[go: up one dir, main page]

JP2010072056A - Conductive member evaluation device and conductive member evaluation method - Google Patents

Conductive member evaluation device and conductive member evaluation method Download PDF

Info

Publication number
JP2010072056A
JP2010072056A JP2008236368A JP2008236368A JP2010072056A JP 2010072056 A JP2010072056 A JP 2010072056A JP 2008236368 A JP2008236368 A JP 2008236368A JP 2008236368 A JP2008236368 A JP 2008236368A JP 2010072056 A JP2010072056 A JP 2010072056A
Authority
JP
Japan
Prior art keywords
evaluation
voltage
conductive member
phase difference
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008236368A
Other languages
Japanese (ja)
Inventor
Tadayuki Oshima
忠幸 大島
Hiromoto Furubayashi
宏基 古林
Taisuke Tokuwaki
泰輔 徳脇
Yutaka Narita
豊 成田
Makoto Nakamura
誠 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008236368A priority Critical patent/JP2010072056A/en
Publication of JP2010072056A publication Critical patent/JP2010072056A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive member evaluation device that are used for correctly evaluating a conductive member that charges an electrostatic latent image carrier, and to provide a conductive member evaluation method. <P>SOLUTION: In the conductive member evaluation device, a charged member and the conductive member are supported so that their surfaces are disposed in contact with or close to each other. At least one of the charged member or conductive member is driven so that part of the surface of the charged member and that of the conductive member disposed in contact with or close to each other successively move on the respective surfaces. A predetermined evaluation voltage in which an AC voltage is superposed on a DC voltage is applied to the conductive member, and evaluation currents flowing in the charged member and conductive member are measured. Then, a potential difference between the evaluation voltage and the evaluation current is measured. On the basis of the measured potential difference, the conductive member is evaluated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子写真方式の画像形成装置等が備える静電潜像担持体を帯電させる導電性部材を評価する導電性部材評価装置、及び、導電性部材評価方法に関する。   The present invention relates to a conductive member evaluation apparatus that evaluates a conductive member that charges an electrostatic latent image carrier provided in an electrophotographic image forming apparatus and the like, and a conductive member evaluation method.

複写機、レーザービームプリンタ、ファクシミリ等の電子写真方式の画像形成装置は、静電潜像が形成される静電潜像担持体(即ち、像担持体)としての感光体の表面を一様に帯電させる帯電処理を行う帯電部材を備えている。このような帯電部材として、ローラ状などに形成された導電性部材(以下、帯電ローラ)が用いられる。そして、従来、この帯電ローラの外周面を感光体の表面に接触させて上記帯電処理を行う接触帯電方式が知られていた(例えば、特許文献1)。   An electrophotographic image forming apparatus such as a copying machine, a laser beam printer, a facsimile or the like uniformly distributes the surface of a photosensitive member as an electrostatic latent image carrier (that is, an image carrier) on which an electrostatic latent image is formed. A charging member that performs a charging process for charging is provided. As such a charging member, a conductive member (hereinafter referred to as a charging roller) formed in a roller shape or the like is used. Conventionally, there has been known a contact charging method in which the charging process is performed by bringing the outer peripheral surface of the charging roller into contact with the surface of the photoreceptor (for example, Patent Document 1).

しかしながら、上述した接触帯電方式には、(1)帯電ローラを構成している物質が帯電ローラからしみ出し、接触している感光体の表面に付着移行してしまう、(2)帯電ローラに交流電圧を印加したときに振動音が生じてしまう、(3)感光体上のトナーが帯電ローラに付着して帯電性能が低下してしまう、(4)感光体の回転を長期間停止すると、帯電ローラの感光体との当接部分が永久変形してしまう、という問題があった。   However, in the contact charging method described above, (1) the substance constituting the charging roller oozes out from the charging roller and adheres to the surface of the contacted photoreceptor, and (2) the charging roller is AC. Vibration noise is generated when voltage is applied. (3) The toner on the photoconductor adheres to the charging roller and the charging performance deteriorates. (4) When the rotation of the photoconductor is stopped for a long period of time, charging occurs. There is a problem that the contact portion of the roller with the photoreceptor is permanently deformed.

そこで、これらの問題を解決するために、帯電ローラを感光体の表面に対して所定のギャップ(空隙)を有するように近接配置して帯電処理を行う近接帯電方式が提案されている(例えば、特許文献2)。このような近接帯電方式では、上記ギャップの最近接距離が50〜300μmとなるように、帯電ローラと感光体とを対向させ、帯電ローラに電圧を印加することにより、感光体の帯電処理を行うものである。この近接帯電方式では、帯電ローラと感光体とが接触していないので、接触帯電方式において生じる上述した問題を解消することができた。   Therefore, in order to solve these problems, a proximity charging method has been proposed in which charging is performed by placing a charging roller close to the surface of the photoreceptor so as to have a predetermined gap (gap) (for example, Patent Document 2). In such a proximity charging method, the charging roller and the photoconductor are opposed to each other so that the closest distance of the gap is 50 to 300 μm, and a voltage is applied to the charging roller to perform charging processing of the photoconductor. Is. In this proximity charging method, the charging roller and the photosensitive member are not in contact with each other, so that the above-described problems caused in the contact charging method can be solved.

上述した接触帯電方式に使用される帯電ローラは、感光体を一様に帯電させるために、感光体の表面に帯電ローラが均一に接触することが求められるので、芯軸の周囲を弾性体である加硫ゴムなどで被覆して構成されている。一方、近接帯電方式に使用される帯電ローラは、感光体を一様に帯電させるために、帯電ローラと感光体とのギャップを均一にすることが求められるので、芯軸の周囲を変形や経時でのへたりのない被弾性体である熱可塑性樹脂などで被覆して構成されている。このように、接触帯電方式で用いられる帯電ローラと近接帯電方式で用いられる帯電ローラとでは、それぞれの帯電ローラを構成する材料が異なっている。   Since the charging roller used in the contact charging method described above is required to uniformly contact the surface of the photosensitive member in order to uniformly charge the photosensitive member, an elastic body is used around the core shaft. Covered with some vulcanized rubber. On the other hand, the charging roller used in the proximity charging method is required to make the gap between the charging roller and the photosensitive member uniform in order to uniformly charge the photosensitive member. It is formed by coating with a thermoplastic resin or the like which is an elastic body with no sag. As described above, the charging roller used in the contact charging system and the charging roller used in the proximity charging system are different in the material constituting each charging roller.

上述した帯電ローラによる感光体の表面への帯電メカニズムは、接触帯電方式、近接帯電方式に関わらず、帯電ローラと感光体との間に生じる微小放電におけるパッシェンの法則に従った放電の寄与が大きいことが知られている。そのため、感光体の表面を所定の電位で均一に(即ち、一様に)帯電させるという帯電ローラの基本機能を評価するためには、帯電ローラの電気特性(放電特性)を評価することが重要となる。   Regardless of the contact charging method or the proximity charging method, the charging mechanism to the surface of the photosensitive member by the charging roller described above greatly contributes to the discharge according to Paschen's law in the minute discharge generated between the charging roller and the photosensitive member. It is known. Therefore, in order to evaluate the basic function of the charging roller that uniformly charges the surface of the photoreceptor at a predetermined potential (that is, uniformly), it is important to evaluate the electrical characteristics (discharge characteristics) of the charging roller. It becomes.

従来は、帯電ローラの電気特性の評価方法(即ち、導電性部材評価方法)として、図13に模式的に示すように、帯電ローラ101の外周面101aと帯電ローラ101の芯軸106とのそれぞれに電極302、303を接続し、直流電源301よりこれら電極302、303間に直流電圧を印加して、帯電ローラ101に流れる電流値を測定することにより帯電ローラ101の抵抗値を算出して、この抵抗値を用いて帯電ローラの良否を判断(評価)する評価方法が用いられてきた。この評価方法によれば、帯電ローラの抵抗値が低いほど、導電性が高く均一な放電が可能であり、良好な画像が得られる帯電ローラであると評価していた。
特開平1−267667号公報 特開平5−107871号公報
Conventionally, as a method for evaluating electrical characteristics of a charging roller (ie, a conductive member evaluation method), as schematically shown in FIG. 13, each of an outer peripheral surface 101a of the charging roller 101 and a core shaft 106 of the charging roller 101 is provided. The resistance value of the charging roller 101 is calculated by measuring the current value flowing through the charging roller 101 by applying a DC voltage between the electrodes 302 and 303 from the DC power supply 301 and connecting the electrodes 302 and 303 to the An evaluation method for judging (evaluating) the quality of the charging roller using this resistance value has been used. According to this evaluation method, the lower the resistance value of the charging roller, the higher the conductivity, the more uniform discharge is possible, and the charging roller is evaluated as being capable of obtaining a good image.
JP-A-1-267667 JP-A-5-107871

しかしながら、帯電ローラの電気特性としては、電流値を抵抗成分、容量成分、放電成分、の3つの成分に分けることで、各成分を評価可能であるが、上述した評価方法で評価しているのは、これら3つの成分のうち抵抗成分のみであり、放電特性に係る放電成分の評価ができていなかった。そのため、特に近接帯電方式で用いる帯電ローラにおいて、該帯電ローラを構成する材料の処方によっては、上述した評価方法における評価結果と、実際に帯電ローラを用いて形成した画像の画像評価結果と、が対応しない場合が出てきており、従来の評価方法では正確に帯電ローラの良否を評価することができないという問題があった。   However, as the electrical characteristics of the charging roller, each component can be evaluated by dividing the current value into three components, ie, a resistance component, a capacitance component, and a discharge component. Is only the resistance component of these three components, and the discharge component related to the discharge characteristics has not been evaluated. Therefore, particularly in the charging roller used in the proximity charging method, depending on the prescription of the material constituting the charging roller, the evaluation result in the evaluation method described above and the image evaluation result of the image actually formed using the charging roller are There is a case where it does not correspond, and there is a problem that the quality of the charging roller cannot be accurately evaluated by the conventional evaluation method.

本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、静電潜像担持体を帯電させる導電性部材の評価を正確に行うことができる導電性部材評価装置、及び、導電性部材評価方法を提供することを目的としている。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a conductive member evaluation apparatus and a conductive member evaluation method that can accurately evaluate a conductive member that charges an electrostatic latent image carrier.

本発明者らは、静電潜像担持体に導電性部材としての帯電ローラを当接又は近接配置して、帯電ローラに所定の評価電圧を印加したときに流れる電流(評価電流)に着目して、鋭意検討を重ねた結果、以下のことが判明した。   The inventors pay attention to a current (evaluation current) that flows when a predetermined evaluation voltage is applied to the charging roller by placing a charging roller as a conductive member in contact with or close to the electrostatic latent image carrier. As a result of extensive studies, the following was found.

静電潜像担持体と帯電ローラとを、パッシェンの法則が成立するように、当接又は近接して配置し、帯電ローラに対し直流電圧に交流電圧を重畳した所定の評価電圧を印加したときに、帯電ローラと静電潜像担持体とを流れる評価電流の電流波形を観測したところ、画像評価結果が良好である帯電ローラにおいては図8に示す電流波形Iが得られ、画像評価結果が不良である帯電ローラにおいては図9に示す電流波形Iが得られた。これら電流波形Iから、画像評価結果が良好である帯電ローラにおいては、0Aを中心値としたプラス側波形(0Aより上の波形)とマイナス側波形(0Aより下の波形)とが対称となる傾向にあり、画像評価結果が不良である帯電ローラにおいては、プラス側波形とマイナス側波形とが非対称となる傾向があることが判った。   When the electrostatic latent image carrier and the charging roller are placed in contact or close to each other so that Paschen's law is established, and a predetermined evaluation voltage in which an AC voltage is superimposed on a DC voltage is applied to the charging roller. Further, when the current waveform of the evaluation current flowing through the charging roller and the electrostatic latent image carrier is observed, the current waveform I shown in FIG. 8 is obtained in the charging roller having a good image evaluation result, and the image evaluation result is For the defective charging roller, a current waveform I shown in FIG. 9 was obtained. From these current waveforms I, a positive side waveform (waveform above 0A) and a negative side waveform (waveform below 0A) having a center value of 0A are symmetrical in a charging roller with good image evaluation results. It has been found that the positive side waveform and the negative side waveform tend to be asymmetric in a charging roller that tends to have a poor image evaluation result.

これら電流波形Iについて考察する。上記電流波形Iは、図10に示すように、抵抗成分A、容量成分B、放電成分C、の3つの成分に分けることができる。このうち抵抗成分A及び容量成分Bについては、帯電ローラの電気特性としての抵抗及び静電容量は電気的に無極性であり、これら成分におけるプラス側波形とマイナス側波形とは対称になると考えられるので、電流波形Iがプラス側波形とマイナス側波形とで対称になるか否かは放電成分Cによるものと考えられる。   Consider these current waveforms I. The current waveform I can be divided into three components, a resistance component A, a capacitance component B, and a discharge component C, as shown in FIG. Among these, regarding the resistance component A and the capacitance component B, the resistance and capacitance as electrical characteristics of the charging roller are electrically non-polar, and the plus side waveform and the minus side waveform in these components are considered to be symmetric. Therefore, whether or not the current waveform I is symmetric between the plus side waveform and the minus side waveform is considered to be due to the discharge component C.

放電成分Cにおけるプラス側波形は、帯電ローラから静電潜像担持体へ向かう放電(正放電)の状態を示し、放電成分Cにおけるマイナス側波形は、静電潜像担持体から帯電ローラへ向かう放電(逆放電)の状態を示している。つまり、電流波形Iのプラス側波形とマイナス側波形とが対称であれば、正放電と逆放電とが均一に行われていることを示し、電流波形Iのプラス側波形とマイナス側波形とが非対称であれば、正放電と逆放電とが不均一に行われていることを示していると考えられる。   The positive waveform in the discharge component C indicates the state of discharge (positive discharge) from the charging roller to the electrostatic latent image carrier, and the negative waveform in the discharge component C is from the electrostatic latent image carrier to the charging roller. The state of discharge (reverse discharge) is shown. That is, if the positive waveform and the negative waveform of the current waveform I are symmetric, it indicates that the positive discharge and the reverse discharge are performed uniformly, and the positive waveform and the negative waveform of the current waveform I are If it is asymmetrical, it is considered that the forward discharge and the reverse discharge are performed unevenly.

そして、正放電と逆放電とが均一に行われると、静電潜像担持体の表面が均一に帯電される。それに対して、正放電と逆放電とが不均一に行われると、一方の放電による電荷が他方の放電時において静電潜像担持体の表面に残存してしまい、静電潜像担持体の表面が不均一に帯電される。このような静電潜像担持体の帯電状態の違いによって、画像評価結果の良否が分かれるものと考えられる。つまり、上述した電流波形Iのプラス側波形とマイナス側波形とが対称であれば、良好な画像が得られる帯電ローラであると判定でき、上述した電流波形Iのプラス側波形とマイナス側波形とが非対称であれば、不良画像となる帯電ローラと判定できると考えられる。   When the normal discharge and the reverse discharge are uniformly performed, the surface of the electrostatic latent image carrier is uniformly charged. On the other hand, if the positive discharge and the reverse discharge are performed non-uniformly, the charge from one discharge remains on the surface of the electrostatic latent image carrier at the time of the other discharge, and the electrostatic latent image carrier The surface is charged unevenly. It is considered that the quality of the image evaluation result depends on the difference in the charged state of the electrostatic latent image carrier. That is, if the positive waveform and the negative waveform of the current waveform I are symmetric, it can be determined that the charging roller can obtain a good image, and the positive waveform and the negative waveform of the current waveform I described above can be obtained. If it is asymmetric, it can be determined that the charging roller is a defective image.

そして、さらに、本発明者らは、このような電流波形の対称・非対称の判定方法について、鋭意検討を行い、その判定方法を見いだした。   Further, the present inventors have conducted intensive studies on such a method for determining the symmetry / asymmetricity of the current waveform, and found the determination method.

帯電ローラに印加する所定の評価電圧は、直流電圧に正弦波となる交流電圧を重畳した電圧であるので、その電圧波形Vは、直流電圧値を中心値としてプラス側波形(直流電圧値より上の波形)とマイナス側波形(直流電圧値より下の波形)とが対称になる。一方、上記評価電流Iにおいては、正放電と逆放電との状態によって電流波形の対称性が決定され、そして、正放電と逆放電とが不均一に行われたとき、それぞれの放電における放電量が異なるので、プラス側波形とマイナス側波形とのそれぞれのピーク(中心値(0A)からの絶対値が最大となる点)の高さが異なり、そのため、電流波形Iにおいて、その中心値を通るときの時間(位相)が、その中心値を下から上に突き抜ける立ち上がり時点と、その中心値を上から下に突き抜ける立ち下がり時点と、で微小変化する。   Since the predetermined evaluation voltage applied to the charging roller is a voltage obtained by superimposing a DC voltage on a sine wave AC voltage, the voltage waveform V is a positive waveform (above the DC voltage value) with the DC voltage value as the center value. Waveform) and the negative waveform (waveform below the DC voltage value) are symmetric. On the other hand, in the evaluation current I, the symmetry of the current waveform is determined by the state of the positive discharge and the reverse discharge, and when the normal discharge and the reverse discharge are performed unevenly, the discharge amount in each discharge Therefore, the heights of the peaks (points where the absolute value from the center value (0A) is maximum) of the plus-side waveform and the minus-side waveform are different, and therefore, the current waveform I passes through the center value. The time (phase) of the time slightly changes between a rising point at which the center value penetrates from the bottom to the top and a falling point at which the center value penetrates from the top to the bottom.

そこで、上記電圧波形Vと上記電流波形Iとの位相差に基づいて、電流波形Iのプラス側波形とマイナス側波形とが対称か否かを判定できる。具体的には、図11に示すように電圧波形Vの中心値における立ち上がり時点Tvuと電流波形Iの中心値における立ち上がり時点Tiuとの位相差(以下、立ち上がり位相差α1)と、電圧波形Vの中心値における立ち下がり時点Tvdと電流波形Iの中心値における立ち下がり時点Tidとの位相差(立ち下がり位相差α2)と、の差を求め、この差が小さければ、電流波形Iのプラス側波形とマイナス側波形とが対称と判定でき、即ち、良好な画像が得られる帯電ローラであると判定(評価)でき、この差が大きければ、電流波形Iのプラス側波形とマイナス側波形とが非対称と判定でき、即ち、不良画像となる帯電ローラと判定(評価)できる。なお、上記は導電性部材としてローラ状の帯電ローラについて記載しているが、ベルト状、ブレード(板)状、半円柱状の導電性部材においても、同様の評価ができる。また、導電性部材は、それを構成する材料によって、イオン導電性の導電性部材、若しくは、電子導電性の導電性部材、に分類することができるが、上述した評価方法では、導電性部材によって実際に生じている正放電と逆放電との状態(均一性)に基づいて導電性部材の評価を行うので、導電性部材を構成する材料によらず、イオン導電性や電子導電性などのいかなる材料を用いた導電性部材でも評価可能である。   Therefore, based on the phase difference between the voltage waveform V and the current waveform I, it can be determined whether or not the positive waveform and the negative waveform of the current waveform I are symmetric. Specifically, as shown in FIG. 11, the phase difference between the rising time Tvu at the center value of the voltage waveform V and the rising time Tiu at the center value of the current waveform I (hereinafter referred to as the rising phase difference α1), and the voltage waveform V The difference between the falling time Tvd at the center value and the phase difference (falling phase difference α2) between the falling time Tid at the center value of the current waveform I is obtained, and if this difference is small, the positive waveform of the current waveform I And the negative waveform can be determined to be symmetrical, that is, it can be determined (evaluated) that the charging roller can obtain a good image. If this difference is large, the positive waveform and the negative waveform of the current waveform I are asymmetric. That is, it can be determined (evaluated) that the charging roller is a defective image. Although the above describes a roller-shaped charging roller as the conductive member, the same evaluation can be performed for a belt-shaped, blade (plate) -shaped, and semi-cylindrical conductive member. In addition, the conductive member can be classified into an ion conductive conductive member or an electronic conductive conductive member depending on the material constituting the conductive member. Since the conductive member is evaluated based on the state (uniformity) between the positive discharge and the reverse discharge that are actually generated, regardless of the material constituting the conductive member, any ion conductivity, electronic conductivity, etc. It is possible to evaluate a conductive member using a material.

このように、導電性部材に印加する所定の評価電圧と、該評価電圧を印加したときに流れる評価電流との位相差に基づいて、導電性部材の良否を評価できることが判った。   Thus, it was found that the quality of the conductive member can be evaluated based on the phase difference between the predetermined evaluation voltage applied to the conductive member and the evaluation current that flows when the evaluation voltage is applied.

請求項1に記載された発明は、上記目的を達成するために、(a)被帯電部材と、(b)導電性部材の表面の一部箇所を前記被帯電部材の表面の一部箇所と当接又は近接させて、前記導電性部材を支持する支持手段と、(c)互いに当接又は近接された前記被帯電部材の表面の一部箇所と前記導電性部材の表面の一部箇所とが、それぞれの表面を順次移動されるように、前記被帯電部材と前記導電性部材との少なくとも一方を駆動させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材との少なくとも一方が駆動されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置において、(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定手段と、(ロ)前記位相差測定手段によって測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価手段と、が設けられていることを特徴とする導電性部材評価装置である。   In order to achieve the above object, the invention described in claim 1 includes: (a) a member to be charged; and (b) a portion of the surface of the conductive member as a portion of the surface of the member to be charged. A supporting means for supporting the conductive member in contact with or close to each other; (c) a part of the surface of the member to be charged and a part of the surface of the conductive member that are in contact with or close to each other; Driving means for driving at least one of the member to be charged and the conductive member so that the respective surfaces are sequentially moved, and (d) the member to be charged and the conductive member by the driving unit. Voltage application means for applying a predetermined evaluation voltage obtained by superimposing an alternating voltage on a direct current voltage to the conductive member when at least one of them is driven, and (e) the conductive member is applied to the conductive member by the voltage application means. When the evaluation voltage is applied, In a conductive member evaluation apparatus, comprising: a current measuring unit that measures an evaluation current flowing through the member to be charged and the conductive member; (a) the evaluation voltage applied by the voltage applying unit and the current measurement A phase difference measuring means for measuring a phase difference with the evaluation current measured by the means; and (b) the conductivity based on the phase difference between the evaluation voltage and the evaluation current measured by the phase difference measuring means. An evaluation means for evaluating a member is provided. The conductive member evaluation apparatus is provided.

請求項2に記載された発明は、上記目的を達成するために、(a)回転可能に軸支された円筒状の被帯電部材と、(b)ローラ状の導電性部材の外周面を前記被帯電部材の外周面と当接又は近接させて回転可能に軸支する支持手段と、(c)前記被帯電部材と前記導電性部材とのそれぞれを互いに逆方向に回転させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材とがそれぞれ回転されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置において、(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定手段と、(ロ)前記位相差測定手段によって測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価手段と、が設けられていることを特徴とする導電性部材評価装置である。   In order to achieve the above object, the invention described in claim 2 includes: (a) a cylindrical member to be charged that is rotatably supported; and (b) an outer peripheral surface of a roller-like conductive member. (C) a driving means for rotating the charged member and the conductive member in directions opposite to each other; and (c) a supporting means that rotatably supports the outer peripheral surface of the charged member. d) voltage applying means for applying a predetermined evaluation voltage obtained by superimposing an alternating voltage on a direct current voltage to the conductive member when the member to be charged and the conductive member are rotated by the driving means; (E) a current measuring means for measuring an evaluation current flowing through the member to be charged and the conductive member when the evaluation voltage is applied to the conductive member by the voltage applying means; In member evaluation equipment, (i) Phase difference measuring means for measuring a phase difference between the evaluation voltage applied by the voltage applying means and the evaluation current measured by the current measuring means; and (b) the evaluation measured by the phase difference measuring means. An evaluation means for evaluating the conductive member based on a phase difference between a voltage and the evaluation current is provided.

請求項3に記載された発明は、請求項1又は2に記載された発明において、前記位相差測定手段では、前記評価電圧の中心値において波形が立ち上がる時点と前記評価電流の中心値において波形が立ち上がる時点との位相差、及び、前記評価電圧の中心値において波形が立ち下がる時点と前記評価電流の中心値において波形が立ち下がる時点との位相差、がそれぞれ測定され、そして、前記評価手段では、前記位相差測定手段によって測定された、前記評価電圧の前記波形が立ち上がる時点と前記評価電流の前記波形が立ち上がる時点との位相差と、前記評価電圧の前記波形が立ち下がる時点と前記評価電流の前記波形が立ち下がる時点との位相差と、の差に基づいて、前記導電性部材が評価されることを特徴とするものである。   The invention described in claim 3 is the invention described in claim 1 or 2, wherein in the phase difference measuring means, the waveform rises at the center value of the evaluation voltage and the waveform at the center value of the evaluation current. The phase difference between the rising point and the phase difference between the time point when the waveform falls at the center value of the evaluation voltage and the time point when the waveform falls at the center value of the evaluation current are measured, and the evaluation means The phase difference between the time when the waveform of the evaluation voltage rises and the time when the waveform of the evaluation current rises, the time when the waveform of the evaluation voltage falls, and the evaluation current measured by the phase difference measuring unit The conductive member is evaluated on the basis of the difference between the waveform and the time point when the waveform falls.

請求項4に記載された発明は、上記目的を達成するために、(a)被帯電部材と、(b)導電性部材の表面の一部箇所を前記被帯電部材の表面の一部箇所と当接又は近接させて、前記導電性部材を支持する支持手段と、(c)互いに当接又は近接された前記被帯電部材の表面の一部箇所と前記導電性部材の表面の一部箇所とが、それぞれの表面を順次移動されるように、前記被帯電部材と前記導電性部材との少なくとも一方を駆動させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材との少なくとも一方が駆動されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置において用いられる導電性部材評価方法であって、(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定工程と、(ロ)前記位相差測定工程で測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価工程と、を順次経て導電性部材を評価することを特徴とする導電性部材評価方法である。   In order to achieve the above-described object, the invention described in claim 4 includes: (a) a member to be charged; and (b) a part of the surface of the conductive member as a part of the surface of the member to be charged. A supporting means for supporting the conductive member in contact with or close to each other; (c) a part of the surface of the member to be charged and a part of the surface of the conductive member that are in contact with or close to each other; Driving means for driving at least one of the member to be charged and the conductive member so that the respective surfaces are sequentially moved, and (d) the member to be charged and the conductive member by the driving unit. Voltage application means for applying a predetermined evaluation voltage obtained by superimposing an alternating voltage on a direct current voltage to the conductive member when at least one of them is driven, and (e) the conductive member is applied to the conductive member by the voltage application means. When the evaluation voltage is applied, A current measuring means for measuring an evaluation current flowing through the member to be charged and the conductive member, and a conductive member evaluation method used in a conductive member evaluation apparatus comprising: (a) by the voltage applying means; A phase difference measuring step of measuring a phase difference between the applied evaluation voltage and the evaluation current measured by the current measuring means; and (b) the evaluation voltage and the evaluation current measured in the phase difference measuring step. And an evaluation process for evaluating the conductive member based on a phase difference between the conductive member and the conductive member.

請求項5に記載された発明は、上記目的を達成するために、(a)回転可能に軸支された円筒状の被帯電部材と、(b)ローラ状の導電性部材の外周面を前記被帯電部材の外周面と当接又は近接させて回転可能に軸支する支持手段と、(c)前記被帯電部材と前記導電性部材とのそれぞれを互いに逆方向に回転させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材とがそれぞれ回転されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置で用いられる導電性部材評価方法であって、(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定工程と、(ロ)前記位相差測定工程で測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価工程と、を順次経て導電性部材を評価することを特徴とする導電性部材評価方法である。   In order to achieve the above-mentioned object, the invention described in claim 5 includes: (a) a cylindrical member to be charged rotatably supported; and (b) an outer peripheral surface of a roller-like conductive member. (C) a driving means for rotating the charged member and the conductive member in directions opposite to each other; and (c) a supporting means that rotatably supports the outer peripheral surface of the charged member. d) voltage applying means for applying a predetermined evaluation voltage obtained by superimposing an alternating voltage on a direct current voltage to the conductive member when the member to be charged and the conductive member are rotated by the driving means; (E) a current measuring means for measuring an evaluation current flowing through the member to be charged and the conductive member when the evaluation voltage is applied to the conductive member by the voltage applying means; Conductivity used in member evaluation equipment (B) a phase difference measurement step of measuring a phase difference between the evaluation voltage applied by the voltage application unit and the evaluation current measured by the current measurement unit; A conductive member, wherein the conductive member is evaluated by sequentially evaluating the conductive member based on a phase difference between the evaluation voltage and the evaluation current measured in the phase difference measuring step. It is an evaluation method.

請求項6に記載された発明は、請求項4又は5に記載された発明において、前記位相差測定工程では、前記評価電圧の中心値において波形が立ち上がる時点と前記評価電流の中心値において波形が立ち上がる時点との位相差、及び、前記評価電圧の中心値において波形が立ち下がる時点と前記評価電流の中心値において波形が立ち下がる時点との位相差、がそれぞれ測定され、そして、前記評価工程では、前記位相差測定工程で測定された、前記評価電圧の前記波形が立ち上がる時点と前記評価電流の前記波形が立ち上がる時点との位相差と、前記評価電圧の前記波形が立ち下がる時点と前記評価電流の前記波形が立ち下がる時点との位相差と、の差に基づいて、前記導電性部材が評価されることを特徴とする方法である。   In the invention described in claim 6, in the invention described in claim 4 or 5, in the phase difference measurement step, the waveform is generated at the time when the waveform rises at the center value of the evaluation voltage and at the center value of the evaluation current. The phase difference from the rising point and the phase difference between the time point when the waveform falls at the center value of the evaluation voltage and the time point when the waveform falls at the center value of the evaluation current are measured, and in the evaluation step, The phase difference between the time when the waveform of the evaluation voltage rises and the time when the waveform of the evaluation current rises, the time when the waveform of the evaluation voltage falls, and the evaluation current measured in the phase difference measurement step The conductive member is evaluated on the basis of the difference between the waveform and the time point when the waveform falls.

請求項1、2、4、5に記載された発明によれば、導電性部材に印加される評価電圧と、導電性部材を流れる評価電流と、の位相差を測定し、該位相差に基づいて導電性部材を評価するので、静電潜像担持体を帯電させる導電性部材の評価を正確に行うことができる。   According to the invention described in claims 1, 2, 4, and 5, the phase difference between the evaluation voltage applied to the conductive member and the evaluation current flowing through the conductive member is measured, and based on the phase difference. Therefore, the conductive member that charges the electrostatic latent image carrier can be accurately evaluated.

請求項3、6に記載された発明によれば、評価電圧の中心値において波形が立ち上がる時点と評価電流の中心値において波形が立ち上がる時点との位相差、及び、評価電圧の中心値において波形が立ち下がる時点と評価電流の中心値において波形が立ち下がる時点との位相差、をそれぞれ測定し、そして、これら測定した位相差の差に基づいて導電性部材を評価するので、静電潜像担持体を帯電させる導電性部材の評価を正確に行うことができる。   According to the third and sixth aspects of the invention, the phase difference between the time when the waveform rises at the central value of the evaluation voltage and the time when the waveform rises at the central value of the evaluation current, and the waveform at the central value of the evaluation voltage. The phase difference between the time of falling and the time when the waveform falls at the center value of the evaluation current is measured, and the conductive member is evaluated based on the difference in the measured phase difference. The conductive member that charges the body can be accurately evaluated.

以下に、本発明に係る導電性部材評価装置、この導電性部材評価装置において評価される導電性部材、及び、この導電性部材を備える画像形成装置、のそれぞれの実施形態について、順に説明する。そのあと、本発明者らによる本発明の検証内容について説明する。   Below, each embodiment of the electroconductive member evaluation apparatus which concerns on this invention, the electroconductive member evaluated in this electroconductive member evaluation apparatus, and an image forming apparatus provided with this electroconductive member is described in order. After that, verification contents of the present invention by the present inventors will be described.

(導電性部材評価装置)
以下に、本発明に係る導電性部材評価装置の一実施形態を、図1〜図3を参照して説明する。図1は、本発明の導電性部材評価装置の構成図である。図2は、図1の導電性部材評価装置の電気的接続関係を模式的に示す図である。図3は、図1の導電性部材評価装置が備える制御部が実行する評価処理の一例を示すフローチャートである。
(Conductive member evaluation device)
Below, one Embodiment of the electroconductive member evaluation apparatus which concerns on this invention is described with reference to FIGS. FIG. 1 is a configuration diagram of a conductive member evaluation apparatus according to the present invention. FIG. 2 is a diagram schematically illustrating an electrical connection relationship of the conductive member evaluation apparatus in FIG. 1. FIG. 3 is a flowchart illustrating an example of an evaluation process executed by a control unit included in the conductive member evaluation apparatus of FIG.

導電性部材評価装置200は、図1に示すように、ベース201と、支持手段としての一対の支持部材202と、駆動手段としての駆動部203と、被帯電部材としての感光体204と、電圧印加手段としての電源部205と、電流測定手段としての測定部206と、制御部207と、を備えている。   As shown in FIG. 1, the conductive member evaluation apparatus 200 includes a base 201, a pair of support members 202 as support means, a drive unit 203 as drive means, a photoreceptor 204 as a member to be charged, a voltage A power supply unit 205 as an application unit, a measurement unit 206 as a current measurement unit, and a control unit 207 are provided.

ベース201は、平板状に形成されて、工場のフロアやテーブル上等に設置される。ベース3の上面は、水平方向と平行に保たれる。ベース3の平面形状は、矩形状に形成されている。   The base 201 is formed in a flat plate shape and is installed on a factory floor or table. The upper surface of the base 3 is kept parallel to the horizontal direction. The planar shape of the base 3 is formed in a rectangular shape.

一対の支持部材202は、ベース201の上面から互いに相対して垂直に立設された板状若しくは棒状の部材である。一対の支持部材202は、それら間に、導電性部材としてのローラ状の帯電部材101及び後述する感光体204をそれぞれ回転可能に軸支する。一対の支持部材202は、帯電部材101の外周面と感光体204の外周面とが当接するように、若しくは、それらの外周面の間に空隙を設けて非接触(即ち、近接)となるように、帯電部材101及び感光体204を軸支する。一対の支持部材202により、帯電部材101の外周面と感光体204の外周面との空隙の大きさは任意に設定可能である。また、一対の支持部材202は、帯電部材101が容易に取り付け可能、取り外し可能にされている。また、帯電部材101には高電圧が印加されるので、ベース201及び一対の支持部材202における帯電部材101及び感光体204の近傍に位置する箇所は、電気的絶縁性を有する材料で構成されている。   The pair of support members 202 are plate-shaped or bar-shaped members that are vertically arranged to be opposed to each other from the upper surface of the base 201. The pair of support members 202 pivotally support a roller-shaped charging member 101 as a conductive member and a photosensitive member 204 (described later) between them in a rotatable manner. The pair of support members 202 are not in contact (that is, close to each other) so that the outer peripheral surface of the charging member 101 and the outer peripheral surface of the photosensitive member 204 are in contact with each other, or a gap is provided between the outer peripheral surfaces. Further, the charging member 101 and the photosensitive member 204 are pivotally supported. With the pair of support members 202, the size of the gap between the outer peripheral surface of the charging member 101 and the outer peripheral surface of the photosensitive member 204 can be arbitrarily set. In addition, the pair of support members 202 are configured such that the charging member 101 can be easily attached and detached. In addition, since a high voltage is applied to the charging member 101, portions of the base 201 and the pair of supporting members 202 that are located in the vicinity of the charging member 101 and the photosensitive member 204 are made of an electrically insulating material. Yes.

駆動部203は、一対の支持部材202の一方に配設されており、周知のモータ203aと、互いに組み合わされた複数の歯車からなる駆動力伝達部203bと、を備えている。駆動部203は、モータ203aの回転を、直接又は駆動力伝達部203bの複数の歯車を介して、帯電部材101及び感光体204のそれぞれに伝達し、帯電部材101及び感光体204をそれぞれ互いに逆方向に回転させる。このようにすることで、互いに当接又は近接された帯電部材101の外表面の一部箇所及び感光体204の外表面の一部箇所が、それぞれの外表面上を順次移動するので、同一の箇所が常に当接または近接されることが無くなり、放電などによる劣化が帯電部材101及び感光体204の外表面の一部箇所に集中してしまうことを防ぐことができる。   The drive unit 203 is disposed on one of the pair of support members 202, and includes a known motor 203a and a drive force transmission unit 203b including a plurality of gears combined with each other. The drive unit 203 transmits the rotation of the motor 203a to the charging member 101 and the photosensitive member 204 directly or via the plurality of gears of the driving force transmission unit 203b, and the charging member 101 and the photosensitive member 204 are opposite to each other. Rotate in the direction. In this way, a part of the outer surface of the charging member 101 and a part of the outer surface of the photosensitive member 204 that are in contact with or close to each other sequentially move on the respective outer surfaces. The locations do not always come into contact with or approach each other, and deterioration due to discharge or the like can be prevented from concentrating on some locations on the outer surface of the charging member 101 and the photoreceptor 204.

駆動部203において、駆動力伝達部203bの歯車比などを調整するなどして、帯電部材101の線速度(周速度)が、感光体204の線速度以上となるようにそれぞれを回転させることが好ましく、帯電部材101の線速度と感光体204の線速度とが同一にすることが特に好ましい。帯電部材101の線速度が感光体204の線速度より遅い場合、電源部205が帯電部材101に印加する電圧によっては、帯電部材101の帯電状態が不安定になり、感光体204を均一に帯電させることが困難になる。また、本評価装置においては、帯電部材101に高電圧を印加するので、上述した従来の評価方法のように静止状態の帯電部材101に高電圧を印加した場合には、帯電部材101と感光体204間でリーク電流が発生してしまい、放電破壊により測定不可能となり、そこで、帯電部材101と感光体204とを回転させた状態で高電圧を印加する必要がある。駆動部203は、制御部207に接続され、制御部207から送られる制御信号に基づき、回転数(即ち、帯電部材101の線速度及び感光体204の線速度)などの制御が行われる。なお、本実施形態において、駆動部203は1つのモータによって帯電部材101及び感光体204を回転させるものであるが、これに限らず、帯電部材101及び感光体204を、それぞれ別個のモータで互いに逆方向に回転するようにしても良い。   In the driving unit 203, the linear velocity (peripheral velocity) of the charging member 101 is rotated so that the linear velocity (circumferential velocity) of the charging member 101 is equal to or higher than the linear velocity of the photosensitive member 204 by adjusting a gear ratio of the driving force transmission unit 203 b or the like. It is particularly preferable that the linear velocity of the charging member 101 and the linear velocity of the photosensitive member 204 are the same. When the linear velocity of the charging member 101 is lower than the linear velocity of the photosensitive member 204, the charging state of the charging member 101 becomes unstable depending on the voltage applied to the charging member 101 by the power supply unit 205, and the photosensitive member 204 is uniformly charged. It becomes difficult to make. In this evaluation apparatus, since a high voltage is applied to the charging member 101, when a high voltage is applied to the stationary charging member 101 as in the conventional evaluation method described above, the charging member 101 and the photoconductor. Leakage current is generated between the electrodes 204, making measurement impossible due to discharge breakdown. Therefore, it is necessary to apply a high voltage while the charging member 101 and the photosensitive member 204 are rotated. The drive unit 203 is connected to the control unit 207, and controls the number of rotations (that is, the linear velocity of the charging member 101 and the linear velocity of the photosensitive member 204) based on a control signal sent from the control unit 207. In the present embodiment, the driving unit 203 rotates the charging member 101 and the photosensitive member 204 by one motor. However, the driving unit 203 is not limited to this, and the charging member 101 and the photosensitive member 204 are respectively connected to each other by separate motors. You may make it rotate in the reverse direction.

感光体204は、帯電部材101によってその表面(外周面)が帯電される被帯電部材である。感光体204は、アルミニウム素管上に、下引き層、電荷発生層、電荷輸送層、表面保護層を順次積層した4層構造のものを用いる。感光体204では、電荷発生材料としてフタロシアニン顔料を用いている。また、感光体204の表面層となる表面保護層にはポリカーボネート樹脂を用い、フィラーとして平均粒径0.05〜0.8μmのシリカを用いる。このような感光体204を用いることにより、帯電部材101を画像形成装置に実際に搭載した状態と近い状態を作り出すことが可能である。感光体204は、図2に示すように、そのアルミニウム素管が接地(アース)されている。   The photoreceptor 204 is a member to be charged whose surface (outer peripheral surface) is charged by the charging member 101. The photoreceptor 204 has a four-layer structure in which an undercoat layer, a charge generation layer, a charge transport layer, and a surface protective layer are sequentially laminated on an aluminum base tube. In the photoreceptor 204, a phthalocyanine pigment is used as a charge generation material. Further, a polycarbonate resin is used for the surface protective layer that becomes the surface layer of the photoreceptor 204, and silica having an average particle diameter of 0.05 to 0.8 μm is used as the filler. By using such a photoreceptor 204, it is possible to create a state close to the state in which the charging member 101 is actually mounted on the image forming apparatus. As shown in FIG. 2, the photosensitive element 204 has its aluminum tube grounded (grounded).

電源部205は、図2に示すように、直流電圧源と正弦波交流電圧源とを備え、一対の端子205a、206b間に任意の周波数の電圧(即ち、評価電圧)を発生可能な周知の電源装置である。電源部205は、一方の端子205aが、測定部206が備える電流計206bを介して、帯電部材101の後述する導電性支持体(芯軸)106に接続され、他方の端子205bが接地されている。電源部205は、制御部207に接続されており、制御部207から送られる制御信号に基づき、一対の端子205a、206b間に発生させる電圧及び周波数などの制御が行われる。   As shown in FIG. 2, the power supply unit 205 includes a DC voltage source and a sine wave AC voltage source, and is a well-known device capable of generating a voltage (that is, an evaluation voltage) of an arbitrary frequency between a pair of terminals 205a and 206b. It is a power supply device. In the power supply unit 205, one terminal 205a is connected to a conductive support (core shaft) 106 (to be described later) of the charging member 101 via an ammeter 206b provided in the measurement unit 206, and the other terminal 205b is grounded. Yes. The power supply unit 205 is connected to the control unit 207, and controls voltage and frequency generated between the pair of terminals 205a and 206b based on a control signal sent from the control unit 207.

電源部205は、直流電圧Vdcに正弦波となる交流電圧を重畳して評価電圧を生成している。そして、この評価電圧は、該評価電圧によって帯電部材101に流れる評価電流における放電成分(放電特性)を評価するために、評価電流の電流波形中に放電成分を発生させなければならないので、上記重畳する交流電圧のピーク間電圧Vpp(kV)を、パッシェンの法則における放電開始電圧以上としており、好ましくは、このピーク間電圧Vppを放電開始電圧の2倍以上とする。また、この交流電圧の周波数f(Hz)は、帯電部材101及び感光体204の線速度V(mm/sec)に対して、周波数線速度比f/Vが7以上となるように設定する。周波数線速度比が7より小さい場合は、感光体204の外周面における単位距離当たりの放電回数が少ないので、実機でのモアレ画像発生時と同じように不均一な帯電(放電電流ムラ)が発生しやすい。   The power supply unit 205 generates an evaluation voltage by superimposing an AC voltage that is a sine wave on the DC voltage Vdc. Since this evaluation voltage needs to generate a discharge component in the current waveform of the evaluation current in order to evaluate the discharge component (discharge characteristic) in the evaluation current flowing through the charging member 101 by the evaluation voltage, the superposition is performed. The peak-to-peak voltage Vpp (kV) of the alternating voltage to be applied is equal to or higher than the discharge start voltage in Paschen's law, and preferably the peak-to-peak voltage Vpp is set to be twice or more the discharge start voltage. The frequency f (Hz) of the AC voltage is set so that the frequency linear velocity ratio f / V is 7 or more with respect to the linear velocity V (mm / sec) of the charging member 101 and the photosensitive member 204. When the frequency linear velocity ratio is less than 7, the number of discharges per unit distance on the outer peripheral surface of the photoconductor 204 is small, and non-uniform charging (uneven discharge current) occurs as in the case of moiré image generation on an actual machine. It's easy to do.

測定部206は、電圧計206aと電流計206bとを備える周知の計測器である。電圧計206aは、電源部205の一対の端子205a、205b間に接続され、電源部205が発生する電圧(評価電圧)を測定する。電流計206bは、電源部205の一方の端子205aと帯電部材101との間に接続され、帯電部材101及び感光体204に流れる電流(評価電流)を測定する。測定部206は、制御部207に接続されており、評価電圧及び評価電流に関する測定情報を制御部207に送信する。測定部206において、評価電圧及び評価電流を測定する際のサンプリングレートとしては、交流電圧の周波数より高くすることが必要である。交流電圧の周波数以下のサンプリングレートでは、電流波形の放電成分を正確に捉えることが困難となるためである。   The measuring unit 206 is a well-known measuring instrument that includes a voltmeter 206a and an ammeter 206b. The voltmeter 206 a is connected between the pair of terminals 205 a and 205 b of the power supply unit 205 and measures a voltage (evaluation voltage) generated by the power supply unit 205. The ammeter 206 b is connected between one terminal 205 a of the power supply unit 205 and the charging member 101, and measures a current (evaluation current) flowing through the charging member 101 and the photosensitive member 204. The measurement unit 206 is connected to the control unit 207 and transmits measurement information regarding the evaluation voltage and the evaluation current to the control unit 207. In the measurement unit 206, the sampling rate for measuring the evaluation voltage and the evaluation current needs to be higher than the frequency of the AC voltage. This is because it is difficult to accurately capture the discharge component of the current waveform at a sampling rate below the frequency of the AC voltage.

制御部207は、例えば、パーソナルコンピュータ(PC)などの周知のコンピュータなどで構成されている。制御部207は、それが備える種々の外部インタフェース(USB、GPIB等)を介して、上述した駆動部203、電源部205、測定部206、のそれぞれと接続されており、それらとの間で制御信号や各種情報などの送受信を行う。また、制御部207はハードディスクやメモリカード等の記憶手段を備えており、この記憶手段には、(1)帯電部材101及び感光体204の回転速度(線速度)に関する情報、(2)帯電部材101に印加する評価電圧(直流電圧値、交流電圧値、交流周波数)に関する情報、及び、(3)評価電圧の中心値における立ち上がり時点と評価電流の中心値における立ち上がり時点との位相差(立ち上がり位相差)と、評価電圧の中心値における立ち下がり時点と評価電流の中心値における立ち下がり時点との位相差(立ち下がり位相差)と、の差の判定基準情報、などが予め記憶されている。制御部207は、ROMや記憶手段などに予め格納されたプログラムに基づき、導電性部材評価装置200における各種制御を司り、また、測定部206から受信した評価電圧及び評価電流に関する測定情報を基に、評価電圧及び評価電流の位相差を算出して、この位相差に基づいて帯電部材101を評価する。即ち、制御部207は、請求項中の位相差測定手段及び評価手段に相当する。   The control unit 207 is configured by a known computer such as a personal computer (PC). The control unit 207 is connected to each of the above-described drive unit 203, power supply unit 205, and measurement unit 206 via various external interfaces (USB, GPIB, etc.) included in the control unit 207, and controls between them. Send and receive signals and various information. The control unit 207 includes storage means such as a hard disk or a memory card. The storage means includes (1) information on the rotation speed (linear speed) of the charging member 101 and the photosensitive member 204, and (2) charging member. Information on evaluation voltage (DC voltage value, AC voltage value, AC frequency) applied to 101, and (3) phase difference (rising position) between the rising point at the central value of the evaluation voltage and the rising point at the central value of the evaluation current Phase difference), and phase difference (falling phase difference) between the falling time point at the center value of the evaluation voltage and the falling time point at the center value of the evaluation current, and the determination criterion information of the difference are stored in advance. The control unit 207 performs various controls in the conductive member evaluation apparatus 200 based on a program stored in advance in a ROM, a storage unit, or the like, and based on measurement information regarding the evaluation voltage and evaluation current received from the measurement unit 206. The phase difference between the evaluation voltage and the evaluation current is calculated, and the charging member 101 is evaluated based on the phase difference. That is, the control unit 207 corresponds to the phase difference measuring unit and the evaluation unit in the claims.

制御部207によって行われる本発明に係る評価処理について、図3のフローチャートを参照して説明する。   The evaluation process according to the present invention performed by the control unit 207 will be described with reference to the flowchart of FIG.

最初に、評価対象となる帯電部材101を、感光体204と当接するように、若しくは、感光体204と所定の空隙をあけて近接するように一対の支持部材202に取り付け、そして、導電性部材評価装置200の電源を投入する。制御部207は、電源が投入されると、所定の初期化処理を実行したのち、評価処理を開始する。制御部207は、記憶手段から帯電部材101及び感光体204の回転速度(線速度)に関する情報を読み出して、この情報に基づき駆動部203に対して所定の制御信号を送信して、帯電部材101及び感光体204をそれぞれ同一の所定の線速度(例えば、282mm/sec)で互いに逆方向に回転させる(S110)。そして、制御部207は、記憶手段から帯電部材101に印加する評価電圧に関する情報を読み出して、この情報に基づき電源部205に所定の制御信号を送信して、帯電部材101に所定の評価電圧を印加する(S120)。この評価電圧は、例えば、直流電圧(Vdc=−0.7kV)に交流電圧(ピーク間電圧Vpp=2.2kV、周波数f=2200Hz)を重畳したものなどである。   First, the charging member 101 to be evaluated is attached to the pair of support members 202 so as to be in contact with the photosensitive member 204 or close to the photosensitive member 204 with a predetermined gap therebetween, and the conductive member. The evaluation apparatus 200 is turned on. When power is turned on, the control unit 207 executes a predetermined initialization process and then starts an evaluation process. The control unit 207 reads information related to the rotation speed (linear velocity) of the charging member 101 and the photosensitive member 204 from the storage unit, and transmits a predetermined control signal to the driving unit 203 based on this information. And the photosensitive member 204 are rotated in the opposite directions at the same predetermined linear velocity (for example, 282 mm / sec) (S110). Then, the control unit 207 reads information on the evaluation voltage applied to the charging member 101 from the storage unit, transmits a predetermined control signal to the power supply unit 205 based on this information, and applies a predetermined evaluation voltage to the charging member 101. Apply (S120). The evaluation voltage is, for example, a DC voltage (Vdc = −0.7 kV) superimposed with an AC voltage (peak-to-peak voltage Vpp = 2.2 kV, frequency f = 2200 Hz).

そして、制御部207は、測定部206による評価電圧及び評価電流の測定を開始し、測定部206から評価電圧及び評価電流に関する測定情報を順次受信する(S130)。そして、これら測定部206から受信した測定情報を解析して、評価電圧を構成する直流電圧値Vdcを中心値として、この中心値を下から上に突き抜ける立ち上がり時刻と、評価電流の0Aを中心値として、この中心値を下から上に突き抜ける立ち上がり時刻と、を求め、これら時刻の差から評価電圧の中心値における波形の立ち上がり時点と評価電流の中心値における波形の立ち上がり時点との位相差(立ち上がり位相差α1)を算出し、評価電圧の中心値を上から下に突き抜ける立ち下がり時刻と、評価電流の中心値を上から下に突き抜ける立ち下がり時刻と、を求め、これら時刻の差から評価電圧の中心値における波形の立ち下がり時点と評価電流の中心値における波形の立ち下がり時点との位相差(立ち下がり位相差α2)を算出する(S140)。そして、立ち上がり位相差α1と立ち下がり位相差α2との差(|α2−α1|)を算出し、記憶手段に予め記憶されている判定基準情報(例えば、4°)と比較して、上記各位相差の差が判定基準情報以下であれば、良好な画像が得られる帯電部材101と判定し、上記各位相差の差が判定基準情報より大きければ、不良画像となる帯電部材101と判定して、これら判定結果を、制御部207が備えるディスプレイなどの表示装置に表示する(S150)。そして、本フローチャートの処理を終了する。   Then, the control unit 207 starts measuring the evaluation voltage and the evaluation current by the measurement unit 206, and sequentially receives measurement information regarding the evaluation voltage and the evaluation current from the measurement unit 206 (S130). Then, the measurement information received from the measurement unit 206 is analyzed, and the DC voltage value Vdc constituting the evaluation voltage is set as the central value, the rising time that penetrates the central value from the bottom to the top, and the evaluation current of 0 A is the central value. The rise time that penetrates the center value from the bottom to the top is obtained, and the phase difference between the rise time of the waveform at the center value of the evaluation voltage and the rise time of the waveform at the center value of the evaluation current is calculated from the difference between these times. The phase difference α1) is calculated, the falling time that penetrates the center value of the evaluation voltage from top to bottom, and the falling time that penetrates the center value of the evaluation current from top to bottom, and the evaluation voltage is calculated from the difference between these times The phase difference (falling phase difference α2) between the waveform falling point at the center value of the waveform and the waveform falling point at the center value of the evaluation current is calculated. (S140). Then, the difference (| α2−α1 |) between the rising phase difference α1 and the falling phase difference α2 is calculated, and compared with the determination reference information (for example, 4 °) stored in advance in the storage means. If the difference in phase difference is equal to or less than the determination reference information, the charging member 101 is determined to obtain a good image. If the difference between the phase differences is larger than the determination reference information, the charging member 101 is determined to be a defective image. These determination results are displayed on a display device such as a display provided in the control unit 207 (S150). And the process of this flowchart is complete | finished.

なお、上述したステップS140は、請求項中の位相差測定手段、位相差測定工程に相当し、ステップS150は、請求項中の評価手段、評価工程に相当する。   The above-described step S140 corresponds to the phase difference measuring means and the phase difference measuring step in the claims, and step S150 corresponds to the evaluating means and the evaluation steps in the claims.

以上より、本発明によれば、評価電圧の中心値において波形が立ち上がる時点と評価電流の中心値において波形が立ち上がる時点との位相差(立ち上がり位相差)、及び、評価電圧の中心値において波形が立ち下がる時点と評価電流の中心値において波形が立ち下がる時点との位相差(立ち下がり位相差)、をそれぞれ測定し、そして、これら測定した位相差の差に基づいて導電性部材を評価するので、画像形成装置が備える静電潜像担持体を帯電させる導電性部材の評価を正確に行うことができる。   As described above, according to the present invention, the phase difference (rising phase difference) between the time when the waveform rises at the central value of the evaluation voltage and the time when the waveform rises at the central value of the evaluation current, and the waveform at the central value of the evaluation voltage. Because the phase difference (falling phase difference) between the time point of falling and the time point when the waveform falls at the center value of the evaluation current is measured, and the conductive member is evaluated based on the difference in the measured phase difference. Thus, it is possible to accurately evaluate the conductive member that charges the electrostatic latent image carrier included in the image forming apparatus.

また、本発明は、大気中でパッシェンの法則が成立する範囲であれば、用いることが可能であるので、従来行われていた評価方法とは異なり、帯電部材と感光体との空隙を、任意の値に変更して測定を行なうことができる。そのため、帯電部材を、近接帯電方式を採用した実際の画像形成装置に搭載した状態と近い状態で評価できる。また、本発明の導電性部材評価装置を、導電性部材の研究開発で用いることはもちろんのこと、上述した帯電部材の量産工程に組み込む等することにより、不良画像となる帯電部材を早期に検出できるので、この帯電部材を備える画像形成装置等の生産性を向上させることができる。   In addition, the present invention can be used as long as Paschen's law is established in the atmosphere. Therefore, unlike the conventional evaluation method, the gap between the charging member and the photosensitive member can be arbitrarily set. The measurement can be performed by changing the value to. Therefore, the charging member can be evaluated in a state close to a state in which the charging member is mounted on an actual image forming apparatus adopting a proximity charging method. In addition, the conductive member evaluation apparatus of the present invention is used not only in the research and development of conductive members, but also by incorporating it into the above-mentioned mass production process of charging members, etc., so that a charging member that becomes a defective image can be detected at an early stage. Therefore, the productivity of an image forming apparatus provided with this charging member can be improved.

また、上述した導電性部材の評価において、評価電圧及び評価電流(即ち、電気特性評価)の測定時間に関しては、特に制限は無く、ローラ一周期以上の測定時間であれば、局所的に電気的欠陥部分があった場合にも検出可能である。   In the evaluation of the conductive member described above, the measurement time of the evaluation voltage and the evaluation current (that is, the electrical characteristic evaluation) is not particularly limited. Even when there is a defective portion, it can be detected.

なお、本実施形態においては、ローラ状の帯電部材101を評価対象の導電性部材とするものであったが、これに限定するものではなく、ベルト状、ブレード(板)状、半円柱状の導電性部材についても評価することができる。その場合、支持部材(支持手段)によって、導電性部材の表面の一部箇所を感光体204の表面(外周面)の一部箇所と当接又は近接させて導電性部材を支持し、そして、駆動部(駆動手段)によって、互いに当接又は近接された感光体204の表面の一部箇所と導電性部材の表面の一部箇所とが、それぞれの表面を順次移動するように、感光体204と導電性部材との少なくとも一方を駆動する。そして、この状態において評価電圧を印加して評価電流を測定し、それぞれの位相差を求めて導電性部材の評価を行うようにする。   In the present embodiment, the roller-shaped charging member 101 is a conductive member to be evaluated, but is not limited thereto, and is not limited to a belt-like shape, a blade (plate) shape, or a semi-cylindrical shape. Conductive members can also be evaluated. In that case, the support member (support means) supports the conductive member by bringing a part of the surface of the conductive member into contact with or close to a part of the surface (outer peripheral surface) of the photosensitive member 204, and The photosensitive member 204 is arranged such that a part of the surface of the photosensitive member 204 and a part of the surface of the conductive member which are brought into contact with or close to each other by the driving unit (driving means) sequentially move on the respective surfaces. And at least one of the conductive member is driven. In this state, an evaluation voltage is applied to measure an evaluation current, and a phase difference is obtained to evaluate the conductive member.

具体的には、例えば、導電性部材がベルト状の場合、一対の支持部材に駆動ローラと従動ローラとを設けて、導電性部材をこれら駆動ローラと従動ローラとの双方に掛け渡して回転可能に支持するとともに、この導電性部材の表面と感光体204とを当接又は近接させて(即ち、感光体204が円筒状のため、導電性部材の表面の一部箇所と感光体204の表面(外周面)の一部箇所とが当接又は近接される)支持する。そして、駆動手段によって、導電性部材と感光体204とを線速度が同一となるように互いに逆方向に回転させる。このようにすることで、互いに当接又は近接された感光体204の表面の一部箇所と導電性部材の表面の一部箇所とが、それぞれの表面を順次移動していく。そして、この状態において評価電圧を印加して評価電流を測定し、それぞれの位相差を求めて導電性部材の評価を行うようにする。   Specifically, for example, when the conductive member is belt-shaped, a pair of support members are provided with a driving roller and a driven roller, and the conductive member can be stretched over both the driving roller and the driven roller to rotate. And the surface of the conductive member and the photosensitive member 204 are brought into contact with or close to each other (that is, since the photosensitive member 204 is cylindrical, a part of the surface of the conductive member and the surface of the photosensitive member 204). (A part of the (outer peripheral surface) abuts or approaches). Then, the driving member rotates the conductive member and the photosensitive member 204 in the opposite directions so that the linear velocities are the same. By doing so, a part of the surface of the photoreceptor 204 and a part of the surface of the conductive member that are in contact with or close to each other sequentially move on the respective surfaces. In this state, an evaluation voltage is applied to measure an evaluation current, and a phase difference is obtained to evaluate the conductive member.

また、本実施形態においては、評価電圧及び評価電流のそれぞれの中心値における立ち上がり位相差及び立ち下がり位相差を測定して、これら位相差に基づいて帯電部材の評価を行うものであったが、これに限定するものではなく、例えば、評価電圧が最大となる時点と評価電流が最大となる時点との位相差と、評価電圧が最小となる時点と評価電流が最小となる時点との位相差と、を測定して、これら位相差に基づいて帯電部材の評価を行うものなど、正放電と逆放電とが不均一のときに評価電圧と評価電流との位相差が発生する電圧波形上及び電流波形上の箇所であれば、位相差を測定する箇所は任意である。   Further, in the present embodiment, the rising phase difference and the falling phase difference at the respective center values of the evaluation voltage and the evaluation current are measured, and the charging member is evaluated based on these phase differences. For example, the phase difference between the time when the evaluation voltage is maximized and the time when the evaluation current is maximized, and the phase difference between the time when the evaluation voltage is minimized and the time when the evaluation current is minimized are not limited thereto. On the voltage waveform where the phase difference between the evaluation voltage and the evaluation current occurs when the positive discharge and the reverse discharge are non-uniform, such as those that measure the charging member based on these phase differences As long as it is a location on the current waveform, the location where the phase difference is measured is arbitrary.

(導電性部材)
以下に、本発明に係る導電性部材評価装置及び導電性部材評価方法によって評価される導電性部材の一実施形態である帯電部材について、図4を参照して説明する。図4は、本発明によって評価される導電性部材である帯電部材の構成と、像担持体の感光層領域、画像領域、及び、非画像領域の位置関係と、を示す図である。
(Conductive member)
Below, the charging member which is one Embodiment of the electroconductive member evaluated by the electroconductive member evaluation apparatus and electroconductive member evaluation method which concern on this invention is demonstrated with reference to FIG. FIG. 4 is a diagram showing the configuration of the charging member, which is a conductive member evaluated according to the present invention, and the positional relationship between the photosensitive layer region, the image region, and the non-image region of the image carrier.

導電性部材としての帯電部材101は、電子写真方式の画像形成装置が備える静電潜像担持体としての感光体61(即ち、後述する像担持体61)を帯電させる部材である。帯電部材101は、図4などに示すように、ローラ状に形成されている。帯電部材101の構成については、特に制限はなく、単層構造又は多層構造のいずれのものも用いることが可能であるが、導電性支持体(芯軸)106上に形成された電気抵抗調整層104上に、さらに、トナー及びトナー添加剤が付着しにくい表面層105が形成された二層構造が特に好ましい。また、近接帯電方式に用いる場合には、この構成に加えて、電気抵抗調整層104の両端に、帯電部材101と感光体61との間に所定の空隙を設けるための空隙保持部材103を設ける。   A charging member 101 as a conductive member is a member that charges a photosensitive member 61 (that is, an image carrier 61 described later) as an electrostatic latent image carrier provided in an electrophotographic image forming apparatus. The charging member 101 is formed in a roller shape as shown in FIG. The configuration of the charging member 101 is not particularly limited, and either a single layer structure or a multilayer structure can be used. However, the electric resistance adjustment layer formed on the conductive support (core shaft) 106 is used. A two-layer structure in which a surface layer 105 to which toner and toner additives are difficult to adhere is formed on 104 is particularly preferable. In the case of using the proximity charging method, in addition to this configuration, a gap holding member 103 for providing a predetermined gap between the charging member 101 and the photoreceptor 61 is provided at both ends of the electric resistance adjusting layer 104. .

電気抵抗調整層104は、ベース材料とこれに分散された導電剤により構成されており、その体積固有抵抗が106〜109Ωcmであることが望ましい。電気抵抗調整層104の体積固有抵抗が109Ωcmを超えると、帯電能力や転写能力が不足してしまい、電気抵抗調整層104の体積固有抵抗が106Ωcmより低いと、感光体61全体への電圧集中によるリークが生じてしまう。電気抵抗調整層104の体積固有抵抗が106〜109Ωcmであれば、ベース材料として、弾性体組成物、熱可塑性樹脂組成物を使用可能である。なお、帯電部材101を近接帯電方式に用いる場合は、感光体61との間の空隙を均一にするため、熱可塑性樹脂組成物を用いることが好ましい。 The electric resistance adjusting layer 104 is composed of a base material and a conductive agent dispersed in the base material, and the volume resistivity is preferably 10 6 to 10 9 Ωcm. If the volume resistivity of the electric resistance adjusting layer 104 exceeds 10 9 Ωcm, the charging ability and the transfer capability are insufficient, and if the volume resistivity of the electric resistance adjusting layer 104 is lower than 10 6 Ωcm, the entire photoreceptor 61 is obtained. Leakage due to voltage concentration occurs. If the volume resistivity of the electric resistance adjusting layer 104 is 10 6 to 10 9 Ωcm, an elastic composition and a thermoplastic resin composition can be used as the base material. When the charging member 101 is used for the proximity charging method, it is preferable to use a thermoplastic resin composition in order to make the gap between the photosensitive member 61 uniform.

弾性体組成物としては、エチレンプロピレンゴム(EPDM)、ウレタンゴム、シリコーンゴム、エピクロルヒドリンゴム等のゴム材料を用いることができる。熱可塑性樹脂組成物としては、ポリエチレン(PE)、ポリプロピレン(PP)などのオレフィン系樹脂、ポリスチレン(PS)、及びその共重合体(AS、ABS)などのスチレン系樹脂、ポリメタクリル酸メチル(PMMA)などのアクリル系樹脂など、加工性の良い汎用樹脂が好ましい。   As the elastic composition, rubber materials such as ethylene propylene rubber (EPDM), urethane rubber, silicone rubber, and epichlorohydrin rubber can be used. Examples of the thermoplastic resin composition include olefin resins such as polyethylene (PE) and polypropylene (PP), styrene resins such as polystyrene (PS) and copolymers thereof (AS, ABS), polymethyl methacrylate (PMMA). A general-purpose resin with good processability such as an acrylic resin is preferred.

ベース材料中に分散させる導電剤としては、過酸化リチウムなどのアルカリ金属塩、過塩素酸ナトリウムなどの過塩素酸塩、テトラブチルアンモニウム塩などの4級アンモニウム塩、高分子型イオン導電材料などのイオン導電機構を有する導電剤を用いることができる。また、ケッチェンブラック、アセチレンブラックなどのカーボンブラック、グラファイト及び導電性金属酸化物等の電子導電機構を有する導電剤を用いることも可能であるが、電子導電機構の導電剤は、ベース材料中で均一に分散することが困難であるため、高分子型イオン導電材料を用いることが最も好ましい。   Examples of the conductive agent dispersed in the base material include alkali metal salts such as lithium peroxide, perchlorates such as sodium perchlorate, quaternary ammonium salts such as tetrabutylammonium salts, and polymer ion conductive materials. A conductive agent having an ionic conduction mechanism can be used. In addition, it is possible to use a conductive agent having an electronic conductive mechanism such as carbon black such as ketjen black and acetylene black, graphite, and conductive metal oxide, but the conductive agent of the electronic conductive mechanism is used in the base material. Since it is difficult to uniformly disperse, it is most preferable to use a polymer type ion conductive material.

以下では、電気抵抗調整層104として、高分子型イオン導電材料が分散された熱可塑性樹脂組成物を用いた一例を記載する。   Hereinafter, an example using a thermoplastic resin composition in which a polymer ion conductive material is dispersed will be described as the electric resistance adjusting layer 104.

熱可塑性樹脂に分散させる高分子型イオン導電材料としては、ポリエーテルエステルアミド成分を含有する高分子化合物が好ましい。ポリエーテルエステルアミドはイオン導電性の高分子材料であり、マトリクスポリマー中に分子レベルで均一に分散、固定化される。したがって、導電性顔料を分散した組成物に見られるような分散不良に伴う抵抗値のバラツキが生じない。また高分子材料であるため、ブリードアウトが生じ難い。配合量については、抵抗値を所望の値にする必要があることから、熱可塑性樹脂が30〜70重量%、高分子型イオン導電材が70〜30重量%とすることが好ましい。電気抵抗調整層104はイオン導電による導電機構を得るために、分子中に少なくともポリアミドエラストマー、ポリオレフィンブロックポリマーを含有する熱可塑性樹脂(A)と、過塩素酸塩及び含フッ素有機アニオン塩を含有する樹脂材料より構成される。イオン導電性が必要な理由は、一般的にカーボンブラックのような電子導電系の導電剤を用いた場合、電荷がカーボンブラックを通して感光体61へ放電するために、カーボンブラックの分散状態に起因した微小な放電ムラが生じやすく、高画質化の妨げとなる。特に高電圧印加時はこの現象が顕著となるからである。イオン導電材料としては、アルカリ金属塩、アンモニウム塩のような低分子量の塩があるが、通電のため、分極してブリードアウトしやすい。そこで高分子型イオン導電材料として、エーテル基を含む固体状のポリアミドエラストマー、ポリオレフィンブロックポリマーが用いられる。分子中にエーテル基を有することにより、エーテル結合に含まれる酸素原子等により塩が安定化され、高い導電性を得ることが可能となる。この構成ではマトリクスポリマー中に分子レベルで均一に分散、固定化されるので、導電性顔料を分散した組成物に見られるような分散不良に伴う導電性のバラツキが生じない。また高分子材料であるため、ブリードアウトが生じ難い。高分子型イオン導電材料としては、エーテル基を有する液状のポリエチレンオキシド、ポリプロピレンオキシドのようなポリエーテルポリオール類も挙げられるが、液状の場合は熱可塑性樹脂中に均一に分散させることができないため、固体状のポリアミドエラストマー、ポリオレフィンブロックポリマーを用いることが必要となる。ポリアミドエラストマー、ポリオレフィンブロックポリマーは、一般に親水性、疎水性グレードに大別され、特性が大きく異なる。そのため、目的の特性を得るために、複数のグレードをブレンドすることも可能である。ただし、ポリアミドエラストマー、ポリオレフィンブロックポリマーを含む熱可塑性樹脂材料のみでは、導電性部材として使用するための導電性を得ることができないため、電解質塩を併用することにより、導電性向上が達成できる。電解質塩としては、過塩素酸塩が最も一般的であり、その他に含フッ素有機アニオン塩や有機ホスホニウム塩等を使用することも可能である。   The polymer ion conductive material dispersed in the thermoplastic resin is preferably a polymer compound containing a polyether ester amide component. Polyether ester amide is an ion conductive polymer material, and is uniformly dispersed and immobilized at a molecular level in a matrix polymer. Therefore, there is no variation in resistance value due to poor dispersion as seen in a composition in which a conductive pigment is dispersed. In addition, since it is a polymer material, bleed-out hardly occurs. About a compounding quantity, since it is necessary to make resistance value into a desired value, it is preferable that a thermoplastic resin is 30 to 70 weight% and a polymeric ion conductive material is 70 to 30 weight%. The electric resistance adjusting layer 104 contains a thermoplastic resin (A) containing at least a polyamide elastomer and a polyolefin block polymer, a perchlorate, and a fluorine-containing organic anion salt in order to obtain a conduction mechanism by ionic conduction. Consists of resin material. The reason why ionic conductivity is necessary is that, in general, when an electron conductive conductive agent such as carbon black is used, the electric charge is discharged to the photoreceptor 61 through the carbon black, which is caused by the dispersion state of the carbon black. Minute discharge unevenness is likely to occur, which hinders high image quality. This is because this phenomenon becomes remarkable particularly when a high voltage is applied. As the ion conductive material, there are low molecular weight salts such as alkali metal salts and ammonium salts, but they are easily polarized and bleed out due to energization. Thus, solid polymer elastomers and polyolefin block polymers containing ether groups are used as the polymeric ion conductive material. By having an ether group in the molecule, the salt is stabilized by an oxygen atom or the like contained in the ether bond, and high conductivity can be obtained. In this configuration, since the polymer is uniformly dispersed and fixed at the molecular level in the matrix polymer, there is no variation in conductivity due to poor dispersion as seen in the composition in which the conductive pigment is dispersed. In addition, since it is a polymer material, bleed-out hardly occurs. Examples of the polymer type ion conductive material include polyether polyols such as liquid polyethylene oxide and polypropylene oxide having an ether group, but in the case of liquid, since they cannot be uniformly dispersed in the thermoplastic resin, It is necessary to use a solid polyamide elastomer or a polyolefin block polymer. Polyamide elastomers and polyolefin block polymers are generally roughly classified into hydrophilic and hydrophobic grades, and the characteristics are greatly different. Therefore, it is possible to blend multiple grades in order to obtain the desired properties. However, since only the thermoplastic resin material including the polyamide elastomer and the polyolefin block polymer cannot obtain the conductivity for use as the conductive member, the use of the electrolyte salt together can improve the conductivity. As the electrolyte salt, perchlorate is most common, and fluorine-containing organic anion salts, organic phosphonium salts, and the like can also be used.

過塩素酸塩としては、一般的に用いられているものであれば、使用することは可能であるが、導電性を考慮すると、アルカリ金属塩、アルカリ土類金属塩から選ばれた塩であることが望ましい。その中でも、特に過塩素酸リチウム、過塩素酸ナトリウムが好ましい。   The perchlorate can be used as long as it is generally used, but considering conductivity, it is a salt selected from alkali metal salts and alkaline earth metal salts. It is desirable. Among these, lithium perchlorate and sodium perchlorate are particularly preferable.

含フッ素有機アニオン塩としては、フルオロ基およびスルホニル基を有する陰イオンを備えた塩が望ましい。上記陰イオンを備えた塩は、フルオロ基(−F)およびスルホニル基(−SO2−)による強い電子吸引効果によって電荷が非局在化するため、陰イオンが安定なポリマー組成物中で高い解離度を示し、高いイオン導電性を実現できる。中でも、ビス(フルオロアルキルスルホニル)イミドのアルカリ金属塩、トリス(フルオロアルキルスルホニル)メチドのアルカリ金属塩およびフルオロアルキルスルホン酸のアルカリ金属塩等は抵抗値の低下を容易に達成可能であり、望ましい。特に、トリフルオロメタンスルホン酸リチウム、ビス(トリフルオロメタンスルホニル)イミドリチウム、およびトリス(トリフルオロメタンスルホニル)メチドリチウムの導電度の高いリチウム塩が好ましい。   As the fluorine-containing organic anion salt, a salt having an anion having a fluoro group and a sulfonyl group is desirable. The salt having an anion described above is highly dissociated in a polymer composition in which the anion is stable because the charge is delocalized by the strong electron withdrawing effect of the fluoro group (-F) and the sulfonyl group (-SO2-). Show high ionic conductivity. Among these, alkali metal salts of bis (fluoroalkylsulfonyl) imide, alkali metal salts of tris (fluoroalkylsulfonyl) methide, alkali metal salts of fluoroalkylsulfonic acid, and the like are preferable because the resistance value can be easily lowered. In particular, lithium salts having high conductivity such as lithium trifluoromethanesulfonate, lithium bis (trifluoromethanesulfonyl) imide lithium, and tris (trifluoromethanesulfonyl) methide lithium are preferable.

過塩素酸塩、含フッ素有機アニオン塩は、高分子型イオン導電材料に添加して混練することにより、所定の割合に配合することが可能であり、それぞれ1種以上の電解質塩をブレンドして添加することもできる。また、過塩素酸塩を含有する高分子型イオン導電材料としては、例えばチバスペシャルティケミカルズ製の「IRGASTAT P18」として、含フッ素有機アニオン塩を含有する高分子型イオン導電材料として、例えば三光化学工業(株)の「サンコノール」シリーズとして入手することが可能である。塩の配合量としては、高分子型イオン導電材料中に0.01〜20重量%の割合で配合されていることが望ましい。配合量が0.01重量%よりも低い場合は、導電性が不足してしまい、20重量%よりも高い場合は、樹脂組成物中に均一に分散させることが困難となる。電気抵抗調整層104の体積固有抵抗が109Ωcmを超えると、帯電能力や転写能力が不足してしまい、電気抵抗調整層104の体積固有抵抗が106Ωcmより低いと、感光体61全体への電圧集中によるリークが生じてしまう。 Perchlorate and fluorine-containing organic anion salt can be added to a polymer type ion conductive material and kneaded, and can be blended at a predetermined ratio, each of which is blended with one or more electrolyte salts. It can also be added. In addition, as a polymer ion conductive material containing perchlorate, for example, “IRGASTAT P18” manufactured by Ciba Specialty Chemicals, as a polymer ion conductive material containing a fluorine-containing organic anion salt, for example, Sanko Chemical Industries It is possible to obtain as "Sanconol" series of Co., Ltd. As a compounding amount of the salt, it is desirable that the salt is blended in the polymer ion conductive material in a proportion of 0.01 to 20% by weight. When the blending amount is lower than 0.01% by weight, the electrical conductivity is insufficient. When the blending amount is higher than 20% by weight, it is difficult to uniformly disperse in the resin composition. If the volume resistivity of the electric resistance adjusting layer 104 exceeds 10 9 Ωcm, the charging ability and the transfer capability are insufficient, and if the volume resistivity of the electric resistance adjusting layer 104 is lower than 10 6 Ωcm, the entire photoreceptor 61 is obtained. Leakage due to voltage concentration occurs.

また、本発明にて評価される導電性部材は、部品の高精度化を達成するために、切削、研削のような機械加工が必要となる。ポリアミドエラストマー、ポリオレフィンブロックポリマーは柔らかく、機械加工しにくいという課題がある。そこで、必要に応じて、これらの樹脂より硬度が高い、他の熱可塑性樹脂(B)とブレンドすることが可能である。硬度が高くなることにより、機械加工性が向上する。高硬度の熱可塑性樹脂(B)は特に限定されるものではないが、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメタクリル酸メチル(PMMA)、ポリスチレン(PS)およびその共重合体(AS、ABS)等の汎用樹脂、ポリカーボネート、ポリアセタール等のエンジニアリングプラスチック等であれば、成形加工が容易であり好ましい。配合量については、電気抵抗調整層104の導電性を損なわない範囲であれば、目的の機械加工性に応じて設定することが可能である。   In addition, the conductive member evaluated in the present invention requires machining such as cutting and grinding in order to achieve high precision of parts. Polyamide elastomers and polyolefin block polymers are soft and difficult to machine. Therefore, it is possible to blend with other thermoplastic resin (B) having a higher hardness than these resins, if necessary. By increasing the hardness, the machinability is improved. The high-hardness thermoplastic resin (B) is not particularly limited, but polyethylene (PE), polypropylene (PP), polymethyl methacrylate (PMMA), polystyrene (PS) and copolymers thereof (AS, ABS) Etc.) and engineering plastics such as polycarbonate and polyacetal are preferred because they are easy to mold. The blending amount can be set according to the target machinability as long as the conductivity of the electrical resistance adjusting layer 104 is not impaired.

電気抵抗調整層104の導電性を向上させる際には、導電性樹脂材料、電解質塩の選定と共に、分散状態の制御も重要となる。電解質塩の分散状態が粗い場合には、低温低湿環境で分散状態に起因した不均一な放電が発生しやすく、画像不良となってしまう。そのため、分散状態の緻密化を目的として、相溶化剤を添加することが望ましい。そのような相溶化剤としては、前述のポリアミドエラストマー、ポリオレフィンブロックポリマーを含有する熱可塑性樹脂(A)に親和性を有するグラフトコポリマー(C)が挙げられる。具体的には、主鎖にポリカーボネート樹脂を、側鎖にアクリロニトリル−スチレン−グリシジルメタクリレート共重合体を有するグラフトコポリマーを用いる。このグラフトコポリマーは、側鎖に含まれるアクリロニトリル−スチレン−グリシジルメタクリレート共重合体が、アクリロニトリル成分及びスチレン成分と反応基であるグリシジルメタクリレート成分から成る。反応基のグリシジルメタクリレートは成分を溶融混練する際の加熱により、エポキシ基が(A)のエステル基やアミノ基と反応し、(A)と強固に化学的結合をするので、このグラフトコポリマーを添加することで、電解質塩の分散状態を均一かつ緻密化する。それにより、電解質塩の分散不良に伴う不均一な放電の発生を防止することができる。グラフトコポリマーの量は(A)に対して1〜15重量%に設定することで分散状態を緻密化させることができる。   When improving the conductivity of the electrical resistance adjusting layer 104, it is important to control the dispersion state as well as the selection of the conductive resin material and the electrolyte salt. When the dispersion state of the electrolyte salt is rough, non-uniform discharge due to the dispersion state easily occurs in a low temperature and low humidity environment, resulting in an image defect. Therefore, it is desirable to add a compatibilizing agent for the purpose of densifying the dispersed state. Examples of such a compatibilizing agent include the above-mentioned polyamide elastomer and graft copolymer (C) having affinity for the thermoplastic resin (A) containing a polyolefin block polymer. Specifically, a graft copolymer having a polycarbonate resin in the main chain and an acrylonitrile-styrene-glycidyl methacrylate copolymer in the side chain is used. In this graft copolymer, an acrylonitrile-styrene-glycidyl methacrylate copolymer contained in a side chain is composed of an acrylonitrile component and a glycidyl methacrylate component which is a reactive group with the styrene component. The reactive group glycidyl methacrylate reacts with the ester group or amino group of (A) by heating when the components are melted and kneaded, so that it chemically bonds with (A). By doing so, the dispersion state of the electrolyte salt is made uniform and dense. Thereby, generation | occurrence | production of the nonuniform discharge accompanying the dispersion | distribution defect of electrolyte salt can be prevented. By setting the amount of the graft copolymer to 1 to 15% by weight with respect to (A), the dispersion state can be densified.

また、熱可塑性樹脂(A)を高硬度の熱可塑性樹脂(B)とブレンドした場合にも、このグラフトコポリマーが相溶化剤として機能を果たす。主鎖のポリカーボネート樹脂は有極性基、ジオキシ基の鎖をもつ分子構造のため、分子間引力が非常に強い。このため、力学的強度・クリープ特性などに優れ、特に衝撃強度は他プラスチックと比較してずばぬけて優れている。また比較的低吸水であるため、吸水変動に伴う体積変動が少ない。これらの特性により、グラフトコポリマーの主鎖としてポリカーボネート樹脂を使用した系では、使用時の機械的・電気的ストレス・経時や環境での体積変動によるクラックが生じ難い。   In addition, when the thermoplastic resin (A) is blended with the high-hardness thermoplastic resin (B), the graft copolymer functions as a compatibilizing agent. Since the polycarbonate resin of the main chain has a molecular structure with a polar group and a chain of dioxy group, the attractive force between molecules is very strong. For this reason, it is excellent in mechanical strength, creep characteristics, etc., and especially impact strength is excellent compared with other plastics. In addition, since the water absorption is relatively low, there is little volume fluctuation due to water absorption fluctuation. Due to these characteristics, in a system using a polycarbonate resin as the main chain of the graft copolymer, cracks due to mechanical / electrical stress at the time of use, aging and volume fluctuations in the environment are unlikely to occur.

更に、側鎖のアクリロニトリル成分及びスチレン成分は、(B)との相溶性が良好である。そのため、(C)のグラフトコポリマーは、(A)(B)間の親和性が低い場合でも、相溶化剤として機能し、(A)(B)の分散状態を均一かつ緻密化する。それにより、(A)(B)の分散不良に伴うウェルド部の導電ムラや、使用時の電気的・機械的ストレスや経時・環境での体積変動により電気抵抗調整層104のウェルド部分に発生するクラックを抑制することができる。その結果、主鎖の効果と合わせて強度的に優れた混練系の樹脂組成物を形成することができる。   Further, the acrylonitrile component and styrene component in the side chain have good compatibility with (B). Therefore, the graft copolymer (C) functions as a compatibilizing agent even when the affinity between (A) and (B) is low, and makes the dispersed state of (A) and (B) uniform and dense. As a result, (A) and (B) are caused in the weld portion of the electric resistance adjustment layer 104 due to uneven conductivity in the weld portion due to poor dispersion, electrical / mechanical stress during use, and volume variation over time and environment. Cracks can be suppressed. As a result, it is possible to form a kneading resin composition having excellent strength in combination with the effect of the main chain.

弾性体組成物、熱可塑性樹脂組成物の製造方法に関しては特に制限はなく、各材料の混合物を二軸混練機、ニーダー等で溶融混練することによって、容易に製造できる。電気抵抗調整層104としての導電性支持体106上への形成は、押出成形や射出成形等の手段で導電性支持体106に上記半導電性樹脂組成物を被覆することによって、容易に行うことができる。   There is no restriction | limiting in particular about the manufacturing method of an elastic body composition and a thermoplastic resin composition, It can manufacture easily by melt-kneading the mixture of each material with a biaxial kneader, a kneader, etc. The electric resistance adjusting layer 104 can be easily formed on the conductive support 106 by covering the conductive support 106 with the semiconductive resin composition by means of extrusion molding or injection molding. Can do.

導電性支持体106上に電気抵抗調整層104のみを形成した導電性部材でも、本発明の電気特性評価方法を適用することが可能であるが、実機に搭載した場合、電気抵抗調整層104にトナー及び、トナーの添加剤等が固着して性能低下する場合がある。このような不具合は、電気抵抗調整層104上に表面層105を形成することで、防止することができる。   Even with a conductive member in which only the electric resistance adjusting layer 104 is formed on the conductive support 106, it is possible to apply the electric characteristic evaluation method of the present invention. In some cases, toner, toner additives, and the like adhere to each other and performance deteriorates. Such a problem can be prevented by forming the surface layer 105 on the electric resistance adjusting layer 104.

表面層105は、その抵抗値が電気抵抗調整層104の抵抗値よりも大きくなるように形成され、それによって感光体61の欠陥部への電圧集中、過剰な放電(リーク)を回避することができる。ただし、表面層105の抵抗値を高くしすぎると帯電能力や転写能力が不足してしまうため、表面層105と電気抵抗調整層104との抵抗値の差は、3オーダー以下にすることが好ましい。具体的には、表面層105の表面抵抗率として106〜109Ω/□が必要である。 The surface layer 105 is formed so that its resistance value is larger than the resistance value of the electric resistance adjusting layer 104, thereby avoiding voltage concentration and excessive discharge (leakage) on the defective portion of the photoreceptor 61. it can. However, if the resistance value of the surface layer 105 is too high, the charging ability and the transfer ability are insufficient. Therefore, the difference in resistance value between the surface layer 105 and the electric resistance adjusting layer 104 is preferably 3 orders or less. . Specifically, the surface resistivity of the surface layer 105 is required to be 10 6 to 10 9 Ω / □.

表面層105を形成する材料としては、製膜性が良好であるという点で熱可塑性樹脂組成物が好適である。特に、フッ素系樹脂、シリコーン系樹脂、ポリアミド樹脂、ポリエステル樹脂等が非粘着性に優れ、トナー固着防止の面で好ましい。また、樹脂材料は電気的に絶縁性であるため樹脂に対して各種導電材料を分散することによって表面層の抵抗を調整する。また表面層105の電気抵抗調整層104上への形成は、上記表面層105の構成材料を有機溶媒に溶解して塗料を作製し、スプレー塗装、ディッピング、ロールコート等の種々のコーティング方法で行なう。膜厚については、10〜30μm程度が望ましい。   As a material for forming the surface layer 105, a thermoplastic resin composition is preferable in that the film-forming property is good. In particular, a fluorine-based resin, a silicone-based resin, a polyamide resin, a polyester resin, and the like are excellent in non-adhesiveness and are preferable in terms of preventing toner sticking. Further, since the resin material is electrically insulating, the resistance of the surface layer is adjusted by dispersing various conductive materials in the resin. The surface layer 105 is formed on the electric resistance adjusting layer 104 by dissolving the constituent material of the surface layer 105 in an organic solvent to prepare a paint, and performing various coating methods such as spray coating, dipping, roll coating and the like. . About a film thickness, about 10-30 micrometers is desirable.

表面層105の材料は、一液性、二液性どちらも使用可能であるが、硬化剤を併用する二液性塗料にすることより、耐環境性、非粘着性、離型性を高めることが出来る。二液性塗料の場合、塗膜を加熱することにより、樹脂を架橋・硬化させる方法が一般的である。しかしながら、抵抗調整層は熱可塑性樹脂のため、高い温度で加熱することができない。二液性塗料としては、分子中に水酸基を有する主剤及び、水酸基と架橋反応を起こす、イソシアネート系樹脂を用いることが有効である。イソシアネート系樹脂を用いることにより、100℃以下の比較的低温で架橋・硬化反応が起こる。トナーの非粘着性から検討を進めた結果、シリコーン系樹脂でトナーの非粘着性が高い樹脂であることを確認し、特に、分子中にアクリル骨格を有するアクリルシリコーン樹脂が良好である。   The material of the surface layer 105 can be either one-component or two-component, but it can improve environmental resistance, non-adhesiveness, and releasability by using a two-component coating with a curing agent. I can do it. In the case of a two-component paint, a method of crosslinking and curing the resin by heating the coating film is common. However, since the resistance adjustment layer is a thermoplastic resin, it cannot be heated at a high temperature. As the two-component paint, it is effective to use a main agent having a hydroxyl group in the molecule and an isocyanate-based resin that causes a crosslinking reaction with the hydroxyl group. By using an isocyanate resin, a crosslinking / curing reaction occurs at a relatively low temperature of 100 ° C. or lower. As a result of investigations from the non-adhesiveness of the toner, it was confirmed that the resin is a silicone-based resin having a high non-adhesiveness of the toner, and an acrylic silicone resin having an acrylic skeleton in the molecule is particularly good.

導電性部材は電気特性が重要であるため、表面層105を導電性にする必要がある。導電性の形成方法は、樹脂材料中に導電剤を分散することにより可能である。導電性としては、特に制約を受けるものではなく、ケッチェンブラックEC、アセチレンブラック等の導電性カーボン、SAF、ISAF、HAF、FEF、GPF、SRF、FT、MT等のゴム用カーボン、酸化処理等を施したカラー用カーボン、熱分解カーボン、インジウムドープ酸化スズ(ITO)、酸化スズ、酸化チタン、酸化亜鉛、銅、銀、ゲルマニウム等の金属及び、金属酸化物、ポリアニリン、ポリピロール、ポリアセチレン等の導電性ポリマー等が挙げられる。また、導電性付与材として、イオン導電性物質もあり、過塩素酸ナトリウム、過塩素酸リチウム、過塩素酸カルシウム、塩化リチウム等の無機イオン性導電物質、更に、エチルトリフェニルホスホニウム・テトラフルオロボレート、テトラフェニルホスホニウム・ブロマイド等の四級ホスホニウム塩、変性脂肪酸ジメチルアンモニウムエトサルファート、ステアリン酸アンモニウムアセテート、ラウリルアンモニウムアセテート等の有機イオン性導電性物質がある。   Since the electrical characteristics of the conductive member are important, the surface layer 105 needs to be conductive. A conductive forming method is possible by dispersing a conductive agent in a resin material. Conductivity is not particularly limited, and conductive carbon such as ketjen black EC and acetylene black, rubber carbon such as SAF, ISAF, HAF, FEF, GPF, SRF, FT, and MT, oxidation treatment, etc. Carbon for color, pyrolytic carbon, indium-doped tin oxide (ITO), tin oxide, titanium oxide, zinc oxide, copper, silver, germanium and other conductive metals, metal oxide, polyaniline, polypyrrole, polyacetylene, etc. Include a functional polymer. In addition, there are ionic conductive materials as conductivity imparting materials, inorganic ionic conductive materials such as sodium perchlorate, lithium perchlorate, calcium perchlorate, lithium chloride, and further ethyltriphenylphosphonium tetrafluoroborate And organic ionic conductive substances such as quaternary phosphonium salts such as tetraphenylphosphonium bromide, modified fatty acid dimethylammonium ethosulphate, ammonium stearate acetate, and laurylammonium acetate.

空隙保持部材103は、帯電部材101と感光体61との空隙Gを設けるために備えられており、空隙保持部材103により、該空隙を100μm以下、特に、5〜70μm程度の範囲にする。これにより、帯電装置100の作動時における異常画像の形成を抑えることができる。空隙Gが、100μm以上では、感光体61に到達するまでの距離も長くなることで、大気中でのパッシェンの法則の放電開始電圧が大きくなり、さらに、感光体61までの放電空間が大きくなることで、感光体61を所定の帯電をさせると放電による放電生成物が多量に生成され、これが画像形成後も放電空間に多量に残留し、感光体61に付着して、感光体61の経時劣化を促進する原因になる。また、この空隙Gが小さいと、感光体61までの到達距離も短く、放電エネルギーも小さくても感光体61を帯電させることができる。しかし、帯電部材101と感光体61により形成される空間が狭くなるので、空気の流れが悪くなってしまい、そのため、放電空間で形成された放電生成物はこの空間内に滞留するために、空隙Gが大きい場合と同様に、画像形成後も放電空間に多量に残留し、感光体61に付着して、感光体61の経時劣化を促進する原因になる。従って、放電エネルギーを小さくして放電生成物の生成を少なくし、かつ、空気が滞留しない程度の空間を形成することが好ましい。そのために、空隙Gは、100μm以下であって、5〜70μmの範囲にすることが好ましい。これにより、ストリーマ放電の発生を防止し、放電生成物の生成を少なくして感光体61に堆積する量を少なくして、斑点状の画像斑・像流れを防止することができる。   The gap holding member 103 is provided to provide a gap G between the charging member 101 and the photosensitive member 61, and the gap holding member 103 sets the gap to 100 μm or less, in particular, about 5 to 70 μm. Thereby, formation of an abnormal image at the time of operation of charging device 100 can be suppressed. When the gap G is 100 μm or more, the distance to reach the photoconductor 61 becomes long, so that the Paschen's law discharge start voltage in the atmosphere increases, and further, the discharge space to the photoconductor 61 increases. As a result, when the photosensitive member 61 is charged to a predetermined level, a large amount of discharge products are generated due to discharge, which remains in the discharge space even after image formation and adheres to the photosensitive member 61. Causes deterioration. If the gap G is small, the reach to the photoconductor 61 is short, and the photoconductor 61 can be charged even if the discharge energy is small. However, since the space formed by the charging member 101 and the photoconductor 61 is narrowed, the flow of air is deteriorated. Therefore, the discharge product formed in the discharge space stays in this space, so As in the case where G is large, a large amount remains in the discharge space after image formation and adheres to the photoreceptor 61, which causes the deterioration of the photoreceptor 61 over time. Accordingly, it is preferable to reduce the discharge energy to reduce the generation of discharge products and to form a space that does not retain air. Therefore, the space | gap G is 100 micrometers or less, Comprising: It is preferable to set it as the range of 5-70 micrometers. Thereby, the generation of streamer discharge can be prevented, the generation of discharge products can be reduced, the amount deposited on the photoreceptor 61 can be reduced, and spotted image spots / image flow can be prevented.

ここで、感光体61上に現像後に残留するトナーは、感光体61に対向して設けられる後述するクリーニング装置64によりクリーニングされるが、完全に除去するのは困難であり、極わずかのトナーがクリーニング装置を通過し、帯電装置100へと搬送されてくる。このときに、トナーの粒径が空隙Gより大きいと、トナーは回転する感光体61や帯電部材101により摺擦されて熱を帯び、帯電部材101に融着することがある。このトナーが融着した部分は、感光体61に近くなるために優先的に放電が生ずる異常放電を起こす。従って、空隙Gは、画像形成装置1に用いられるトナーの最大粒径よりも大きいことが好ましい。   Here, the toner remaining on the photosensitive member 61 after development is cleaned by a cleaning device 64 (described later) provided facing the photosensitive member 61, but it is difficult to completely remove the toner, and a very small amount of toner is removed. It passes through the cleaning device and is conveyed to the charging device 100. At this time, if the particle diameter of the toner is larger than the gap G, the toner may be rubbed by the rotating photoreceptor 61 or the charging member 101 to be heated and fused to the charging member 101. Since the portion where the toner is fused is close to the photosensitive member 61, abnormal discharge that causes preferential discharge occurs. Therefore, the gap G is preferably larger than the maximum particle size of the toner used in the image forming apparatus 1.

空隙保持部材103の必要な特性としては、感光体61との空隙を環境及び、長期(経時)に渡って安定して形成することであり、そのためには、吸湿性、耐摩耗性が小さい材料が望ましい。また、トナー及び、トナー添加剤が付着しにくいことや、感光体61と当接し、摺動するために、感光体61を摩耗させないということも重要であり、種々の条件に応じて、適宜選択されるものである。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアセタール(POM)、ポリメタクリル酸メチル(PMMA)、ポリスチレン(PS)およびその共重合体(AS、ABS)等の汎用樹脂、ポリカーボネート(PC)、ウレタン、フッ素(PTFE)等が挙げられる。以上の特性を満足していれば、形状は特に限定されるものではなく、テープ状、シート状等の部材を抵抗調整層上に巻き付けて使用することも可能であるが、円筒形状の樹脂コロを抵抗調整槽端部に圧入する方法が、最も安定して空隙保持可能であり、好ましい。空隙保持部材を確実に固定するためには、接着剤を塗布して接着することが必要である。また、空隙保持部材は絶縁性材料が好ましく、体積固有抵抗が1013Ωcm以上であることが好ましい。絶縁性が必要である理由は、感光体61とのリーク電流の発生を無くすためである。空隙保持部材103としては、成型加工により成形されたものが好ましい。 A necessary characteristic of the gap holding member 103 is that the gap with the photoreceptor 61 is stably formed over the environment and for a long time (time). For this purpose, a material with low hygroscopicity and wear resistance is used. Is desirable. It is also important that the toner and the toner additive do not easily adhere to each other, and that the photosensitive member 61 is not worn because it contacts and slides on the photosensitive member 61, and is appropriately selected according to various conditions. It is what is done. Specifically, general-purpose resins such as polyethylene (PE), polypropylene (PP), polyacetal (POM), polymethyl methacrylate (PMMA), polystyrene (PS) and copolymers thereof (AS, ABS), polycarbonate (PC ), Urethane, fluorine (PTFE) and the like. As long as the above characteristics are satisfied, the shape is not particularly limited, and a tape-like or sheet-like member can be wound around the resistance adjustment layer. Is preferably pressed into the end of the resistance adjusting tank because the gap can be held most stably. In order to securely fix the gap holding member, it is necessary to apply and bond an adhesive. The gap holding member is preferably an insulating material and preferably has a volume resistivity of 10 13 Ωcm or more. The reason why insulation is necessary is to eliminate the occurrence of leakage current with the photoreceptor 61. The gap holding member 103 is preferably formed by molding.

空隙保持部材103は、その一部が電気抵抗調整層104と高低差を有している。空隙の形成する方法としては、電気抵抗調整層104と空隙保持部材103を切削、研削等の除去加工により同時加工することにより形成することができる。空隙保持部材103と電気抵抗調整層104とを同時加工することにより、空隙を高精度に形成することが可能となる。   A part of the gap holding member 103 has a height difference from the electric resistance adjusting layer 104. As a method for forming the gap, the electrical resistance adjusting layer 104 and the gap holding member 103 can be formed simultaneously by removing processing such as cutting and grinding. By simultaneously processing the gap holding member 103 and the electric resistance adjusting layer 104, the gap can be formed with high accuracy.

空隙保持部材103の電気抵抗調整層104と隣接する部分の高さを、電気抵抗調整層104の高さと同一、もしくは低く形成することで、空隙保持部材103と感光体61との接触幅が低減され、帯電部材101と感光体61との空隙を高精度にすることができる。このようにすることで、空隙保持部材103の電気抵抗調整層104側端部の外表面が感光体61に当接することを防止することができ、この端部を介して隣接する電気抵抗調整層104が感光体61に接触してリーク電流が発生してしまうことを防止することが可能となる。また、空隙保持部材103の電気抵抗調整層104側の端部を低く加工することによって、この部分を、除去加工を行う際の切削刃等の逃げ代(逃げ加工)とすることができる。なお、逃げ代(逃げ加工)の形状は、空隙保持部材103の端部の外表面が感光体61に当接しないような形状であるならばどのような形状であっても良い。   The contact width between the gap holding member 103 and the photoreceptor 61 is reduced by forming the height of the portion of the gap holding member 103 adjacent to the electric resistance adjustment layer 104 equal to or lower than the height of the electric resistance adjustment layer 104. Thus, the gap between the charging member 101 and the photoreceptor 61 can be made highly accurate. By doing so, it is possible to prevent the outer surface of the end portion of the gap holding member 103 on the side of the electric resistance adjusting layer 104 from coming into contact with the photosensitive member 61, and the electric resistance adjusting layer adjacent through the end portion. It is possible to prevent the leak current from occurring due to the contact of the photosensitive member 104 with the photoconductor 61. Further, by processing the end portion of the gap holding member 103 on the electric resistance adjusting layer 104 side to be low, this portion can be used as a clearance allowance (escape processing) of a cutting blade or the like when performing removal processing. The shape of the clearance allowance (relief processing) may be any shape as long as the outer surface of the end portion of the gap holding member 103 is not in contact with the photoreceptor 61.

更に、表面層105をコーティングする際のマスキングを電気抵抗調整層104と空隙保持部材103の境界で行うことは、ばらつきを考慮すると制御が難しく、段差を形成する際に、電気抵抗調整層104と同一もしくは、低く形成された空隙保持部材103まで表面層105を形成することで、電気抵抗調整層104上に確実に表面層105を形成することができる。   Furthermore, it is difficult to perform masking at the boundary between the electric resistance adjusting layer 104 and the gap holding member 103 when coating the surface layer 105 in consideration of variations, and when forming the step, the electric resistance adjusting layer 104 and By forming the surface layer 105 up to the gap holding member 103 that is the same or low, the surface layer 105 can be reliably formed on the electric resistance adjusting layer 104.

(画像形成装置)
以下に、本発明に係る導電性部材評価装置及び導電性部材評価方法によって評価される導電性部材を帯電部材として備えた画像形成装置について、図5〜図7を参照して説明する。図5は、本発明によって評価される導電性部材である帯電部材を備えた帯電装置、及び、帯電装置を備えた画像形成装置の構成図である。図6は、図5の画像形成装置の画像形成部の構成図である。図7は、帯電装置、及び、プロセスカートリッジの構成図である。
(Image forming device)
Hereinafter, an image forming apparatus including, as a charging member, a conductive member evaluated by a conductive member evaluation apparatus and a conductive member evaluation method according to the present invention will be described with reference to FIGS. FIG. 5 is a configuration diagram of a charging device including a charging member which is a conductive member evaluated according to the present invention, and an image forming apparatus including the charging device. FIG. 6 is a configuration diagram of an image forming unit of the image forming apparatus of FIG. FIG. 7 is a configuration diagram of the charging device and the process cartridge.

この画像形成装置1は、図5、図6に示すように、表面に感光体層を有するドラム状であってイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の4色に対応する分の個数分の静電潜像担持体61(以下、「像担持体」という)と、各像担持体61をほぼ一様に帯電する帯電装置100と、帯電された像担持体61にレーザ光で露光して静電潜像を形成する露光装置70と、イエロー、マゼンタ、シアン、ブラックの4色の現像剤を収容し、像担持体61上の静電潜像に対応するトナー像を形成する現像装置63と、像担持体61上のトナー像を転写する1次転写装置62と、像担持体61上のトナー像が転写されるベルト状の中間転写体50と、中間転写体50のトナー像を転写する2次転写装置51と、中間転写体50のトナー像が転写される記録媒体上のトナー像を定着させる定着装置80と、さらに、像担持体61上に転写後残留するトナーを除去するクリーニング装置64とを備える。記録媒体は、記録媒体を収納する給紙装置21、22のひとつから、1枚ずつ搬送経路を搬送ローラでレジストローラ23まで搬送され、ここで、像担持体61上のトナー像と同期を計って転写位置に搬送される。   As shown in FIGS. 5 and 6, the image forming apparatus 1 has a drum shape having a photosensitive layer on the surface, and has four colors of yellow (Y), magenta (M), cyan (C), and black (K). The number of electrostatic latent image carriers 61 corresponding to colors (hereinafter referred to as “image carriers”), the charging device 100 for charging each image carrier 61 substantially uniformly, and the charged image carriers An exposure device 70 for exposing the body 61 with a laser beam to form an electrostatic latent image and a developer of four colors, yellow, magenta, cyan, and black, are accommodated and correspond to the electrostatic latent image on the image carrier 61 A developing device 63 for forming a toner image, a primary transfer device 62 for transferring the toner image on the image carrier 61, a belt-like intermediate transfer member 50 to which the toner image on the image carrier 61 is transferred, A secondary transfer device 51 for transferring the toner image on the intermediate transfer member 50; A fixing device 80 which toner image to fix the toner image on the recording medium to be transferred, further comprising a cleaning device 64 for removing the toner remaining after transfer on the image carrier 61. The recording medium is conveyed from one of the paper feeding devices 21 and 22 that store the recording medium one by one to the registration roller 23 by a conveyance roller through the conveyance path. Here, the recording medium is synchronized with the toner image on the image carrier 61. To the transfer position.

図5、図6に示すように、画像形成装置1における露光装置70は、帯電装置100により帯電された像担持体61に光Lを照射して、光導電性を有する像担持体61上に静電潜像を形成する。光Lは、蛍光灯、ハロゲンランプ等のランプ、LED、LD等の半導体素子によるレーザ光線等であっても良い。ここでは、図示しない画像処理部からの信号により像担持体61の回転速度に同期して照射される場合は、LDの素子を用いる。   As shown in FIGS. 5 and 6, the exposure device 70 in the image forming apparatus 1 irradiates the image carrier 61 charged by the charging device 100 with the light L, and the image carrier 61 has photoconductivity on the image carrier 61. An electrostatic latent image is formed. The light L may be a lamp such as a fluorescent lamp or a halogen lamp, or a laser beam by a semiconductor element such as an LED or LD. Here, an LD element is used when irradiation is performed in synchronization with the rotation speed of the image carrier 61 by a signal from an image processing unit (not shown).

現像装置63は、現像剤担持体を有し、現像装置63内に貯蔵されたトナーを供給ローラで攪拌部に搬送されて、キャリアを含む現像剤と混合・攪拌され、像担持体61に対向する現像領域に搬送される。このときに、正又は負極性に帯電されたトナーは、像担持体61の静電潜像に転移して現像される。現像剤は、磁性又は非磁性の一成分現像剤又はこれらを併せて使用するものであっても良いし、湿式の現像液を用いるものであっても良い。   The developing device 63 has a developer carrying member, and the toner stored in the developing device 63 is conveyed to a stirring unit by a supply roller, mixed and stirred with a developer containing a carrier, and faces the image carrying member 61. To the developing area. At this time, the positively or negatively charged toner is transferred to the electrostatic latent image on the image carrier 61 and developed. The developer may be a magnetic or non-magnetic one-component developer or a combination thereof, or a wet developer.

1次転写装置62は、像担持体61上の現像されたトナー像を中間転写体50の裏側からトナーの極性と反対の極性の電場を形成して、中間転写体50に転写する。1次転写装置62は、コロトロン、スコロトロンのコロナ転写器、転写ローラ、転写ブラシのいずれの転写装置であっても良い。その後、給紙装置22から搬送されてくる記録媒体と同期させて、再度2次転写装置51による転写で記録媒体上にトナー像を転写する。ここで、最初の転写が中間転写体50ではなく、記録媒体に直接転写する方式であっても良い。   The primary transfer device 62 transfers the developed toner image on the image carrier 61 to the intermediate transfer member 50 by forming an electric field having a polarity opposite to the polarity of the toner from the back side of the intermediate transfer member 50. The primary transfer device 62 may be any one of a corotron, a scorotron corona transfer device, a transfer roller, and a transfer brush. Thereafter, in synchronization with the recording medium conveyed from the paper feeding device 22, the toner image is transferred onto the recording medium again by the transfer by the secondary transfer device 51. Here, the first transfer may be performed directly on the recording medium instead of the intermediate transfer member 50.

定着装置80は、記録媒体上のトナー像を、加熱及び又は加圧して記録媒体上にトナー像を固定して定着させる。ここでは、1対の加圧・定着ローラの間を通過させ、このときに熱・圧力をかけて、トナーの結着樹脂を溶融しながら定着させる。定着装置80は、ローラ状ではなく、ベルト状であっても良いし、ハロゲンランプ等で熱照射により定着させるものであっても良い。像担持体61のクリーニング装置64は、転写されずに像担持体61上に残留したトナーをクリーニングして除去し、次の画像形成を可能にする。クリーニング装置64は、ウレタン等のゴムによるブレード、ポリエステル等の繊維によるファーブラシ等のいずれの方式であっても良い。   The fixing device 80 heats and / or presses the toner image on the recording medium to fix and fix the toner image on the recording medium. Here, the toner is passed through a pair of pressure and fixing rollers, and heat and pressure are applied at this time to fix the toner while melting the binder resin. The fixing device 80 may be in the form of a belt instead of a roller, or may be fixed by heat irradiation with a halogen lamp or the like. The cleaning device 64 for the image carrier 61 cleans and removes the toner remaining on the image carrier 61 without being transferred, thereby enabling the next image formation. The cleaning device 64 may be any system such as a blade made of rubber such as urethane or a fur brush made of fiber such as polyester.

以下、画像形成装置1の動作について説明する。読み取り部30は、原稿搬送部36の原稿台上に原稿をセットするか、又、原稿搬送部36を開いてコンタクトガラス31上に原稿をセットし、原稿搬送部36を閉じて原稿を押さえる。そして、不図示のスタートスイッチを押すと、原稿搬送部36に原稿をセットしたときは原稿をコンタクトガラス31上へと搬送して後、他方コンタクトガラス31上に原稿をセットしたときは直ちに、第1読み取り走行体及び第2読み取り走行体32、33を走行する。そして、第1読み取り走行体32で光源から光を発射するとともに原稿面からの反射光をさらに反射して第2読み取り走行体33に向け、第2読み取り走行体33のミラーで反射して結像レンズ34を通して読取りセンサであるCCD35に入れ、画像情報を読み取る。読み取った画像情報をこの制御部に送る。制御部は、読み取り部30から受け取った画像情報に基づき、画像形成部60の露光装置70内に配設された図示しないLD又はLED等を制御して、帯電装置100によって外表面が一様に帯電された像担持体61に向けて、書き込みのレーザ光Lを照射させる。この照射により、像担持体61の表面には静電潜像が形成される。   Hereinafter, the operation of the image forming apparatus 1 will be described. The reading unit 30 sets a document on the document table of the document transport unit 36, or opens the document transport unit 36 to set a document on the contact glass 31, closes the document transport unit 36, and presses the document. When a start switch (not shown) is pressed, the original is conveyed onto the contact glass 31 when the original is set on the original conveying section 36, and immediately after the original is set on the other contact glass 31, the first The first reading traveling body and the second reading traveling body 32, 33 travel. Then, the first reading traveling body 32 emits light from the light source, and the reflected light from the document surface is further reflected toward the second reading traveling body 33 and reflected by the mirror of the second reading traveling body 33 to form an image. The image information is read through the lens 34 into the CCD 35 which is a reading sensor. The read image information is sent to this control unit. Based on the image information received from the reading unit 30, the control unit controls an LD or LED (not shown) disposed in the exposure device 70 of the image forming unit 60, so that the outer surface is made uniform by the charging device 100. The laser beam L for writing is irradiated toward the charged image carrier 61. By this irradiation, an electrostatic latent image is formed on the surface of the image carrier 61.

給紙部20は、多段に備える給紙カセット21から給紙ローラにより記録媒体を繰り出し、繰り出した記録媒体を分離ローラで分離して給紙路に送り出し、画像形成部60の給紙路に記録媒体を搬送ローラで搬送する。この給紙部20以外に、手差し給紙も可能となっており、手差しのための手差しトレイ、手差しトレイ上の記録媒体を手差し給紙路に向けて一枚ずつ分離する分離ローラも装置側面に備えている。レジストローラ23は、それぞれ給紙カセット21に載置されている記録媒体を1枚だけ排出させ、中間転写体50と2次転写装置51との間に位置する2次転写部に送る。画像形成部60では、読み取り部30から画像情報を受け取ると、上述のようなレーザ書き込みや、現像プロセスを実施させて像担持体61上に潜像を形成させる。   The paper feeding unit 20 feeds a recording medium from a multi-stage paper feeding cassette 21 by a paper feeding roller, separates the fed recording medium by a separation roller, sends it to a paper feeding path, and records it on the paper feeding path of the image forming unit 60. The medium is transported by a transport roller. In addition to the paper feeding unit 20, manual paper feeding is also possible, and a manual feed tray for manual feeding and a separation roller for separating the recording medium on the manual tray one by one toward the manual paper feed path are also provided on the side of the apparatus. I have. Each of the registration rollers 23 discharges only one recording medium placed on the paper feed cassette 21 and sends it to a secondary transfer unit positioned between the intermediate transfer member 50 and the secondary transfer device 51. When the image forming unit 60 receives image information from the reading unit 30, the image forming unit 60 forms a latent image on the image carrier 61 by performing the laser writing or the development process as described above.

現像装置63内の現像剤は、図示しない磁極により汲み上げて保持され、現像剤担持体上に磁気ブラシを形成する。さらに、現像剤担持体に印加する現像バイアス電圧により像担持体61に転移して、その像担持体61上の静電潜像を可視化して、トナー像を形成する。現像バイアス電圧は、交流電圧と直流電圧を重畳させている。次に、トナー像に応じたサイズの記録媒体を給紙させるべく、給紙部20の給紙ローラのうちの1つを作動させる。また、これに伴って、駆動モータで支持ローラの1つを回転駆動して他の2つの支持ローラを従動回転し、中間転写体50を回転搬送する。同時に、個々の画像形成ユニットでその像担持体61を回転して像担持体61上にそれぞれ、ブラック・イエロー・マゼンタ・シアンの単色画像を形成する。そして、中間転写体50の搬送とともに、それらの単色画像を順次転写して中間転写体50上に合成トナー像を形成する。   The developer in the developing device 63 is drawn up and held by a magnetic pole (not shown) to form a magnetic brush on the developer carrier. Further, the toner image is transferred to the image carrier 61 by a developing bias voltage applied to the developer carrier, and the electrostatic latent image on the image carrier 61 is visualized to form a toner image. As the developing bias voltage, an AC voltage and a DC voltage are superimposed. Next, one of the paper feed rollers of the paper feed unit 20 is operated to feed a recording medium having a size corresponding to the toner image. Along with this, one of the support rollers is driven to rotate by the drive motor, the other two support rollers are driven to rotate, and the intermediate transfer member 50 is rotated and conveyed. At the same time, the image carrier 61 is rotated by each image forming unit to form black, yellow, magenta, and cyan monochrome images on the image carrier 61, respectively. Then, along with the conveyance of the intermediate transfer member 50, these single color images are sequentially transferred to form a composite toner image on the intermediate transfer member 50.

一方、給紙部20の給紙ローラの1つを選択回転し、給紙カセット21の1つから記録媒体を繰り出し、分離ローラで1枚ずつ分離して給紙路に入れ、搬送ローラで画像形成装置1の画像形成部60内の給紙路に導き、この記録媒体をレジストローラ23に突き当てて止める。そして、中間転写体50上の合成トナー像にタイミングを合わせてレジストローラ23を回転し、中間転写体50と2次転写装置51との当接部である2次転写部に記録媒体を送り込み、この2次転写部に形成されている2次転写バイアスや当接圧力などの影響によってトナー像を2次転写して記録媒体上にトナー像を記録する。ここで、2次転写バイアスは、直流であることが好ましい。画像転写後の記録媒体は、2次転写装置の搬送ベルトで定着装置80へと送り込み、定着装置80で加圧ローラによる加圧力と熱の付与によりトナー像を定着させた後、排出ローラ41で排紙トレイ40上に排出する。   On the other hand, one of the paper feed rollers of the paper feed unit 20 is selectively rotated, the recording medium is fed out from one of the paper feed cassettes 21, separated one by one by the separation roller, and put into the paper feed path, and the image is taken by the transport roller. The recording medium is guided to the sheet feeding path in the image forming unit 60 of the forming apparatus 1 and the recording medium is abutted against the registration roller 23 and stopped. Then, the registration roller 23 is rotated in synchronization with the synthetic toner image on the intermediate transfer member 50, and the recording medium is sent to the secondary transfer portion which is a contact portion between the intermediate transfer member 50 and the secondary transfer device 51. The toner image is secondarily transferred by the influence of the secondary transfer bias and contact pressure formed in the secondary transfer portion, and the toner image is recorded on the recording medium. Here, the secondary transfer bias is preferably a direct current. The recording medium after the image transfer is sent to the fixing device 80 by the transport belt of the secondary transfer device, and the fixing device 80 fixes the toner image by applying pressure and heat by the pressure roller, and then the discharging roller 41. The paper is discharged onto the paper discharge tray 40.

ここで、導電性部材が帯電部材として用いられる場合について、帯電装置100で詳細に説明する。図7は、帯電装置及び、プロセスカートリッジの構成図である。プロセスカートリッジとは、少なくとも、像担持体61と帯電装置100、クリーニング装置64を含むものであり、図7に示すように、現像装置63が含まれる場合もある。プロセスカートリッジは、それ自体が一体で画像形成装置に着脱自由なものである。図6に基づいて説明すると、像担持体61の表面は画像形成領域が非接触で配置された帯電部材により一様に帯電され、画像(潜像)形成後に現像によって可視化され、トナー像が記録媒体に転写される。記録媒体に転写されずに像担持体上に残ったトナーは、補助クリーニング部材64dによって回収される。その後、像担持体の表面へのトナー及び、トナー構成材料の付着を防止するために、固体潤滑剤64aを塗布部材64bで像担持体上に一様に塗布し滑剤層を形成する。その後、クリーニング部材64cで補助クリーニング部材で回収しきれなかったトナーを回収し排トナー回収部へ搬送する。補助クリーニング部材は、ローラ形状、ブラシ形状があり、固体潤滑剤としては、ステアリン酸亜鉛等の脂肪酸金属塩類、ポリテトラフルオロエチレン等、像担持体上の摩擦係数を低減して、非粘着性を付与できるものであれば良い。クリーニング部材はシリコン、ウレタン等のゴムによるブレード、ポリエステル等の繊維によるファーブラシ等が挙げられる。   Here, the case where the conductive member is used as the charging member will be described in detail with reference to the charging device 100. FIG. 7 is a configuration diagram of the charging device and the process cartridge. The process cartridge includes at least the image carrier 61, the charging device 100, and the cleaning device 64, and may include a developing device 63 as shown in FIG. The process cartridge is an integral unit and can be freely attached to and detached from the image forming apparatus. Referring to FIG. 6, the surface of the image carrier 61 is uniformly charged by a charging member in which an image forming area is arranged in a non-contact manner, and is visualized by development after forming an image (latent image), and a toner image is recorded. Transferred to the medium. The toner remaining on the image carrier without being transferred to the recording medium is collected by the auxiliary cleaning member 64d. Thereafter, in order to prevent toner and toner constituent materials from adhering to the surface of the image carrier, the solid lubricant 64a is uniformly applied on the image carrier by the application member 64b to form a lubricant layer. Thereafter, the toner that could not be collected by the auxiliary cleaning member by the cleaning member 64c is collected and conveyed to the waste toner collecting unit. The auxiliary cleaning member has a roller shape and a brush shape, and solid lubricants such as fatty acid metal salts such as zinc stearate, polytetrafluoroethylene, etc., reduce the coefficient of friction on the image carrier, and make it non-adhesive. Anything can be given. Examples of the cleaning member include a blade made of rubber such as silicon and urethane, and a fur brush made of fiber such as polyester.

帯電装置100は、帯電部材101の汚染を除去するためのクリーニング部材102を備える。クリーニング部材の形状は、ローラ状、パッド形状でもよいが、本実施形態ではローラ形状とした。クリーニング部材102は、帯電装置100の図示しないハウジングに設けられる軸受に嵌合され、回転可能に軸支される。このクリーニング部材102は、帯電部材101に当接して、外周面をクリーニングする。帯電部材101の表面にトナー、紙粉、部材の破損物等の異物が付着すると、電界が異物部分に集中するために優先的に放電が生ずる異常放電を起こす。逆に、電気的絶縁性の異物が広い範囲に付着すると、その部分では放電が生じないために、像担持体61に帯電斑が生ずる。このために、帯電装置100には帯電部材101の表面をクリーニングするクリーニング部材102を設けることが好ましい。クリーニング部材としては、ポリエステル等の繊維によるブラシ、メラミン樹脂等の多孔質(スポンジ)のようなものを用いることができる。クリーニング部材は、帯電部材に連れ回り、線速差を持って回転、離間して間欠等の形式で回転させても良い。   The charging device 100 includes a cleaning member 102 for removing contamination of the charging member 101. The shape of the cleaning member may be a roller shape or a pad shape, but in this embodiment, it is a roller shape. The cleaning member 102 is fitted into a bearing provided in a housing (not shown) of the charging device 100 and is rotatably supported. The cleaning member 102 contacts the charging member 101 and cleans the outer peripheral surface. If foreign matter such as toner, paper dust, or a damaged member adheres to the surface of the charging member 101, abnormal electric discharge that preferentially generates discharge occurs because the electric field concentrates on the foreign matter portion. On the contrary, when an electrically insulating foreign material adheres to a wide range, no discharge occurs in that portion, and thus charging spots occur on the image carrier 61. For this reason, the charging device 100 is preferably provided with a cleaning member 102 for cleaning the surface of the charging member 101. As the cleaning member, a brush made of a fiber such as polyester or a porous material (sponge) such as a melamine resin can be used. The cleaning member may be rotated with the charging member, rotated with a linear speed difference, and separated and rotated in a intermittent manner.

また、帯電装置100は、帯電部材101に電圧を印加する電源を備える。電圧としては、直流電圧と交流電圧を重畳した電圧が好ましい。帯電部材101の層構成が不均一な部分がある場合には、直流電圧のみを印加すると像担持体61の表面電位が不均一になることがある。重畳した電圧では、帯電部材101表面が等電位となり、放電が安定して像担持体61を均一に帯電させることができる。重畳する電圧における交流電圧は、ピ−ク間電圧を像担持体61の帯電開始電圧の2倍以上にすることが好ましい。帯電開始電圧とは、帯電部材101に直流のみを印加した場合に像担持体61が帯電され始めるときの電圧の絶対値である。これにより、像担持体61から帯電部材101への逆放電が生じ、そのならし効果で像担持体61をより安定した状態で均一に帯電させることができる。また、交流電圧の周波数は像担持体の周速度(プロセススピード)の7倍以上であることが望ましい。7倍以上の周波数にすることにより、モアレ画像が(目視)認識できなくなる。   The charging device 100 includes a power source that applies a voltage to the charging member 101. The voltage is preferably a voltage obtained by superimposing a DC voltage and an AC voltage. When there is a portion where the layer configuration of the charging member 101 is non-uniform, the surface potential of the image carrier 61 may become non-uniform when only a DC voltage is applied. With the superimposed voltage, the surface of the charging member 101 becomes equipotential, so that the discharge is stable and the image carrier 61 can be charged uniformly. The alternating voltage in the superimposed voltage preferably has a peak-to-peak voltage that is at least twice the charging start voltage of the image carrier 61. The charging start voltage is an absolute value of a voltage when the image carrier 61 starts to be charged when only a direct current is applied to the charging member 101. Accordingly, reverse discharge from the image carrier 61 to the charging member 101 occurs, and the leveling effect enables the image carrier 61 to be uniformly charged in a more stable state. The frequency of the AC voltage is preferably 7 times or more the peripheral speed (process speed) of the image carrier. By setting the frequency to 7 times or more, the moire image cannot be recognized (visually).

本実施形態では、補助クリーニング部材はブラシローラ、滑剤はステアリン酸亜鉛をブロック状に形成し、塗布部材であるブラシローラに、バネ等の加圧部材で加圧することにより、塗布ローラで固体潤滑剤ブロックから削り取った固体潤滑剤を像担持体へ塗布するような構成である。クリーニング部材はウレタンブレードを用いカウンター方式とした。また、帯電部材のクリーニング部材は、メラミン樹脂のスポンジローラを用いて、帯電部材と連れ回りで回転させる方式とすることにより、帯電部材の表面の汚れを良好にクリーニングできる。   In this embodiment, the auxiliary cleaning member is a brush roller, the lubricant is zinc stearate in a block shape, and the application roller is pressed with a pressure member such as a spring to apply a solid lubricant to the application roller. The solid lubricant removed from the block is applied to the image carrier. The cleaning member was a counter type using a urethane blade. In addition, the cleaning member of the charging member can be cleaned well by using a melamine resin sponge roller and rotating together with the charging member.

以下では、導電性部材としての帯電部材を近接帯電方式の帯電ローラとして使用する場合について示す。なお、導電性部材としてこれに限定したものではない。帯電装置100は、図4に示すように、像担持体61に対向し、微少空隙Gを設けて配設される帯電部材101と、帯電部材を清掃するクリーニング部材102と、帯電部材101に電圧を印加する不図示の電源と、帯電部材101を像担持体に61に加圧して接触させる不図示の加圧スプリングとを少なくとも備える。帯電部材101は、図4、図7に示すように、像担持体61に微少空隙Gを持たせて対向して配設される。帯電部材101と像担持体61の空隙Gは、空隙保持部材103を帯電部材101の非画像形成領域に当接させて形成する。感光層領域に空隙保持部材103を当接させることにより、感光層の塗布厚がばらついても、空隙のばらつきを防止することができる。   Hereinafter, a case where a charging member as a conductive member is used as a charging roller of a proximity charging type will be described. The conductive member is not limited to this. As shown in FIG. 4, the charging device 100 is provided with a charging member 101 facing the image carrier 61 and provided with a minute gap G, a cleaning member 102 for cleaning the charging member, and a voltage applied to the charging member 101. At least a power supply (not shown) and a pressure spring (not shown) that presses and contacts the charging member 101 to the image carrier 61. As shown in FIGS. 4 and 7, the charging member 101 is disposed to face the image carrier 61 with a minute gap G therebetween. The gap G between the charging member 101 and the image carrier 61 is formed by bringing the gap holding member 103 into contact with the non-image forming area of the charging member 101. By bringing the gap holding member 103 into contact with the photosensitive layer region, even if the coating thickness of the photosensitive layer varies, variation in the gap can be prevented.

帯電部材101の形状は、特に限定されず、ベルト状、ブレード(板)状、半円柱状で固定されて配設されていても良いが、円筒形状が最も好ましい。   The shape of the charging member 101 is not particularly limited, and may be fixed and disposed in a belt shape, a blade (plate) shape, or a semi-columnar shape, but a cylindrical shape is most preferable.

また、円筒形状の帯電部材101の両端をギヤ又は軸受で回転可能に支持されていても良い。このように、帯電部材101は、像担持体61への最近接部から、像担持体61移動方向の上下流に漸次離間する曲面で形成されていると、像担持体61をより均一に帯電させることができる。像担持体61に対向する帯電部材101が、先鋭な部分があると、その部分の電位が高くなるために優先的に放電が開始され、像担持体61の均一な帯電が困難になる。従って、円柱状の形状で、曲面を有することで均一な像担持体61の帯電が可能になる。また、帯電部材101の放電している表面は強いストレスを受ける。放電が常に同じ面で発生するので、その劣化が促進され、さらに、削り落ちることがある。そのために、帯電部材101の全面を放電する面として使用できるのであれば、回転させることで、早期の劣化を防止することで、長期にわたって使用することができる。   Further, both ends of the cylindrical charging member 101 may be rotatably supported by a gear or a bearing. As described above, when the charging member 101 is formed with a curved surface that gradually separates from the closest part to the image carrier 61 in the moving direction of the image carrier 61, the image carrier 61 is more uniformly charged. Can be made. If the charging member 101 facing the image carrier 61 has a sharp portion, the electric potential of that portion becomes high, so that discharge is preferentially started, and uniform charging of the image carrier 61 becomes difficult. Accordingly, the image carrier 61 can be charged uniformly by having a cylindrical shape and a curved surface. Further, the discharging surface of the charging member 101 is subjected to strong stress. Since the discharge always occurs on the same surface, its deterioration is promoted and may be scraped off. Therefore, if the entire surface of the charging member 101 can be used as a discharging surface, it can be used for a long period of time by rotating it to prevent early deterioration.

また、帯電部材101は、図4に示すように、帯電装置100の図示しないハウジングの側板に設けられる軸受に嵌合され、軸受には従動しない摩擦係数の低い樹脂による軸受107に設ける圧縮バネ108により像担持体61表面方向に押圧されている。これにより、機械的振動や芯軸106の偏位があっても一定の空隙Gを形成することができる。押圧する荷重は、4〜25Nにする。好ましくは、6〜15Nにする。帯電部材101は、軸受107で固定されていても、回転するときの振動、帯電部材101の偏心、その表面の凹凸により空隙Gの大きさが変動し、空隙Gが適正な範囲からはずれる場合があり、このために、経時的には像担持体61の劣化を促進することになる。ここで、荷重とは、空隙保持部材103を通して像担持体61に加わるすべての荷重を意味する。これは、帯電部材101の両端に設けられる圧縮バネ108の力、帯電部材101とクリーニング部材102の自重等により調整できる。荷重が小さいと、帯電部材101の回転時による変動、駆動するギア等の衝撃力による跳ね上がりを抑えることができない。荷重が大きいと、帯電部材101と嵌合する軸受107との摩擦が大きくなり、経時的な摩耗量を大きくして変動を促進することになる。従って、荷重を4〜25N、好ましくは、6〜15Nの範囲にすることにより、空隙Gを適正な範囲にして、放電生成物の生成を少なくして像担持体61に堆積する量を少なくして像担持体61の寿命を延ばし、かつ、斑点状の異常画像・画像流を防止することができる。   Further, as shown in FIG. 4, the charging member 101 is fitted into a bearing provided on a side plate of a housing (not shown) of the charging device 100, and a compression spring 108 provided on the bearing 107 made of a resin having a low friction coefficient that is not driven by the bearing. Is pressed toward the surface of the image carrier 61. As a result, a constant gap G can be formed even if there is mechanical vibration or deviation of the core shaft 106. The pressing load is 4 to 25N. Preferably, it is 6-15N. Even if the charging member 101 is fixed by the bearing 107, the size of the gap G may fluctuate due to vibrations when rotating, eccentricity of the charging member 101, and unevenness of the surface, and the gap G may deviate from an appropriate range. For this reason, the deterioration of the image carrier 61 is promoted over time. Here, the load means all loads applied to the image carrier 61 through the gap holding member 103. This can be adjusted by the force of the compression springs 108 provided at both ends of the charging member 101, the weight of the charging member 101 and the cleaning member 102, and the like. When the load is small, fluctuation due to rotation of the charging member 101 and jumping up due to impact force of a driving gear or the like cannot be suppressed. When the load is large, the friction between the charging member 101 and the bearing 107 to be fitted increases, and the amount of wear over time is increased to promote fluctuation. Therefore, by setting the load in the range of 4 to 25 N, preferably 6 to 15 N, the gap G is set in an appropriate range, the generation of discharge products is reduced, and the amount deposited on the image carrier 61 is reduced. Thus, the life of the image carrier 61 can be extended, and spotted abnormal images / image streams can be prevented.

(本発明の検証)
本発明者らは、画像形成装置における画像形成の評価結果が異なる導電性部材(帯電ローラ)を複数作製して、これら導電性部材に対して以下の各実施例、各比較例に示す評価方法による評価を行った。そして、その評価結果と画像形成の評価結果とを比較して、上述した本発明によって導電性部材の評価が正確に行えるかを検証した。
(Verification of the present invention)
The inventors have prepared a plurality of conductive members (charging rollers) with different image formation evaluation results in the image forming apparatus, and the evaluation methods shown in the following examples and comparative examples for these conductive members. Was evaluated. Then, the evaluation result was compared with the image formation evaluation result, and it was verified whether the conductive member could be accurately evaluated by the present invention described above.

検証には、以下の二種類の帯電ローラを使用した。
(帯電ローラA)
ステンレスからなる芯軸(外径8mm)に、A、B、Cを220℃で溶融混練した樹脂組成物(体積固有抵抗:2×108Ωcm)を、射出成形により被覆して電気抵抗調整層(全長300mm)を形成した。
A:IRGASTAT P18(チバスペシャルティケミカルズ製)60重量部
(以上、ポリアミドエラストマー、Aは過塩素酸塩類含有)
B:ABS樹脂(デンカABS GR−3000、電気化学工業製)40重量部
A、Bの混合物100重量部に対して、
C:ポリカーボネート−グリシジルメタクリレート−スチレン−アクリロニトリル共重合体(モディパーC L440−G、日本油脂製)4.5重量部
(グラフトコポリマー)
For the verification, the following two types of charging rollers were used.
(Charging roller A)
A resin composition (volume resistivity: 2 × 10 8 Ωcm) obtained by melting and kneading A, B, and C at 220 ° C. on a core shaft made of stainless steel (outer diameter: 8 mm) is coated by injection molding to adjust the electric resistance. (Overall length 300 mm) was formed.
A: IRGASTAT P18 (manufactured by Ciba Specialty Chemicals) 60 parts by weight (above, polyamide elastomer, A contains perchlorates)
B: ABS resin (Denka ABS GR-3000, manufactured by Denki Kagaku Kogyo Co., Ltd.) 40 parts by weight of A and B mixture 100 parts by weight,
C: Polycarbonate-glycidyl methacrylate-styrene-acrylonitrile copolymer (Modiper C L440-G, manufactured by NOF Corporation) 4.5 parts by weight (graft copolymer)

次いで切削加工によって、電気抵抗調整層の外径を12.7mmに同時仕上げを行なった。   Next, the outer diameter of the electric resistance adjusting layer was simultaneously finished to 12.7 mm by cutting.

次いで電気抵抗調整層の表面に、アクリル変性シリコーン樹脂(ムキコート3000VH、川上塗料社製)とイオン導電剤(PEL20A、日本カーリット社製)、イソシアネート樹脂(T4硬化剤、川上塗料社製)の混合物からなる塗料を酢酸ブチル、トルエン、MEKからなる希釈溶剤で希釈後、スプレー塗装により膜厚約10μmの表面層を形成し、焼成工程を経て、帯電ローラAを作製した。   Next, on the surface of the electric resistance adjusting layer, a mixture of an acrylic-modified silicone resin (Mukicoat 3000VH, manufactured by Kawakami Paint Co., Ltd.), an ionic conductive agent (PEL20A, manufactured by Nippon Carlit Co., Ltd.), and an isocyanate resin (T4 curing agent, manufactured by Kawakami Paint Co., Ltd.) After the coating material to be diluted with a diluent solvent consisting of butyl acetate, toluene, and MEK, a surface layer having a film thickness of about 10 μm was formed by spray coating, and a charging roller A was manufactured through a baking process.

(帯電ローラB)
ステンレスからなる芯軸(外径8mm)の外周に、以下の層を下から順次に積層して3層構成の帯電ローラB(外径12.7mm、全長300mm)を作製した。
下層A:カーボン分散の発泡EPDM(体積固有抵抗109Ωcm)
中間層B:カーボン分散のNBR系ゴム(体積固有抵抗105Ωcm)
表層C:酸化スズ、カーボンを分散したフッ素系トレジン樹脂(体積固有抵抗1010Ωcm)
(Charging roller B)
A charging roller B (outer diameter 12.7 mm, total length 300 mm) having a three-layer structure was manufactured by sequentially laminating the following layers from the bottom on the outer periphery of a core shaft (outer diameter 8 mm) made of stainless steel.
Lower layer A: Foamed EPDM with carbon dispersion (volume resistivity 10 9 Ωcm)
Intermediate layer B: carbon-dispersed NBR rubber (volume resistivity 10 5 Ωcm)
Surface layer C: Fluorine-based resin resin in which tin oxide and carbon are dispersed (volume resistivity 10 10 Ωcm)

上述した2種類の帯電ローラA、帯電ローラBを、図5に示した画像形成装置にそれぞれ組み込み、低温低湿環境(10℃15%RH)で実際に画像形成を行った。そして、形成された画像を目視して、不均一な放電による画像不良の有無を確認した。その結果、帯電ローラAは、不均一な放電による画像不良が発生せずに良好な画像が得られたが、帯電ローラBは、不均一な放電による画像不良が発生して不良な画像となった。即ち、画像形成の評価結果として、帯電ローラAは、良好な画像が得られる帯電ローラと判定され、帯電ローラBは、不良な画像となる帯電ローラと判定された。   The above-described two types of charging roller A and charging roller B were incorporated in the image forming apparatus shown in FIG. 5, and image formation was actually performed in a low temperature and low humidity environment (10 ° C. and 15% RH). Then, the formed image was visually checked to confirm the presence or absence of an image defect due to non-uniform discharge. As a result, the charging roller A obtained a good image without causing image defects due to non-uniform discharge, but the charging roller B resulted in a defective image due to image defects due to non-uniform discharge. It was. That is, as an evaluation result of image formation, the charging roller A was determined to be a charging roller capable of obtaining a good image, and the charging roller B was determined to be a charging roller for forming a defective image.

(実施例1)
測定環境23℃、50%RHの大気中において、上記帯電ローラA、帯電ローラBを帯電部材101として、図1に示す導電性部材評価装置に取り付けて、外径40mm、全長320mmの感光体204と当接させ、それぞれを線速度282mm/secで互いに逆方向に回転させた状態で、電源部205(10/10B、トレック・ジャパン製)から帯電部材101に直流電圧Vdc=−0.7kV、ピーク間電圧Vpp=2.2kV、周波数f=2200Hzの電圧(即ち、評価電圧)を印加して、電源部205のモニタリング端子に測定部206(USB型データ収集システム、NR−2000、キーエンス製)を接続して200kHzのサンプリングレートで電源部205が出力する電圧値と電流値(即ち、評価電圧と評価電流)の測定(サンプリング)を行なった。そして、制御部207において、測定部206で測定した評価電圧と評価電流に関するデータ(情報)を取り込み、評価電圧の直流電圧Vdc及び評価電流の0Aをそれぞれの中心値としたときの、評価電圧と評価電流との立ち上がり位相差α1及び立ち下がり位相差α2を算出し、そして、立ち上がり位相差α1と立ち下がり位相差α2との差(即ち、測定値)を求めて、この差がより小さい方を良好な画像が得られる帯電ローラと判定するものして、上記帯電ローラA及び帯電ローラBの評価を行なった。
Example 1
In the measurement environment of 23 ° C. and 50% RH in the atmosphere, the charging roller A and the charging roller B are attached to the conductive member evaluation apparatus shown in FIG. 1 as the charging member 101, and the photosensitive member 204 having an outer diameter of 40 mm and a total length of 320 mm. And a DC voltage Vdc = −0.7 kV from the power supply unit 205 (10 / 10B, manufactured by Trek Japan) to the charging member 101 in a state where they are rotated in opposite directions at a linear velocity of 282 mm / sec. Apply a voltage (that is, an evaluation voltage) with a peak-to-peak voltage Vpp = 2.2 kV and a frequency f = 2200 Hz, and measure unit 206 (USB type data collection system, NR-2000, manufactured by Keyence) to the monitoring terminal of power supply unit 205 Of the voltage value and current value output from the power supply unit 205 at a sampling rate of 200 kHz (that is, evaluation voltage and evaluation current) Was subjected to constant (sampling). Then, the control unit 207 takes in the data (information) about the evaluation voltage and the evaluation current measured by the measurement unit 206, and evaluates the evaluation voltage when the DC voltage Vdc of the evaluation voltage and 0A of the evaluation current are set to the respective center values. The rising phase difference α1 and the falling phase difference α2 with respect to the evaluation current are calculated, and the difference (that is, the measured value) between the rising phase difference α1 and the falling phase difference α2 is obtained. The charging roller A and the charging roller B were evaluated as a charging roller that can obtain a good image.

(実施例2)
上記実施例1と同様の評価を、評価電圧のピーク間電圧をVpp=2.6kVとして行った。
(Example 2)
The same evaluation as in Example 1 was performed with the peak-to-peak voltage of the evaluation voltage set to Vpp = 2.6 kV.

(実施例3)
上記実施例1と同様の評価を、評価電圧のピーク間電圧をVpp=2.8kVとして行った。
(Example 3)
The same evaluation as in Example 1 was performed with the peak-to-peak voltage of the evaluation voltage set to Vpp = 2.8 kV.

(実施例4)
上記実施例1と同様の評価を、評価電圧の周波数をf=3000Hzとして行った。
Example 4
The same evaluation as in Example 1 was performed with the frequency of the evaluation voltage being f = 3000 Hz.

(実施例5)
上記実施例1と同様の評価を、評価電圧の周波数をf=5000Hzとして行った。
(Example 5)
The same evaluation as in Example 1 was performed with the frequency of the evaluation voltage being f = 5000 Hz.

(実施例6)
上記実施例1と同様の評価を、帯電ローラを感光体204に対して空隙30μmの位置に近接配置させた状態で行った。
(Example 6)
The same evaluation as in Example 1 was performed in a state where the charging roller was disposed close to the photosensitive member 204 at a position of a gap of 30 μm.

(実施例7)
上記実施例1と同様の評価を、帯電ローラを感光体204に対して空隙50μmの位置に近接配置させた状態で行った。
(Example 7)
The same evaluation as in Example 1 was performed in a state where the charging roller was placed close to the photosensitive member 204 at a position of a gap of 50 μm.

(実施例8)
上記実施例1と同様の評価を、帯電ローラを感光体204に対して空隙70μmの位置に近接配置させた状態で行った。
(Example 8)
The same evaluation as in Example 1 was performed in a state where the charging roller was disposed close to the photosensitive member 204 at a position of a gap of 70 μm.

(実施例9)
上記実施例1と同様の評価を、図5に示した画像形成装置を改造した加速試験装置を用いて、23℃、50%RHの環境で、帯電ローラの通紙無し状態での通電空回し試験を120時間(150,000枚の複写に相当)実施したあとの各帯電ローラに対して行った。
Example 9
The same evaluation as that in Example 1 was performed using an acceleration test apparatus in which the image forming apparatus shown in FIG. 5 was modified, and in a 23 ° C. and 50% RH environment, the electrification roller was idled without passing paper. The test was performed on each charging roller after 120 hours (corresponding to 150,000 copies).

(比較例1)
測定環境23℃50%において、図13のように、各帯電ローラに導電性ゴム電極を接触させた状態で抵抗測定を行なった。各帯電ローラには、デジタル超高抵抗/微少電流計(R8340A、アドバンテスト製)から0.7kVの直流電圧を印加して、15秒後の電流値から各帯電ローラの抵抗値(即ち、測定値)を算出した。この算出した抵抗値がより低い方を良好な画像が形成できる帯電ローラと判定するものして、上記帯電ローラA、帯電ローラBの評価を行った。
(Comparative Example 1)
In a measurement environment of 23 ° C. and 50%, resistance measurement was performed with the conductive rubber electrode in contact with each charging roller as shown in FIG. A 0.7 kV DC voltage is applied to each charging roller from a digital ultra-high resistance / microammeter (R8340A, manufactured by Advantest), and the resistance value (ie, measured value) of each charging roller is determined from the current value after 15 seconds. ) Was calculated. The lower one of the calculated resistance values is determined as a charging roller capable of forming a good image, and the charging roller A and the charging roller B are evaluated.

(比較例2)
上記比較例1と同様の評価を、各帯電ローラを線速度282mm/secで回転させた状態で0.7kVの直流電圧を印加した状態で行ない、ローラ一周期分に相当する時間の電流値の平均からローラ抵抗値(即ち、測定値)を算出して行った。
(Comparative Example 2)
The same evaluation as in Comparative Example 1 was performed with each charging roller rotated at a linear velocity of 282 mm / sec and a 0.7 kV DC voltage applied, and the current value for a time corresponding to one cycle of the roller was measured. The roller resistance value (that is, measured value) was calculated from the average.

(比較例3)
上記実施例1と同様の評価を、帯電ローラ及び感光体204ともに停止状態(即ち、無回転状態)で行った。
(Comparative Example 3)
The same evaluation as in Example 1 was performed in a stopped state (that is, a non-rotating state) for both the charging roller and the photosensitive member 204.

(比較例4)
上記実施例1と同様の評価を、評価電圧として、直流電圧Vdc=−0.7kV、ピーク間電圧Vpp=0kV、周波数f=0Hzの電圧(即ち、直流電圧のみ)を印加して行った。
(Comparative Example 4)
The same evaluation as in Example 1 was performed by applying a DC voltage Vdc = −0.7 kV, a peak-to-peak voltage Vpp = 0 kV, and a voltage with a frequency f = 0 Hz (that is, only a DC voltage) as evaluation voltages.

(比較例5)
上記実施例1と同様の評価を、評価電圧として、直流電圧Vdc=0kV、ピーク間電圧Vpp=2.2kV、周波数f=2200Hzの電圧(即ち、交流電圧のみ)を印加して行った。
(Comparative Example 5)
The same evaluation as in Example 1 was performed by applying a DC voltage Vdc = 0 kV, a peak-to-peak voltage Vpp = 2.2 kV, and a frequency f = 2200 Hz (that is, only an AC voltage) as evaluation voltages.

(比較例6)
上記実施例1と同様の評価を、評価電圧として、直流電圧Vdc=−0.7kV、ピーク間電圧Vpp=1.0kV、周波数f=2200Hzの電圧を印加して行った。
(Comparative Example 6)
The same evaluation as in Example 1 was performed by applying a DC voltage Vdc = −0.7 kV, a peak-to-peak voltage Vpp = 1.0 kV, and a frequency f = 2200 Hz as evaluation voltages.

(比較例7)
上記実施例1と同様の評価を、評価電圧として、直流電圧Vdc=−0.7kV、ピーク間電圧Vpp=2.2kV、周波数f=10000Hzの電圧を印加して行った。
(Comparative Example 7)
The same evaluation as in Example 1 was performed by applying a DC voltage Vdc = −0.7 kV, a peak-to-peak voltage Vpp = 2.2 kV, and a frequency f = 10000 Hz as evaluation voltages.

(比較例8)
上記実施例1と同様の評価を、帯電ローラを感光体204に対して空隙120μmの位置に近接配置させた状態で行った。
(Comparative Example 8)
The same evaluation as in Example 1 was performed in a state where the charging roller was disposed close to the photosensitive member 204 at a position of a gap of 120 μm.

(比較例9)
上記実施例1と同様の評価を、帯電ローラ及び感光体204を互いに同一方向に回転させた状態で行った。
(Comparative Example 9)
The same evaluation as in Example 1 was performed in a state where the charging roller and the photosensitive member 204 were rotated in the same direction.

(比較例10)
上記実施例1と同様の評価を、帯電ローラを線速度282mm/secで回転させ且つ感光体204を線速度100mm/secで回転させた状態で行った。
(Comparative Example 10)
The same evaluation as in Example 1 was performed with the charging roller rotated at a linear velocity of 282 mm / sec and the photosensitive member 204 rotated at a linear velocity of 100 mm / sec.

上述した各実施例、各比較例における帯電ローラA、帯電ローラBの評価結果と、これら帯電ローラA、帯電ローラBを用いて実際に画像を形成した画像形成の評価結果と、を比較し、それらが一致していれば、帯電ローラA、帯電ローラBの良否が正確に判定できるもの「○」とし、それらが不一致であれば帯電ローラA、帯電ローラBの良否判定不能なもの「×」として、各実施例、各比較例の判定を行った。
○ : 帯電ローラの良否を正確に判定できる。
× : 帯電ローラの良否を判定できない。
上記各実施例、各比較例をそれぞれ比較した表を表1、2に示し、上記各実施例、各比較例における判定結果を表3に示す。
The evaluation results of the charging roller A and the charging roller B in each of the above-described examples and comparative examples are compared with the evaluation results of image formation in which an image is actually formed using the charging roller A and the charging roller B. If they match, “Good” indicates that the quality of charging roller A and charging roller B can be accurately determined, and if they do not match, “No” indicates that quality of charging roller A and charging roller B cannot be determined. As a result, each example and each comparative example were determined.
○: The quality of the charging roller can be accurately determined.
×: The quality of the charging roller cannot be judged.
Tables 1 and 2 show tables comparing the respective examples and comparative examples, and Table 3 shows determination results in the above examples and comparative examples.

Figure 2010072056
Figure 2010072056

Figure 2010072056
Figure 2010072056

Figure 2010072056
Figure 2010072056

上記各表に示された判定結果のより、以下の事項が判明した。帯電ローラに電極を当てて抵抗値を測定する従来の評価方法(比較例1、2)では、帯電ローラA、帯電ローラBの良否を判定することができず、特に、比較例1では、局所的にリーク電流が発生してしまい、放電破壊により測定不可能であり、比較例2では、電気特性の評価結果と実機での画像評価結果とが逆転して対応がとれず、それぞれ帯電ローラの良否を正確に判定できなかったが、本発明に係る導電性部材評価装置(評価方法)であれば、帯電ローラの良否を正確に判定できた(各実施例、比較例1、2)。また、帯電ローラと感光体204とは互いに逆方向に回転させて評価を行う必要があり、それぞれの線速度が同一であることが好ましい(実施例1、比較例3、9、10)。帯電ローラには、直流電圧に交流電圧を重畳した評価電圧を印加する必要があり、評価電圧が直流電圧のみの場合、交流電圧のみの場合、若しくは、直流電圧に交流電圧を重畳していてもピーク間電圧Vppが低すぎたりする場合、周波数fが高すぎたりする場合には、帯電ローラの良否を判定できなかった(比較例4〜7)。また、帯電ローラと感光体204との空隙はパッシェンの法則を満足するように適切に設ける必要があり、空隙が広すぎると放電が行われず、帯電ローラの良否を判定できなかった(実施例6〜8、比較例8)。また、本発明に係る導電性部材評価装置(評価方法)では、ピーク間電圧Vpp及び帯電ローラと感光体204との空隙、がパッシェンの法則を満足して帯電ローラと感光体204との間に放電を発生させることができるのであれば、それら値は任意である(実施例1〜3、6〜8)。また、本発明に係る導電性部材評価装置(評価方法)は、未使用の帯電ローラの評価及び経年使用の帯電ローラの評価が共に可能である(実施例1、9)。また、本発明に係る導電性部材評価装置(評価方法)では、評価電圧の周波数を高めていくと評価電圧に対して評価電流が追随できなくなり、評価不能となる(実施例4、5、比較例7)。別途実施した評価電圧の周波数試験では、図12に示すように、評価電圧の周波数を高めていくと、評価電圧と評価電流との立ち上がり位相差α1と立ち下がり位相差α2の差が減少していき、さらに、評価電圧の周波数が7kHz以上になると、評価電流が過大に流れてしまう。そのため、評価電圧の周波数は7kHzより低い範囲で行う必要がある。   From the determination results shown in the above tables, the following matters were found. In the conventional evaluation method (Comparative Examples 1 and 2) in which the resistance value is measured by applying an electrode to the charging roller, the quality of the charging roller A and the charging roller B cannot be determined. In comparison example 2, the evaluation result of the electrical characteristics and the image evaluation result in the actual machine are reversed and cannot be dealt with in the comparative example 2. The quality of the charging roller could be accurately judged with the conductive member evaluation apparatus (evaluation method) according to the present invention (accepting examples and comparative examples 1 and 2). In addition, it is necessary to perform evaluation by rotating the charging roller and the photosensitive member 204 in the opposite directions, and it is preferable that the respective linear velocities are the same (Example 1, Comparative Examples 3, 9, and 10). It is necessary to apply an evaluation voltage obtained by superimposing an AC voltage on a DC voltage to the charging roller. If the evaluation voltage is only a DC voltage, only an AC voltage, or even if an AC voltage is superimposed on the DC voltage, When the peak-to-peak voltage Vpp was too low or the frequency f was too high, the quality of the charging roller could not be determined (Comparative Examples 4 to 7). In addition, the gap between the charging roller and the photosensitive member 204 needs to be appropriately provided so as to satisfy Paschen's law. If the gap is too wide, discharge is not performed, and the quality of the charging roller cannot be determined (Example 6). To 8, Comparative Example 8). Further, in the conductive member evaluation apparatus (evaluation method) according to the present invention, the peak-to-peak voltage Vpp and the gap between the charging roller and the photoconductor 204 satisfy Paschen's law, and the gap between the charging roller and the photoconductor 204 is satisfied. If discharge can be generated, those values are arbitrary (Examples 1-3, 6-8). The conductive member evaluation apparatus (evaluation method) according to the present invention can both evaluate an unused charging roller and an aged charging roller (Examples 1 and 9). Moreover, in the conductive member evaluation apparatus (evaluation method) according to the present invention, when the frequency of the evaluation voltage is increased, the evaluation current cannot follow the evaluation voltage, and the evaluation becomes impossible (Examples 4 and 5). Example 7). In the frequency test of the evaluation voltage performed separately, as shown in FIG. 12, when the frequency of the evaluation voltage is increased, the difference between the rising phase difference α1 and the falling phase difference α2 between the evaluation voltage and the evaluation current decreases. Furthermore, when the frequency of the evaluation voltage is 7 kHz or more, the evaluation current flows excessively. Therefore, the frequency of the evaluation voltage needs to be in a range lower than 7 kHz.

上記検証より、本発明に係る導電性部材評価装置及び導電性部材評価方法によれば、静電潜像担持体を帯電させる導電性部材の評価を正確に行うことができることが判った。   From the above verification, it was found that the conductive member evaluation apparatus and the conductive member evaluation method according to the present invention can accurately evaluate the conductive member that charges the electrostatic latent image carrier.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の導電性部材評価装置の構成図である。It is a block diagram of the electroconductive member evaluation apparatus of this invention. 図1の導電性部材評価装置の電気的接続関係を示す図である。It is a figure which shows the electrical connection relationship of the electroconductive member evaluation apparatus of FIG. 図1の導電性部材評価装置が備える制御部が実行する評価処理の一例を示すフローチャートである。It is a flowchart which shows an example of the evaluation process which the control part with which the conductive member evaluation apparatus of FIG. 1 is provided. 本発明によって評価される導電性部材である帯電部材の構成と、像担持体の感光層領域、画像領域、及び、非画像領域の位置関係と、を示す図である。FIG. 3 is a diagram illustrating a configuration of a charging member that is a conductive member evaluated according to the present invention and a positional relationship between a photosensitive layer region, an image region, and a non-image region of an image carrier. 本発明によって評価される導電性部材である帯電部材を備えた帯電装置、及び、帯電装置を備えた画像形成装置の構成図である。FIG. 2 is a configuration diagram of a charging device including a charging member that is a conductive member evaluated according to the present invention, and an image forming apparatus including the charging device. 図5の画像形成装置の画像形成部の構成図である。FIG. 6 is a configuration diagram of an image forming unit of the image forming apparatus in FIG. 5. 帯電装置、及び、プロセスカートリッジの構成図である。It is a block diagram of a charging device and a process cartridge. 良好な画像が形成される帯電部材における電圧波形及び電流波形を示す図である。It is a figure which shows the voltage waveform and current waveform in the charging member in which a favorable image is formed. 不良な画像が形成される帯電部材における電圧波形及び電流波形を示す図である。It is a figure which shows the voltage waveform and current waveform in the charging member in which a defective image is formed. 電圧波形、電流波形、及び、電流波形における抵抗成分、容量成分、放電成分の各波形を模式的に示す図である。It is a figure which shows typically each waveform of a resistance component, a capacity | capacitance component, and a discharge component in a voltage waveform, a current waveform, and a current waveform. 電圧と電流との立ち上がり位相差及び立ち下がり位相差を説明する図である。It is a figure explaining the rising phase difference and falling phase difference of a voltage and an electric current. 電圧の周波数と電圧及び電流の位相差との関係を示す図である。It is a figure which shows the relationship between the frequency of a voltage, and the phase difference of a voltage and an electric current. 従来の導電性部材評価装置を模式的に示す図である。It is a figure which shows the conventional conductive member evaluation apparatus typically.

符号の説明Explanation of symbols

1 画像形成装置
61 像担持体、感光体(静電潜像担持体)
101 帯電部材(導電性部材)
103 空隙保持部材
104 電気抵抗調整層
105 表面層
106 導電性支持体、芯軸
200 導電性部材評価装置
202 一対の支持部材(支持手段)
203 駆動部(駆動手段)
204 感光体(被帯電部材)
205 電源部(電圧印加手段)
206 測定部(電流測定手段)
207 制御部(位相差測定手段、評価手段)
V 評価電圧波形
I 評価電流波形
A 評価電流の抵抗成分の波形
B 評価電流の容量成分の波形
C 評価電流の放電成分の波形
α1 立ち上がり位相差
α2 立ち下がり位相差
1 Image forming apparatus 61 Image carrier, photoconductor (electrostatic latent image carrier)
101 Charging member (conductive member)
DESCRIPTION OF SYMBOLS 103 Space | gap holding member 104 Electrical resistance adjustment layer 105 Surface layer 106 Conductive support body, core shaft 200 Conductive member evaluation apparatus 202 A pair of support members (support means)
203 Drive part (drive means)
204 photoconductor (charged member)
205 Power supply (voltage application means)
206 Measuring unit (current measuring means)
207 Control unit (phase difference measuring means, evaluation means)
V Evaluation voltage waveform I Evaluation current waveform A Evaluation current resistance component waveform B Evaluation current capacitance component waveform C Evaluation current discharge component waveform α1 Rising phase difference α2 Falling phase difference

Claims (6)

(a)被帯電部材と、(b)導電性部材の表面の一部箇所を前記被帯電部材の表面の一部箇所と当接又は近接させて、前記導電性部材を支持する支持手段と、(c)互いに当接又は近接された前記被帯電部材の表面の一部箇所と前記導電性部材の表面の一部箇所とが、それぞれの表面を順次移動されるように、前記被帯電部材と前記導電性部材との少なくとも一方を駆動させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材との少なくとも一方が駆動されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置において、
(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定手段と、
(ロ)前記位相差測定手段によって測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価手段と、
が設けられていることを特徴とする導電性部材評価装置。
(A) a member to be charged, and (b) a supporting means for supporting the conductive member by bringing a part of the surface of the conductive member into contact with or close to a part of the surface of the member to be charged. (C) the charged member and the charged member so that a part of the surface of the charged member and a part of the surface of the conductive member which are in contact with or close to each other are sequentially moved on the respective surfaces; Driving means for driving at least one of the conductive member; and (d) when at least one of the member to be charged and the conductive member is driven by the driving means, a DC voltage is applied to the conductive member. Voltage applying means for applying a predetermined evaluation voltage on which an alternating voltage is superimposed; and (e) the charged member and the conductive member when the evaluation voltage is applied to the conductive member by the voltage applying means. Measure the evaluation current flowing through In the conductive member evaluation device including a current measuring unit that, the,
(A) a phase difference measuring means for measuring a phase difference between the evaluation voltage applied by the voltage applying means and the evaluation current measured by the current measuring means;
(B) Evaluation means for evaluating the conductive member based on a phase difference between the evaluation voltage and the evaluation current measured by the phase difference measurement means;
A conductive member evaluation apparatus characterized in that is provided.
(a)回転可能に軸支された円筒状の被帯電部材と、(b)ローラ状の導電性部材の外周面を前記被帯電部材の外周面と当接又は近接させて回転可能に軸支する支持手段と、(c)前記被帯電部材と前記導電性部材とのそれぞれを互いに逆方向に回転させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材とがそれぞれ回転されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置において、
(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定手段と、
(ロ)前記位相差測定手段によって測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価手段と、
が設けられていることを特徴とする導電性部材評価装置。
(A) a cylindrical member to be charged rotatably supported; and (b) a roller-like conductive member that is rotatably supported by bringing the outer peripheral surface of the roller-like conductive member into contact with or close to the outer peripheral surface of the member to be charged. (C) a driving means for rotating the charged member and the conductive member in opposite directions, and (d) the charged member and the conductive member by the driving means, respectively. Voltage application means for applying a predetermined evaluation voltage obtained by superimposing an AC voltage on a DC voltage to the conductive member when rotating; and (e) applying the evaluation voltage to the conductive member by the voltage application means. In a conductive member evaluation apparatus comprising: a current measuring unit that measures an evaluation current flowing through the member to be charged and the conductive member.
(A) a phase difference measuring means for measuring a phase difference between the evaluation voltage applied by the voltage applying means and the evaluation current measured by the current measuring means;
(B) Evaluation means for evaluating the conductive member based on a phase difference between the evaluation voltage and the evaluation current measured by the phase difference measurement means;
A conductive member evaluation apparatus characterized in that is provided.
前記位相差測定手段では、前記評価電圧の中心値において波形が立ち上がる時点と前記評価電流の中心値において波形が立ち上がる時点との位相差、及び、前記評価電圧の中心値において波形が立ち下がる時点と前記評価電流の中心値において波形が立ち下がる時点との位相差、がそれぞれ測定され、そして、
前記評価手段では、前記位相差測定手段によって測定された、前記評価電圧の前記波形が立ち上がる時点と前記評価電流の前記波形が立ち上がる時点との位相差と、前記評価電圧の前記波形が立ち下がる時点と前記評価電流の前記波形が立ち下がる時点との位相差と、の差に基づいて、前記導電性部材が評価される
ことを特徴とする請求項1又は2に記載の導電性部材評価装置。
In the phase difference measuring means, the phase difference between the time when the waveform rises at the central value of the evaluation voltage and the time when the waveform rises at the central value of the evaluation current, and the time when the waveform falls at the central value of the evaluation voltage A phase difference from the time point when the waveform falls at the center value of the evaluation current, respectively, and
In the evaluation means, the phase difference between the time point when the waveform of the evaluation voltage rises and the time point when the waveform of the evaluation current rises, and the time point when the waveform of the evaluation voltage falls, measured by the phase difference measurement means. 3. The conductive member evaluation apparatus according to claim 1, wherein the conductive member is evaluated based on a difference between a phase difference between the waveform and the time point when the waveform of the evaluation current falls. 4.
(a)被帯電部材と、(b)導電性部材の表面の一部箇所を前記被帯電部材の表面の一部箇所と当接又は近接させて、前記導電性部材を支持する支持手段と、(c)互いに当接又は近接された前記被帯電部材の表面の一部箇所と前記導電性部材の表面の一部箇所とが、それぞれの表面を順次移動されるように、前記被帯電部材と前記導電性部材との少なくとも一方を駆動させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材との少なくとも一方が駆動されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置において用いられる導電性部材評価方法であって、
(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定工程と、
(ロ)前記位相差測定工程で測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価工程と、
を順次経て導電性部材を評価することを特徴とする導電性部材評価方法。
(A) a member to be charged, and (b) a supporting means for supporting the conductive member by bringing a part of the surface of the conductive member into contact with or close to a part of the surface of the member to be charged. (C) the charged member and the charged member so that a part of the surface of the charged member and a part of the surface of the conductive member which are in contact with or close to each other are sequentially moved on the respective surfaces; Driving means for driving at least one of the conductive member; and (d) when at least one of the member to be charged and the conductive member is driven by the driving means, a DC voltage is applied to the conductive member. Voltage applying means for applying a predetermined evaluation voltage on which an alternating voltage is superimposed; and (e) the charged member and the conductive member when the evaluation voltage is applied to the conductive member by the voltage applying means. Measure the evaluation current flowing through A conductive member evaluation methods used in the conductive member evaluation device including a current measuring unit that, the,
(A) a phase difference measurement step of measuring a phase difference between the evaluation voltage applied by the voltage application unit and the evaluation current measured by the current measurement unit;
(B) an evaluation step for evaluating the conductive member based on a phase difference between the evaluation voltage and the evaluation current measured in the phase difference measurement step;
The conductive member evaluation method characterized by evaluating a conductive member through these.
(a)回転可能に軸支された円筒状の被帯電部材と、(b)ローラ状の導電性部材の外周面を前記被帯電部材の外周面と当接又は近接させて回転可能に軸支する支持手段と、(c)前記被帯電部材と前記導電性部材とのそれぞれを互いに逆方向に回転させる駆動手段と、(d)前記駆動手段によって前記被帯電部材と前記導電性部材とがそれぞれ回転されているとき、前記導電性部材に直流電圧に交流電圧を重畳させた所定の評価電圧を印加する電圧印加手段と、(e)前記電圧印加手段によって前記導電性部材に前記評価電圧が印加されているとき、前記被帯電部材と前記導電性部材とに流れる評価電流を測定する電流測定手段と、を備えた導電性部材評価装置で用いられる導電性部材評価方法であって、
(イ)前記電圧印加手段によって印加された前記評価電圧と前記電流測定手段によって測定された前記評価電流との位相差を測定する位相差測定工程と、
(ロ)前記位相差測定工程で測定された前記評価電圧と前記評価電流との位相差に基づいて前記導電性部材を評価する評価工程と、
を順次経て導電性部材を評価することを特徴とする導電性部材評価方法。
(A) a cylindrical member to be charged rotatably supported; and (b) a roller-like conductive member that is rotatably supported by bringing the outer peripheral surface of the roller-like conductive member into contact with or close to the outer peripheral surface of the member to be charged. (C) a driving means for rotating the charged member and the conductive member in opposite directions, and (d) the charged member and the conductive member by the driving means, respectively. Voltage application means for applying a predetermined evaluation voltage obtained by superimposing an AC voltage on a DC voltage to the conductive member when rotating; and (e) applying the evaluation voltage to the conductive member by the voltage application means. A current measuring means for measuring an evaluation current flowing through the member to be charged and the conductive member, and a conductive member evaluation method used in a conductive member evaluation apparatus comprising:
(A) a phase difference measurement step of measuring a phase difference between the evaluation voltage applied by the voltage application unit and the evaluation current measured by the current measurement unit;
(B) an evaluation step for evaluating the conductive member based on a phase difference between the evaluation voltage and the evaluation current measured in the phase difference measurement step;
The conductive member evaluation method characterized by evaluating a conductive member through these.
前記位相差測定工程では、前記評価電圧の中心値において波形が立ち上がる時点と前記評価電流の中心値において波形が立ち上がる時点との位相差、及び、前記評価電圧の中心値において波形が立ち下がる時点と前記評価電流の中心値において波形が立ち下がる時点との位相差、がそれぞれ測定され、そして、
前記評価工程では、前記位相差測定工程で測定された、前記評価電圧の前記波形が立ち上がる時点と前記評価電流の前記波形が立ち上がる時点との位相差と、前記評価電圧の前記波形が立ち下がる時点と前記評価電流の前記波形が立ち下がる時点との位相差と、の差に基づいて、前記導電性部材が評価される
ことを特徴とする請求項4又は5に記載の導電性部材評価方法。
In the phase difference measuring step, the phase difference between the time when the waveform rises at the central value of the evaluation voltage and the time when the waveform rises at the central value of the evaluation current, and the time when the waveform falls at the central value of the evaluation voltage A phase difference from the time point when the waveform falls at the center value of the evaluation current, respectively, and
In the evaluation step, the phase difference between the time point when the waveform of the evaluation voltage rises and the time point when the waveform of the evaluation current rises, and the time point when the waveform of the evaluation voltage falls, measured in the phase difference measurement step 6. The conductive member evaluation method according to claim 4, wherein the conductive member is evaluated based on a difference between a phase difference between the waveform and the time point when the waveform of the evaluation current falls.
JP2008236368A 2008-09-16 2008-09-16 Conductive member evaluation device and conductive member evaluation method Withdrawn JP2010072056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236368A JP2010072056A (en) 2008-09-16 2008-09-16 Conductive member evaluation device and conductive member evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008236368A JP2010072056A (en) 2008-09-16 2008-09-16 Conductive member evaluation device and conductive member evaluation method

Publications (1)

Publication Number Publication Date
JP2010072056A true JP2010072056A (en) 2010-04-02

Family

ID=42203941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236368A Withdrawn JP2010072056A (en) 2008-09-16 2008-09-16 Conductive member evaluation device and conductive member evaluation method

Country Status (1)

Country Link
JP (1) JP2010072056A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062208A1 (en) * 2010-09-14 2012-03-15 Ricoh Company, Ltd. Conductive member evaluator and conductive member evaluation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062208A1 (en) * 2010-09-14 2012-03-15 Ricoh Company, Ltd. Conductive member evaluator and conductive member evaluation method
JP2012063389A (en) * 2010-09-14 2012-03-29 Ricoh Co Ltd Conductive member evaluation device and conductive member evaluation method
US8912784B2 (en) 2010-09-14 2014-12-16 Ricoh Company, Ltd. Conductive member evaluator and conductive member evaluation method

Similar Documents

Publication Publication Date Title
JP5162864B2 (en) Conductive member, process cartridge, and image forming apparatus
JP4459998B2 (en) Conductive member, process cartridge using the conductive member, and image forming apparatus using the process cartridge
JP5163079B2 (en) Conductive member, process cartridge using the conductive member, and image forming apparatus using the process cartridge
JP2007193110A (en) Conductive member, process cartridge having the same and image forming apparatus having the process cartridge
JP5277709B2 (en) Charging member, charging device having the charging member, process cartridge having the charging device, and image forming apparatus having the process cartridge
JP5239135B2 (en) Conductive member, process cartridge, and image forming apparatus
JP5118366B2 (en) Conductive member, process cartridge using the conductive member, and image forming apparatus using the process cartridge
JP5585331B2 (en) Conductive member evaluation apparatus and conductive member evaluation method
JP2014098851A (en) Conductive member, process cartridge, and image forming apparatus
US8385780B2 (en) Charging member, charging device including the charging member, process cartridge including the charging device and image forming apparatus including the process cartridge
JP4809286B2 (en) Conductive member, process cartridge having the same, and image forming apparatus having the process cartridge
US7693455B2 (en) Conductive member, process cartridge having conductive member, and image forming apparatus having process cartridge
JP2009300899A (en) Evaluation method for conductive member, conductive member, process cartridge, and image forming apparatus
JP5499898B2 (en) Charging member, process cartridge, and image forming apparatus
JP2010072056A (en) Conductive member evaluation device and conductive member evaluation method
JP2011028052A (en) Conductive member, process cartridge having the same, and image forming apparatus having the process cartridge
JP2009134106A (en) Charging device, process cartridge and image forming apparatus
JP2009199027A (en) Charging device, process cartridge having the same, and image forming apparatus having the process cartridge
JP2008015032A (en) Conductive member, process cartridge and image forming apparatus
JP2011128448A (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP2010008799A (en) Charging unit, process cartridge, and image forming device
JP2004264724A (en) Charging member and image forming apparatus
JP2008233267A (en) Image forming device and process cartridge
JP2009294595A (en) Electrifying device and process cartridge having the same, and image forming apparatus having electrifying device or process cartridge

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206