[go: up one dir, main page]

JP2010085065A - Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger - Google Patents

Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger Download PDF

Info

Publication number
JP2010085065A
JP2010085065A JP2008257758A JP2008257758A JP2010085065A JP 2010085065 A JP2010085065 A JP 2010085065A JP 2008257758 A JP2008257758 A JP 2008257758A JP 2008257758 A JP2008257758 A JP 2008257758A JP 2010085065 A JP2010085065 A JP 2010085065A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
mass
aluminum alloy
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008257758A
Other languages
Japanese (ja)
Inventor
Masakazu Edo
正和 江戸
Masazo Asano
雅三 麻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008257758A priority Critical patent/JP2010085065A/en
Publication of JP2010085065A publication Critical patent/JP2010085065A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy extrusion tube having superior workability and strength as a tube of a heat exchanger for an air conditioner. <P>SOLUTION: This aluminum alloy extrusion tube for the fin tube type air conditioner heat exchanger, including 0.1-1.6 mass% of Mn, and Al and unavoidable impurities as remaining parts, and having superior formability and strength, further includes one or more of 0.1-1.0 mass% of Si and 0.01-1.0 mass% of Cu, and may include 0.1-1.0 mass% of Fe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換器に組み込まれる伝熱管に関し、特にエアコン用の熱交換器に組み込まれるのが好適な、成形性及び強度に優れるフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブに関するものである。   TECHNICAL FIELD The present invention relates to a heat transfer tube incorporated in a heat exchanger, and more particularly to an aluminum alloy extruded tube for a fin tube type air conditioner heat exchanger that is excellent in formability and strength and is preferably incorporated in a heat exchanger for an air conditioner. .

近年、家庭用や業務用のエアコン等の熱交換器の普及は目覚しく、日常生活における快適さの実現にはなくてはならないものになっている。これらの熱交換器には、熱伝導性および加工性に優れた銅または銅合金製配管材が使用され、銅管の周囲に複数のアルミニウム合金製薄肉フィン材を平行に配設しているフィンチューブ型熱交換器が使用されている(例えば、特許文献1)。図1、図2に基づいてフィンチューブ型熱交換器の概略構成を説明する。   In recent years, heat exchangers such as home and commercial air conditioners have been widely used, and have become indispensable for realizing comfort in daily life. These heat exchangers use copper or copper alloy piping materials with excellent thermal conductivity and workability, and fins in which a plurality of aluminum alloy thin fin materials are arranged in parallel around the copper pipe A tube heat exchanger is used (for example, Patent Document 1). Based on FIG. 1, FIG. 2, the schematic structure of a fin tube type heat exchanger is demonstrated.

図1(a)に示すようにフィンチューブ型熱交換器は、銅又は銅合金からなる伝熱管(チューブ)をその中央でヘアピン状に曲げ加工をしてU字型のヘアピン管2を作製し、所定の間隔をおいて平行に配置したアルミニウム又はアルミニウム合金製のフィン材1にヘアピン管2を挿通した後、拡管により両者を密着させて固定し、隣接するヘアピン管2の管端に予め曲げ加工を施してあるUベンド管3を嵌合し、ヘアピン管2とUベンド管3とをろう付けすることにより複数個のヘアピン管2がUベンド管3と連結される。   As shown in FIG. 1 (a), the fin tube type heat exchanger produces a U-shaped hairpin tube 2 by bending a heat transfer tube (tube) made of copper or a copper alloy into a hairpin shape at the center thereof. After inserting the hairpin tube 2 through the fin material 1 made of aluminum or aluminum alloy arranged in parallel at a predetermined interval, the two are closely attached to each other by expanding the tube and bent in advance to the tube end of the adjacent hairpin tube 2 A plurality of hairpin tubes 2 are connected to the U-bend tube 3 by fitting the processed U-bend tube 3 and brazing the hairpin tube 2 and the U-bend tube 3.

特開2002−147981号公報JP 2002-147981 A

ヘアピン管2、Uベンド管3を構成するチューブとしては、熱伝導性、耐食性、加工性、強度等に優れている銅管が広く使用されている。また、フィン材1としては軽量性、加工性および熱伝導性に優れるという観点からアルミニウムやアルミニウム合金が広く用いられている。フィン材1は、薄肉化、高強度化が進められるとともに、表面処理を施すことで表面の親水性や耐食性の向上が図られている。
しかし、近年、熱交換器は高性能、高機能化だけでなく、少資源、少エネルギ、少スペースなどの環境側面も配慮した設計が求められている。さらには銅価格の高騰に伴い、安価な部材の使用によるコストダウンの要求も非常に高まっている。したがって、今後、熱交換器には高性能化、高品質化に加え、さらなるコストダウンや軽量化、リサイクル性などの向上も必要不可欠となっている。
エアコン用熱交換器の高性能化を進めるとともに、コストダウンや軽量化さらにはリサイクル性を兼ね備えた熱交換器を得るためにはチューブを軽量で銅に比べ安価なアルミニウム合金製押出チューブとすることが有効となる。
しかし、アルミニウムは銅に比べ、素材強度が低いため、ヘアピン加工やチューブ拡管時に局部変形を生じ、成形不良や割れが発生しやすいなどの問題がある。また、熱交換器としての構造強度や耐久強度確保のため、チューブには高い強度も要求される。さらにはヘアピン管2とUベンド管3はろう付で接合されるため、ろう付が可能な合金を選定しなければならない。また、アルミニウムは孔食が発生しやすく、銅に比べて耐食性が劣るため、耐孔食性に優れる合金選定も必要となる。
本発明は前記事情に鑑みてなされたもので、エアコン用熱交換器のチューブとして加工性や強度に優れるアルミニウム合金製押出チューブを提供することを目的としている。
As the tubes constituting the hairpin tube 2 and the U-bend tube 3, copper tubes that are excellent in thermal conductivity, corrosion resistance, workability, strength, etc. are widely used. In addition, as the fin material 1, aluminum or an aluminum alloy is widely used from the viewpoint of being excellent in lightness, workability, and thermal conductivity. The fin material 1 is made thinner and higher in strength, and surface treatment is performed to improve the hydrophilicity and corrosion resistance of the surface.
However, in recent years, heat exchangers are required to be designed not only with high performance and high functionality, but also with consideration for environmental aspects such as low resources, low energy, and low space. Furthermore, as the price of copper soars, the demand for cost reduction through the use of inexpensive members is also increasing. Therefore, in the future, in addition to higher performance and higher quality, further cost reduction, lighter weight, and improved recyclability are indispensable for heat exchangers.
In order to improve the performance of heat exchangers for air conditioners, and to obtain heat exchangers that combine cost reduction, weight reduction, and recyclability, the tubes should be made of aluminum alloy extruded tubes that are lightweight and less expensive than copper. Becomes effective.
However, since aluminum has a lower material strength than copper, there is a problem that local deformation occurs during hairpin processing or tube expansion, and molding defects or cracks are likely to occur. In addition, the tube is required to have high strength in order to ensure structural strength and durability as a heat exchanger. Furthermore, since the hairpin tube 2 and the U-bend tube 3 are joined by brazing, an alloy capable of brazing must be selected. Moreover, since aluminum tends to cause pitting corrosion and is inferior to copper in corrosion resistance, it is necessary to select an alloy having excellent pitting corrosion resistance.
This invention is made | formed in view of the said situation, and it aims at providing the extruded tube made from an aluminum alloy which is excellent in workability and intensity | strength as a tube of the heat exchanger for air conditioners.

熱交換器製造時、チューブの拡管はチューブ内径よりやや大きい拡管ロッドをチューブ内部に挿入、通過させ、内部から押し拡げることでフィンとの隙間をなくして固着させている。しかし、チューブ強度が低すぎると拡管ロッドにアルミニウムが付着し、挿引時の圧力が著しく増大したり、また、拡管後に都度アルミ片の除去が必要になるなど、生産性が低下する要因となる。また、チューブ強度が高すぎて伸びが低くなると拡管時に一部で減肉等の局部変形が生じ、割れが発生する原因となる。さらにはヘアピン加工の曲げ部やUベンドとの接合部となるフレア加工部でも成形時に割れや減肉の発生が問題となる。
以上のようにエアコン用チューブは成形性や拡管性向上のため、チューブを構成するアルミニウム合金成分の最適化を行なう必要がある。また、あわせて結晶粒径の制御、機械的性質や調質の最適化により加工性を向上することが必要となる。
また、熱交換器としての構造強度や熱交換器として使用する際の耐久強度確保のため、チューブを構成するアルミニウム合金としての強度向上も必要となる。肉厚の増加により強度を確保することも可能だが、拡管性や成形性が低下するため、できるだけ高い強度の合金が必要となる。一般的な純アルミニウムでは強度が不足するため、添加元素を含むアルミニウム合金として強度向上が必要となる。
At the time of manufacturing the heat exchanger, the tube is expanded by inserting a tube expansion rod slightly larger than the inner diameter of the tube into the tube, allowing it to pass through, and then expanding the tube from the inside so that there is no gap between the fins. However, if the tube strength is too low, aluminum adheres to the tube expansion rod, and the pressure at the time of insertion increases remarkably, and it becomes necessary to remove the aluminum piece each time after tube expansion, which causes a decrease in productivity. . Also, if the tube strength is too high and the elongation is low, local deformation such as thinning occurs in part during tube expansion, causing cracking. Furthermore, the occurrence of cracks and thinning of the metal at the time of molding also becomes a problem in the bent portion of the hairpin processing and the flared portion that becomes the joint portion with the U bend.
As described above, the air conditioner tube needs to optimize the aluminum alloy components constituting the tube in order to improve formability and tube expansion. In addition, it is necessary to improve the workability by controlling the crystal grain size and optimizing the mechanical properties and tempering.
Further, in order to ensure the structural strength as a heat exchanger and the durability strength when used as a heat exchanger, it is necessary to improve the strength as an aluminum alloy constituting the tube. Although it is possible to ensure strength by increasing the wall thickness, an alloy having as high a strength as possible is required because tube expandability and formability deteriorate. Since general pure aluminum has insufficient strength, it is necessary to improve the strength of an aluminum alloy containing an additive element.

形状が複雑な押出チューブを製造する場合も考慮し、十分な押出性を確保するための合金組成とする必要がある。また、チューブ単体の耐食性向上やチューブ外表面にZn拡散層を付与した場合に適正な電位勾配となるような合金選定も必要となる。   Considering the case of manufacturing an extruded tube having a complicated shape, it is necessary to have an alloy composition for ensuring sufficient extrudability. In addition, it is necessary to select an alloy that provides an appropriate potential gradient when the corrosion resistance of the tube alone is improved or a Zn diffusion layer is provided on the outer surface of the tube.

本発明者らはフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブとして上記課題を解決するため、Mn:0.1〜1.6質量%を含有し、残部がAlおよび不可避不純物からなることを特徴とするチューブが成形性および強度に優れ、エアコン熱交換器用に適していることを見出した。
本発明はさらに、Mn:0.1〜1.6質量%を含有し、さらにSi:0.1〜1.0質量%及びCu:0.01〜1.0質量%の1種又は2種を含有し、残部がAlおよび不可避不純物からなることを特徴とする成形性および強度に優れるフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブを提供する。
さらにまた本発明は、上記組成にFe:0.1〜1.0質量%を含有させることができる。
In order to solve the above problems as an aluminum alloy extruded tube for a fin tube type air conditioner heat exchanger, the present inventors include Mn: 0.1 to 1.6% by mass, and the balance is made of Al and inevitable impurities. It has been found that the tube is excellent in moldability and strength and suitable for an air conditioner heat exchanger.
The present invention further contains Mn: 0.1 to 1.6% by mass, Si: 0.1 to 1.0% by mass, and Cu: 0.01 to 1.0% by mass, or one or two of them. An aluminum alloy extruded tube for a fin tube type air conditioner heat exchanger having excellent formability and strength, characterized in that the balance is made of Al and inevitable impurities.
Furthermore, the present invention can contain Fe: 0.1 to 1.0% by mass in the above composition.

本発明のフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブは優れた成形性と強度を有しており、本チューブを使用することで部材コストの低減や軽量化、リサイクル性の向上などを図ることができる。また、現行の銅管と同じ製造設備で熱交換器を作製することが可能なため、新たな設備投資を必要とせず、工業上顕著な効果を有する。   The extruded aluminum alloy tube for fin tube type air conditioner heat exchanger of the present invention has excellent formability and strength. By using this tube, reduction of material cost, weight reduction, improvement of recyclability, etc. Can do. Moreover, since it is possible to produce a heat exchanger with the same production equipment as the current copper pipe, there is no need for new equipment investment, and there is a remarkable industrial effect.

本発明は、フィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ(以下、単にチューブ)の組成に特徴を有しており、以下では本発明において規定している組成の限定理由を説明する。
<Mn:0.1〜1.6質量%>
Mnは、添加量に応じてアルミニウムマトリックス中に固溶しあるいはAl−Mn系金属間化合物として析出し、強度を向上させる。また、Al−Mn系金属間化合物が再結晶の起点となり、結晶粒径を微細にし、成形性を向上させる効果を有する。さらにAl−Mn系金属間化合物が腐食の起点となるため、腐食の発生が分散し、深い孔食の発生を抑制する効果がある。これら効果を得るために、本発明はMnを0.1質量%以上含有させる。しかし、含有量が多くなると粗大なAl−Mn系金属間化合物が多数生成し、押出性が著しく低下する。また、粗大なAl−Mn系金属間化合物はフレア加工時に割れの起点となる。そこで、本発明はMnの含有量を1.6質量%以下とする。好ましいMnの含有量は0.3〜1.2質量%である。
The present invention is characterized by the composition of an aluminum alloy extruded tube (hereinafter simply referred to as a tube) for a fin tube type air conditioner heat exchanger, and the reason for limitation of the composition defined in the present invention will be described below.
<Mn: 0.1 to 1.6% by mass>
Mn is dissolved in the aluminum matrix or precipitated as an Al—Mn intermetallic compound depending on the amount added, and improves the strength. In addition, the Al—Mn intermetallic compound serves as a starting point for recrystallization, and has the effect of reducing the crystal grain size and improving the formability. Furthermore, since the Al—Mn-based intermetallic compound is the starting point of corrosion, the occurrence of corrosion is dispersed, and there is an effect of suppressing the occurrence of deep pitting corrosion. In order to obtain these effects, the present invention contains 0.1% by mass or more of Mn. However, when the content increases, a large number of coarse Al—Mn intermetallic compounds are produced, and the extrudability is remarkably lowered. A coarse Al—Mn intermetallic compound becomes a starting point of cracking during flare processing. Therefore, the present invention sets the Mn content to 1.6 mass% or less. A preferable Mn content is 0.3 to 1.2% by mass.

<Si:0.1〜1.0質量%>
Siは、添加量に応じてアルミニウムマトリックス中に固溶し、強度を向上させる。また、Mnと同時に添加されるとAl−Mn−Si系金属間化合物として微細に析出し、強度や加工性を著しく向上させる。さらにAl−Mn系金属間化合物を微細化する作用があるため、押出時の変形抵抗を小さくし押出性を向上させる。さらにまた、Al−Si系金属間化合物が再結晶の起点となり、結晶粒径を微細にし、成形性を向上させる効果を有する。この効果を得るために本発明はSiを0.1質量%以上含有させる。しかし、含有量が多くなると押出性および耐食性を低下させる。そこで、本発明はSiの含有量を1.0質量%以下とする。好ましいSiの含有量は0.3〜0.7質量%である。
<Si: 0.1 to 1.0% by mass>
Si dissolves in the aluminum matrix according to the amount added, and improves the strength. Moreover, when added simultaneously with Mn, it precipitates finely as an Al-Mn-Si type intermetallic compound, and remarkably improves strength and workability. Furthermore, since there exists an effect | action which refines | miniaturizes an Al-Mn type intermetallic compound, the deformation resistance at the time of extrusion is made small, and extrudability is improved. Furthermore, the Al—Si-based intermetallic compound serves as a starting point for recrystallization, and has the effect of reducing the crystal grain size and improving the formability. In order to acquire this effect, this invention contains 0.1 mass% or more of Si. However, if the content is increased, the extrudability and the corrosion resistance are lowered. Therefore, the present invention sets the Si content to 1.0 mass% or less. A preferable Si content is 0.3 to 0.7% by mass.

<Cu:0.01〜1.0質量%>
Cuは、アルミニウムマトリックス中に固溶して強度を向上させる。この効果を得るために、本発明はCuを0.01質量%以上含有させる。しかし、含有量が多くなると、チューブの腐食速度が増加し、孔食の成長が促進されるため貫通孔が発生しやすくなる。そこで、本発明はCuの含有量を1.0質量%以下とする。好ましいCuの含有量は0.05〜0.5質量%である。
<Cu: 0.01 to 1.0% by mass>
Cu is dissolved in the aluminum matrix to improve the strength. In order to acquire this effect, this invention contains 0.01 mass% or more of Cu. However, if the content increases, the corrosion rate of the tube increases and the growth of pitting corrosion is promoted, so that through holes are easily generated. Therefore, the present invention sets the Cu content to 1.0 mass% or less. The preferable Cu content is 0.05 to 0.5% by mass.

<Fe:0.1〜1.0質量%>
Feは、Al−Fe系あるいはAl−Mn−Fe系金属間化合物を生成し、強度を向上させる。また、Fe系の晶出物が材料中に微細に存在するため、それらが孔食の発生源となり深い孔食の発生を抑制する効果がある。この効果を得るために、本発明はFeを0.1質量%以上含有させる。しかし、含有量が多くなると、Al−Mn−Fe系の巨大金属間化合物が生成するため、鋳造性と押出性を低下させる。そこで、本発明はFeの含有量を1.0質量%以下とする。好ましいFeの含有量は0.2〜0.5質量%である。
<Fe: 0.1 to 1.0% by mass>
Fe produces an Al—Fe-based or Al—Mn—Fe-based intermetallic compound and improves the strength. Further, since Fe-based crystallized substances are finely present in the material, they serve as a source of pitting corrosion and have an effect of suppressing the generation of deep pitting corrosion. In order to acquire this effect, this invention contains 0.1 mass% or more of Fe. However, when the content is increased, an Al—Mn—Fe-based giant intermetallic compound is generated, which deteriorates castability and extrudability. Therefore, the present invention sets the Fe content to 1.0 mass% or less. A preferable Fe content is 0.2 to 0.5% by mass.

なお、本発明のチューブは、以上の元素の他に1.0%以下のZnが含まれていても効果が損なわれることはない。さらに、強度や成形性、耐食性の向上のために微量添加元素としてそれぞれ0.3%以下のZr,Ti,Cr,V,Sr,Biを添加することもできる。   In addition, the effect of the tube of this invention is not impaired even if 1.0% or less of Zn is contained in addition to the above elements. Furthermore, 0.3% or less of Zr, Ti, Cr, V, Sr, Bi can be added as trace elements for improving strength, formability, and corrosion resistance.

本発明のチューブの製造方法は、常法に従えばよい。つまり、アルミニウム合金ビレットを半連続鋳造法によって作製し、熱間押出を行なうことで製造される。押出性の向上のためにビレットの均質化処理を行うことが好ましい。なお、熱間押出前にビレットを加熱する工程は均質化処理を兼ねているとみなすことができる。   What is necessary is just to follow the manufacturing method of the tube of this invention in a conventional method. That is, an aluminum alloy billet is produced by a semi-continuous casting method and is subjected to hot extrusion. In order to improve the extrudability, it is preferable to perform a homogenization treatment of the billet. In addition, it can be considered that the process of heating a billet before hot extrusion serves as a homogenization process.

本発明のチューブはいずれの形状でも耐食性に影響を及ぼすものではない。具体的には熱交換性能向上のため通常内面に溝を有したチューブが使用されるが、その内面形状は問わない。チューブの外径(直径)は、5〜12mmの範囲から適宜選択される。チューブの耐食性を高めるために、チューブ外表面にZnの拡散層等の表面処理を行うことを本発明は許容する。   The tube of the present invention does not affect the corrosion resistance in any shape. Specifically, a tube having a groove on the inner surface is usually used to improve heat exchange performance, but the inner surface shape is not limited. The outer diameter (diameter) of the tube is appropriately selected from the range of 5 to 12 mm. In order to enhance the corrosion resistance of the tube, the present invention allows the surface of the tube outer surface to be subjected to a surface treatment such as a Zn diffusion layer.

<熱交換器>
本発明のチューブを使用したエアコン用熱交換器は、チューブとして銅管を使用する場合とほぼ同じ工程で製造される。
すなわち、チューブを、その中央でヘアピン状に曲げ加工をしてU字型のヘアピン管2を作製し、所定の間隔をおいて平行に配置したアルミニウム又はアルミニウム合金製のフィン材1にヘアピン管2を挿通する。その後、拡管により両者を密着させて固定し、隣接するヘアピン管2の管端に予め曲げ加工を施してあるアルミニウム合金製Uベンド管3を嵌合し、ヘアピン管2とUベンド管3とをアルミニウム合金ろう材を使用してろう付けすることにより複数個のヘアピン管2がUベンド管3と連結されて熱交換器となる。
<Heat exchanger>
The heat exchanger for an air conditioner using the tube of the present invention is manufactured in substantially the same process as when a copper tube is used as the tube.
That is, the tube is bent into a hairpin shape at the center to produce a U-shaped hairpin tube 2, and the hairpin tube 2 is attached to the fin material 1 made of aluminum or aluminum alloy arranged in parallel at a predetermined interval. Is inserted. After that, the two are closely fixed by expanding the tube, and an aluminum alloy U-bend tube 3 that has been bent in advance is fitted to the end of the adjacent hairpin tube 2, and the hairpin tube 2 and the U-bend tube 3 are connected to each other. A plurality of hairpin tubes 2 are connected to the U-bend tube 3 by brazing using an aluminum alloy brazing material to form a heat exchanger.

表1に示す組成のアルミニウム合金を使用して作製したビレットを595℃×12hrの条件で均質化処理後、500℃で均熱して後に熱間押出を行い、外径7mm、内径6mm、肉厚0.5mmの丸管を作製した。
熱間押出されたチューブを用いて、ヘアピン曲げ加工、チューブ拡管試験、Uベンド部と接合を行なうためのフレア加工を実施し、チューブの形状変化や割れの発生について評価を行なった。その結果を表2に示す。なお、ヘアピン曲げ加工、チューブ拡管試験及びフレア加工の条件は以下の通りである。
ヘアピン曲げ加工:上記アルミニウム管を銅管と同じ製法でヘアピン曲げ加工用パイプベンダを使用してヘアピン曲げ(曲率半径8mm)を実施
チューブ拡管試験:拡管率(チューブ外径変化)が10%と一定となるように拡管ロッドのサイズを変えて拡管を実施
フレア加工:フレア加工寸法9mmで加工を実施し、Uベンドパイプ挿入部へ割れが発生するかを観察
A billet prepared using an aluminum alloy having the composition shown in Table 1 was homogenized under the conditions of 595 ° C. × 12 hr, then heated at 500 ° C., and then hot-extruded, and outer diameter 7 mm, inner diameter 6 mm, wall thickness A 0.5 mm round tube was produced.
Using the hot-extruded tube, hairpin bending, tube expansion test, and flare processing for joining with the U-bend portion were performed, and the tube shape change and cracking were evaluated. The results are shown in Table 2. The conditions for hairpin bending, tube expansion test and flare processing are as follows.
Hairpin bending: Hairpin bending (curvature radius 8mm) is performed using the above-mentioned aluminum tube with a pipebender for hairpin bending using the same manufacturing method as copper tube Tube expansion test: Tube expansion rate (change in tube outer diameter) is constant at 10% Expand the tube by changing the size of the tube expansion rod so that the flare is processed. Flare processing: Perform processing with a flare processing dimension of 9 mm and observe whether cracks occur in the U-bend pipe insertion part.

次に、作成したヘアピン管を使用して、JIS 1050合金で板厚0.1mmのアルミニウム合金製フィン材と組み合わせて熱交換器を作製し、耐圧試験を行った。その結果を表2に示す。   Next, using the created hairpin tube, a heat exchanger was manufactured in combination with a JIS 1050 alloy and a fin material made of aluminum alloy having a plate thickness of 0.1 mm, and a pressure resistance test was performed. The results are shown in Table 2.

Figure 2010085065
Figure 2010085065

Figure 2010085065
Figure 2010085065

表2より、以下のことが判る。
(1)Mnを本発明の範囲内で含むと、チューブの成形性、耐圧試験時の破壊圧力がともに優れるのに対して、Mnが本発明の範囲より少ないか又は多いと、チューブ拡管時、フレア加工時に不具合が生ずる(No.1〜8)。
(2)Si及びCuの1種または2種を加えると、耐圧試験時の破壊圧力が向上する。ただし、多く加えすぎると、チューブの成形性が低下する(No.9〜24)。SiとCuを比べると、強度向上効果はCuの方が高い。
(3)Feも強度向上に寄与するが、やはり多すぎるとチューブの成形性を低下させる(No.25〜31)。
Table 2 shows the following.
(1) When Mn is included within the scope of the present invention, both the moldability of the tube and the breaking pressure during the pressure test are excellent, whereas when Mn is less or greater than the scope of the present invention, Problems occur during flare processing (No. 1-8).
(2) When one or two of Si and Cu are added, the breaking pressure during the pressure resistance test is improved. However, when too much is added, the moldability of the tube is lowered (No. 9 to 24). Compared with Si and Cu, Cu has a higher strength improvement effect.
(3) Fe also contributes to strength improvement, but if too much, too, the formability of the tube is lowered (No. 25-31).

(a)はフィンチューブ型熱交換器の構成を示す側面図であり、(b)は図1(a)に示すフィンチューブ型熱交換器をヘアピン管側から見た斜視図である。(A) is a side view which shows the structure of a fin tube type heat exchanger, (b) is the perspective view which looked at the fin tube type heat exchanger shown to Fig.1 (a) from the hairpin tube side. (a)はフィンチューブ型熱交換器をUベンド管側から見た斜視図であり、(b)は(a)の一部拡大図である。(A) is the perspective view which looked at the fin tube type heat exchanger from the U bend pipe side, (b) is the partially expanded view of (a).

符号の説明Explanation of symbols

1…フィン材、2…ヘアピン管、3…Uベンド管   1 ... Fin material, 2 ... Hairpin tube, 3 ... U-bend tube

Claims (3)

Mn:0.1〜1.6質量%を含有し、
残部がAlおよび不可避不純物からなることを特徴とする成形性および強度に優れるフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ。
Mn: 0.1 to 1.6% by mass,
An aluminum alloy extruded tube for a fin tube type air conditioner heat exchanger excellent in formability and strength, characterized in that the balance is made of Al and inevitable impurities.
Mn:0.1〜1.6質量%を含有し、
さらにSi:0.1〜1.0質量%及びCu:0.01〜1.0質量%の1種又は2種を含有し、
残部がAlおよび不可避不純物からなることを特徴とする成形性および強度に優れるフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ。
Mn: 0.1 to 1.6% by mass,
Furthermore, Si: 0.1-1.0% by mass and Cu: 0.01-1.0% by mass of 1 type or 2 types,
An aluminum alloy extruded tube for a fin tube type air conditioner heat exchanger excellent in formability and strength, characterized in that the balance is made of Al and inevitable impurities.
さらにFe:0.1〜1.0質量%を含有し、残部がAlおよび不可避不純物からなる請求項1又は2に記載の成形性および強度に優れるフィンチューブ型エアコン熱交換器用アルミニウム合金押出チューブ。   Furthermore, the aluminum alloy extrusion tube for fin tube type air conditioner heat exchangers which is excellent in the moldability and intensity | strength of Claim 1 or 2 which contains Fe: 0.1-1.0 mass%, and remainder consists of Al and an unavoidable impurity.
JP2008257758A 2008-10-02 2008-10-02 Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger Pending JP2010085065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257758A JP2010085065A (en) 2008-10-02 2008-10-02 Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257758A JP2010085065A (en) 2008-10-02 2008-10-02 Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger

Publications (1)

Publication Number Publication Date
JP2010085065A true JP2010085065A (en) 2010-04-15

Family

ID=42249196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257758A Pending JP2010085065A (en) 2008-10-02 2008-10-02 Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger

Country Status (1)

Country Link
JP (1) JP2010085065A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
WO2012008463A1 (en) * 2010-07-13 2012-01-19 古河スカイ株式会社 Internally grooved aluminum alloy heat transfer pipe
JP2013011419A (en) * 2011-06-30 2013-01-17 Furukawa-Sky Aluminum Corp Method for manufacturing aluminum alloy made tube with inner face grooves for air conditioner
WO2013153972A1 (en) * 2012-04-13 2013-10-17 古河スカイ株式会社 Heat exchange tube attached with aluminum alloy inner groove
JP2014156937A (en) * 2013-02-14 2014-08-28 Nippon Light Metal Co Ltd Aluminum heat exchanger
KR20160098157A (en) * 2014-08-13 2016-08-18 엘에스전선 주식회사 Heat exchanger tube with high strength and high corrosion-resistance and method of preparing the same
WO2018211947A1 (en) * 2017-05-16 2018-11-22 住友化学株式会社 Aluminum alloy for extrusion processing, aluminum alloy extruded article using same, method for producing said aluminum alloy for extrusion processing, and method for producing said aluminum alloy extruded article
CN112254563A (en) * 2019-07-22 2021-01-22 海德鲁铝业(苏州)有限公司 Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855240B2 (en) * 1991-03-08 1999-02-10 本田技研工業株式会社 Manufacturing method of oil cooler for automobile
JP2002147981A (en) * 2000-11-07 2002-05-22 Kobe Steel Ltd Heat exchanger tube and finned tube heat exchanger
JP2004330233A (en) * 2003-05-06 2004-11-25 Mitsubishi Alum Co Ltd Tube for heat exchanger
JP2006045667A (en) * 2004-06-28 2006-02-16 Showa Denko Kk Heat exchanger tube made of aluminum and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2855240B2 (en) * 1991-03-08 1999-02-10 本田技研工業株式会社 Manufacturing method of oil cooler for automobile
JP2002147981A (en) * 2000-11-07 2002-05-22 Kobe Steel Ltd Heat exchanger tube and finned tube heat exchanger
JP2004330233A (en) * 2003-05-06 2004-11-25 Mitsubishi Alum Co Ltd Tube for heat exchanger
JP2006045667A (en) * 2004-06-28 2006-02-16 Showa Denko Kk Heat exchanger tube made of aluminum and its production method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247459A (en) * 2010-05-25 2011-12-08 Sumitomo Light Metal Ind Ltd Method of manufacturing aluminum alloy heat exchanger
WO2012008463A1 (en) * 2010-07-13 2012-01-19 古河スカイ株式会社 Internally grooved aluminum alloy heat transfer pipe
CN103003655A (en) * 2010-07-13 2013-03-27 古河Sky株式会社 Aluminum alloy inner surface grooved heat transfer tube
JPWO2012008463A1 (en) * 2010-07-13 2013-09-09 古河スカイ株式会社 Aluminum alloy inner surface grooved heat transfer tube
JP2013011419A (en) * 2011-06-30 2013-01-17 Furukawa-Sky Aluminum Corp Method for manufacturing aluminum alloy made tube with inner face grooves for air conditioner
JPWO2013153972A1 (en) * 2012-04-13 2015-12-17 株式会社Uacj Aluminum alloy inner surface grooved heat transfer tube
CN104246417A (en) * 2012-04-13 2014-12-24 株式会社Uacj Heat exchange tube attached with aluminum alloy inner groove
WO2013153972A1 (en) * 2012-04-13 2013-10-17 古河スカイ株式会社 Heat exchange tube attached with aluminum alloy inner groove
JP2014156937A (en) * 2013-02-14 2014-08-28 Nippon Light Metal Co Ltd Aluminum heat exchanger
KR20160098157A (en) * 2014-08-13 2016-08-18 엘에스전선 주식회사 Heat exchanger tube with high strength and high corrosion-resistance and method of preparing the same
KR101706018B1 (en) 2014-08-13 2017-02-10 엘에스전선 주식회사 Heat exchanger tube with high strength and high corrosion-resistance and method of preparing the same
WO2018211947A1 (en) * 2017-05-16 2018-11-22 住友化学株式会社 Aluminum alloy for extrusion processing, aluminum alloy extruded article using same, method for producing said aluminum alloy for extrusion processing, and method for producing said aluminum alloy extruded article
CN112254563A (en) * 2019-07-22 2021-01-22 海德鲁铝业(苏州)有限公司 Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy
JP2022541891A (en) * 2019-07-22 2022-09-28 ヒドロ・プレシジョン・チュービング(スーチョウ)カンパニー・リミテッド Long-life aluminum alloy with excellent corrosion resistance and spiral grooved tube manufactured from the alloy
EP4004476A4 (en) * 2019-07-22 2023-08-09 Hydro Precision Tubing (Suzhou) Co., Ltd. Long-life aluminum alloy with a high corrosion resistance and helically grooved tube produced from the alloy
JP7524299B2 (en) 2019-07-22 2024-07-29 ヒドロ・プレシジョン・チュービング(スーチョウ)カンパニー・リミテッド Long-life aluminum alloy with excellent corrosion resistance and spiral grooved pipe manufactured from said alloy

Similar Documents

Publication Publication Date Title
JP2010085065A (en) Aluminum alloy extrusion tube for fin tube type air conditioner heat exchanger
CN1296500C (en) heat-resistant copper alloy
JP6115892B2 (en) Aluminum alloy brazing sheet for fins, heat exchanger and heat exchanger manufacturing method
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP2007152422A (en) Method for producing aluminum alloy brazing sheet
JP6105561B2 (en) Aluminum alloy inner surface grooved heat transfer tube
JP2007152421A (en) Aluminum alloy brazing sheet
WO2012008463A1 (en) Internally grooved aluminum alloy heat transfer pipe
JP2008050657A (en) Aluminum piping material for automobile heat exchanger
CN102575319B (en) Copper alloy seamless pipe
CN111065753B (en) Aluminum alloy brazing sheet for heat exchanger
JP2010185646A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
JP2012224923A (en) Plate fin material for heat exchanger and method of manufacturing the plate fin material, and the heat exchanger using the plate fin material and method of manufacturing the heat exchanger
JP2019167581A (en) Method for producing aluminum alloy extruded tube
JP2011080121A (en) Extruded tube for fin tube type heat exchanger for air conditioner and refrigerant piping for heat exchange cycle
KR20200037273A (en) Aluminum alloy brazing sheet for heat exchanger
JP5743642B2 (en) Aluminum alloy brazing sheet
JPH05263172A (en) Aluminum alloy for fin material of heat exchanger
JP2016028219A (en) Internal grooved tube with excellent extrudability
JP5451217B2 (en) Manufacturing method of internally grooved tube
JP5782357B2 (en) Side support material and manufacturing method thereof
JP2010185647A (en) Aluminum alloy extruded tube for fin tube type heat exchanger for air conditioner
JP5729969B2 (en) Aluminum alloy brazing wax and manufacturing method thereof
JP4347145B2 (en) Aluminum alloy extruded tube and heat exchanger for heat exchanger
JPH05263173A (en) Aluminum alloy for fin material of heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130522