[go: up one dir, main page]

JP2010086931A - Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell - Google Patents

Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell Download PDF

Info

Publication number
JP2010086931A
JP2010086931A JP2008258079A JP2008258079A JP2010086931A JP 2010086931 A JP2010086931 A JP 2010086931A JP 2008258079 A JP2008258079 A JP 2008258079A JP 2008258079 A JP2008258079 A JP 2008258079A JP 2010086931 A JP2010086931 A JP 2010086931A
Authority
JP
Japan
Prior art keywords
electrode
electrolyte membrane
catalyst
electrode assembly
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008258079A
Other languages
Japanese (ja)
Inventor
Mayumi Kosaka
眞由美 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008258079A priority Critical patent/JP2010086931A/en
Publication of JP2010086931A publication Critical patent/JP2010086931A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode and a method of manufacturing the same, wherein a numerous number of minute micro-pores necessary for the material transportation into the interior of the electrode are fabricated, and an adhesiveness of a boundary face of the electrode and the electrolyte membrane is improved; and to provide the electrolyte membrane-electrode assembly and method of manufacturing the same. <P>SOLUTION: In the electrolyte membrane-electrode assembly 20 in which electrodes 2, 3 equipped with catalyst layers 6, 8 on both sides of the solid electrolyte membrane 4 are respectively crimped, the catalyst layers 6, 8 contain a mixture of nano-carbon to carry the catalyst and proton conductive material. The electrolyte membrane-electrode assembly 20 is used in the fuel cell 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池の電極に関するものである。   The present invention relates to an electrode of a fuel cell.

燃料電池は、水素やメタノール等の燃料を電気化学的に酸化することにより、燃料の化学エネルギーを電気エネルギーに変換して取り出すものであり、新たな電気エネルギー供給源として注目されている。   A fuel cell is one that converts chemical energy of a fuel into electric energy by electrochemically oxidizing a fuel such as hydrogen or methanol, and has attracted attention as a new electric energy supply source.

特許文献1及び2には、この種の燃料電池の構造が開示されている。燃料電池の電極構造は、アノード用集電体、アノード、電解質膜、カソード、カソード用集電体を順次積層した5層構造になっており、アノード(燃料極)に水素またはメタノールなどの燃料、カソード(酸化剤極)に酸素を供給し、電気化学反応により発電する。例えば、ダイレクトメタノール燃料電池の各電極では次の化1式のような電気化学反応が生じている。   Patent Documents 1 and 2 disclose the structure of this type of fuel cell. The electrode structure of the fuel cell is a five-layer structure in which an anode current collector, an anode, an electrolyte membrane, a cathode, and a cathode current collector are sequentially stacked. A fuel such as hydrogen or methanol is used on the anode (fuel electrode), Oxygen is supplied to the cathode (oxidant electrode) and electricity is generated by an electrochemical reaction. For example, an electrochemical reaction represented by the following chemical formula 1 occurs at each electrode of a direct methanol fuel cell.

Figure 2010086931
Figure 2010086931

燃料極および酸化剤極には、触媒金属が担持された炭素粒子とプロトン伝導性物質との混合体が用いられ、一般的にこの混合体は、燃料のガスの拡散層となるカーボンペーパーなどの電極基体上に塗布されて構成される。これら2つの電極により、電解質膜を挟み、熱圧着することにより燃料電池が構成される。   For the fuel electrode and the oxidizer electrode, a mixture of carbon particles carrying a catalyst metal and a proton conductive material is used, and this mixture is generally used as a carbon paper or the like serving as a fuel gas diffusion layer. It is configured to be applied on an electrode substrate. A fuel cell is formed by sandwiching an electrolyte membrane between these two electrodes and thermocompression bonding.

この構成の燃料電池において、燃料極に供給されたメタノールは、電極中の細孔を通過して触媒に達し、電子を放出してプロトンと二酸化炭素となり、二酸化炭素は電極中の細孔を通過して排出される。放出された電子は燃料極内の炭素粒子およびプロトン電導性物質を通って外部回路へ導きだされ、外部回路よりカソード極に流れ込む。   In the fuel cell of this configuration, the methanol supplied to the fuel electrode passes through the pores in the electrode and reaches the catalyst, emits electrons to become protons and carbon dioxide, and the carbon dioxide passes through the pores in the electrode. Then discharged. The emitted electrons are led to the external circuit through the carbon particles in the fuel electrode and the proton conductive material, and flow into the cathode electrode from the external circuit.

一方、燃料極において発生した水素イオンは、燃料極中のプロトン伝導性物質および両電極間に挟まれた電解質膜を通って酸化剤極に達し、酸化剤極に供給された酸素と外部回路より流れ込む電子と反応して上記反応式に示すように水を生じる。生成された水は電極中の細孔を通過して排出される。この結果、外部回路では燃料極から酸化剤極へ向かって電子が流れ、電力が取り出される。   On the other hand, hydrogen ions generated in the fuel electrode reach the oxidant electrode through the proton conductive material in the fuel electrode and the electrolyte membrane sandwiched between the two electrodes, and from the oxygen supplied to the oxidant electrode and the external circuit It reacts with the flowing electrons to produce water as shown in the above reaction formula. The generated water passes through the pores in the electrode and is discharged. As a result, in the external circuit, electrons flow from the fuel electrode toward the oxidant electrode, and electric power is taken out.

上記のような構成の燃料電池の特性を向上させるためには、電極と電解質膜との界面の密着性が良好であることが重要であると共に、メタノール、二酸化炭素、水などの物質輸送に必要な細孔の存在が重要である。   In order to improve the characteristics of the fuel cell configured as described above, it is important to have good adhesion at the interface between the electrode and the electrolyte membrane, and it is necessary for transporting substances such as methanol, carbon dioxide, and water. Existence of fine pores is important.

特許第3608564号公報Japanese Patent No. 3608564 特許第3608565号公報Japanese Patent No. 3608565

そこで、本発明の技術的課題は、上記従来技術の問題点を解決し、電極と、その製造方法と、電解質膜電極接合体と、その製造方法と、それを用いた燃料電池とを提供することにある。   Therefore, the technical problem of the present invention is to solve the above-mentioned problems of the prior art and provide an electrode, a manufacturing method thereof, an electrolyte membrane electrode assembly, a manufacturing method thereof, and a fuel cell using the same. There is.

本発明によれば、基体表面に触媒層を有する電極であって、前記電極は、内部に直径1nm〜100nmである細孔を有し、前記触媒層は、触媒を担持するナノカーボンと、プロトン伝導物質との混合体を含むことを特徴とする電極が得られる。   According to the present invention, there is provided an electrode having a catalyst layer on the surface of the substrate, the electrode having pores having a diameter of 1 nm to 100 nm inside, the catalyst layer comprising nanocarbon supporting the catalyst, proton An electrode is obtained which comprises a mixture with a conductive material.

本発明によれば、触媒と担体を有する電極を30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬して、前記電極の触媒および担体の一部をメタノール水溶液に溶出させ、前記電極内部に細孔を形成することを特徴とする電極の製造方法が得られる。   According to the present invention, an electrode having a catalyst and a carrier is immersed in a 30 to 55 vol% aqueous methanol solution for 2 to 24 hours in advance to elute a part of the electrode catalyst and the carrier into the aqueous methanol solution. An electrode manufacturing method characterized by forming pores is obtained.

本発明によれば、前記電極の製造方法において、前記メタノール水溶液への前記電極の浸漬によって、前記電極に含有されるプロトン伝導性物質の一部をメタノール水溶液に溶出させ、前記電極内部に細孔を形成することを特徴とする電極の製造方法が得られる。   According to the present invention, in the method for producing an electrode, by immersing the electrode in the aqueous methanol solution, a portion of the proton conductive material contained in the electrode is eluted into the aqueous methanol solution, and pores are formed inside the electrode. An electrode manufacturing method characterized in that is formed.

本発明によれば、前記電極の製造方法において、前記電極内部に直径1nm〜100nmである前記細孔を形成することを特徴とする電極の製造方法が得られる。   According to the present invention, in the electrode manufacturing method, the electrode manufacturing method is characterized in that the pores having a diameter of 1 nm to 100 nm are formed inside the electrode.

本発明によれば、固体電解質膜の両側に触媒層を備えた電極を夫々圧着した電解質膜電極接合体において、前記触媒層は、触媒を担持するナノカーボンとプロトン伝導物質との混合物を含むことを特徴とする電解質膜電極接合体が得られる。   According to the present invention, in the electrolyte membrane electrode assembly in which electrodes each having a catalyst layer on both sides of a solid electrolyte membrane are pressure-bonded, the catalyst layer includes a mixture of nanocarbon supporting the catalyst and a proton conductive material. An electrolyte membrane electrode assembly is obtained.

本発明によれば、前記電解質膜電極接合体と、前記電解質膜電極接合体を挟み込む一対のセパレータとを備えていることを特徴とする燃料電池が得られる。   According to the present invention, it is possible to obtain a fuel cell comprising the electrolyte membrane electrode assembly and a pair of separators sandwiching the electrolyte membrane electrode assembly.

本発明によれば、30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬してから、電解質膜と接合する工程を有することを特徴とする電解質膜電極接合体の製造方法が得られる。   According to the present invention, it is possible to obtain a method for producing an electrolyte membrane electrode assembly, which includes a step of previously immersing in a 30 to 55 vol% methanol aqueous solution for 2 to 24 hours and then joining the electrolyte membrane.

本発明によれば、前記電解質膜電極接合体の製造方法において、前記工程により、電極の触媒および担体の一部がメタノール水溶液に溶出し、電極内部に細孔を形成することを特徴とする電解質膜電極接合体の製造方法が得られる。   According to the present invention, in the method for producing an electrolyte membrane electrode assembly, the electrolyte is characterized in that, in the step, a part of the electrode catalyst and the carrier are eluted into the methanol aqueous solution to form pores inside the electrode. A method for producing a membrane electrode assembly is obtained.

本発明によれば、前記いずれか一つの電解質膜電極接合体の製造方法において、前記工程により、前記電極に含有されるプロトン伝導性物質の一部がメタノール水溶液に溶出し、前記電極内部に細孔を形成することを特徴とする電解質膜電極接合体の製造方法が得られる。   According to the present invention, in the method for manufacturing an electrolyte membrane electrode assembly according to any one of the above, in the step, a part of the proton conductive material contained in the electrode is eluted in the methanol aqueous solution and is finely divided in the electrode. A method for producing an electrolyte membrane electrode assembly, wherein holes are formed, is obtained.

本発明によれば、前記電解質膜電極接合体の製造方法において、前記電極内部に形成される細孔は、直径1nm〜100nmであることを特徴とする電解質膜電極接合体の製造方法が得られる。   According to the present invention, in the method for producing an electrolyte membrane electrode assembly, the method for producing an electrolyte membrane electrode assembly is characterized in that the pores formed inside the electrode have a diameter of 1 nm to 100 nm. .

本発明によれば、前記いずれか一つの電解質膜電極接合体を用いたことを特徴とする燃料電池が得られる。   According to the present invention, a fuel cell characterized by using any one of the electrolyte membrane electrode assemblies is obtained.

すなわち、電極を30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬することにより、電極の触媒や担体の一部、およびプロトン伝導性物質の一部がメタノール水溶液に溶出し、電極内部に細孔が作製され、物質輸送に最適な電極を作製することができる。   That is, by immersing the electrode in a 30 to 55 vol% aqueous methanol solution for 2 to 24 hours in advance, a part of the electrode catalyst and carrier and a part of the proton conductive substance are eluted into the aqueous methanol solution and are finely divided inside the electrode. A hole is created, and an electrode optimal for mass transport can be produced.

本発明によれば、電極内部に物質輸送に必要な、微小で多数の細孔を作製し、かつ電極と電解質膜との界面の密着性を良好にする、電極とその製造方法と、電解質膜電極接合体とその製造方法とを提供することができる。   According to the present invention, an electrode, a manufacturing method thereof, and an electrolyte membrane, in which a large number of fine pores necessary for material transportation inside the electrode are produced and the interface has an excellent adhesion between the electrode and the electrolyte membrane. An electrode assembly and a manufacturing method thereof can be provided.

また、本発明によれば、前記電解質膜電極接合体を用いることで、効率よく発電できる燃料電池を提供することができる。   Moreover, according to the present invention, a fuel cell capable of generating power efficiently can be provided by using the electrolyte membrane electrode assembly.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、本発明に係る燃料電池の構造の一例を模式的に表した断面図である。図1を参照すると、電解質膜電極接合体20は、燃料極2、酸化剤極3、及び電解質膜4を備えて構成される。燃料極2と酸化剤極3を総称して、電極と呼び、本発明に係る電極は、燃料極2と酸化剤極3の少なくとも一方に用いられる。燃料極2は、基体5およびプロトン伝導性物質を含む触媒層6から構成される。   FIG. 1 is a cross-sectional view schematically showing an example of the structure of a fuel cell according to the present invention. Referring to FIG. 1, the electrolyte membrane electrode assembly 20 includes a fuel electrode 2, an oxidant electrode 3, and an electrolyte membrane 4. The fuel electrode 2 and the oxidant electrode 3 are collectively referred to as an electrode, and the electrode according to the present invention is used for at least one of the fuel electrode 2 and the oxidant electrode 3. The fuel electrode 2 includes a base 5 and a catalyst layer 6 containing a proton conductive material.

燃料極2を構成する基体2は、カーボンペーパーが用いられているが、カーボン成形体、カーボンの焼結体、焼結金属、発泡金属等の多孔性の基体を用いることができるが、燃料透過が良い導電性材料であるならば、これらに限定されるものではない。   Carbon paper is used as the base 2 constituting the fuel electrode 2, but a porous base such as a carbon molded body, a sintered body of carbon, a sintered metal, and a foam metal can be used. However, it is not limited to these as long as it is a good conductive material.

触媒層6は、触媒と、それを担持する担体と、触媒を担持する担体を結着するための結着剤、例えば、導電性高分子とを有している。   The catalyst layer 6 includes a catalyst, a carrier that supports the catalyst, and a binder, for example, a conductive polymer, for binding the carrier that supports the catalyst.

触媒は、金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミニウム等の貴金属またはレニウム、これらの合金もしくは、それらを含む化合物や、ニッケル、コバルト等の鉄を除く鉄族元素、これらの合金もしくは、それらを含む化合物や、リチウム、ランタン、ストロンチウム、イットリウムなどのアルカリ土類金属または希土類金属、これらの合金もしくは、それらを含む化合物等が例示できるが、これらに限定されるものではない。   The catalyst is a noble metal such as gold, silver, palladium, rhodium, iridium, ruthenium, osmium, rhenium, alloys thereof, compounds containing them, iron group elements other than iron such as nickel, cobalt, alloys thereof, or Examples of such compounds include, but are not limited to, alkaline earth metals such as lithium, lanthanum, strontium, yttrium, rare earth metals, alloys thereof, compounds containing them, and the like.

また、担体としては、カーボンナノホーン、カーボンナノチューブ、フラーレン等のナノカーボン、グラファイト粒子等の炭素粒子が好ましい。   Moreover, as a support | carrier, carbon particles, such as nanocarbons, such as carbon nanohorn, a carbon nanotube, fullerene, and a graphite particle, are preferable.

また、結着剤として、固体高分子電解質であればよく、特に、材料に限定されるものではない。   Further, the binder may be a solid polymer electrolyte, and is not particularly limited to the material.

また、酸化剤極3は、基体7およびプロトン伝導性物質を含む触媒層8から構成される。   The oxidant electrode 3 includes a base 7 and a catalyst layer 8 containing a proton conductive material.

酸化剤極3を構成する基体7は、燃料極2を構成する基体5と同様の材料が用いられるが、酸素ガスの透過が良い導電性材料であるならば、これらに限定されるものではない。   The base 7 constituting the oxidant electrode 3 is made of the same material as the base 5 constituting the fuel electrode 2, but is not limited thereto as long as it is a conductive material with good oxygen gas permeation. .

触媒層8は、触媒と、それを担持する担体と、触媒を担持する担体を結着するための結着剤、例えば、導電性高分子とを有している。触媒及び担体は、上記触媒層6に用いられた触媒及び担体と同様なものを用いることができる。   The catalyst layer 8 includes a catalyst, a carrier that supports the catalyst, and a binder, for example, a conductive polymer, for binding the carrier that supports the catalyst. As the catalyst and the carrier, the same catalyst and carrier used for the catalyst layer 6 can be used.

また、結着剤として、固体高分子電解質であればよく、特に、材料に限定されるものではない。   Further, the binder may be a solid polymer electrolyte, and is not particularly limited to the material.

固体高分子電解質膜4としては、水素イオンや水分子を透過させるものであるならば、特に材料に限定されるものではないが、特許文献2の[0049]に示されているように、スルフォン基、リン酸基、ホスホン基、ホスフィン基などの強酸基や、カルボキシル基などの弱酸基などの極性基を有する有機高分子が好ましく用いられる。こうした有機高分子として、スルフォン化ポリ(4−フェノキシベンゾイル−1,4−フェニレン)、アルキルスルフォン化ポリベンゾイミダゾールなどの芳香族含有高分子;ポリスチレンスルフォン酸共重合体、ポリビニルスルフォン酸共重合体、架橋アルキルスルフォン酸誘導体、フッ素樹脂骨格およびスルフォン酸からなるフッ素含有高分子などの共重合体;アクリルアミド−2−メチルプロパンスルフォン酸のようなアクリルアミド類とn−ブチルメタクリレートのようなアクリレート類とを共重合させて得られる共重合体;スルフォン基含有パーフルオロカーボン(ナフィオン(登録商標、デュポン社製)、アシプレックス(旭化成社製));カルボキシル基含有パーフルオロカーボン(フレミオン(登録商標)S膜(旭硝子社製));などが例示される。   The solid polymer electrolyte membrane 4 is not particularly limited to a material as long as it allows hydrogen ions and water molecules to pass therethrough. However, as shown in [0049] of Patent Document 2, sulfone is used. An organic polymer having a polar group such as a strong acid group such as a group, a phosphoric acid group, a phosphone group or a phosphine group, or a weak acid group such as a carboxyl group is preferably used. Examples of the organic polymer include aromatic-containing polymers such as sulfonated poly (4-phenoxybenzoyl-1,4-phenylene) and alkylsulfonated polybenzimidazole; polystyrene sulfonate copolymer, polyvinyl sulfonate copolymer, Copolymers such as cross-linked alkyl sulfonic acid derivatives, fluorine-containing polymers composed of a fluororesin skeleton and sulfonic acid; acrylamides such as acrylamide-2-methylpropane sulfonic acid and acrylates such as n-butyl methacrylate. Copolymer obtained by polymerization; sulfone group-containing perfluorocarbon (Nafion (registered trademark, manufactured by DuPont), Aciplex (manufactured by Asahi Kasei)); carboxyl group-containing perfluorocarbon (Flemion (registered trademark) S membrane (Asahi Glass Co., Ltd.) Made ); And the like are exemplified.

単数または複数の触媒電解質膜電極接合体20が、燃料極側セパレータ9および酸化剤極側セパレータ10を介して電気的に接続され、燃料電池1が構成される。なお、燃料極側セパレータ9内には、燃料であるメタノール11が供給され、酸化剤側セパレータ9内には、酸化剤である酸素ガス12が供給される。   One or a plurality of catalyst electrolyte membrane electrode assemblies 20 are electrically connected via the fuel electrode side separator 9 and the oxidant electrode side separator 10 to constitute the fuel cell 1. Note that methanol 11 as fuel is supplied into the fuel electrode side separator 9, and oxygen gas 12 as oxidant is supplied into the oxidant side separator 9.

本発明では、上記の燃料極2、酸化剤極3を30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬することにより、電極の触媒や担体の一部、およびプロトン伝導性物質がメタノール水溶液に溶出し、電極内部に細孔が作製される。   In the present invention, the fuel electrode 2 and the oxidizer electrode 3 are immersed in a 30 to 55 vol% methanol aqueous solution in advance for 2 to 24 hours so that the electrode catalyst, a part of the carrier, and the proton conductive material are in the methanol aqueous solution. And the pores are formed inside the electrode.

このメタノール水溶液で処理された電極を、固体高分子電解質膜4に熱圧着することにより、燃料、二酸化炭素および水などの物質輸送に有利な微細な細孔を有する電解質膜電極接合体20を製造することができる。   The electrode treated with the methanol aqueous solution is thermocompression bonded to the solid polymer electrolyte membrane 4 to produce an electrolyte membrane electrode assembly 20 having fine pores advantageous for transporting substances such as fuel, carbon dioxide and water. can do.

本発明の実施の形態においては、電極を30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬することにより、電極の触媒や担体の一部、およびプロトン伝導性物質がメタノール水溶液に溶出し、電極内部に細孔が作製される。   In the embodiment of the present invention, by immersing the electrode in a 30 to 55 vol% methanol aqueous solution in advance for 2 to 24 hours, the electrode catalyst and a part of the carrier and the proton conductive substance are eluted in the methanol aqueous solution, A pore is created inside the electrode.

なお、メタノール水溶液は30vol%より希薄である場合には電極から触媒や担体の一部およびプロトン伝導性物質の一部が溶出されないため効果が著しく低く、55vol%より濃い場合には電極の触媒層が剥がれ落ちてしまうことにより電極を作製することができない。   When the aqueous methanol solution is less than 30% by volume, the catalyst and a part of the carrier and part of the proton conductive material are not eluted from the electrode, so the effect is remarkably low. As a result of peeling off, the electrode cannot be produced.

なかでもメタノール水溶液の濃度は45〜55vol%であると特に効果が高い。また、メタノール水溶液への浸漬時間は2時間より短い場合には、プロトン伝導性物質は膨潤し電極と電解質膜との密着性を上げる効果はあるが、触媒や担体の一部およびプロトン伝導性物質の一部が溶出する効果はほとんどなく、24時間を超えると電極の触媒層が剥がれ落ちたり、あるいは触媒や担体、プロトン伝導性物質の溶出の量が多過ぎて、電極としての性能が低下する。   Especially, the effect is particularly high when the concentration of the aqueous methanol solution is 45 to 55 vol%. In addition, when the immersion time in an aqueous methanol solution is shorter than 2 hours, the proton conductive material swells and has an effect of improving the adhesion between the electrode and the electrolyte membrane. There is little effect of elution of part of the catalyst, and if it exceeds 24 hours, the catalyst layer of the electrode is peeled off, or the amount of elution of the catalyst, the carrier, and the proton conductive substance is excessive, and the performance as an electrode is deteriorated. .

室温では12時間以上浸漬すると特に効果が高い。本発明により作製された電極を使用した燃料電池は触媒特性、導電特性およびプロトン伝導特性に優れ、効率良く発電できる。   The effect is particularly high when immersed for 12 hours or more at room temperature. A fuel cell using an electrode produced according to the present invention is excellent in catalytic characteristics, conductive characteristics and proton conductive characteristics, and can generate power efficiently.

以下に本発明の実施例を示し、さらに詳しく本発明について例示、説明する。ただし、以下の例によって本発明が限定されるものではない。   Examples of the present invention will be shown below, and the present invention will be illustrated and explained in more detail. However, the present invention is not limited to the following examples.

(実施例)
カーボンナノホーン触媒はコロイド法で作製した。カーボンとPtの比が2:3になる量論比の塩化白金酸水溶液の液温を50℃に保持したまま亜硫酸水素ナトリウムを加え還元した後、1規定水酸化ナトリウム溶液でpHを5に調整した。得られた溶液を水で希釈し、カーボンナノホーン集合体を加え、ホモジナイザーを用いて30分撹拌した。30%の過酸化水素水を少量ずつ加え、液中の白金化合物を酸化白金コロイドへ変化させ、同時にカーボン粉体へ吸着させた。液温を75℃に保持しつつ、溶液のpHを5に調整し、12時間撹拌を行った。溶液を10分間沸騰させ、自然冷却後、遠心分離と水洗いで不要塩類を除去し、70℃で12時間保持、乾燥させ、酸化白金の吸着したカーボン粉体を得た。その後、水素中で還元を2日間行った。このように触媒担持を行った試料について走査型透過電子顕微鏡像(SEM)観察を行い、SEM像中の黒い点を、エネルギー分散型X線分光(EDS)で分析した結果、Ptであることが確認された。STEM像から、試料の平均Pt粒子径は4.5nmであることが見積もられた。担持率については、酸素雰囲気中での熱重量分析の結果、Ptはカーボンナノホーンに対しての重量比60%と確認することができた。
(Example)
The carbon nanohorn catalyst was prepared by a colloid method. Reduced by adding sodium hydrogen sulfite while maintaining the temperature of the chloroplatinic acid aqueous solution with a stoichiometric ratio of carbon to Pt of 2: 3 at 50 ° C, and adjusted the pH to 5 with 1N sodium hydroxide solution did. The obtained solution was diluted with water, carbon nanohorn aggregates were added, and the mixture was stirred for 30 minutes using a homogenizer. A 30% hydrogen peroxide solution was added little by little to change the platinum compound in the solution into a platinum oxide colloid and simultaneously adsorbed onto the carbon powder. While maintaining the liquid temperature at 75 ° C., the pH of the solution was adjusted to 5 and stirred for 12 hours. The solution was boiled for 10 minutes, and after natural cooling, unnecessary salts were removed by centrifugation and washing with water, and kept at 70 ° C. for 12 hours and dried to obtain a carbon powder adsorbed with platinum oxide. Thereafter, reduction was carried out in hydrogen for 2 days. The sample carrying the catalyst was observed with a scanning transmission electron microscope image (SEM), and the black point in the SEM image was analyzed by energy dispersive X-ray spectroscopy (EDS). confirmed. From the STEM image, it was estimated that the average Pt particle diameter of the sample was 4.5 nm. As for the loading rate, as a result of thermogravimetric analysis in an oxygen atmosphere, Pt could be confirmed to be 60% by weight with respect to the carbon nanohorn.

上記で作製した、カーボンナノホーンの60%Pt担持触媒に酸素を除去した窒素雰囲気下でイソプロパノールを加え、カーボンナノホーン触媒を分散させた。また、更にカーボンナノホーン触媒の分散性を上げるために周波数20kHzの超音波分散処理を行った。有機溶媒に分散させたカーボンナノホーン触媒にデュポン社製5%ナフィオン(登録商標)溶液を加え混練し、カーボンナノホーン触媒ペーストを作製した。   Isopropanol was added to the 60% Pt-supported catalyst of carbon nanohorn prepared above in a nitrogen atmosphere from which oxygen was removed, and the carbon nanohorn catalyst was dispersed. Further, in order to further improve the dispersibility of the carbon nanohorn catalyst, ultrasonic dispersion treatment at a frequency of 20 kHz was performed. A 5% Nafion (registered trademark) solution manufactured by DuPont was added to the carbon nanohorn catalyst dispersed in an organic solvent and kneaded to prepare a carbon nanohorn catalyst paste.

上記で作製した、カーボンナノホーン触媒ペーストを基体上に塗布し、140℃で乾燥し、50vol%メタノール水溶液に18時間浸漬させ、メタノール水溶液に不要物を溶出することにより電極内部に細孔を作製した。これを、電解質膜の両面に圧着させて燃料電池電極を作製した。この電極を用いて、直接メタノール型燃料電池のセルを作り40℃の温度下で電池特性を測定した。結果を図2に示す。   The carbon nanohorn catalyst paste prepared above was applied onto a substrate, dried at 140 ° C., immersed in a 50 vol% methanol aqueous solution for 18 hours, and unnecessary substances were eluted in the methanol aqueous solution to prepare pores inside the electrode. . This was pressure-bonded to both surfaces of the electrolyte membrane to produce a fuel cell electrode. Using this electrode, a direct methanol fuel cell was made and its battery characteristics were measured at a temperature of 40 ° C. The results are shown in FIG.

(比較例1)
実施例で作製したカーボンナノホーン触媒ペーストを基体上に塗布し、140℃で乾燥した触媒層をメタノール水溶液に浸漬せずに乾燥したまま作製した電極を使用した。それ以外は実施例と同様にしてMEA(電解質膜電極接合体)を作製し、電池特性を評価した。結果を図2に示す。
(Comparative Example 1)
An electrode prepared by applying the carbon nanohorn catalyst paste prepared in the example onto a substrate and drying the catalyst layer dried at 140 ° C. without being immersed in an aqueous methanol solution was used. Otherwise, an MEA (electrolyte membrane electrode assembly) was prepared in the same manner as in the Examples, and the battery characteristics were evaluated. The results are shown in FIG.

(比較例2)
実施例で作製したカーボンナノホーン触媒ペーストを基体上に塗布し、140℃で乾燥し、10vol%メタノール水溶液に18時間浸漬させて作製した電極を使用した。それ以外は実施例と同様にしてMEAを作製し、電池特性を評価した。結果を図2に示す。
(Comparative Example 2)
An electrode prepared by applying the carbon nanohorn catalyst paste prepared in the example onto a substrate, drying at 140 ° C., and immersing in a 10 vol% methanol aqueous solution for 18 hours was used. Otherwise, an MEA was produced in the same manner as in the Examples, and the battery characteristics were evaluated. The results are shown in FIG.

図2に示すように、従来の製造方法で作製したMEA(比較例1)は電池出力が12mW/cm、触媒層を10vol%メタノール水溶液に浸漬して作製した電極を使用したMEA(比較例2)は電池出力が31mW/cmであったのに対して、触媒層をメタノール50%水溶液に浸漬して作製した電極を使用したMEA(実施例)は76mW/cmで電池出力が飛躍的に向上することが確認された。 As shown in FIG. 2, the MEA produced by the conventional manufacturing method (Comparative Example 1) is an MEA using an electrode produced by immersing the catalyst layer in a 10 vol% methanol aqueous solution with a battery output of 12 mW / cm 2 (Comparative Example). 2) battery output was 31 mW / cm 2 , while MEA (Example) using an electrode prepared by immersing the catalyst layer in 50% aqueous methanol solution was 76 mW / cm 2 and the battery output jumped. It was confirmed that it improved.

本発明に係る燃料電池の構成の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of a structure of the fuel cell concerning this invention. 従来方法の乾燥状態の電極を用いて作製されたMEAと、10vol%メタノール水溶液で浸漬した電極を用いて作製されたMEAと、本発明に係る50vol%メタノール水溶液で浸漬し細孔を作製した電極を用いたMEAの出力特性を示す図である。MEA produced using a dry electrode of a conventional method, MEA produced using an electrode immersed in a 10 vol% methanol aqueous solution, and an electrode produced by dipping in a 50 vol% methanol aqueous solution according to the present invention to produce pores It is a figure which shows the output characteristic of MEA using.

符号の説明Explanation of symbols

1 燃料電池
2 燃料極
3 酸化剤極
4 固体高分子電解質膜
5,7 基体
6,8 触媒層
9,10 セパレータ
11 メタノール(燃料)
12 酸素ガス(酸化剤)
20 電解質膜電極接合体
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Fuel electrode 3 Oxidant electrode 4 Solid polymer electrolyte membrane 5,7 Base | substrate 6,8 Catalyst layer 9,10 Separator 11 Methanol (fuel)
12 Oxygen gas (oxidizer)
20 Electrolyte membrane electrode assembly

Claims (11)

基体表面に触媒層を有する電極であって、前記電極は、内部に直径1nm〜100nmである細孔を有し、前記触媒層は、触媒を担持するナノカーボンと、プロトン伝導物質との混合体を含むことを特徴とする電極。   An electrode having a catalyst layer on a substrate surface, the electrode having pores having a diameter of 1 nm to 100 nm inside, and the catalyst layer is a mixture of nanocarbon carrying a catalyst and a proton conductive material An electrode comprising: 触媒と担体を有する電極を30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬して、前記電極の触媒および担体の一部をメタノール水溶液に溶出させ、前記電極内部に細孔を形成することを特徴とする電極の製造方法。   An electrode having a catalyst and a carrier is immersed in a 30 to 55 vol% aqueous methanol solution for 2 to 24 hours in advance to elute a part of the electrode catalyst and the carrier into the aqueous methanol solution to form pores inside the electrode. An electrode manufacturing method characterized by the above. 請求項2に記載の電極の製造方法において、前記メタノール水溶液への前記電極の浸漬によって、前記電極に含有されるプロトン伝導性物質の一部をメタノール水溶液に溶出させ、前記電極内部に細孔を形成することを特徴とする電極の製造方法。   3. The electrode manufacturing method according to claim 2, wherein a portion of the proton conductive material contained in the electrode is eluted into the methanol aqueous solution by immersing the electrode in the methanol aqueous solution, and pores are formed inside the electrode. A method for producing an electrode, comprising: forming the electrode. 請求項2又は3に記載の電極の製造方法において、前記電極内部に直径1nm〜100nmである前記細孔を形成することを特徴とする電極の製造方法。   4. The method for manufacturing an electrode according to claim 2, wherein the pores having a diameter of 1 nm to 100 nm are formed inside the electrode. 固体電解質膜の両側に触媒層を備えた電極を夫々圧着した電解質膜電極接合体において、前記触媒層は、触媒を担持するナノカーボンとプロトン伝導物質との混合物を含むことを特徴とする電解質膜電極接合体。   An electrolyte membrane electrode assembly in which electrodes each having a catalyst layer on both sides of a solid electrolyte membrane are pressure-bonded to each other, wherein the catalyst layer includes a mixture of nanocarbon supporting the catalyst and a proton conductive material. Electrode assembly. 請求項5に記載の電解質膜電極接合体と、前記電解質膜電極接合体を挟み込む一対のセパレータとを備えていることを特徴とする燃料電池。   6. A fuel cell comprising the electrolyte membrane electrode assembly according to claim 5 and a pair of separators sandwiching the electrolyte membrane electrode assembly. 30〜55vol%のメタノール水溶液にあらかじめ2〜24時間浸漬してから、電解質膜と接合する工程を有することを特徴とする電解質膜電極接合体の製造方法。   A method for producing an electrolyte membrane electrode assembly, comprising a step of immersing in a 30 to 55 vol% aqueous methanol solution in advance for 2 to 24 hours and then joining the membrane with an electrolyte membrane. 請求項7に記載の電解質膜電極接合体の製造方法において、前記工程により、電極の触媒および担体の一部がメタノール水溶液に溶出し、電極内部に細孔を形成することを特徴とする電解質膜電極接合体の製造方法。   8. The method for producing an electrolyte membrane / electrode assembly according to claim 7, wherein in the step, a part of the electrode catalyst and the carrier are eluted into the aqueous methanol solution to form pores inside the electrode. Manufacturing method of electrode assembly. 請求項7又は8に記載の電解質膜電極接合体の製造方法において、前記工程により、前記電極に含有されるプロトン伝導性物質の一部がメタノール水溶液に溶出し、前記電極内部に細孔を形成することを特徴とする電解質膜電極接合体の製造方法。   9. The method for producing an electrolyte membrane / electrode assembly according to claim 7 or 8, wherein in the step, part of the proton conductive material contained in the electrode is eluted into an aqueous methanol solution to form pores inside the electrode. A method for producing an electrolyte membrane electrode assembly comprising: 請求項8又は9に記載の電解質膜電極接合体の製造方法において、前記電極内部に形成される細孔は、直径1nm〜100nmであることを特徴とする電解質膜電極接合体の製造方法。   10. The method for producing an electrolyte membrane electrode assembly according to claim 8 or 9, wherein the pores formed in the electrode have a diameter of 1 nm to 100 nm. 請求項7〜10のいずれか一項に記載の電解質膜電極接合体を用いたことを特徴とする燃料電池。   A fuel cell using the electrolyte membrane electrode assembly according to any one of claims 7 to 10.
JP2008258079A 2008-10-03 2008-10-03 Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell Withdrawn JP2010086931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258079A JP2010086931A (en) 2008-10-03 2008-10-03 Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258079A JP2010086931A (en) 2008-10-03 2008-10-03 Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell

Publications (1)

Publication Number Publication Date
JP2010086931A true JP2010086931A (en) 2010-04-15

Family

ID=42250673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258079A Withdrawn JP2010086931A (en) 2008-10-03 2008-10-03 Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell

Country Status (1)

Country Link
JP (1) JP2010086931A (en)

Similar Documents

Publication Publication Date Title
CN110504472B (en) Direct methanol fuel cell membrane electrode for improving catalyst utilization rate and preparation method thereof
JP3608565B2 (en) Fuel cell and manufacturing method thereof
JP3706855B2 (en) FUEL CELL UNIT, ITS MANUFACTURING METHOD, AND FUEL CELL USING THE SAME
KR100696621B1 (en) Electrode base material for fuel cell, manufacturing method thereof and membrane-electrode assembly comprising same
JP2007305591A (en) Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
JP4917794B2 (en) Membrane / electrode assembly for fuel cell and fuel cell system including the same
JP2006140152A (en) Fuel cell electrode, fuel cell membrane / electrode assembly including the same, and fuel cell system
JP2007188768A (en) Polymer electrolyte fuel cell
WO2004019435A2 (en) Conductive carbon, electrode catalyst for fuel cell using the same and fuel cell
JP2003317735A (en) Solid high polymer electrolyte fuel cell, method for manufacturing solid high polymer electrolyte film for fuel cell and fuel cell
JP2020057516A (en) Electrode layer, membrane electrode assembly including the electrode layer, and fuel cell
JP2003317737A (en) Fuel cell, catalyst electrode using it and solid electrolyte film
JP2006019300A (en) FUEL CELL ELECTRODE, FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL ELECTRODE
CN101029140A (en) Polymer membrane, method of preparing the same and fuel cell employing the same
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP2006079917A (en) Mea for fuel cell, and fuel cell using this
JP2005174770A (en) Fuel cell
JP2008077956A (en) Varnish for forming catalyst electrode for fuel cell, catalytic electrode using it, membrane electrode assembly using it, fuel cell using it
JP3599044B2 (en) Fuel cell catalyst electrode, fuel cell using the same, and methods of manufacturing the same
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP2010086931A (en) Electrode and electrolyte membrane-electrode assembly, manufacturing methods of those, and fuel cell
JP5313569B2 (en) Solid polymer electrolyte membrane and method for producing solid polymer electrolyte membrane
JP2006179412A (en) Fuel cell electrode catalyst layer and fuel cell using the same
JP2005174827A (en) Solid polymer electrolyte membrane, fuel cell using the same, and manufacturing method of them

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206