問題点の一つは、微生物による有機物の消化に伴って微生物が増殖し、これが余剰汚泥として新たな廃棄物になるという点である。   Biological treatment methods are the most common organic wastewater treatment methods, and among them, methods using aerobic microorganisms are often employed. One of the problems with the treatment method using aerobic microorganisms is that the microorganisms grow as the organic matter is digested by the microorganisms, and this becomes new waste as excess sludge.

余剰汚泥は多量の水分を含有しており、その処分に多くの経費を必要とするため、凝集・脱水・乾燥などの前処理を行い、減容化してから産業廃棄物として焼却や埋立てなどによって処理しているが、この余剰汚泥の減容化と産業廃棄物としての処理に多大の費用を必要とし、さらには新たな環境問題が派生しているのが現状である。   Excess sludge contains a large amount of water and requires a large amount of cost for its disposal. Pretreatment such as agglomeration, dehydration, and drying is performed, and after volume reduction, it is incinerated or landfilled as industrial waste. However, the present situation is that a large amount of cost is required for the volume reduction of the excess sludge and the treatment as industrial waste, and a new environmental problem is derived.

例えば、工場排水を処理する場合、図2に示されるように、曝気槽10で好気性微生物によって汚濁負荷物質を消化吸収するようにしているが、処理中に好気性微生物が増殖を繰り返して微生物の個体数が増加し、大部分は余剰となる。この余剰微生物は余剰汚泥と称され、多量に発生するため、工程より取り除く必要がある。   For example, when treating factory wastewater, as shown in FIG. 2, the aerobic microorganism digests and absorbs the pollutant load substance in the aeration tank 10, but the aerobic microorganism repeatedly grows during the treatment, and the microorganism The number of individuals increases, and most of them become surplus. This surplus microorganism is called surplus sludge and is generated in large quantities, so it is necessary to remove it from the process.

従来、曝気槽10の後に沈殿槽11を設け、比重差を利用して分離を行い、分離した余剰汚泥の一部を曝気槽10に戻して工程で再利用するが、大部分は工程より取り除かれて処分される。余剰汚泥の処分は、一般に産業廃棄物として処理されるが、比重分離を行った状態では水分を多量に含んでいるため、量も多く、搬送、貯蔵が困難であり、又処理に要する費用も多大となる。   Conventionally, a sedimentation tank 11 is provided after the aeration tank 10 and separation is performed using the difference in specific gravity. A part of the separated excess sludge is returned to the aeration tank 10 and reused in the process, but most of the sludge is removed from the process. Will be disposed of. Disposal of surplus sludge is generally processed as industrial waste, but in the state of specific gravity separation, it contains a large amount of water, so it is large in volume, difficult to transport and store, and the cost required for processing is also high. Become enormous.

その為、余剰汚泥を汚泥貯留槽13に溜め、脱水や減量によって減容化する方法が採られている。例えば、汚泥に凝集剤等の薬剤を用いてフロックを形成させ、比重差を与えることによって水分との分離を図ることが行われている。濃縮槽13では自然沈降によって分離し、脱水機を用いて濾過し、あるいは遠心分離機を用いて脱水し、得られたケーキを処分することが行われている。   Therefore, a method is adopted in which excess sludge is stored in the sludge storage tank 13 and the volume is reduced by dehydration or weight reduction. For example, flocs are formed in sludge using a chemical such as a flocculant, and separation from moisture is performed by giving a specific gravity difference. The concentration tank 13 is separated by natural sedimentation and filtered using a dehydrator, or dehydrated using a centrifuge, and the resulting cake is disposed of.

しかし、これらの操作に必要な費用は多大であり、処理コストが高くなるばかりでなく、減容処理の工程や保管中に余剰汚泥の腐敗によって悪臭が発生し、工場環境を悪化させる。   However, the cost required for these operations is enormous, and not only the processing cost becomes high, but also bad smell is generated due to the decay of excess sludge during the volume reduction process and storage, and the factory environment is deteriorated.

これに対し、コスト高や新たな環境問題を招来することなく、余剰汚泥を脱水し乾燥し減量する方法が種々提案されている。例えば、超臨界又は亜臨界を利用して余剰汚泥を消化減量する方法が知られている(特許文献1、特許文献2、特許文献3、特許文献4、特許文5、特許文献6)。   On the other hand, various methods for dewatering, drying and reducing excess sludge have been proposed without incurring high costs and new environmental problems. For example, a method of digesting and reducing excess sludge using supercritical or subcritical is known (Patent Literature 1, Patent Literature 2, Patent Literature 3, Patent Literature 4, Patent Literature 5, Patent Literature 6).

特開2000−218295号公報JP 2000-218295 A 特開2007−111673号公報JP 2007-111673 A 特開2002−159999号公報Japanese Patent Laid-Open No. 2002-159999 特開2003−236592号公報Japanese Patent Laid-Open No. 2003-236593 特開2003−117597号公報JP 2003-117597 A 特開2003−19490号公報JP 2003-19490 A

しかし、上記特許文献1〜6記載の方法は何れも多大な設備とランニングコストを必要とし、実用化の点で難点があった。   However, each of the methods described in Patent Documents 1 to 6 requires a large amount of equipment and running cost, and has a difficulty in practical use.

本発明はかかる問題点に鑑み、多大な設備を必要とせず、又ランニングコスト高を招来することなく、余剰汚泥を効率よく減量できるようにした余剰汚泥の減容化方法を提供することを課題とする。   In view of such problems, the present invention provides a volume reduction method for excess sludge that can efficiently reduce excess sludge without requiring a large amount of equipment and incurring high running costs. And

そこで、本発明に係る余剰汚泥の減容化方法は、好気性微生物による有機物処理によって発生する余剰汚泥を減容化するにあたり、無機酸、有機酸及びアルコールの群から選ばれる1又は複数の前処理剤を処理すべき余剰汚泥に添加することにより、余剰汚泥中の微生物の粘着力を低下させるとともに、微生物の表皮を薄くし、余剰汚泥のpHを低下させることによって余剰汚泥の水分を分離して余剰汚泥を濃縮する前処理工程と、前処理によって濃縮された余剰汚泥に減量処理を行う後処理工程と、を備えたことを特徴とする。   Therefore, the method for reducing the volume of excess sludge according to the present invention is used to reduce the volume of excess sludge generated by organic matter treatment with aerobic microorganisms, and one or a plurality of previous sludges selected from the group of inorganic acids, organic acids and alcohols. By adding the treatment agent to the excess sludge to be treated, the adhesive strength of the microorganisms in the excess sludge is reduced, the skin of the microorganisms is thinned, and the pH of the excess sludge is reduced, thereby separating the excess sludge moisture. And a post-treatment step for concentrating excess sludge and a post-treatment step for reducing the amount of excess sludge concentrated by the pre-treatment.

本発明の特徴の1つは余剰汚泥を減量する前に、余剰汚泥に無機酸、有機酸及びアルコールの群から選ばれる1又は複数の前処理剤を添加するようにした点にある。これらの前処理剤を余剰汚泥に添加すると、微生物の粘着力が低下するとともに、微生物表皮が酸腐食されて薄膜化する。さらには、余剰汚泥のpHが酸性域まで低下するので、微生物と水分の乳化が損なわれ、余剰汚泥に付着し含有される水分が上澄水又は沈澱水として容易に分離され、余剰汚泥を濃縮することができる。   One of the features of the present invention resides in that one or more pretreatment agents selected from the group of inorganic acids, organic acids and alcohols are added to the excess sludge before reducing the excess sludge. When these pretreatment agents are added to excess sludge, the adhesive strength of microorganisms is reduced and the microbial epidermis is acid-corroded to form a thin film. Furthermore, since the pH of the excess sludge is lowered to the acidic range, the emulsification of microorganisms and moisture is impaired, and the moisture contained in the excess sludge is easily separated as supernatant water or precipitated water, and the excess sludge is concentrated. be able to.

その結果、凝集した余剰汚泥が分散されるとともに、微生物の活性が低下し、さらには水分を容易に分離できるので、余剰汚泥の消化減量、例えば臨界点374°C、22MPaを超える超臨界又は臨界点以下の亜臨界の高温高圧水の水熱反応による減量を効率よく行うことができる。   As a result, the agglomerated surplus sludge is dispersed, the activity of microorganisms is reduced, and moisture can be easily separated, so that excess sludge can be reduced in weight, for example, at a critical point of 374 ° C., supercritical or critical exceeding 22 MPa. Weight loss by hydrothermal reaction of subcritical high-temperature high-pressure water below the point can be performed efficiently.

また、減量処理の前に、余剰汚泥の水分を予め効率よく分離し濃縮するようにしたので、少ないエネルギーで水熱反応による消化減量を行うことができる。したがって、上述の操作は水熱反応の前処理又は一次処理と呼ぶことができる。   Moreover, since the water | moisture content of the excess sludge was isolate | separated efficiently beforehand and concentrated before the weight reduction process, digestion weight loss by a hydrothermal reaction can be performed with little energy. Therefore, the above-described operation can be referred to as pretreatment or primary treatment of the hydrothermal reaction.

また、分離によって浮上又は沈降された水分は水質汚濁負荷も少なく、原水に戻しても従来の工程で容易に再処理することができる。   In addition, the water that floats or settles by separation has a low water pollution load, and can be easily reprocessed in the conventional process even if it is returned to the raw water.

さらに、上述の操作で分散した余剰汚泥は前処理を行う前の量に比して1/2〜1/4程度に濃縮することができる結果、この方法により濃縮した余剰汚泥は従来技術である脱水方法によって更に減量することもできる。   Furthermore, as a result of surplus sludge dispersed by the above-mentioned operation being able to concentrate to about 1/2 to 1/4 as compared with the amount before pretreatment, the surplus sludge concentrated by this method is a prior art. The amount can be further reduced by a dehydration method.

また、上述の操作に用いた無機酸、有機酸及び/又はアルコールの作用によって水素イオン濃度(「pH」)を低下させることができ、酸性域まで低下させると、好気性微生物の増殖を抑制できるとともに、余剰汚泥の腐敗を抑制することができ、悪臭の問題を改善することができる。   In addition, the hydrogen ion concentration (“pH”) can be lowered by the action of the inorganic acid, organic acid and / or alcohol used in the above-described operation, and when it is lowered to the acidic range, the growth of aerobic microorganisms can be suppressed. At the same time, it is possible to suppress the decay of excess sludge and to improve the problem of malodor.

また、前処理によって、余剰汚泥の量が1/2〜1/4に濃縮されているので、水熱反応において加熱に要するエネルギーコストを1/2〜1/4と少なくできる。   Moreover, since the amount of excess sludge is concentrated to 1/2 to 1/4 by the pretreatment, the energy cost required for heating in the hydrothermal reaction can be reduced to 1/2 to 1/4.

さらに、以下の理由によって水熱反応温度の低温化を図ることができる。すなわち、同容量の反応装置においては、反応処理時間が2倍〜4倍に延長できるので、水熱反応温度の低温化を図ることができる。   Furthermore, the hydrothermal reaction temperature can be lowered for the following reasons. That is, in the reaction apparatus of the same capacity, the reaction treatment time can be extended by 2 to 4 times, so that the hydrothermal reaction temperature can be lowered.

他方、好気性微生物は無機酸、有機酸及び/又はアルコールの作用によってその生体膜だけでなく、殻質自体も弱化しているので、低温・長時間の水熱反応によって余剰汚泥を減量することができるという新規な減容化方法を提供できる。この方法によれば、従来困難とされてきた140°C未満の処理温度による余剰汚泥の減容化が可能となる。   On the other hand, aerobic microorganisms weaken not only the biological membrane but also the shell material itself due to the action of inorganic acid, organic acid and / or alcohol, so the excess sludge can be reduced by low-temperature and long-term hydrothermal reaction. It is possible to provide a novel volume reduction method that can be performed. According to this method, it is possible to reduce the volume of excess sludge at a treatment temperature of less than 140 ° C., which has been considered difficult in the past.

さらに、本発明の方法で処理された処理液は容易に分離し、上澄液の汚濁負荷も少なく、そのまま又は簡単な処理を行ってから原水に戻し、再処理することができる。   Furthermore, the treatment liquid treated by the method of the present invention can be easily separated and the supernatant is less contaminated, and can be returned to the raw water as it is or after simple treatment, and then reprocessed.

具体的には以下の効果を得ることが出来る。
1.水熱反応の汚泥処理量が1/2〜1/4となり、加熱に要するエネルギーコストを低減できる。
2.水熱反応による汚泥処理量の減少により、反応時間の延長が容易となり、処理温度の低温化又は装置の小型化による、エネルギーコスト低減化又は設備コストの削減が図れる。
3.更に、同等の反応温度において、水素イオン濃度が低下しているので、同処理における主反応である加水分解反応を促進させることができる。
4.前処理における無機酸、有機酸及び/又はアルコールの作用と併せ、本発明の方法により得られた濃縮・減量された汚泥は、滅菌又は無菌化されており、以降の脱水工程、保管、処分においても悪臭や汚染等の公害問題の改善が図れる。
5.更に、本発明による方法は従来法による、薬剤による凝集、電気動力による脱水、及び熱による乾燥などのように、多量のエネルギーを必要とせず、環境面に配慮した無機酸、有機酸及び/又はアルコールを用い、余剰汚泥の水分を事前に効率良く分離し余剰汚泥を濃縮することにより、より少ないエネルギーによって余剰汚泥を減容化するようにした方法を提供することができる。
Specifically, the following effects can be obtained.
1. The sludge treatment amount of the hydrothermal reaction becomes 1/2 to 1/4, and the energy cost required for heating can be reduced.
2. By reducing the amount of sludge treated by the hydrothermal reaction, the reaction time can be easily extended, and the energy cost can be reduced or the equipment cost can be reduced by lowering the treatment temperature or downsizing the apparatus.
3. Furthermore, since the hydrogen ion concentration is reduced at the same reaction temperature, the hydrolysis reaction, which is the main reaction in the same treatment, can be promoted.
4). Combined with the action of inorganic acid, organic acid and / or alcohol in the pretreatment, the concentrated and reduced sludge obtained by the method of the present invention is sterilized or sterilized, and is used in the subsequent dehydration process, storage and disposal. Can improve pollution problems such as odor and pollution.
5). Furthermore, the method according to the present invention does not require a large amount of energy, such as agglomeration by a drug, dehydration by electric power, and drying by heat, according to a conventional method, and is an environmentally friendly inorganic acid, organic acid and / or It is possible to provide a method in which the volume of excess sludge is reduced with less energy by using alcohol to efficiently separate the moisture of the excess sludge in advance and concentrating the excess sludge.

ここで、無機酸としては塩酸、硝酸、リン酸、硫酸などを挙げることができる。また、有機酸としては、蟻酸、蓚酸、酢酸、クエン酸などを挙げることができる。アルコールとしては、エタノール、メタノールなどを挙げることができる。   Here, examples of the inorganic acid include hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid and the like. Examples of the organic acid include formic acid, oxalic acid, acetic acid, citric acid and the like. Examples of the alcohol include ethanol and methanol.

以下、本発明を実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

図1は本発明に係る余剰汚泥の減容化方法を模式的に示す。図において、20は有機物を好気性微生物によって処理する曝気槽、21は比重差によって処理済み液から液と汚泥とを分離する沈澱槽、22は分離した汚泥を貯留する汚泥貯留槽、25は余剰汚泥に対して本発明による前処理を行う前処理装置、26は余剰汚泥を高温高圧水と水反応させて消化減容させる水熱反応処理装置、23は水熱反応処理後の余剰汚泥を濃縮する濃縮機、24は脱水機である。以下、前処理装置25における処理を中心に説明する。   FIG. 1 schematically shows a method for reducing excess sludge according to the present invention. In the figure, 20 is an aeration tank for treating organic substances with aerobic microorganisms, 21 is a sedimentation tank for separating liquid and sludge from treated liquids due to a difference in specific gravity, 22 is a sludge storage tank for storing separated sludge, and 25 is a surplus. A pretreatment device for pre-treating sludge according to the present invention, 26 is a hydrothermal reaction treatment device for digesting and reducing excess sludge with high-temperature and high-pressure water, and 23 is for concentrating excess sludge after hydrothermal reaction treatment. The concentrator 24 is a dehydrator. Hereinafter, the processing in the preprocessing device 25 will be mainly described.

前処理装置25における処理の効果を、汚泥の溶解性生物化学的酸素要求量(以下、「BOD」という)、活性汚泥浮遊物質量(以下、「MLSS」という)及びpHを測定することによって評価した。測定は次のように行った。   The effect of treatment in the pretreatment device 25 is evaluated by measuring the soluble biochemical oxygen demand of sludge (hereinafter referred to as “BOD”), the amount of suspended activated sludge (hereinafter referred to as “MLSS”), and pH. did. The measurement was performed as follows.

なお、実施時の各操作における汚泥減量効果の迅速評価方法として、メスシリンダーを用い、一定時間静置後における汚泥量を測定し、操作前の全容量で割り、その比率を濃縮率又は減量率とした。また、臭気に強度の評価方法としては、市販の臭いセンサーを用い強度数値を比較した。   In addition, as a quick evaluation method of sludge reduction effect in each operation at the time of implementation, measure the amount of sludge after standing for a certain time using a graduated cylinder, divide by the total volume before operation, the ratio is the concentration rate or reduction rate It was. In addition, as a method for evaluating the strength of odor, strength values were compared using commercially available odor sensors.

〔BOD〕
日本工業規格の規準水質分析法(JISK 0102−21.32.3)に規定されている方法にしたがって測定した。
〔MLSS〕
日本工業規格の規準水質分析法(下水試験法)に規定されている方法にしたがって測定した。
〔pH〕
日本工業規格の規準水質分析法(JISK 0102−12.3)に規定されている方法にしたがって測定した。
〔濃縮率又は減量率〕
濃縮率又は減量率は、次の汚泥沈降部の迅速評価法によって評価した。すなわち、各操作完了後の試料を100mlのメスシリンダーに100ml投入し、常温で2時間静置後の沈降量を測定した。評価表現は、
〔100ml−沈降量ml)*100/100ml
とし、濃縮率又は減量率%で表現した。
〔臭気〕
市販の『臭いセンサー』新コスモス電機社製XP−329S(硫化水素測定用)によるセンサー表示数値による差を比較表現した。操作法は蓋付きの500mlのガラス容器に200mlの試料を入れ、シャッフル後測定した。ブランクとして、同容器に試料無し品を作成測定し、センサー値を0値に調整した。
[BOD]
The measurement was performed according to the method specified in the Japanese Industrial Standards Standard Water Quality Analysis Method (JISK 0102-21.2.32.3).
[MLSS]
It was measured according to the method specified in the Japanese Industrial Standards Standard Water Quality Analysis Method (Sewage Test Method).
[PH]
It measured according to the method prescribed | regulated to the standard water quality analysis method (JISK 0102-122.3) of a Japanese industrial standard.
[Concentration rate or weight loss rate]
The concentration rate or weight loss rate was evaluated by the following rapid evaluation method of the sludge settling part. That is, 100 ml of the sample after completion of each operation was put into a 100 ml graduated cylinder, and the amount of sediment after standing at room temperature for 2 hours was measured. Evaluation expression is
[100 ml-precipitation amount ml) * 100/100 ml
And expressed as a concentration rate or weight loss rate%.
[Odor]
The difference by the sensor display numerical value by commercially available "odor sensor" XP-329S (for hydrogen sulfide measurement) made by New Cosmos Electric Co. was comparatively expressed. In the operation method, a 200 ml sample was placed in a 500 ml glass container with a lid, and measurement was performed after shuffling. As a blank, a sample-free product was prepared and measured in the same container, and the sensor value was adjusted to zero.

処理すべき汚泥として、食品製造工場の排水処理工程における汚泥貯留層の汚泥を採取し、下記特性値の検体を原液試料として用いた。
[MLSS]7.800mg/l
[BOD]40mg/l
[pH]7
As the sludge to be treated, the sludge of the sludge reservoir in the wastewater treatment process of the food manufacturing factory was collected, and specimens having the following characteristic values were used as the stock solution samples.
[MLSS] 7.800 mg / l
[BOD] 40 mg / l
[PH] 7

上記の汚泥試料300mlを、500mlビーカーに移し、所定の前処理を行った。前処理の方法は、汚泥の撹拌を行いながら下記前処理剤を添加し、pH4に調整した後、100mlメスシリンダーに移し、濃縮率を評価した。
1).処理なし(ブランク) 2).硝酸 3).硫酸 4).塩酸 5).蟻酸 6).蓚酸 7).リン酸 8).酢酸
300 ml of the above sludge sample was transferred to a 500 ml beaker and subjected to a predetermined pretreatment. In the pretreatment method, the following pretreatment agent was added while the sludge was stirred and adjusted to pH 4, then transferred to a 100 ml graduated cylinder, and the concentration rate was evaluated.
1) No treatment (blank) 2). Nitric acid 3). Sulfuric acid 4). Hydrochloric acid 5). Formic acid 6). Succinic acid 7). Phosphoric acid 8). Acetic acid

上記前処理後の汚泥試料を、容量100mlメスシリンダーに移し、2時間経過後の汚泥の沈澱率を測定し、その結果を表1に示した。   The sludge sample after the above pretreatment was transferred to a 100 ml capacity graduated cylinder and the sedimentation rate of sludge after 2 hours was measured. The results are shown in Table 1.

Figure 2010089023
Figure 2010089023

被処理汚泥として実施例1と同様の汚泥を用いた。汚泥試料300mlを、300mlビーカーに移し、蟻酸を用い、下記の攪拌方法を採用しながらpH4に調整した後、100mlメスシリンダーに移し、濃縮率を評価し、その結果を表2に示した。
1). 15°C(常温)タービン型撹拌機による撹拌(ブランク) 2). 40°C(加温)タービン型撹拌機による撹拌 3). 60°C(加温)タービン型撹拌機による撹拌 4). 15°C(常温)超音波照射 5). 40°C(加温)超音波照射 6). 60°C(加温)超音波照射
The sludge similar to Example 1 was used as the to-be-treated sludge. A 300 ml sludge sample was transferred to a 300 ml beaker, adjusted to pH 4 using formic acid and employing the following stirring method, then transferred to a 100 ml graduated cylinder, the concentration rate was evaluated, and the results are shown in Table 2.
1). Stirring with a 15 ° C (room temperature) turbine agitator (blank) 2). Stirring with a 40 ° C (warming) turbine stirrer 3). Stirring with a 60 ° C (warming) turbine stirrer 4). Ultrasonic irradiation at 15 ° C (normal temperature) 5). Ultrasonic irradiation at 40 ° C (heating) 6). Ultrasonic irradiation at 60 ° C (heating)

Figure 2010089023
Figure 2010089023

現行の排水処理装置から発生する余剰汚泥の濃縮化を図ることができ、最終装置の脱水機による脱水ケーキ量は1/10程度に減量できることが確認できた。また、水熱反応装置26は活性汚泥の腐敗を防ぐ処理又は密閉構造により構成されており、活性汚泥の排水処理装置から発生するメタンガス等の有害・臭気物質の低減を図れることができる。さらに、水熱反応装置26は滅菌又は殺菌条件で操作されるので、本例の前処理装置25から排出される廃液・汚泥等には有害微生物はほとんど又は全く存在せず、滅菌又は殺菌状態であり、その後の貯蔵、運搬、及び発酵堆肥等への再利用においても、安全であり、臭気もほとんど発生しないので、環境面で効果がある。   It was confirmed that the excess sludge generated from the current wastewater treatment equipment could be concentrated, and the amount of dewatered cake by the dehydrator of the final equipment could be reduced to about 1/10. Further, the hydrothermal reaction device 26 is configured by a treatment for preventing the decay of activated sludge or a sealed structure, and can reduce harmful and odorous substances such as methane gas generated from the activated sludge wastewater treatment device. Furthermore, since the hydrothermal reaction device 26 is operated under sterilization or sterilization conditions, there is little or no harmful microorganisms in the waste liquid / sludge discharged from the pretreatment device 25 of this example, and in the sterilization or sterilization state. In addition, it is safe in the subsequent storage, transportation, and reuse for fermenting compost and the like, and since it produces almost no odor, it is effective in terms of the environment.

被処理汚泥としては実施例2と同様の汚泥を用いた。汚泥試料1000mlを、1Lビーカーに移し、各々40°Cに温調した後、クエン酸及びアルコールを添加して攪拌・分散を行い、1000mlメスシリンダーに投入し、下部からエアーレーターによってエアーを注入し、各々10分のエアーレーションを行い、浮上汚泥を採取除去し、浮上及び沈降した部分を分取し、分離水と汚泥とに分け、各々の減量率の評価と特性値を分析した。濃縮率については原液1000mlより、得られた分離水(ml)を差し引き、残りを汚泥とし、以下の式にて求めた。
1000ml−分離水(ml)=汚泥(ml)とし、
(1000ml−汚泥ml)*100/1000ml
を濃縮率%とした。結果を表3に示す。
The same sludge as in Example 2 was used as the treated sludge. Transfer 1000ml of sludge sample to a 1L beaker, adjust the temperature to 40 ° C respectively, add citric acid and alcohol, stir and disperse, put into 1000ml graduated cylinder, and inject air from below with aerator. Then, aeration was carried out for 10 minutes each, and the floating sludge was collected and removed, and the floated and settled portions were separated, separated into separated water and sludge, and the weight loss rate evaluation and characteristic values were analyzed. Concentration rate was determined by the following formula by subtracting the obtained separated water (ml) from 1000 ml of the stock solution and using the rest as sludge.
1000 ml-separated water (ml) = sludge (ml)
(1000ml-sludge ml) * 100 / 1000ml
The concentration rate was defined as%. The results are shown in Table 3.

Figure 2010089023
Figure 2010089023

前記の実施例1、2では各種の酸種の性能及び攪拌接触方式の相違による汚泥の沈降分離法による効果を確認したが、一方で、汚泥、スカムの分離方法として加圧浮上分離法は排水処理工程で一般的に用いられている方法であり、この方法による酸種とその効果について検討を加え、クエン酸及びアルコールを用いることにより、より効果的に汚泥と分離水を分離できることが確認できた。   In Examples 1 and 2 above, the effect of the sludge sedimentation method due to the difference in the performance of various acid species and the stirring contact method was confirmed. It is a method commonly used in the treatment process, and it has been confirmed that the sludge and separated water can be separated more effectively by using the citric acid and alcohol by examining the acid species and their effects. It was.

被処理汚泥として食品製造工場の排水処理工場の沈澱槽の沈澱汚泥を採取し、下記の特性値の検体を原液試料として用いた。
[MLSS]7.400mg/l
[BOD]10mg/l
[pH]7
As the sludge to be treated, the sediment sludge from the sedimentation tank of the wastewater treatment plant of the food manufacturing plant was collected, and specimens having the following characteristic values were used as stock solution samples.
[MLSS] 7.400 mg / l
[BOD] 10 mg / l
[PH] 7

上記の汚泥試料を300mlビーカーに移し、蟻酸を用いて40°Cに加温後添加し、pH4に調整した後、超音波を用いて攪拌を行った。この方法で得た沈降汚泥300mlを試料とし、ラボ・リアクター(耐圧硝子社製、型式;TVS−N2−500型)にて水熱反応処理を行った。結果を表4に示す。   The above sludge sample was transferred to a 300 ml beaker, heated to 40 ° C. with formic acid and added, adjusted to pH 4, and then stirred using ultrasonic waves. Using 300 ml of sedimented sludge obtained by this method as a sample, hydrothermal reaction treatment was performed in a lab reactor (Model: TVS-N2-500, manufactured by Pressure Glass Co., Ltd.). The results are shown in Table 4.

Figure 2010089023
Figure 2010089023

当該汚泥について前処理によって汚泥の濃縮率67%が得られ、その濃縮された汚泥を対象とする水熱反応は低温域の温度130°C、反応時間120分処理に延ばすことにより、さらに減量でき、トータルでは原液汚泥を約90%まで減容できることが判明した。   The sludge concentration rate of 67% is obtained by pretreatment of the sludge, and the hydrothermal reaction for the concentrated sludge can be further reduced by extending the treatment to a low temperature temperature of 130 ° C and a reaction time of 120 minutes. In total, it was found that the volume of raw sludge can be reduced to about 90%.

本発明によれば、産業廃棄物を減量できるとともに処理コストを低減でき、さらには設備を小型化できるとともに、エネルギーを削減でき、さらには臭気やCO2の削減などの環境問題に効果を発揮し、その実用性は大である。 According to the present invention, industrial waste can be reduced, processing costs can be reduced, equipment can be downsized, energy can be reduced, and environmental problems such as odor and CO 2 can be reduced. , Its practicality is great.

本発明に係る余剰汚泥の減容化方法を模式的に示す図である。It is a figure which shows typically the volume reduction method of the excess sludge which concerns on this invention. 従来の余剰汚泥の減容化方法を模式的に示す図である。It is a figure which shows the conventional volume reduction method of the excess sludge typically.

Claims (3)

好気性微生物による有機物処理によって発生する余剰汚泥を減容化するにあたり、
無機酸、有機酸及びアルコールの群から選ばれる1又は複数の前処理剤を処理すべき余剰汚泥に添加することにより、余剰汚泥中の微生物の粘着力を低下させるとともに、微生物の表皮を薄くし、余剰汚泥のpHを低下させることによって余剰汚泥の水分を分離して余剰汚泥を濃縮する前処理工程と、
前処理によって濃縮された余剰汚泥に減量処理を行う後処理工程と、
を備えたことを特徴とする余剰汚泥の減容化方法。
In reducing the volume of excess sludge generated by organic matter treatment by aerobic microorganisms,
By adding one or more pretreatment agents selected from the group of inorganic acids, organic acids and alcohols to the excess sludge to be treated, the adhesion of microorganisms in the excess sludge is reduced and the skin of the microorganisms is made thin. A pretreatment step of separating the excess sludge by reducing the pH of the excess sludge and concentrating the excess sludge;
A post-treatment process for reducing the amount of excess sludge concentrated by the pre-treatment;
A method for reducing the volume of excess sludge, comprising:
上記余剰汚泥の減量処理を水熱反応によって行うようにした請求項1記載の余剰汚泥の減容化方法。   The method for reducing the volume of excess sludge according to claim 1, wherein the excess sludge is reduced by a hydrothermal reaction. 上記無機酸、有機酸及びアルコールから選ばれる1又は複数の前処理剤を添加する時又は添加した後に余剰汚泥に超音波を照射し又はエアーレーションを行うようにした請求項1記載の余剰汚泥の減容化方法。   The surplus sludge according to claim 1, wherein the surplus sludge is irradiated with ultrasonic waves or aerated when or after adding one or more pretreatment agents selected from the inorganic acids, organic acids and alcohols. Volume reduction method.
JP2008262386A 2008-10-09 2008-10-09 Method for volume-reducing waste sludge Pending JP2010089023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008262386A JP2010089023A (en) 2008-10-09 2008-10-09 Method for volume-reducing waste sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008262386A JP2010089023A (en) 2008-10-09 2008-10-09 Method for volume-reducing waste sludge

Publications (1)

Publication Number Publication Date
JP2010089023A true JP2010089023A (en) 2010-04-22

Family

ID=42252269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008262386A Pending JP2010089023A (en) 2008-10-09 2008-10-09 Method for volume-reducing waste sludge

Country Status (1)

Country Link
JP (1) JP2010089023A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556597A (en) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 Sludge treatment method
CN104556596A (en) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 Sludge treatment method
JP2015085293A (en) * 2013-11-01 2015-05-07 日鉄住金環境株式会社 Odor suppression method and odor suppression composition for odor-emitting material
CN105016590A (en) * 2015-07-13 2015-11-04 北京工业大学 Method for extracting and recycling proteins from sludge
CN109293218A (en) * 2018-11-28 2019-02-01 沈阳航空航天大学 A kind of process method of sludge dewatering
KR20190050475A (en) 2017-11-03 2019-05-13 한국과학기술연구원 Sludge decomposition system and operating method of the same
CN114806668A (en) * 2022-05-20 2022-07-29 浙江桃花源环保科技有限公司 Preparation method of environment-friendly sludge solidified fuel
CN115072962A (en) * 2022-06-30 2022-09-20 东方电气集团东方电机有限公司 Sludge dewatering method based on ultrasound and hydrothermal carbonization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277597A (en) * 1989-04-17 1990-11-14 Ebara Infilco Co Ltd Treatment of organic sewage
JP2004041925A (en) * 2002-07-11 2004-02-12 Hitachi Kiden Kogyo Ltd Sludge treatment method
JP2004188254A (en) * 2002-12-09 2004-07-08 Hitachi Kiden Kogyo Ltd Sludge treatment apparatus and method
JP2007136293A (en) * 2005-11-16 2007-06-07 Hitachi Zosen Corp Liquid organic waste treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277597A (en) * 1989-04-17 1990-11-14 Ebara Infilco Co Ltd Treatment of organic sewage
JP2004041925A (en) * 2002-07-11 2004-02-12 Hitachi Kiden Kogyo Ltd Sludge treatment method
JP2004188254A (en) * 2002-12-09 2004-07-08 Hitachi Kiden Kogyo Ltd Sludge treatment apparatus and method
JP2007136293A (en) * 2005-11-16 2007-06-07 Hitachi Zosen Corp Liquid organic waste treatment method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104556597A (en) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 Sludge treatment method
CN104556596A (en) * 2013-10-25 2015-04-29 中国石油化工股份有限公司 Sludge treatment method
CN104556597B (en) * 2013-10-25 2017-12-22 中国石油化工股份有限公司 A kind of processing method of sludge
JP2015085293A (en) * 2013-11-01 2015-05-07 日鉄住金環境株式会社 Odor suppression method and odor suppression composition for odor-emitting material
CN105016590A (en) * 2015-07-13 2015-11-04 北京工业大学 Method for extracting and recycling proteins from sludge
KR20190050475A (en) 2017-11-03 2019-05-13 한국과학기술연구원 Sludge decomposition system and operating method of the same
CN109293218A (en) * 2018-11-28 2019-02-01 沈阳航空航天大学 A kind of process method of sludge dewatering
CN114806668A (en) * 2022-05-20 2022-07-29 浙江桃花源环保科技有限公司 Preparation method of environment-friendly sludge solidified fuel
CN115072962A (en) * 2022-06-30 2022-09-20 东方电气集团东方电机有限公司 Sludge dewatering method based on ultrasound and hydrothermal carbonization

Similar Documents

Publication Publication Date Title
JP2010089023A (en) Method for volume-reducing waste sludge
Wu et al. Effects of potassium ferrate oxidation on sludge disintegration, dewaterability and anaerobic biodegradation
Yi et al. Effect of combined pretreatment of waste activated sludge for anaerobic digestion process
Adou et al. Anaerobic mono-digestion of wastewater from the main slaughterhouse in Yamoussoukro (Côte d’Ivoire): Evaluation of biogas potential and removal of organic pollution
Packyam et al. Effect of sonically induced deflocculation on the efficiency of ozone mediated partial sludge disintegration for improved production of biogas
He et al. Effects of newly prepared alkaline ferrate on sludge disintegration and methane production: reaction mechanism and model simulation
Laurent et al. Flocs surface functionality assessment of sonicated activated sludge in relation with physico-chemical properties
Beszédes et al. Comparison of the effects of microwave irradiation with different intensities on the biodegradability of sludge from the dairy-and meat-industry
US7892310B2 (en) Biowaste treatment
WO2016090490A1 (en) Process and system for treating slurries of organic solids
Zhang et al. Sludge predation by aquatic worms: physicochemical characteristics of sewage sludge and implications for dewaterability
Hammadi et al. Effects of heat treatment and hydrogen peroxide (H2O2) on the physicochemical and rheological behavior of an activated sludge from a water purification plant
Hutnan et al. Anaerobic stabilisation of sludge produced during municipal wastewater treatment by electrocoagulation
RU2715846C1 (en) Method of treating cellulose-containing sewage sludge to obtain lining cardboard and ethanol from cellulose
Moussavi et al. Effect of ozonation on reduction of volume and mass of waste activated sludge
CN108328894A (en) A method of promoting residual sludge reduction
CN113023891B (en) A front-end wastewater toxicity early warning and disposal device and its application method
Hosnani et al. Role of extracellular polymeric substances in dewaterability of untreated, sonicated and digested waste activated sludge
Zawieja et al. Biogas production in the methane fermentation of excess sludge oxidized with Fenton’s reagent
Ciaciuch et al. Effect of the two-stage thermal disintegration and anaerobic digestion of sewage sludge on the COD fractions
Islam Evaluation of low power sonication on anaerobic digestion of municipal waste sludge and energy recovery
JP2005324173A (en) Method and apparatus for treating sludge
KR100877171B1 (en) Treatment Method of Waste Activated Sludge Using Fuwasan
Gökçek et al. Anaerobic treatment of the mixture of automotive industry and molasses wastewater for different organic loading rates in an upflow anaerobic sludge blanket (UASB) reactor
Zawieja et al. Effect of hydrogen peroxide on nitrogen forms in sewage sludge subjected to the anaerobic stabilization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120410