[go: up one dir, main page]

JP2010073720A - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP2010073720A
JP2010073720A JP2008236163A JP2008236163A JP2010073720A JP 2010073720 A JP2010073720 A JP 2010073720A JP 2008236163 A JP2008236163 A JP 2008236163A JP 2008236163 A JP2008236163 A JP 2008236163A JP 2010073720 A JP2010073720 A JP 2010073720A
Authority
JP
Japan
Prior art keywords
solar cell
resin material
resin
cell module
linear expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008236163A
Other languages
Japanese (ja)
Inventor
Yasuo Taima
恭雄 當間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008236163A priority Critical patent/JP2010073720A/en
Publication of JP2010073720A publication Critical patent/JP2010073720A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell module which can be used stably for a long period even when thin type solar cells are used. <P>SOLUTION: The solar cell module having solar cells sandwiched using sealing materials between a light-incident-side transparent protective member and a back-side protective member is characterized in that a resin material A as a sealing material between the solar cell and back-side protective material has a smaller coefficient of linear expansion than a resin material B as a sealing material between the solar cell and light-incident-side protective member. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池モジュールに関し、さらに詳しくは、信頼性を向上させた太陽電池モジュールに関する。   The present invention relates to a solar cell module, and more particularly to a solar cell module with improved reliability.

近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。   In recent years, solar cells that directly convert sunlight into electric energy have attracted attention and are being developed from the viewpoint of effective use of resources and prevention of environmental pollution.

太陽電池モジュールは、一般的に、太陽光を受けて発電する太陽電池セルを、エチレン−ビニルアセテート(EVA)やシリコーン等の封止材を用いて表面および裏面の保護部材との間に挟持させた構造になっている。これらの太陽電池モジュールでは、セル1個体では起電力が不足するため、単独のセルから構成されることは少なく、通常は複数の太陽電池セルが直列または直並列に接続されて構成される。すなわち、図1に示すように、太陽電池セルの電極間が、導電材料を用いて接続され、これら太陽電池セルと導電材料が、封止材を用いて、ガラスや樹脂板、樹脂フィルム、金属等からなる保護部材の間に挟持されている。   In general, a solar cell module is configured to sandwich a solar cell that generates power by receiving sunlight between a front surface and a back surface protection member using a sealing material such as ethylene-vinyl acetate (EVA) or silicone. It has a structure. In these solar cell modules, since an electromotive force is insufficient in one cell, it is rarely configured from a single cell, and usually a plurality of solar cells are connected in series or series-parallel. That is, as shown in FIG. 1, the electrodes of the solar cells are connected using a conductive material, and these solar cells and the conductive material are made of glass, resin plate, resin film, metal using a sealing material. It is sandwiched between protective members made of, for example.

一方、太陽電池の普及に伴い、太陽電池セルに用いられるシリコンウエハの供給不足や、コストダウン要求が高まってきており、最近では太陽電池セルを薄くする検討が進められている。しかし、薄層太陽電池セルは、加熱による反りや割れが生じやすいため、従来と同様の材料とモジュール構成で使用した場合、長期間の使用による耐久性に劣るという新たな課題が生じることが分かってきた。特に、薄層太陽電池セルを用いて作製した従来より薄い太陽電池モジュールは、使用時に入射した太陽光による加熱により太陽電池セルの裏面側の封止材や裏面保護部材の温度上昇が大きくなり、一般的に樹脂材料からなる封止材や裏面保護部材が熱膨張するとともに太陽電池セルが裏面側を凸にして反るという現象が生じてしまう。長期間の使用において、このような太陽電池セルの熱収縮が繰り返し生じることにより、太陽電池セルの割れや裏面電極のはがれ等の配線不良を起こすといった問題が挙げられる。   On the other hand, with the widespread use of solar cells, there is an increasing supply of silicon wafers used for solar cells and demands for cost reduction. Recently, studies have been conducted to make solar cells thinner. However, thin-layer solar cells are prone to warping and cracking due to heating, and when used in the same material and module configuration as before, it has been found that a new problem arises that durability is poor due to long-term use. I came. In particular, a solar cell module that is thinner than a conventional solar cell module manufactured by using a thin-layer solar cell has a large temperature rise of the sealing material and the back surface protection member on the back surface side of the solar cell due to heating by sunlight incident upon use, In general, a sealing material made of a resin material or a back surface protection member is thermally expanded, and a phenomenon occurs in which the solar battery cell is warped with the back surface side convex. In long-term use, there is a problem that such a thermal contraction of the solar battery cell repeatedly causes wiring defects such as cracking of the solar battery cell and peeling of the back electrode.

これに対し、太陽電池セルの反りを防止する技術として、太陽電池セルの表面側と裏面側で接着力が異なる封止材を用いる方法が提案されているが(例えば、特許文献1参照)、接着力の差が時間経過とともに小さくなってしまうため、長期間にわたって効果を維持することが難しかった。さらに、上記の太陽電池セルの裏面側が凸に反るという問題に対しては、この方法では解決できない。   On the other hand, as a technique for preventing the warpage of the solar battery cell, a method using a sealing material having different adhesive forces on the front surface side and the back surface side of the solar battery cell has been proposed (for example, see Patent Document 1). Since the difference in adhesive strength becomes smaller with time, it is difficult to maintain the effect over a long period of time. Furthermore, this method cannot solve the problem that the back surface side of the solar battery cell warps convexly.

封止材層と板状基材とが可動可能に積層された構成にすることで、基材の熱膨張収縮による配線不良を解決する方法が提案されているが(例えば、特許文献2参照)、この方法では太陽電池セル自体の反りを抑制することはできない。   There has been proposed a method for solving a wiring defect due to thermal expansion and contraction of the base material by making the structure in which the sealing material layer and the plate-like base material are movably stacked (see, for example, Patent Document 2). This method cannot suppress the warpage of the solar battery cell itself.

一方、無機微粒子を封止材層に含有させる方法についての提案がされているが、本発明の如く太陽電池セルの物性を改良する目的で無機微粒子を含有した樹脂材料を用いる方法はこれまでなかった。無機微粒子を受酸剤として封止材層に分散しているが(例えば、特許文献3参照)、これは受光面側の封止材として使用されており、本発明の如く太陽電池セルの裏面側で効果を発揮するものではない。また、光散乱材として無機微粒子を用いる方法が示されているが(例えば、特許文献4参照)、ここで記載されている無機微粒子は、光を散乱させる目的のため大粒径の無機微粒子を用いており、このような構成では、本発明のような太陽電池の反りを抑制させる効果は得られていない。
特開2007−294869号公報 特開2005−101032号公報 特開2008−118073号公報 特開2000−183381号公報
On the other hand, although there has been a proposal for a method for containing inorganic fine particles in a sealing material layer, there has been no method using a resin material containing inorganic fine particles for the purpose of improving the physical properties of solar cells as in the present invention. It was. Inorganic fine particles are dispersed in the encapsulant layer as an acid acceptor (see, for example, Patent Document 3), and this is used as an encapsulant on the light receiving surface side, and the back surface of the solar cell as in the present invention. It is not effective on the side. In addition, although a method using inorganic fine particles as a light scattering material has been shown (for example, see Patent Document 4), the inorganic fine particles described here are inorganic fine particles having a large particle size for the purpose of scattering light. In such a configuration, the effect of suppressing the warpage of the solar cell as in the present invention is not obtained.
JP 2007-294869 A JP 2005-101032 A JP 2008-118073 A JP 2000-183381 A

上記の通り、太陽電池セルを薄くすることが求められているものの、従来と同様のモジュール構成で薄層太陽電池セルを使用した場合には、加熱による太陽電池セルの反りが従来よりも大きくなるため、太陽電池モジュールの安定性が低くなるという新たな問題が生じていた。従って、本発明の目的は、薄型太陽電池セルを用いても長期間安定して使用可能な太陽電池モジュールを提供することである。   As described above, although it is required to make the solar cell thinner, when the thin-layer solar cell is used in the same module configuration as the conventional one, the warpage of the solar cell due to heating becomes larger than the conventional one. Therefore, a new problem has arisen that the stability of the solar cell module is lowered. Therefore, the objective of this invention is providing the solar cell module which can be used stably for a long period of time, even if it uses a thin photovoltaic cell.

本発明の上記目的は、以下の構成により達成することができる。   The above object of the present invention can be achieved by the following configuration.

1.光入射側透明保護部材と裏面側保護部材の間に封止材を用いて太陽電池セルを挟持させた太陽電池モジュールにおいて、該太陽電池セルと該裏面側保護部材との間の封止材である樹脂材料Aの線膨張係数が、該太陽電池セルと該光入射側透明保護部材との間の封止材である樹脂材料Bの線膨張係数より小さいことを特徴とする太陽電池モジュール。   1. In a solar cell module in which a solar battery cell is sandwiched between a light incident side transparent protective member and a back surface side protective member using a sealing material, a sealing material between the solar cell and the back surface side protective member. A solar battery module, wherein a linear expansion coefficient of a certain resin material A is smaller than a linear expansion coefficient of a resin material B which is a sealing material between the solar battery cell and the light incident side transparent protective member.

2.前記樹脂材料Aの線膨張係数が、前記樹脂材料Bの線膨張係数の1/2〜1/50であることを特徴とする前記1記載の太陽電池モジュール。   2. 2. The solar cell module according to 1 above, wherein the linear expansion coefficient of the resin material A is 1/2 to 1/50 of the linear expansion coefficient of the resin material B.

3.前記樹脂材料Aが、無機微粒子を分散した樹脂材料であることを特徴とする前記1または2記載の太陽電池モジュール。   3. 3. The solar cell module according to 1 or 2, wherein the resin material A is a resin material in which inorganic fine particles are dispersed.

本発明によれば、薄層太陽電池セルの使用によるコストダウンを達成し、しかも使用時の加熱冷却に対して安定で長期間使用可能な太陽電池モジュールを提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the cost reduction by use of a thin layer photovoltaic cell can be achieved, and also the solar cell module which can be used stably for a long period of time with respect to the heating / cooling at the time of use can be provided.

本発明を更に詳しく説明する。   The present invention will be described in more detail.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

以下、図面を参照しながら本発明の好ましい実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は、一般的な太陽電池モジュールの断面の一部であり、それぞれ隣接する太陽電池セル1を配線3で接続している様子を示した概略図である。   FIG. 1 is a schematic view showing a part of a cross section of a general solar battery module, in which adjacent solar battery cells 1 are connected by wiring 3.

このように接続された太陽電池セルは、封止材層2を介して光入射側透明保護部材41と裏面側保護部材42に挟持されている。   The solar cells thus connected are sandwiched between the light incident side transparent protective member 41 and the back side protective member 42 via the sealing material layer 2.

本発明においては、この太陽電池セル1を従来より薄くするとともに、封止材層2のうち、太陽電池セル1の裏面と裏面側保護部材42の間に低線膨張樹脂材料である裏面側封止材層22を封入した図2に示した太陽電池モジュールが好ましく使用できる。さらに図3に示したように、上記の低線膨張樹脂材料である裏面側封止材層22と裏面側保護部材42との接着性を高めるために、その間に接着層23を挿入することもできる。   In this invention, while making this photovoltaic cell 1 thinner than before, the back surface side sealing which is a low linear expansion resin material between the back surface of the photovoltaic cell 1 and the back surface side protection member 42 among the sealing material layers 2 is carried out. The solar cell module shown in FIG. 2 in which the stopper layer 22 is enclosed can be preferably used. Furthermore, as shown in FIG. 3, in order to improve the adhesiveness between the back surface side sealing material layer 22 and the back surface side protection member 42, which are the low linear expansion resin material, an adhesive layer 23 may be inserted between them. it can.

本発明に用いられる太陽電池セル1は、内部にPN接合やPIN接合等の半導体接合を有す、単結晶シリコンや多結晶シリコン、アモルファスシリコン等のシリコン半導体材料、GaAsやCuInSe等の化合物系半導体材料、色素増感系等の有機系材料など一般的な太陽電池材料を用いることができるが、本発明の太陽電池モジュール構成においては、単結晶シリコン、多結晶シリコン、GaAs、CuInSe等の結晶材料を用いた太陽電池セルが好ましく用いられる。   The solar cell 1 used in the present invention has a semiconductor junction such as a PN junction or a PIN junction inside, a silicon semiconductor material such as single crystal silicon, polycrystalline silicon, or amorphous silicon, or a compound semiconductor such as GaAs or CuInSe. General solar cell materials such as organic materials such as materials and dye-sensitized systems can be used, but in the solar cell module configuration of the present invention, crystalline materials such as single crystal silicon, polycrystalline silicon, GaAs, and CuInSe The solar cell using is preferably used.

本発明の太陽電池セルの厚みは、結晶シリコン系で従来から用いられている200〜300μm程度でも良いが、150μm以下の薄型太陽電池セルが本発明の高い効果が得られるために好ましい。特に、薄型のシリコンウエハを使用した厚み30〜100μmの太陽電池セルが好ましい。   The thickness of the solar battery cell of the present invention may be about 200 to 300 μm, which is conventionally used for crystalline silicon, but a thin solar battery cell of 150 μm or less is preferable because the high effect of the present invention can be obtained. In particular, a solar cell having a thickness of 30 to 100 μm using a thin silicon wafer is preferable.

本発明の太陽電池モジュールは、封止層に高線膨張樹脂材料(B)である表面側封止材層21と低線膨張樹脂材料(A)である裏面側封止材層22を含むことを特徴とする。高線膨張樹脂材料としては、一般的に透明封止材として用いられるエチレン−ビニルアセテート(EVA)やポリビニルブチラール(PVB)、シリコーン樹脂、ウレタン樹脂、アクリル樹脂、フッ素系樹脂、アイオノマー樹脂、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体、ポリエチレン系樹脂、ポリプロピレン系樹脂、酸変性ポリオレフィン系樹脂、エポキシ系樹脂等の、線膨張係数が100〜500ppm/℃樹脂材料が好ましく、特に透光性と接着性が高いEVAが好ましい。   The solar cell module of the present invention includes a front side sealing material layer 21 that is a high linear expansion resin material (B) and a back side sealing material layer 22 that is a low linear expansion resin material (A) in a sealing layer. It is characterized by. Examples of high linear expansion resin materials include ethylene-vinyl acetate (EVA) and polyvinyl butyral (PVB), silicone resins, urethane resins, acrylic resins, fluorine resins, ionomer resins, ethylene- Resin materials having a linear expansion coefficient of 100 to 500 ppm / ° C., such as acrylic acid copolymer, ethylene-methacrylic acid copolymer, polyethylene resin, polypropylene resin, acid-modified polyolefin resin, and epoxy resin, are preferable, and particularly transparent. EVA having high lightness and adhesiveness is preferable.

低線膨張樹脂材料としては、上記の高線膨張樹脂材料よりも線膨張係数が小さい樹脂材料であれば良いが、太陽電池モジュール中で高線膨張樹脂材料に対して線膨張係数が1/2〜1/50となるような組み合わせで使用されることが好ましい。該低線膨張樹脂材料の線膨張係数は、太陽電池セルおよび裏面側保護部材の種類にもよるが、5〜50ppm/℃であることが好ましく、5〜30ppm/℃であることがさらに好ましい。   The low linear expansion resin material may be any resin material having a smaller linear expansion coefficient than the above-mentioned high linear expansion resin material, but the linear expansion coefficient is ½ that of the high linear expansion resin material in the solar cell module. It is preferable to be used in a combination of ˜1 / 50. The linear expansion coefficient of the low linear expansion resin material is preferably 5 to 50 ppm / ° C, more preferably 5 to 30 ppm / ° C, although it depends on the types of the solar battery cell and the back surface side protection member.

該低線膨張樹脂材料として好ましく使用できる線膨張係数が50ppm/℃以下の樹脂としては、例えば、ポリカーボネート樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂等が挙げられ、これらの樹脂を単独あるいは複数混合して使用できる。さらにこれらの樹脂を太陽電池セルと裏面側保護部材の間に封入するため、例えば厚さ50〜1000μmのシート状フィルムとして使用されることが好ましい。   Examples of the resin having a linear expansion coefficient of 50 ppm / ° C. or less that can be preferably used as the low linear expansion resin material include polycarbonate resins, polyimide resins, polyphenylene ether resins, and the like. These resins can be used alone or in combination. it can. Furthermore, in order to enclose these resin between a photovoltaic cell and a back surface side protection member, it is preferable to use as a sheet-like film of thickness 50-1000 micrometers, for example.

また、本発明の太陽電池モジュールは、封止層に高線膨張樹脂材料である表面側封止材層21と無機微粒子を分散した樹脂材料である裏面側封止材層22を含むことが好ましい。ここで、無機微粒子を分散する母材の樹脂材料としては、一般的に知られている樹脂材料のいずれでも良いが、本発明においては、上述した一般的に透明封止材として用いられる樹脂材料が好ましく使用できる。   The solar cell module of the present invention preferably includes a front side sealing material layer 21 that is a high linear expansion resin material and a back side sealing material layer 22 that is a resin material in which inorganic fine particles are dispersed in the sealing layer. . Here, as the resin material of the base material in which the inorganic fine particles are dispersed, any of generally known resin materials may be used. However, in the present invention, the resin material generally used as the transparent sealing material described above. Can be preferably used.

該無機微粒子としては、一般的に樹脂の補強材として用いられるカーボンブラック、炭素繊維、タルク等の粘土化合物、ガラスビーズ、炭酸カルシウム等の炭酸塩微粒子、アルミナ等の酸化物微粒子等が挙げられる。本発明においては、低線膨張であるとともに太陽光の吸収による加熱を少なくしたいことから、炭酸塩微粒子や酸化物微粒子を用いることが好ましい。   Examples of the inorganic fine particles include carbon black, carbon fiber, clay compounds such as talc generally used as a reinforcing material for resins, glass beads, carbonate fine particles such as calcium carbonate, and oxide fine particles such as alumina. In the present invention, carbonate fine particles and oxide fine particles are preferably used because of low linear expansion and reduction of heating due to the absorption of sunlight.

具体的には、例えば、酸化チタン、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タンタル、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化イットリウム、酸化ランタン、酸化セリウム、酸化インジウム、酸化錫、酸化鉛、これら酸化物より構成される複酸化物であるニオブ酸リチウム、ニオブ酸カリウム、タンタル酸リチウム等、これら酸化物との組み合わせで形成されるリン酸塩、硫酸塩等、を挙げることができる。   Specifically, for example, titanium oxide, zinc oxide, aluminum oxide, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide, magnesium oxide, calcium oxide, strontium oxide, barium oxide, yttrium oxide, lanthanum oxide, cerium oxide, oxide Indium, tin oxide, lead oxide, lithium niobate, potassium niobate, lithium tantalate, etc. that are composed of these oxides, phosphates, sulfates, etc. formed in combination with these oxides Can be mentioned.

また、本発明の無機微粒子としては半導体結晶組成の微粒子も好ましく利用できる。該半導体結晶組成には特に制限はなく、蛍光体等も使用可能であるが、太陽電池セルの光吸収を妨げないものが好ましい。例えば、紫外光等を吸収し、太陽電池セルの吸収強度が高い波長領域で発光するものが望ましい。   In addition, fine particles having a semiconductor crystal composition can be preferably used as the inorganic fine particles of the present invention. There is no restriction | limiting in particular in this semiconductor crystal composition, Although fluorescent substance etc. can be used, What does not prevent the light absorption of a photovoltaic cell is preferable. For example, a material that absorbs ultraviolet light or the like and emits light in a wavelength region where the absorption intensity of the solar battery cell is high is desirable.

これらの無機微粒子は、樹脂中に1種類含有されても良く、また複数種類の無機微粒子を併用しても良い。   One kind of these inorganic fine particles may be contained in the resin, or a plurality of kinds of inorganic fine particles may be used in combination.

無機微粒子の含有量は本発明の効果を発揮できる範囲であれば特に限定されず、樹脂と無機微粒子の種類により任意に決めることができるが、無機微粒子の含有率が高いと成膜性が劣化してフィルムとして使用することが難しくなるため好ましくない。そのため、無機微粒子の含有量は樹脂の質量に対し30%以下であることが好ましく、0.1質量%以上20%以下がより好ましく、0.1質量%以上10%以下であることがさらに好ましい。   The content of the inorganic fine particles is not particularly limited as long as the effect of the present invention can be exhibited, and can be arbitrarily determined depending on the kind of the resin and the inorganic fine particles. However, if the content of the inorganic fine particles is high, the film formability deteriorates. And it is not preferable because it becomes difficult to use as a film. Therefore, the content of the inorganic fine particles is preferably 30% or less with respect to the mass of the resin, more preferably 0.1% by mass or more and 20% or less, and further preferably 0.1% by mass or more and 10% or less. .

無機微粒子の平均粒子直径は、1nm以上1μm以下が好ましく、1nm以上100nm以下がより好ましい。1nm未満だと粒子の分散が困難であるため所望の性能が得られない恐れがあり、1μmを超えると、所望の効果を得るためには無機微粒子量が多く必要となり、その結果フィルムとしての使用が難しくなる。ここでいう平均粒子直径は粒子と同体積の球に換算した時の直径を言う。   The average particle diameter of the inorganic fine particles is preferably 1 nm or more and 1 μm or less, and more preferably 1 nm or more and 100 nm or less. If it is less than 1 nm, it is difficult to disperse the particles, so that the desired performance may not be obtained. If it exceeds 1 μm, a large amount of inorganic fine particles is required to obtain the desired effect, and as a result, it is used as a film. Becomes difficult. The average particle diameter here refers to the diameter when converted to a sphere having the same volume as the particle.

本発明において用いる無機微粒子の形状は、特に限定されるものではなく、針状や球状の微粒子が好ましく用いられる。また、粒子径の分布に関しても特に制限されるものではないが、本発明の効果をより効率よく発現させるためには、広範な分布を有するものよりも、比較的狭い分布を持つものが好適に用いられる。   The shape of the inorganic fine particles used in the present invention is not particularly limited, and acicular or spherical fine particles are preferably used. Further, the particle size distribution is not particularly limited, but in order to achieve the effect of the present invention more efficiently, a particle having a relatively narrow distribution is preferably used rather than a particle having a wide distribution. Used.

該無機微粒子を分散した樹脂材料は、低線膨張係数であることが好ましく、5〜50ppm/℃の線膨張係数となるように樹脂材料中に無機微粒子が分散されていることが好ましい。また、太陽電池セルと裏面側保護部材の間に封入するため、例えば厚さ50〜1000μmのシート状フィルムとして得られることが好ましい。   The resin material in which the inorganic fine particles are dispersed preferably has a low linear expansion coefficient, and the inorganic fine particles are preferably dispersed in the resin material so as to have a linear expansion coefficient of 5 to 50 ppm / ° C. Moreover, since it encloses between a photovoltaic cell and a back surface side protection member, it is preferable to obtain as a sheet-like film of thickness 50-1000 micrometers, for example.

上記の低線膨張樹脂材料は、図2に示すように裏面電極および配線材料が付与された太陽電池セル1の裏面に接触するように配置され、裏面側保護部材42との間に封入されることを特徴とする。太陽電池モジュールの作製時には、真空ラミネート装置等によりこれらの部材が封止加工されることにより、該樹脂材料と太陽電池セル間、および該樹脂材料と裏面保護材料間は接着しているが、例えばシランカップリング剤を該樹脂材料中に配合して、さらに接着性を向上させることができる。また、該樹脂材料と裏面保護材料の接着性を上げるために、図3に示すような接着層を新たに設けても良い。該接着層としては、太陽電池セル上面の封止材に用いられるEVA等の樹脂材料が好ましく用いられる。   The low linear expansion resin material is disposed so as to contact the back surface of the solar battery cell 1 provided with the back electrode and the wiring material as shown in FIG. It is characterized by that. At the time of manufacturing the solar cell module, these members are sealed by a vacuum laminating apparatus or the like, so that the resin material and the solar battery cell are bonded, and the resin material and the back surface protective material are bonded, for example, A silane coupling agent can be blended in the resin material to further improve the adhesion. Further, in order to improve the adhesion between the resin material and the back surface protective material, an adhesive layer as shown in FIG. 3 may be newly provided. As the adhesive layer, a resin material such as EVA used for a sealing material on the upper surface of the solar battery cell is preferably used.

なお、図4に示すような、電極が太陽電池セルの裏面側のみに形成され、太陽電池セルの裏面間が配線により接続した太陽電池モジュールについても、本発明の好ましい態様の一つである。   Note that a solar battery module in which electrodes are formed only on the back surface side of the solar battery cells and the back surfaces of the solar battery cells are connected by wiring as shown in FIG. 4 is also one of the preferred embodiments of the present invention.

表面電極11、裏面電極12、および配線3は、銀やアルミ、銅、ニッケル、錫、金等、もしくはこれらの合金等の導電性材料を含んだもので形成される。なお、電極は導電性材料を含んだ単層構造であってもよいし、多層構造であってもよい。また、これらの導電性材料を含む層に加えて、SnO、ITO、IWO、ZnO等の透光性導電酸化物を含む層を有していてもよい。 The front electrode 11, the back electrode 12, and the wiring 3 are formed of a conductive material such as silver, aluminum, copper, nickel, tin, gold, or an alloy thereof. Note that the electrode may have a single layer structure containing a conductive material or a multilayer structure. In addition to the layer containing these conductive materials, SnO 2, ITO, IWO, it may have a layer including a translucent conductive oxide such as ZnO.

光入射側透明保護部材41は、通常珪酸塩ガラスなどのガラス基板であるのがよい。ガラス基板の厚さは、0.1〜10mmが一般的であり、0.3〜5mmが好ましい。ガラス基板は、一般に、化学的に、或いは熱的に強化させたものであってもよい。また、太陽電池モジュールを軽量化するために樹脂材料を用いることもできる。   The light incident side transparent protective member 41 is usually a glass substrate such as silicate glass. As for the thickness of a glass substrate, 0.1-10 mm is common, and 0.3-5 mm is preferable. The glass substrate may generally be chemically or thermally strengthened. A resin material can also be used to reduce the weight of the solar cell module.

光入射側透明保護部材として用いられる樹脂材料は、太陽電池セルの受光面側が透光性のものであれば、特に限定されるものではなく、例えばポリカーボネート、アクリル樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリフェニレンサルファイド、ポリアミド、ポリウレタン、ポリメタクリレート、ポリアクリロニトリル、ABS,フェノール樹脂、メラミン樹脂、ホルムアルデヒド樹脂、尿素樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、天然ゴムやその誘導体から成るものでも良く、または前記樹脂の2種類以上から成るものでもよいし、2種類以上の樹脂板を貼り合わせたものでもよい。また、水酸化アルミニウムや水酸化カルシウム等の無機フィラーや難燃剤等を縫合して、不燃性、難燃性を具備させてもよい。また、発泡剤等を添加して発泡させたものでもよく、さらには可塑剤、安定剤、発泡助剤、紫外線吸収剤、顔料などが添加されているものでも良く、金属箔が貼り合わされているものでもよい。   The resin material used as the light incident side transparent protective member is not particularly limited as long as the light receiving surface side of the solar cell is translucent. For example, polycarbonate, acrylic resin, polyethylene terephthalate, polybutylene terephthalate, Polyvinyl chloride, polyethylene, polypropylene, polystyrene, polyvinyl acetate, polyvinylidene chloride, polyphenylene sulfide, polyamide, polyurethane, polymethacrylate, polyacrylonitrile, ABS, phenol resin, melamine resin, formaldehyde resin, urea resin, unsaturated polyester resin, It may be composed of an epoxy resin, natural rubber or a derivative thereof, or may be composed of two or more kinds of the above resins, or may be composed of two or more kinds of resin plates bonded together. In addition, an inorganic filler such as aluminum hydroxide or calcium hydroxide, a flame retardant, or the like may be sewn to provide nonflammability or flame retardancy. Further, it may be foamed by adding a foaming agent or the like, and may further be added with a plasticizer, a stabilizer, a foaming aid, an ultraviolet absorber, a pigment, or the like, and a metal foil is bonded thereto. It may be a thing.

裏面側保護部材42は、上記光入射側透明保護部材41と同様の材料が使用可能であるが、さらに、モジュール全体の質量を軽くするため、比較的軟らかいフィルム状のPET(ポリエチレンテレフタラート)フィルムやフッ素樹脂フィルム等の樹脂フィルム、シリカやアルミナ等の金属酸化物の蒸着膜が形成された樹脂フィルム、アルミ箔等の金属フィルム、もしくはこれらの積層フィルムなどの材料を用いて構成することができる。   The back side protective member 42 can be made of the same material as the light incident side transparent protective member 41. Further, in order to reduce the mass of the entire module, a relatively soft film-like PET (polyethylene terephthalate) film is used. Or a resin film such as a fluororesin film, a resin film on which a metal oxide vapor deposition film such as silica or alumina is formed, a metal film such as an aluminum foil, or a laminated film thereof. .

本発明において、上記の構成により太陽電池セルの裏面に低線膨張係数フィルムが設置された太陽電池モジュールが得られる。その結果、太陽光の照射による太陽電池セルの反りを該低線膨張係数フィルムが抑制する。また、太陽電池セルの裏面に無機微粒子を含有したフィルムを設置することにより、太陽電池セルの裏面に設置された電極および配線材料の接着性が良化するという驚くべき効果が得られる。そのため、太陽電池セルが加熱により反りを生じた場合にも、電極や配線材料のはがれによる効率低下を抑制することができる。従って、無機微粒子を分散した低線膨張係数フィルムを太陽電池セルの裏面に使用することにより、150μm以下の薄型太陽電池セルを使用した場合でも、従来以上に耐久性の高い太陽電池モジュールを作製することが可能になる。   In this invention, the solar cell module by which the low linear expansion coefficient film was installed in the back surface of the photovoltaic cell by said structure is obtained. As a result, the low linear expansion coefficient film suppresses the warpage of the solar battery cell due to the irradiation of sunlight. Moreover, the surprising effect that the adhesiveness of the electrode and wiring material which were installed in the back surface of a photovoltaic cell improves by installing the film containing an inorganic fine particle in the back surface of a photovoltaic cell is acquired. Therefore, even when the solar battery cell is warped by heating, it is possible to suppress a decrease in efficiency due to peeling of the electrode and the wiring material. Therefore, by using a low linear expansion coefficient film in which inorganic fine particles are dispersed on the back surface of the solar battery cell, even when a thin solar battery cell having a thickness of 150 μm or less is used, a solar battery module having higher durability than conventional ones is produced. It becomes possible.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の態様はこれに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the aspect of this invention is not limited to this.

<封止フィルムの作製>
下記配合のEVA樹脂組成物を用いて、EVAフィルムおよびEVA中に無機微粒子を分散した封止フィルムを作製した。
<Preparation of sealing film>
Using an EVA resin composition having the following composition, an EVA film and a sealing film in which inorganic fine particles were dispersed in EVA were prepared.

[EVA樹脂組成物配合(数値は質量部を示す)]
EVA樹脂(酢酸ビニル含有量26質量%) 100
架橋剤(1,1−ビス(t−ブチルパーオキシ)3,3,5−トリメチルシクロヘキサン) 2.0
架橋助剤(トリアリルイソシアヌレート) 3.0
無機微粒子 表1に示すものを表1に示す割合で配合。
[EVA resin composition blended (values indicate parts by mass)]
EVA resin (vinyl acetate content 26% by mass) 100
Cross-linking agent (1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane) 2.0
Crosslinking aid (triallyl isocyanurate) 3.0
Inorganic fine particles Formulations shown in Table 1 in proportions shown in Table 1.

EVA樹脂、架橋剤、架橋助剤の混合物に、無機微粒子紛体を徐々に添加しながら二軸混練機で80℃で混練した後、得られた樹脂組成物を100℃でカレンダ成型し、放冷後、厚さ600μmのEVA中に無機微粒子を分散した封止フィルムEVA−2〜EVA−6を得た。なお、これらの材料において、無機微粒子を含まない厚さ600μmのEVAフィルムも作製し、これをEVA−1とした。   After the inorganic fine particle powder is gradually added to the mixture of the EVA resin, the crosslinking agent and the crosslinking aid, the mixture is kneaded at 80 ° C. with a biaxial kneader, and then the resulting resin composition is calendered at 100 ° C. and allowed to cool. Thereafter, sealing films EVA-2 to EVA-6 were obtained in which inorganic fine particles were dispersed in EVA having a thickness of 600 μm. In these materials, an EVA film having a thickness of 600 μm that does not contain inorganic fine particles was also produced, and this was designated as EVA-1.

Figure 2010073720
Figure 2010073720

<太陽電池モジュールの作製>
図2または図3に示すように、ガラス板(厚さ3mm)よりなる光入射側透明保護部材41と、ポリカーボネートシート(厚さ1mm)よりなる裏面側保護部材42との間に太陽電池セル1を4つ直列に接続した状態で封止して太陽電池モジュールを製造した。太陽電池セルは、単結晶シリコンウエハを用い、表面および裏面にアルミ電極をつけた、厚みが50μm、150μm、250μmの3種を用いた。また、表面側封止材層21の樹脂材料(封止材B)および裏面側封止材層22の樹脂材料(封止材A)として、上述の膜厚600μmのEVA−1〜EVA−6と、旭化成ケミカルズ(株)製の変性ポリフェニレンエーテル樹脂であるザイロンG701HおよびG703Hの膜厚800μmのシートを用いた。なお、封止は、真空ラミネータで、真空下、温度150℃で、加熱圧着することにより行った。
<Production of solar cell module>
As shown in FIG. 2 or FIG. 3, the solar cell 1 is interposed between a light incident side transparent protective member 41 made of a glass plate (thickness 3 mm) and a back side protective member 42 made of a polycarbonate sheet (thickness 1 mm). A solar cell module was manufactured by sealing with four connected in series. As the solar cell, three types having a thickness of 50 μm, 150 μm, and 250 μm using a single crystal silicon wafer and having aluminum electrodes on the front and back surfaces were used. Further, as the resin material (sealing material B) of the front surface side sealing material layer 21 and the resin material (sealing material A) of the back surface side sealing material layer 22, the above-mentioned EVA-1 to EVA-6 having a film thickness of 600 μm are used. And sheets of 800 μm thick Zylon G701H and G703H, which are modified polyphenylene ether resins manufactured by Asahi Kasei Chemicals Corporation. Sealing was performed by thermocompression bonding with a vacuum laminator at a temperature of 150 ° C. under vacuum.

<太陽電池モジュールの評価>
上記で作製した太陽電池モジュールに、AM1.5にスペクトル調整したソーラーシミュレータによって、25℃、照射強度1000mW/cmの擬似太陽光を照射し、太陽電池の開放電圧[V]、および、1cm当たりの公称最大出力動作電流[A]および公称最大出力動作電圧[V]を測定し、これらの積から公称最大出力[W](JIS C8911 1998)を求め、これを各モジュールの基準出力とした。
<Evaluation of solar cell module>
The solar cell module produced above was irradiated with pseudo-sunlight at 25 ° C. and an irradiation intensity of 1000 mW / cm 2 by a solar simulator whose spectrum was adjusted to AM 1.5, and the open voltage [V] of the solar cell and 1 cm 2. The nominal maximum output operating current [A] and the nominal maximum output operating voltage [V] are measured, and the nominal maximum output [W] (JIS C8911 1998) is obtained from these products, and this is used as the reference output of each module. .

次に、上記太陽電池モジュールをホットプレート上に設置し、ホットプレートを100℃設定で3時間運転した後に3時間停止するという6時間を1サイクルとして、太陽電池モジュールの加熱サイクル試験を実施した。そして、200サイクル、400サイクル、600サイクルの時点での公称最大出力[W]を求め、これを前述の基準出力で除した出力比[%]を求めた。結果を表2に示す。   Next, the solar cell module was installed on a hot plate, and the solar cell module was subjected to a heat cycle test, with 6 hours as one cycle after the hot plate was operated at 100 ° C. for 3 hours and then stopped for 3 hours. And the nominal maximum output [W] in the time of 200 cycles, 400 cycles, and 600 cycles was calculated | required, and the output ratio [%] which remove | divided this by the above-mentioned reference | standard output was calculated | required. The results are shown in Table 2.

Figure 2010073720
Figure 2010073720

表2から、本発明の太陽電池モジュールは、加熱サイクル試験での出力低下が小さく、長期間の使用においても安定した出力が得られることがわかる。   From Table 2, it can be seen that the solar cell module of the present invention has a small output drop in the heat cycle test, and a stable output can be obtained even after long-term use.

一般的な太陽電池モジュールの断面の概略図である。It is the schematic of the cross section of a common solar cell module. 本発明の太陽電池モジュールの態様を示す断面の概略図である。It is the schematic of the cross section which shows the aspect of the solar cell module of this invention. 本発明の太陽電池モジュールの別の態様を示す断面の概略図である。It is the schematic of the cross section which shows another aspect of the solar cell module of this invention. 本発明の太陽電池モジュールの更に別の態様を示す断面の概略図である。It is the schematic of the cross section which shows another aspect of the solar cell module of this invention.

符号の説明Explanation of symbols

1 太陽電池セル
2 封止材層
3 配線
11 表面電極
12 裏面電極
21 表面側封止材層
22 裏面側封止材層
23 接着層
41 光入射側透明保護部材
42 裏面側保護部材
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Sealing material layer 3 Wiring 11 Front surface electrode 12 Back surface electrode 21 Front surface side sealing material layer 22 Back surface side sealing material layer 23 Adhesive layer 41 Light incident side transparent protective member 42 Back surface side protective member

Claims (3)

光入射側透明保護部材と裏面側保護部材の間に封止材を用いて太陽電池セルを挟持させた太陽電池モジュールにおいて、該太陽電池セルと該裏面側保護部材との間の封止材である樹脂材料Aの線膨張係数が、該太陽電池セルと該光入射側透明保護部材との間の封止材である樹脂材料Bの線膨張係数より小さいことを特徴とする太陽電池モジュール。 In a solar cell module in which a solar battery cell is sandwiched between a light incident side transparent protective member and a back surface side protective member using a sealing material, a sealing material between the solar cell and the back surface side protective member. A solar battery module, wherein a linear expansion coefficient of a certain resin material A is smaller than a linear expansion coefficient of a resin material B which is a sealing material between the solar battery cell and the light incident side transparent protective member. 前記樹脂材料Aの線膨張係数が、前記樹脂材料Bの線膨張係数の1/2〜1/50であることを特徴とする請求項1記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein a linear expansion coefficient of the resin material A is 1/2 to 1/50 of a linear expansion coefficient of the resin material B. 前記樹脂材料Aが、無機微粒子を分散した樹脂材料であることを特徴とする請求項1または2記載の太陽電池モジュール。 The solar cell module according to claim 1 or 2, wherein the resin material A is a resin material in which inorganic fine particles are dispersed.
JP2008236163A 2008-09-16 2008-09-16 Solar cell module Pending JP2010073720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236163A JP2010073720A (en) 2008-09-16 2008-09-16 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236163A JP2010073720A (en) 2008-09-16 2008-09-16 Solar cell module

Publications (1)

Publication Number Publication Date
JP2010073720A true JP2010073720A (en) 2010-04-02

Family

ID=42205272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236163A Pending JP2010073720A (en) 2008-09-16 2008-09-16 Solar cell module

Country Status (1)

Country Link
JP (1) JP2010073720A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283165A (en) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd SOLAR CELL MODULE AND METHOD FOR FORMING THE SAME
JP2012004146A (en) * 2010-06-14 2012-01-05 Bridgestone Corp Sealing film for solar cell and solar cell using the same
WO2012056687A1 (en) * 2010-10-27 2012-05-03 出光ユニテック株式会社 Sheet for solar cell sealing materials, and solar cell module using same
JP2012109412A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Solar cell module and manufacturing method of the same
JP2012134385A (en) * 2010-12-22 2012-07-12 Mitsubishi Engineering Plastics Corp Connection structure for photovoltaic power generation module
KR101222216B1 (en) 2011-04-22 2013-01-16 삼성토탈 주식회사 Method for Manufacturing Excellent Weather Stable EVA sheet for Solar Cell Encapsulant
WO2013031954A1 (en) * 2011-08-31 2013-03-07 京セラ株式会社 Solar cell module and photovoltaic generation system
WO2013145975A1 (en) * 2012-03-30 2013-10-03 株式会社フジクラ Dye-sensitized solar battery
JP2014082373A (en) * 2012-10-17 2014-05-08 Dainippon Printing Co Ltd Solar cell module
WO2014129574A1 (en) * 2013-02-21 2014-08-28 日本化成株式会社 Crosslinking resin composition and sealing medium
JP2016192572A (en) * 2016-07-12 2016-11-10 大日本印刷株式会社 Solar cell module
JP2017502517A (en) * 2014-01-28 2017-01-19 常州安迪新材料有限公司Changzhou Andy New Materials Co., Ltd Adhesive sealing film for solar cell module
WO2017056363A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Method for producing solar cell module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283165A (en) * 2009-06-04 2010-12-16 Sanyo Electric Co Ltd SOLAR CELL MODULE AND METHOD FOR FORMING THE SAME
JP2012004146A (en) * 2010-06-14 2012-01-05 Bridgestone Corp Sealing film for solar cell and solar cell using the same
WO2012056687A1 (en) * 2010-10-27 2012-05-03 出光ユニテック株式会社 Sheet for solar cell sealing materials, and solar cell module using same
JP2012109412A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Solar cell module and manufacturing method of the same
JP2012134385A (en) * 2010-12-22 2012-07-12 Mitsubishi Engineering Plastics Corp Connection structure for photovoltaic power generation module
KR101222216B1 (en) 2011-04-22 2013-01-16 삼성토탈 주식회사 Method for Manufacturing Excellent Weather Stable EVA sheet for Solar Cell Encapsulant
WO2013031954A1 (en) * 2011-08-31 2013-03-07 京セラ株式会社 Solar cell module and photovoltaic generation system
JPWO2013145975A1 (en) * 2012-03-30 2015-12-10 株式会社フジクラ Dye-sensitized solar cell
WO2013145975A1 (en) * 2012-03-30 2013-10-03 株式会社フジクラ Dye-sensitized solar battery
JP2014082373A (en) * 2012-10-17 2014-05-08 Dainippon Printing Co Ltd Solar cell module
WO2014129574A1 (en) * 2013-02-21 2014-08-28 日本化成株式会社 Crosslinking resin composition and sealing medium
EP2960265A4 (en) * 2013-02-21 2016-10-19 Nippon Kasei Chem RESIN COMPOSITION FOR CROSSLINKING, AND SEALING MATERIAL
US9932471B2 (en) 2013-02-21 2018-04-03 Nippon Kasei Chemical Company Limited Crosslinking resin composition and sealing material
JP2017502517A (en) * 2014-01-28 2017-01-19 常州安迪新材料有限公司Changzhou Andy New Materials Co., Ltd Adhesive sealing film for solar cell module
WO2017056363A1 (en) * 2015-09-30 2017-04-06 パナソニックIpマネジメント株式会社 Method for producing solar cell module
JP2016192572A (en) * 2016-07-12 2016-11-10 大日本印刷株式会社 Solar cell module

Similar Documents

Publication Publication Date Title
JP2010073720A (en) Solar cell module
TWI396290B (en) Solar battery module and solar battery module manufacturing method
CN204441301U (en) A kind of black high reverse--bias functional form solar cell backboard and assembly thereof
CN101728437B (en) Backboard with packaging function and solar panel using same
EP1921684A1 (en) Solar cell module and process for manufacture thereof
CN104064613B (en) A kind of heat dissipation type high integrated backboard used for solar batteries and its manufacture method
JP2012508472A (en) Thermally conductive materials for solar panel components
WO2013086814A1 (en) Weather-resistant coating with high thermal conductivity, heat-dissipating solar back sheet, and highly efficient solar cell panel
WO2007063861A1 (en) Filler for solar cell module, solar cell module using same, and method for producing filler for solar cell module
WO2012009681A2 (en) Composite encapsulants containing fillers for photovoltaic modules
JP2008159856A (en) Sealing film for solar battery and solar battery using same sealing film
JP2014022473A (en) Solar cell module
WO2012121231A1 (en) Protective sheet for solar cell and process for manufacturing same, back sheet member for solar cell, back sheet for solar cell, and solar cell module
JP2010212356A (en) Solar cell module sealing sheet and solar cell module
CN202712223U (en) Laminated type packaging film for solar cell and solar cell back plate or solar cell component by using packaging film
JP2011077089A (en) Backside sealing material for solar cell, and solar cell module
CN217781043U (en) Packaging adhesive film and photovoltaic module
JP2013191673A (en) Flexible solar battery module
CN202434552U (en) Solar backsheets and solar panels made of weather-resistant high thermal conductivity coatings
JP6258659B2 (en) Solar cell module
CN107093646B (en) Photovoltaic crystalline silicon component and manufacturing method thereof
JP2017188577A (en) Solar battery module
CN117820793B (en) A thermal insulation film and a thermal insulation cadmium telluride photovoltaic module containing the same, as well as a preparation method and application thereof
JPH1154766A (en) Solar cell sealing material
CN107046076A (en) A kind of high-performance photoelectric conversion module