[go: up one dir, main page]

JP2010063247A - Working state monitoring controller and circuit breaker - Google Patents

Working state monitoring controller and circuit breaker Download PDF

Info

Publication number
JP2010063247A
JP2010063247A JP2008225361A JP2008225361A JP2010063247A JP 2010063247 A JP2010063247 A JP 2010063247A JP 2008225361 A JP2008225361 A JP 2008225361A JP 2008225361 A JP2008225361 A JP 2008225361A JP 2010063247 A JP2010063247 A JP 2010063247A
Authority
JP
Japan
Prior art keywords
work
current
detecting means
detected
electric circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225361A
Other languages
Japanese (ja)
Inventor
Masao Imamoto
正夫 今本
Shigeru Aihara
茂 相原
Tadataka Hayashi
忠孝 林
Tetsuo Furumoto
哲男 古本
Kenji Ando
賢二 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tempearl Industrial Co Ltd
Original Assignee
Tempearl Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tempearl Industrial Co Ltd filed Critical Tempearl Industrial Co Ltd
Priority to JP2008225361A priority Critical patent/JP2010063247A/en
Publication of JP2010063247A publication Critical patent/JP2010063247A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/14Protecting elements, switches, relays or circuit breakers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Landscapes

  • Breakers (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a working state monitoring controller and a circuit breaker which stop power supply to an electric circuit automatically when a decision is made that a construction work using an electrical device for work has ended and no work is done in a construction site, or the like. <P>SOLUTION: A working state monitoring controller includes: an apparatus use state detection means for detecting a use state of an electrical device for work which is connected to an electric circuit and used and outputting a signal according to the use state of the electrical device for work; a decision means for deciding whether a work using an electrical device for work has ended or not based on a signal output from the apparatus use state detection means and outputting a signal when a decision is made that the work has ended; and an output circuit which is driven based on a signal output from the decision means and delivering the output signal to the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,電路に接続されて使用される作業用電気機器などの通電状態を監視し,該作業用電気機器の通電状態に応じて電路への電力供給を自動的に遮断制御する装置及び回路遮断器に関する。 The present invention relates to an apparatus and a circuit for monitoring an energization state of a working electric device or the like used by being connected to an electric circuit, and automatically cutting off and controlling power supply to the electric circuit according to the energization state of the working electric device. Regarding circuit breakers.

建設現場などで,作業の進行状況に応じて,一定の期間,電力の使用が必要となるような場所では,作業用電気機器への電源供給のために,仮設用分電盤を設置して工事作業を行っている。 Temporary distribution boards are installed at construction sites, etc., where power usage is required for a certain period of time, depending on the progress of work, to supply power to the work electrical equipment. We are doing construction work.

このような仮設用分電盤としては,例えば特許文献1に開示されたような分電盤が使用される。仮設用分電盤は,その外郭をなす筐体内に,主開閉器と該主開閉器の負荷側に接続された分岐開閉器とを備えて構成される。そして,前記筐体内の主開閉器には分電盤の一次側電路を構成する電線を引き込み接続するとともに,分岐開閉器には分電盤の二次側電路を構成する電線を引き込み接続して,前記作業用電気機器への電源供給を行うよう用いられる。
特開2001−157328号 図1
As such a temporary distribution board, for example, a distribution board as disclosed in Patent Document 1 is used. The temporary distribution board includes a main switch and a branch switch connected to the load side of the main switch in a casing that forms an outer shell. The main switch in the housing is connected by drawing in the wire constituting the primary circuit of the distribution board, and the branch switch is connected by drawing in the cable constituting the secondary circuit of the distribution board. , Used to supply power to the working electrical equipment.
Japanese Patent Laid-Open No. 2001-157328 FIG.

前述したような仮設用分電盤の使用形態としては,日毎の始業時に主開閉器および分岐開閉器をON操作し,終業時にOFF操作して用いられることが多い。 As described above, the temporary distribution board is often used by turning on the main switch and branch switch at the start of each day and turning off at the end of work.

しかしながら,建設現場などでは,土木工事,建築工事,配管工事など様々な業種の作業者が多数出入りして工事を進めることが一般的であり,前記仮設用分電盤に設けられる主開閉器ならびに分岐開閉器のON操作もしくはOFF操作は,個々の業者や作業員がそれぞれ必要に応じて行うことが常である。 However, at construction sites, etc., it is common for a large number of workers in various industries, such as civil engineering work, building work, and plumbing work to enter and exit the work, and the main switch installed in the temporary distribution board and The ON / OFF operation of the branch switch is usually performed by each contractor or worker as necessary.

そして,日毎の作業の終業時に,誰が責任を持って開閉器をOFFするのかは,その時々の作業の進捗具合や出入りする作業者でまちまちであり,終業後も開閉器がOFF操作されず,開閉器を切り忘れた場合には翌日の作業開始まで作業用電気機器に電力が供給され続けている事例が見受けられる。 And at the end of each day's work, who is responsible for turning off the switch depends on the progress of the work at that time and the workers entering and leaving, and the switch is not turned off even after the end of work. In the case of forgetting to turn off the switch, there are cases where power is continuously supplied to the working electrical equipment until the next day's work starts.

さて,このように作業の終了後も開閉器がOFF操作されず,電源が電路に供給され続けた場合,次のような不都合がある。 When the switch is not turned off even after the work is completed in this way and the power continues to be supplied to the electric circuit, there are the following disadvantages.

第一に余分なエネルギーが消費されることに伴い環境面での問題がある。 First, there is an environmental problem as extra energy is consumed.

例えば,工事作業現場等で溶接の為に用いられる交流アーク溶接機の使用時の消費電力は,出力にもよるが,約1kWから数kW程度であり,待機電力は,1台当たり200W〜300W程度である。 For example, the power consumption when using an AC arc welding machine used for welding at a construction work site is about 1 kW to several kW, depending on the output, and standby power is 200 W to 300 W per unit. Degree.

即ち,溶接機に電源の供給が続けられている限り,待機電力だけで1台当り数百ワットもの余分な電力を消費し続けることとなり,COの排出など,環境負荷が高くなるという課題がある。 In other words, as long as power is continuously supplied to the welding machine, the standby power alone will continue to consume hundreds of watts of extra power, resulting in a high environmental load such as CO 2 emissions. is there.

仮に,終業時(17:00)から翌朝の始業時(8:00)まで,夜間15時間の待機電力量は,200W×15h=3kWhとなる。1月では,3kWh×30日=90kWhとなり,1年では,90kWh×12カ月=1080kWhとなる。これは,「地球温暖化対策の推進に関する法律施行令」によれば,二酸化炭素に換算すれば,1カ月で約50kgの二酸化炭素の量に相当し,1年では約600kgもの二酸化炭素に相当する量となる。 Temporarily, the standby electric energy for 15 hours at night from the end of work (17:00) to the start of the next morning (8:00) is 200 W × 15 h = 3 kWh. In January, 3 kWh × 30 days = 90 kWh, and in 1 year, 90 kWh × 12 months = 1080 kWh. According to the “Enforcement Ordinance on Promotion of Global Warming Countermeasures”, this is equivalent to about 50 kg of carbon dioxide in one month and equivalent to about 600 kg of carbon dioxide in one year when converted to carbon dioxide. The amount to be.

第二に安全上の問題がある。 Second, there are safety issues.

仮設現場における電路は移動用の電線や機器がほとんどで,電気・機械的な保護が他の設備に比べて十分でない場合が多い。そのような電路で,且つ無人の状態で電気供給が継続されていると,短絡や漏電などの事故が起こった際,発見が遅れ,火災に至る危険性がある。 Electrical circuits at temporary sites are mostly electric wires and equipment for movement, and electrical and mechanical protection is often insufficient compared to other facilities. If electricity supply is continued in such an electric circuit and in an unattended state, there is a risk that a discovery will be delayed and a fire may occur if an accident such as a short circuit or a leakage occurs.

また,始業時に機器の配線替えなどを行う場合,前日に仮設用分電盤の開閉器がOFFされているものと勘違いして,充電部に直接触れてしまい,感電し人身災害に至る場合もある。このようなことから,工事作業現場では作業の終了後は開閉器がOFFされていることが望ましい。 In addition, when changing the wiring of equipment at the start of work, it may be mistaken that the switchboard of the temporary distribution board is turned off the previous day, and the live parts may be touched directly, resulting in electric shock and personal injury. is there. For this reason, it is desirable that the switch is turned off after the work is completed at the construction work site.

そこで,本件の発明の目的とするところは,建設現場などで作業用電気機器を用いた工事作業が終了し,作業が行われていないと判断された場合は,自動的に電路への電源供給を停止する作業状態態監視制御装置ならびに回路遮断器を提供することである。 Therefore, the object of the present invention is to automatically supply power to the electric circuit when it is determined that the construction work using the working electrical equipment is completed at the construction site or the like and the work is not performed. Is to provide a work state monitoring and control device and a circuit breaker.

上記の課題を解決するため,本件発明の請求項1では,
電路に接続されて使用される作業用電気機器の使用状態を検出し,該作業用電気機器の使用状態に応じて信号を出力する機器使用状態検出手段と,
前記機器使用状態検出手段から出力された信号に基づいて,作業用電気機器を用いた作業が終了したか否かを判定し作業が終了したと判定した場合には信号を出力する判定手段と,
前記判定手段から出力された信号に基づいて駆動し,外部に出力信号を出力する出力回路とを備えたことを特徴として作業状態監視制御装置を提供した。
In order to solve the above problems, in claim 1 of the present invention,
A device usage state detecting means for detecting a usage state of a working electrical device connected to an electric circuit and outputting a signal according to the usage state of the working electrical device;
A determination means for determining whether or not the work using the work electrical equipment has been completed based on the signal output from the equipment use state detection means, and for determining that the work has been completed;
According to the present invention, there is provided a work state monitoring and control device including an output circuit that is driven based on a signal output from the determination unit and outputs an output signal to the outside.

これにより,工事作業が終了し,作業が行われていないことを的確に判定することができるため,出力回路からの出力信号に基づいて適切な制御を行うことができ,余分なエネルギーが消費されることに伴う環境面での問題が解消できるとともに,安全上の問題も解消することができる。 As a result, it is possible to accurately determine that the construction work has been completed and the work has not been performed. Therefore, appropriate control can be performed based on the output signal from the output circuit, and excess energy is consumed. In addition to solving environmental problems associated with this, safety problems can also be solved.

また,前記作業状態監視制御装置から出力された信号に基づいて動作する引外し手段と,
該引外し手段が作用することにより駆動し接続された電路を開状態とするとともに操作ハンドルを操作することにより電路を開閉する接点開閉機構部と,
を備えたことを特徴として回路遮断器を提供してもよい。
A tripping means that operates based on a signal output from the work state monitoring and control device;
A contact opening / closing mechanism for opening and closing the electric circuit driven and operated by the tripping means and operating the operation handle;
A circuit breaker may be provided as a feature.

これにより,出力回路からの出力信号に基づいて,引外し手段を駆動させることにより,接点開閉機構が電路を切り状態とし,作業の終了後に電力が電路に供給され続けるようなことがなく,余分なエネルギーが消費されることに伴う環境面での問題が解消できるとともに,安全上の問題も解消することができる。 As a result, the tripping means is driven based on the output signal from the output circuit, so that the contact switching mechanism does not cut off the electric circuit and power is not continuously supplied to the electric circuit after the work is completed. As well as solving environmental problems associated with the consumption of energy, safety issues can also be solved.

また,前記機器使用状態検出手段は,電路に流れる電流ならびに電圧を検出する検出手段であって,該検出手段により検出された検出電流ならびに検出電圧から求められる電力値が,予め定められた閾値以下であれば作業が終了したと判断することを特徴として作業状態監視制御装置又は回路遮断器を提供してもよい。 The device usage state detecting means is a detecting means for detecting a current and a voltage flowing in the electric circuit, and a power value obtained from the detected current and the detected voltage detected by the detecting means is less than a predetermined threshold value. If so, a work state monitoring control device or a circuit breaker may be provided, which is characterized in that it is determined that the work is finished.

これにより,電流の検出は簡易な方法で行えつつ,電力値を用いて判定を行うことにより,無効電流の影響を受けずに検出値と閾値の比較判定が行え,前記閾値を適宜定めることにより,種々の作業現場毎で異なる作業用電気機器の消費電流状態に応じた対応が可能となり,該閾値と検出電力との比較演算を行うことで,作業終了時における作業用電気機器を使用しない場合の電流状態を適切に把握することができる。 As a result, the current can be detected by a simple method, and the determination using the power value makes it possible to make a comparison between the detected value and the threshold without being affected by the reactive current, and by appropriately determining the threshold. , It is possible to respond to the current consumption state of the work electrical equipment that differs at various work sites, and when the work electrical equipment at the end of the work is not used by performing a comparison calculation of the threshold value and the detected power The current state can be properly grasped.

また,前記機器使用状態検出手段は,電路に流れる電流ならびに電圧を検出する検出手段であって,
該検出手段により検出された検出電流ならびに検出電圧から求められる電力値に対して,
所定時間毎にサンプリングされた電流データを経時的に比較し,
比較した結果の変化幅データが,予め定められた閾値以下であれば作業が終了したと判断することを特徴として作業状態監視制御装置又は回路遮断器を提供してもよい。
The device usage state detection means is a detection means for detecting current and voltage flowing in the electric circuit,
For the power value obtained from the detected current and the detected voltage detected by the detecting means,
Compare the current data sampled every predetermined time with time,
If the change width data as a result of the comparison is equal to or less than a predetermined threshold value, it may be determined that the work is finished, and a work state monitoring control device or a circuit breaker may be provided.

これにより,電流の検出は簡易な方法で行えつつ,電力値の変化分に基づいて判定を行うことができるから,前記閾値を適宜定めることにより,種々の作業現場毎で異なる作業用電気機器の消費電流状態に応じた対応が可能となり,作業用電気機器の動作状態と待機状態とで変化する電力の大きさの変化幅を捉えて比較演算を行うことで,作業終了時における作業用電気機器を使用しない場合の電力状態を適切に把握することができる。 As a result, the current can be detected by a simple method, and the determination can be made based on the change in the power value. Therefore, by appropriately setting the threshold value, it is possible to detect different working electric devices at various work sites. It is possible to respond according to the current consumption state, and by comparing and calculating the amount of change in the magnitude of power that changes between the operating state and the standby state of the working electrical device, the working electrical device at the end of the work It is possible to appropriately grasp the power state when not using the.

また,前記機器使用状態検出手段は,電路に流れる電流を検出する検出手段であって,
該検出手段により検出された検出電流に対して,
所定時間毎にサンプリングされた電流データに基づいて,
電流波形の様相をパラメータ化し,
該パラメータを経時的に比較した結果の変化値データが,
予め定められた閾値以下であれば作業が終了したと判断することを特徴として作業状態監視制御装置又は回路遮断器を提供してもよい。
The device usage state detection means is detection means for detecting a current flowing in the electric circuit,
For the detected current detected by the detecting means,
Based on current data sampled every predetermined time,
Parameterize the aspect of the current waveform,
Change value data as a result of comparing the parameters over time is:
A work state monitoring control device or a circuit breaker may be provided, characterized in that it is determined that the work is completed if it is equal to or less than a predetermined threshold.

これにより,作業用電気機器の使用時と待機時それぞれにおける消費電力や消費電流の差の大きさの大小に係わらず,常に,作業用電気機器が使用中であるか,そうでないのかを,的確に求めることができる作業状態監視制御装置又は回路遮断器を提供することができる。 As a result, regardless of the magnitude of the difference in power consumption or current consumption during use and standby of the work electrical equipment, it is always possible to accurately determine whether the work electrical equipment is in use or not. It is possible to provide a work state monitoring control device or a circuit breaker that can be obtained.

本件の発明によれば,建設現場などにおいて,電路に接続されて使用される作業用電気機器を用いた作業の終了後には自動的に作業用電気機器への電源供給を停止することができ,余分なエネルギーが消費されることに伴う環境面での問題,ならびに,安全上の問題を解消することかできる作業状態監視制御装置又は回路遮断器を提供することができる。 According to the present invention, the power supply to the work electrical device can be automatically stopped after the work using the work electrical device connected to the electric circuit is completed at a construction site or the like. It is possible to provide a work state monitoring and control device or a circuit breaker that can solve environmental problems caused by consumption of excess energy and safety problems.

次に本件発明を図面により詳細に説明する。図1は本発明の作業状態監視制御装置の一実施例である。図1において1,2,3は単相3線式,三相3線式などの電路である。4は接点装置で,9の接点開離手段の作用により,電路を遮断するものである。接点装置としては,電磁接触器や遮断器を用いるとよい。5は検出手段で,電路に流れる電流並びに電圧を検出し,検出信号を判定手段6へ入力する。6は判定手段で検出手段5から出力される信号を受けて所定の手順に基づいて,作業用電気機器を使用した作業が終了したかどうかを判定する。作業が終了していると判定すれば8の出力回路から9の接点開離手段を駆動して電路への電源の供給を停止する。 Next, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of a work state monitoring control apparatus of the present invention. In FIG. 1, 1, 2 and 3 are electric circuits such as a single-phase three-wire system and a three-phase three-wire system. Reference numeral 4 denotes a contact device, which cuts off the electric circuit by the action of contact release means 9. An electromagnetic contactor or circuit breaker may be used as the contact device. Reference numeral 5 denotes detection means for detecting current and voltage flowing in the electric circuit and inputting a detection signal to the determination means 6. 6 is a determination means that receives the signal output from the detection means 5 and determines whether or not the work using the work electrical equipment has been completed based on a predetermined procedure. If it is determined that the work has been completed, the nine contact breaking means are driven from the eight output circuits to stop the supply of power to the electric circuit.

次に,前述の判定手段6で行われる第一の判定方法について説明する。第一の判定方法は,電路に接続された作業用電気機器の使用に伴う電力を求め,求めた電力の大きさと,予め定めた閾値とを比較演算することにより,該電力が閾値以上に使用されていれば,作業用電気機器を用いた工事作業が行なわれていると判断するものである。 Next, the first determination method performed by the above-described determination means 6 will be described. The first determination method is to determine the power associated with the use of the working electrical equipment connected to the power circuit, and compare the calculated power level with a predetermined threshold value so that the power is used above the threshold value. If so, it is determined that construction work using the working electrical equipment is being performed.

この第一の判定方法を図1を用いて説明する。図1において5は電力の検出手段である。電力の検出手段5は,電流検出手段51と電圧検出手段52で構成され,検出電流ならびに検出電圧に基づいた信号を出力する。電流検出手段51としては,変流器やシャント抵抗などを用いて構成するとよい。また,電圧検出手段52としては電圧センサなどを用いて構成するとよい。単相2線式のときは,2本のうち一線に,単相3線式のときは,電源側の2線に,三相3線式のときは,UVWのうち2本の線の電流を検出するように配置する。 This first determination method will be described with reference to FIG. In FIG. 1, reference numeral 5 denotes power detection means. The power detection means 5 includes a current detection means 51 and a voltage detection means 52, and outputs a signal based on the detection current and the detection voltage. The current detection means 51 may be configured using a current transformer or a shunt resistor. The voltage detection means 52 may be configured using a voltage sensor or the like. For single-phase two-wire system, the current of one of the two lines, for single-phase three-wire system, the power supply side two-wire, for three-phase three-wire system, the current of two lines of UVW Arrange to detect.

判定手段6は,マイコンを用いて構成している。検出手段5で検出した電流に基づく信号と電圧に基づく信号を受けて,電力を演算により求めて,該電力が予め閾値設定手段61により定められた閾値以下かどうかを判定し,閾値以上になるとタイマー62がリセットする。 The determination means 6 is configured using a microcomputer. Receiving a signal based on the current detected by the detection means 5 and a signal based on the voltage, the power is obtained by calculation, and it is determined whether or not the power is less than or equal to a threshold value determined in advance by the threshold setting means 61. The timer 62 is reset.

検出した電流/電圧信号は,作業用電気機器の使用以外にも,電圧変動やノイズなどにより,経時的にその大きさが細かく変動する。このため,作業用電気機器を用いた工事作業を行っているか否かをより正確に判定するため,検出した電流/電圧信号において,1波毎に判定処理をさせるのではなく,ある程度の時間幅を一区切りとして,その間の電力の大きさを平均化して不用な変動による誤判定を回避するように構成している。 The detected current / voltage signal fluctuates over time due to voltage fluctuations, noise, etc., in addition to the use of electrical equipment for work. For this reason, in order to more accurately determine whether or not the construction work using the work electrical equipment is being performed, the detected current / voltage signal is not subjected to the determination process for each wave, but to some extent. Are divided into one section, and the magnitude of the electric power between them is averaged to avoid misjudgment due to unnecessary fluctuations.

より詳しくは,商用周波数の10波毎に電力の平均値を前記判定手段621で演算して求め,その平均値が予め閾値設定手段61により定められた閾値以下かどうかを判定し,閾値以上になるとタイマー62がリセットするように構成している。本実施例では,商用周波数である50Hzと60Hzの公倍数を整数で除して得られた一区切りの時間としているが,この他,不用な変動による誤判定を回避できる時間幅を適宜定めてもよい。 More specifically, an average value of power is calculated by the determination means 621 for every 10 waves of the commercial frequency, and it is determined whether or not the average value is less than or equal to a threshold value determined in advance by the threshold setting means 61. Then, the timer 62 is configured to be reset. In this embodiment, the time is obtained by dividing the common multiple of 50 Hz and 60 Hz, which are commercial frequencies, by an integer, but in addition to this, a time width capable of avoiding erroneous determination due to unnecessary fluctuations may be appropriately determined. .

タイマーのカウントアップ時間は,切替スイッチにより,30分とか1時間程度に設定し,電力が閾値以下の状態がカウントアップ時間継続すれば作業が終了したと判定し,8の出力回路を駆動させて接点9を開路する。 The count-up time of the timer is set to about 30 minutes or 1 hour with the changeover switch. If the state where the power is below the threshold value continues for the count-up time, it is determined that the work is finished, and the output circuit of 8 is driven. The contact 9 is opened.

電力が零かそうでないかでなく閾値を設けたのは,負荷を接続していなくても電路と大地間の静電容量による暗電流が流れることや,機器の切り忘れによる待機電流があることを考慮したものである。現場の状況に応じて閾値を切り替えられるようにするとよい。 The threshold is set whether the power is zero or not because the dark current due to the capacitance between the circuit and the ground flows even when no load is connected, and there is a standby current due to forgetting to switch off the equipment. It is taken into consideration. It is preferable that the threshold can be switched according to the situation at the site.

この閾値としては,切替スイッチなどを用いて,例えば,0.5kW,1kW,1.5kW,2kW,2.5kW,3kwなど,0.5kW刻みで,種々の工事現場で想定しうる電力値に切替設定できるようにするとよい。なお,切替スイッチではなく,閾値の値を連続的に変更できる無段階スイッチを用いて構成してもよい。 As this threshold value, by using a changeover switch or the like, for example, 0.5 kW, 1 kW, 1.5 kW, 2 kW, 2.5 kW, 3 kW, etc., in increments of 0.5 kW, the power values that can be assumed at various construction sites are obtained. It is better to be able to switch settings. In addition, you may comprise using the stepless switch which can change the value of a threshold value continuously instead of a changeover switch.

なお,単相3線式や,三相3線式では,3線のうち2線に設置した電流検出手段である変流器やシャント抵抗など,2つの電流検出素子の出力について,それぞれの出力について個別に処理を行い,どちらかの出力が閾値を下回った場合に作業が行われていないと判定するよう構成してもよいし,それぞれの出力を合算しその合計が,閾値を下回った場合に作業が行われていないと判定するよう構成してもよい。 In the single-phase three-wire system and the three-phase three-wire system, the outputs of the two current detection elements such as current transformers and shunt resistors, which are current detection means installed in two of the three wires, are respectively output. It may be configured so that it is determined that no work is performed when either output falls below the threshold, or when the sum of the outputs falls below the threshold It may be configured to determine that no work is performed.

また,判定方法として,電力を用いる以外の方法として,検出した電流の大きさと閾値とを比較演算する方法としてもよい。作業用電気機器が,例えば工事作業によく用いられる交流アーク溶接機のような場合,待機時の電流は無効電流を含めると約10A〜20Aであり,溶接時の電流約30A〜40Aに比べて待機時の電流の割合が多い。このため,待機時と溶接作業時における電流の差が相対的に少なくなるが,閾値を現場の状況に応じて適切となるように合わせることにより,電力を演算することなく検出できる。 Further, as a determination method, a method of comparing and calculating the magnitude of the detected current and the threshold may be used as a method other than using power. When the working electrical equipment is, for example, an AC arc welding machine often used for construction work, the standby current is about 10 A to 20 A including the reactive current, which is compared with the welding current of about 30 A to 40 A. High percentage of current during standby. For this reason, the difference in current between the standby state and the welding operation is relatively small, but it is possible to detect without calculating the electric power by adjusting the threshold so as to be appropriate according to the situation at the site.

ただ,第一の方法のように,電力を求めて,閾値と比較する方法であれば,交流アーク溶接機の場合においても,該溶接機の待機時の電力は約200W程度であるのに対し,溶接時の電力は2kW程度にもなるから,閾値の設定の厳密さが緩和され,作業が行われている/いないという状態の判定を,閾値の厳密より正確に行うことができる。 However, as in the case of the first method, if the power is obtained and compared with the threshold value, even in the case of an AC arc welder, the standby power of the welder is about 200 W. Since the welding power is about 2 kW, the strictness of the threshold setting is relaxed, and the state of whether work is being performed or not can be determined more accurately than the strictness of the threshold.

次に,前述の判定手段6で行われる第二の判定方法について説明する。第二の判定方法は,前述の第一の判定方法と同じく電力の検出を行うが,検出した電力の大きさの経時的な変動分に基づいて判定を行う方法である。 Next, the second determination method performed by the above-described determination means 6 will be described. The second determination method is a method in which power is detected in the same manner as the first determination method described above, but the determination is made based on the variation over time of the magnitude of the detected power.

この場合も,構成は基本的に第一の判定方法と同じである。図1に示したように,電力の検出手段5は,電流検出手段51と電圧検出手段52で構成され,検出電流ならびに検出電圧に基づいた信号を出力する。電流検出手段51としては,変流器やシャント抵抗などを用いて構成するとよい。また,電圧検出手段52としては電圧センサなどを用いて構成するとよい。 Also in this case, the configuration is basically the same as the first determination method. As shown in FIG. 1, the power detection means 5 includes a current detection means 51 and a voltage detection means 52, and outputs a signal based on the detection current and the detection voltage. The current detection means 51 may be configured using a current transformer or a shunt resistor. The voltage detection means 52 may be configured using a voltage sensor or the like.

判定手段6は,マイコンを用いて構成している。検出手段5で検出した電流に基づく信号と電圧に基づく信号を受けて,電力を演算により求め,その際に,所定時間の間にサンプリングされた電流データならびに電圧データをひとつのユニットデータとして扱い,経時的に得られる前記ユニットデータ毎に求められる電力の大きさを比較し,比較した結果の電力の大きさの変化幅データ(変動分)が,閾値設定手段61により予め定められた閾値以下であれば作業が行われていないと判断するものである。 The determination means 6 is configured using a microcomputer. By receiving a signal based on the current detected by the detection means 5 and a signal based on the voltage, the power is obtained by calculation. At that time, the current data and voltage data sampled during a predetermined time are treated as one unit data, The magnitudes of electric power required for each unit data obtained over time are compared, and the change width data (variation) of the magnitude of electric power as a result of the comparison is less than or equal to a threshold predetermined by the threshold setting means 61. If there is, work is determined not to be performed.

検出した電流/電圧信号は,作業用電気機器の使用以外にも,電圧変動やノイズなどにより,経時的にその大きさが細かく変動する。このため,作業用電気機器を用いた工事作業を行っているか否かをより正確に判定するため,検出した電流/電圧信号において,1波毎に判定処理をさせるのではなく,ある程度の時間幅を一区切りとして,その間の電力の大きさを平均化して不用な変動による誤判定を回避するように構成している。 The detected current / voltage signal fluctuates over time due to voltage fluctuations, noise, etc., in addition to the use of electrical equipment for work. For this reason, in order to more accurately determine whether or not the construction work using the work electrical equipment is being performed, the detected current / voltage signal is not subjected to the determination process for each wave, but to some extent. Are divided into one section, and the magnitude of the electric power between them is averaged to avoid misjudgment due to unnecessary fluctuations.

より詳しくは,商用周波数の10波毎に電力の平均値を前記判定手段6で演算して求め,その平均値が予め閾値設定手段61により定められた閾値以下かどうかを判定し,閾値以上になるとタイマー62がリセットするように構成している。 More specifically, an average value of power is calculated by the determination means 6 for every 10 waves of the commercial frequency, and it is determined whether or not the average value is less than or equal to a threshold value determined in advance by the threshold setting means 61. Then, the timer 62 is configured to be reset.

なお,タイマー62の動作は第一の方法と同じく,求めた電力の大きさの変化幅データが,前記閾値を下回った場合には,タイマー62のカウントを開始し,電力の大きさの変化幅データが前記閾値を超えた場合には,タイマー62のカウントをリセットする。 The operation of the timer 62 is the same as in the first method. When the obtained change amount data of the power level falls below the threshold value, the timer 62 starts counting, and the change level of the power level is started. If the data exceeds the threshold, the timer 62 count is reset.

また,本実施例では,10波毎を一区切りとして平均化して比較の演算を行っているが,例えば1秒毎を一区切りとして,より,時間幅を大きくして平均化して比較の演算を行ってもよい。 Further, in this embodiment, every 10 waves are averaged as one break, and the comparison calculation is performed. For example, every 1 second is divided into one break, and the comparison is performed by averaging with a larger time width. Also good.

第二の判定方法が,第一の方法と異なる点は,図の判定手段6が,判定の際に,前記ユニットデータ毎の電力の大きさを経時的に比較し,比較した結果の電力の大きさの差分を変化幅データとして,該変化幅データを判定材料とする点と,該変化幅データと予め設定された閾値と演算により比較する点である。なお,前記変化幅データが閾値を超えた場合はタイマー622をカウントをリセットし,継続して変化幅データと閾値の比較演算を行う。 The difference between the second determination method and the first method is that the determination means 6 in the figure compares the magnitude of the power for each unit data over time at the time of determination, The difference is that the difference in size is used as change width data, and the change width data is used as a determination material, and the change width data is compared with a preset threshold value by calculation. When the change width data exceeds the threshold value, the timer 622 is reset to count, and the change width data and the threshold value are continuously compared.

さて,第一の判定方法によって判定を正しく行うためには,予め定めておく閾値の設定値が重要となる。即ち,作業現場で使用する作業用電気機器の台数や,種類,そして,消費電流の大きさ,待機電流の状態を想定して,閾値をこまめに調整しながら,適切な閾値を設定する必要がある。 In order to correctly perform the determination by the first determination method, a preset threshold value is important. In other words, it is necessary to set an appropriate threshold value while frequently adjusting the threshold value, assuming the number and types of work electrical equipment used at the work site, the current consumption, and the standby current state. is there.

例えば,建設現場などで多用される交流アーク溶接機においては,待機時の電流は無効電流を含めると約10A〜20Aであり,溶接作業時の電流約30A〜40Aに比べて待機時の電流の割合が多い。また,溶接機の使用台数は作業現場によってまちまちであり,使用する溶接機の種類によっても待機電流と溶接時の電流は異なることから個々の現場で待機電流は大幅に異なることが通常である。 For example, in an AC arc welder frequently used at construction sites, the standby current is about 10 A to 20 A including the reactive current, and the standby current is about 30 A to 40 A compared to the current of about 30 A to 40 A during the welding operation. A large percentage. In addition, the number of welding machines used varies depending on the work site, and the standby current and welding current differ depending on the type of welder used, so the standby current is usually significantly different at each site.

このような状況下において,1台の溶接機の溶接作業を検出しようとすると,第一の方法によれば予め設定する閾値は,その現場における待機電流及び電圧から求められる電力を適切に反映したものでなければ,作業用電気機器を用いた作業が行われている/いないという状態を検出することが困難であるが,その点,第二の方法によれば,前記ユニットデータ毎の電流の大きさの変化分に基づいて判断を行うため,待機電流や使用時の電力の大きさにかかわらず,作業が行われている/いないという状態を適切に判定できるから,第一の方法に比べ閾値をこまめに設定しなくても正確に判定ができ,設定の煩わしさがなくなるという利便性がある。 Under these circumstances, when trying to detect the welding operation of one welding machine, the threshold set in advance according to the first method appropriately reflects the power required from the standby current and voltage at the site. Otherwise, it is difficult to detect whether the work using the work electrical equipment is being performed or not. However, according to the second method, the current of each unit data is not detected. Since the judgment is based on the change in magnitude, it is possible to properly judge whether work is being performed or not regardless of the standby current or the power consumption during use. This makes it possible to make an accurate determination without frequently setting the threshold value, and there is a convenience that there is no troublesome setting.

このように,第二の判定方法によれば,第一の判定方法と同様に,閾値を設定するための条件が緩和され,作業用電気機器を用いた作業が行われている/いないという状態の判定をより正確に行うことができる。 Thus, according to the second determination method, as in the first determination method, the condition for setting the threshold is relaxed, and the work using the work electrical equipment is / is not performed. Can be determined more accurately.

次に,前述の判定手段6の第三の判定方法について説明する。第三の判定方法は電流波形の様相変化を検出してパラメータ化し,パラメータの変化に閾値を設ける方法である。そして,パラメータの変化幅が閾値を超えた場合に,作業が行われているものと判断する。 Next, the third determination method of the above-described determination means 6 will be described. The third determination method is a method in which a change in the state of the current waveform is detected and parameterized, and a threshold is provided for the change in the parameter. Then, when the change width of the parameter exceeds the threshold value, it is determined that the work is being performed.

構成は図1と同様であるが,判定手段6では検出手段5の出力波形を基に,パラメータ値を演算しパラメータ値の変化量が閾値を超えたかどうかを判定する。閾値を超えた場合はタイマー6をリセットする。検出手段5は,電流検出手段51で構成され,検出電流に基づいた信号を出力する。電流検出手段51としては,変流器やシャント抵抗などを用いて構成するとよい。 The configuration is the same as in FIG. 1, but the determination unit 6 calculates a parameter value based on the output waveform of the detection unit 5 and determines whether the amount of change in the parameter value exceeds a threshold value. If the threshold is exceeded, the timer 6 is reset. The detection means 5 is composed of a current detection means 51 and outputs a signal based on the detection current. The current detection means 51 may be configured using a current transformer or a shunt resistor.

パラメータ値としては位相,波形率(=実効値/平均値),波高率(=最大値/実効値),最大値/平均値,フーリエ級数展開による次数成分量などを用いるとよい。 As parameter values, phase, waveform rate (= effective value / average value), crest factor (= maximum value / effective value), maximum value / average value, order component amount by Fourier series expansion, etc. may be used.

図2は,作業用電気機器として前述の交流アーク溶接機を例として,該交流アーク溶接機の待機電流と溶接時電流の電流波形の一例を示したものである。図2に示したように,待機時と溶接時では波形率,波高率,最大値/平均値に差があることが読み取れ,これらの差は,図2の待機時の電流と溶接時の電流をフーリエ級数展開することで,それぞれの波形によって異なる次数の成分量が算出される。 FIG. 2 shows an example of the current waveform of the standby current and welding current of the AC arc welding machine, taking the above-mentioned AC arc welding machine as an example of the working electrical equipment. As shown in Fig. 2, it can be seen that there are differences in the waveform rate, crest factor, and maximum / average value during standby and during welding. These differences are the difference between the standby current and welding current in Fig. 2. Is expanded into a Fourier series, so that component amounts of different orders are calculated for each waveform.

従って,特定の次数の成分量や次数毎の成分量の構成比などをパラメータとして用いることができる。基本波成分以外の成分量は歪み量となるから歪み率をパラメータとすることもできる。 Therefore, the component amount of a specific order, the component ratio of the component amount for each order, and the like can be used as parameters. Since the component amount other than the fundamental wave component is the distortion amount, the distortion rate can be used as a parameter.

以上の第一から第三の方法は判定方法として単独で用いることもできるし,組み合わせて用いることも可能である。 The first to third methods described above can be used alone or in combination as a determination method.

次に,本発明の回路遮断器について図3を用いて説明する。 Next, the circuit breaker of the present invention will be described with reference to FIG.

図3には,本発明の回路遮断器の外観図を示している。本実施例における回路遮断器は,電路に接続されて必要に応じて電路を遮断する機能を備えた遮断ブロックと,電路における使用電流や電力を演算により求め,作業用電気機器が使用されているか否かの判定を行い,作業用電気機器が使用されていると判定した場合には遮断ブロックに信号を送出し,電路の遮断のトリガとなる判定ブロックとを連結手段により連結して構成したものである。 In FIG. 3, the external view of the circuit breaker of this invention is shown. Whether the circuit breaker in this embodiment is connected to an electric circuit or not, and is a working block used to calculate the working current and power in the electric circuit and a breaker block having a function of interrupting the electric circuit if necessary. If it is determined whether or not it is determined that the working electrical equipment is being used, a signal is sent to the interruption block, and the determination block that triggers the interruption of the electric circuit is connected by a connecting means. It is.

遮断ブロック110は,電路に流れる電流を検出する電流検出手段ならびに電路の電圧を検出する電圧検出手段と,電路を入切する接点開閉機構部と,該接点開閉機構部に作用し,接点を開状態にせしめる引外し手段とを備えている。 The blocking block 110 acts on the current detecting means for detecting the current flowing in the electric circuit, the voltage detecting means for detecting the voltage of the electric circuit, the contact opening / closing mechanism section for turning on / off the electric circuit, and the contact opening / closing mechanism section to open the contact. And tripping means for bringing it into a state.

電流検出手段としては,電路を貫通させて設けられる変流器を用いている。電圧検出手段としては,一般的な抵抗を用いた電圧センサを用いている。また,本実施例では,電流検出手段は,図中の電路におけるU相とW相に設けて,作業用電気機器を用いた作業を行うことにより発生する消費電流の大きさを検出している。なお,単相3線式の場合には各電圧線に変流器を設けて構成するとよい。電流検出手段としてはこの他にシャント抵抗やホール素子などを用いて構成してもよい。 As the current detection means, a current transformer provided through the electric circuit is used. As the voltage detection means, a voltage sensor using a general resistor is used. Further, in the present embodiment, the current detection means is provided in the U phase and the W phase in the electric circuit in the figure, and detects the magnitude of the consumption current generated by performing work using the work electrical equipment. . In the case of a single-phase three-wire system, a current transformer may be provided for each voltage line. In addition to this, the current detecting means may be configured using a shunt resistor, a Hall element, or the like.

前記引外し手段は,開閉機構部に作用する鉄芯を備えたトリップコイルを用いて構成している。該トリップコイルに電流が流れると,電磁力により鉄芯がコイル内部に引き込まれ,開閉機構部が備えたラッチを引外し,接点を開状態にせしめる。なお,引外し手段としては,エネルギーを供給することにより機械的変位を行う圧電素子や,アクチュエータなどを用いて構成してもよい。遮断ブロック110のベースとして,引外し手段が備えられた回路遮断器を用いて適宜電流検出手段を組み込み構成してもよい。 The tripping means is configured by using a trip coil having an iron core that acts on the opening / closing mechanism. When a current flows through the trip coil, the iron core is drawn into the coil by electromagnetic force, and the latch provided in the opening / closing mechanism is tripped to open the contact. The tripping means may be configured using a piezoelectric element or an actuator that performs mechanical displacement by supplying energy. As a base of the interruption block 110, a current detection means may be appropriately incorporated and configured using a circuit breaker provided with a tripping means.

120は,前記遮断ブロック100と,機械的な係合部などにより構成された連結手段により連結されて用いられる判定ブロックである。 Reference numeral 120 denotes a determination block that is used by being connected to the blocking block 100 by a connecting means constituted by a mechanical engagement portion or the like.

判定ブロック120は,前記遮断器ブロック110に備えられた電流検出手段ならびに電圧検出手段から出力された信号に基づいて,電路から電源を供給される作業用電気機器を用いた作業が行われているか否かを判定し,作業が行われていないと判定した場合には信号を出力する判定手段と,前記判定手段から出力された信号に基づいて前記引外し手段を駆動させる引外し駆動手段とを備えている。 Whether the determination block 120 is performing work using the working electrical equipment supplied with power from the electric circuit based on the signals output from the current detection means and voltage detection means provided in the circuit breaker block 110. A determination means for outputting a signal when it is determined that no work is being performed, and a trip driving means for driving the trip means based on the signal output from the determination means. I have.

本実施例では,判定手段として,I/Oポートや,プログラムデータ記憶領域,演算処理部などを備えたマイコンを用いて構成し,引外し駆動手段として,該マイコンから出力された信号をトリガとして駆動し,前記引外し手段の電源経路の一部となるサイリスタを用いて構成している。なお,引外し駆動手段としては,この他リレーや半導体スイッチを用いて構成してもよい。 In this embodiment, the determination means is configured by using a microcomputer having an I / O port, a program data storage area, an arithmetic processing unit, etc., and the trip output means is triggered by a signal output from the microcomputer. The thyristor is driven and configured as a part of the power supply path of the tripping means. The trip driving means may be configured using other relays or semiconductor switches.

判定ブロック120は,前記遮断ブロック110内に設けられた電路に接続されて電源を取得する電源取得部と,電流検出手段から出力される信号を取得する電流電圧検出信号取得部と,引外し手段を駆動させる引外し手段駆動経路接続部を備え,遮断ブロックとの間で電源及び信号の送受信を行う。 The determination block 120 includes a power acquisition unit that is connected to an electric circuit provided in the blocking block 110 to acquire power, a current / voltage detection signal acquisition unit that acquires a signal output from the current detection unit, and a trip unit. A tripping means drive path connection section for driving the power supply and the signal transmission / reception to / from the blocking block is provided.

本実施例では,遮断ブロックの外郭を構成する器体の一部に,これら電源取得部,電流電圧検出信号取得部,引外し手段駆動経路接続部を構成するリード線を配設するための孔部を設け,判定ブロックに引き込んでいる。 In this embodiment, holes for arranging lead wires constituting the power source acquisition unit, the current / voltage detection signal acquisition unit, and the trip means driving path connection unit are formed in a part of the body constituting the outline of the blocking block. A section is provided and drawn into the decision block.

電源取得部から取得された電源は,判定ブロック内で全波整流され,前記マイコンの駆動に適した電圧に降圧されて,該マイコンに供給される。 The power acquired from the power acquisition unit is full-wave rectified in the determination block, stepped down to a voltage suitable for driving the microcomputer, and supplied to the microcomputer.

電流電圧検出信号取得部から取得された電流検出手段から出力される信号は,マイコンに入力される前に,入力前処理として,電圧増幅回路により電圧増幅され,ローパスフィルターにより不要なノイズが除去され,信号レベル調整回路によりマイコンの入力ポートに適した入力レベルに調整されてマイコンに入力される。なお,本実施例では,電流電圧検出手段を複数設けており,その数だけ入力前処理の系統を設けている。 The signal output from the current detection means acquired from the current / voltage detection signal acquisition unit is amplified by a voltage amplification circuit as input preprocessing before being input to the microcomputer, and unnecessary noise is removed by a low-pass filter. The signal level adjustment circuit adjusts the input level suitable for the input port of the microcomputer and inputs it to the microcomputer. In this embodiment, a plurality of current / voltage detection means are provided, and the number of input preprocessing systems is provided.

マイコンに入力された信号は,マイコン内部に記憶された判定プログラムにより,作業が行われているか否かの判定を行い,作業が行われていないと判定した場合には,前記引外し駆動手段に向けて駆動信号を出力する。該駆動信号を受けて引外し駆動手段に出力があると,引外し手段に電圧が印加され,該引外し手段が動作することにより,接点開閉機構部の接点を開状態にせしめる。これにより,電路への電源の供給が停止する。 The signal input to the microcomputer is determined by the determination program stored in the microcomputer to determine whether the work is being performed. If it is determined that the work is not being performed, the signal is sent to the trip driving means. A drive signal is output. When the trip signal is output in response to the drive signal, a voltage is applied to the trip means, and the trip means operates to open the contacts of the contact switching mechanism. As a result, the supply of power to the electric circuit is stopped.

遮断ブロック110と,判定ブロック120とは,連結手段により連結されて構成されている。連結手段として種々の回路遮断器を汎用的に用いるため粘着剤を塗布したシートを用いて構成している。この他,機械的な引掛部を遮断ブロック110と判定ブロック120に各々設けて,互いに係合するように構成してもよい。 The blocking block 110 and the determination block 120 are configured to be connected by a connecting means. In order to use various circuit breakers for the general purpose as the connecting means, a sheet coated with an adhesive is used. In addition, a mechanical hooking portion may be provided in each of the blocking block 110 and the determination block 120 so as to be engaged with each other.

判定ブロック120において,123が閾値設定手段で,5Aから30Aまで5A刻みで設定できる切替スイッチを用いて構成している。また,判定動作そのものの機能をOFFすることができるよう,機能OFFの選択も行えるようにしている。 In the determination block 120, reference numeral 123 denotes threshold setting means, which is configured using a changeover switch that can be set from 5A to 30A in increments of 5A. Also, the function OFF can be selected so that the function of the determination operation itself can be turned OFF.

124は,タイマー時間を設定するタイマー設定手段であり,30分,1時間のいずれかを選択できるようにしている。 Reference numeral 124 denotes timer setting means for setting a timer time, which can select either 30 minutes or 1 hour.

125は,電源ランプであり,LEDを用いて構成している。電源ランプはマイコン121の出力ポートに電気的に接続されており,判定ブロックが機能している場合に点灯するようにしている。 Reference numeral 125 denotes a power lamp, which is configured using LEDs. The power lamp is electrically connected to the output port of the microcomputer 121 and is lit when the determination block is functioning.

なお,判定ユニットの判定状況に応じて,該電源ランプの点灯のさせ方を変化させるよう構成してもよい。例えば,通常は点灯を行うが,検出電流に基づき判定処理を行い,タイマー動作が開始した場合には,点滅して,まもなく電源を遮断する旨を知らせるように構成してもよい。予め所定時間後には電路への通電を停止することを周囲に知らしめることにより,突然停電する場合に比べて現場での混乱を低減させることができる。 Note that the method of turning on the power lamp may be changed according to the determination status of the determination unit. For example, the lighting may be normally performed, but the determination process may be performed based on the detected current, and when the timer operation starts, it may blink to notify that the power supply will be shut off soon. By letting the surroundings know that energization of the electric circuit is stopped after a predetermined time in advance, it is possible to reduce confusion at the site as compared with the case of sudden power failure.

126は,テスト釦である。該テスト釦126を操作すると,判定ブロックと遮断ブロックの両方の機能が正常であるかマイコン121にて自己チェックを行うよう構成している。 126 is a test button. When the test button 126 is operated, the microcomputer 121 performs a self-check to check whether the functions of both the determination block and the blocking block are normal.

本実施例では,テスト釦126を操作した場合,その5秒後に,マイコン121の遮断信号を出力するよう構成している。引外し駆動手段は,遮断信号を受けてアノードカソード間が導通状態となるから,遮断ブロックに設けられた引外し手段に電源が印加される。そして,引外し手段が駆動し,接点開閉機構に作用し接点が開状態となる。 In this embodiment, when the test button 126 is operated, the shutoff signal of the microcomputer 121 is output after 5 seconds. Since the trip driving means receives the shut-off signal and the anode-cathode becomes conductive, power is applied to the trip means provided in the shut-off block. Then, the tripping means is driven and acts on the contact opening / closing mechanism to open the contact.

また,114は遮断表示釦である。遮断表示釦114は,判定ブロックの判定により遮断動作した場合に,遮断ブロックの外郭を構成する筐体から突出するよう構成している。具体的には,前記引外し手段113に設けられた鉄芯が動作した場合に,該鉄芯の動きと連動して突出/引込するように構成している。 Reference numeral 114 denotes a cut-off display button. The shut-off display button 114 is configured to protrude from the casing that forms the outline of the shut-off block when the shut-off operation is performed according to the judgment of the judgment block. Specifically, when the iron core provided in the tripping means 113 is operated, it is configured to project / retract in conjunction with the movement of the iron core.

これにより,遮断ブロック110の操作ハンドルがOFF位置にある場合,遮断表示釦114の突出状態を合わせて見ることにより,作業が行われていないことを判定ブロック判定して遮断動作したか否かを判断することができる。 As a result, when the operation handle of the blocking block 110 is in the OFF position, it is determined whether or not the blocking operation has been performed by determining that the work is not being performed by checking the protruding state of the blocking display button 114 to determine whether the operation is being performed. Judgment can be made.

このように,なお,図3に示した回路遮断器における遮断ブロックとしては,引外し手段を備えた配線用遮断器や漏電遮断器に改良を加えることで使用することが可能であり,一から新たに,作業用電気機器を使用しているか否かを判定して電路を遮断することが可能な回路遮断器を開発する場合と比べて,該回路遮断器の開発期間を短縮させながら,なおかつ製造コストを低減させて提供できるというメリットがある。 As described above, the circuit breaker shown in FIG. 3 can be used by modifying the circuit breaker with a tripping means and the earth leakage circuit breaker. Compared to the development of a circuit breaker that can determine whether or not work electrical equipment is used and break the circuit, the development period of the circuit breaker can be shortened. There is an advantage that the manufacturing cost can be reduced.

なお,本実施例では,作業状態監視制御装置の機能を有した遮断ブロック110と,判定ブロック120を連結する構成としたが,図4に示したように,回路遮断器の内部に前記判定ブロック120の有する機能を組み込み,専用の回路遮断器として構成してもよい。これにより,判定ブロック部分のスペースが省スペースとなり,仮設分電盤などへ設置する際にスペースが削減できる。 In this embodiment, the interruption block 110 having the function of the work state monitoring control device is connected to the determination block 120. However, as shown in FIG. 4, the determination block is provided inside the circuit breaker. The function of 120 may be incorporated and configured as a dedicated circuit breaker. As a result, the space of the judgment block portion is saved, and the space can be reduced when installing on a temporary distribution board.

なお,本実施例においては,検出した電流と,予め定めた閾値との比較や判定,並びに引外し駆動手段への出力を,マイコンを用いて行った例を示したが,この他,抵抗やコンデンサを用いて,アナログ的に,電流検出手段から得られた出力値と閾値の設定値とを比較し,閾値の設定値が大きくなった場合には,引外し駆動手段を駆動する回路を構成してもよい。これにより高価なマイコンを用いなくとも,安価なアナログ回路を用いて構成することができる。 In the present embodiment, an example is shown in which a microcomputer is used to compare and determine the detected current and a predetermined threshold value, and to output to the trip driving means. A capacitor is used to compare the output value obtained from the current detection means with the threshold setting value in an analog manner, and when the threshold setting value becomes large, a circuit for driving the trip driving means is configured. May be. Thus, an inexpensive analog circuit can be used without using an expensive microcomputer.

本発明は,建設現場などで用いられる仮設用分電盤に用いることができる。また電気の切り忘れを防止することができることから,同様な目的で可能な範囲で家庭用や工場その他業務用途としても用いることができる。
The present invention can be used for a temporary distribution board used at a construction site or the like. In addition, since it is possible to prevent forgetting to turn off electricity, it can be used for household purposes, factories and other business purposes as much as possible for the same purpose.

第一の実施例の作業状態監視制御装置及び回路遮断器を示すブロック図The block diagram which shows the working condition monitoring control apparatus and circuit breaker of 1st Example 作業用電気機器の電流波形を示した図。The figure which showed the electric current waveform of the electric equipment for work. 本発明の回路遮断器の外観図。The external view of the circuit breaker of this invention. その他の回路遮断器の例を示す外観図。The external view which shows the example of another circuit breaker.

符号の説明Explanation of symbols

1,2,3 電路
100 回路遮断器
110 遮断ブロック
114 遮断表示釦
120 判定ブロック
123 閾値設定手段
124 タイマー設定手段
125 電源ランプ
126 テスト釦
4 接点装置
5 検出手段
6 判定手段
8 出力回路
9 接点開離手段

1, 2, 3 Electric circuit 100 Circuit breaker 110 Blocking block 114 Blocking display button 120 Determination block 123 Threshold setting unit 124 Timer setting unit 125 Power lamp 126 Test button 4 Contact device 5 Detection unit 6 Determination unit 8 Output circuit 9 Contact opening means

Claims (5)

電路に接続されて使用される作業用電気機器の使用状態を検出し,該作業用電気機器の使用状態に応じて信号を出力する機器使用状態検出手段と,
前記機器使用状態検出手段から出力された信号に基づいて,作業用電気機器を用いた作業が終了したか否かを判定し作業が終了したと判定した場合には信号を出力する判定手段と,
前記判定手段から出力された信号に基づいて駆動し,外部に出力信号を出力する出力回路とを備えたことを特徴とする作業状態監視制御装置。
A device usage state detecting means for detecting a usage state of a working electrical device connected to an electric circuit and outputting a signal according to the usage state of the working electrical device;
A determination means for determining whether or not the work using the work electrical equipment has been completed based on the signal output from the equipment use state detection means, and for determining that the work has been completed;
An operation state monitoring and control apparatus comprising: an output circuit that is driven based on a signal output from the determination means and outputs an output signal to the outside.
前記作業状態監視制御装置から出力された信号に基づいて動作する引外し手段と,
該引外し手段が作用することにより駆動し接続された電路を開状態とするとともに操作ハンドルを操作することにより電路を開閉する接点開閉機構部と,
を備えたことを特徴とする回路遮断器。
Tripping means that operates based on a signal output from the work state monitoring control device;
A contact opening / closing mechanism for opening and closing the electric circuit driven and operated by the tripping means and opening and closing the electric circuit by operating the operation handle;
A circuit breaker comprising:
前記機器使用状態検出手段は,電路に流れる電流ならびに電圧を検出する検出手段であって,
該検出手段により検出された検出電流ならびに検出電圧から求められる電力値が,予め定められた閾値以下であれば作業が終了したと判断することを特徴とする請求項1記載の作業状態監視制御装置又は請求項2記載の回路遮断器。
The device usage state detecting means is a detecting means for detecting a current and a voltage flowing in an electric circuit,
2. The work state monitoring and control apparatus according to claim 1, wherein if the power value obtained from the detected current and the detected voltage detected by the detecting means is equal to or less than a predetermined threshold value, it is determined that the work is finished. Or the circuit breaker of Claim 2.
前記機器使用状態検出手段は,電路に流れる電流ならびに電圧を検出する検出手段であって,
該検出手段により検出された検出電流ならびに検出電圧から求められる電力値に対して,
所定時間毎にサンプリングされた電流データを経時的に比較し,
比較した結果の変化幅データが,予め定められた閾値以下であれば作業が終了したと判断することを特徴とする請求項1記載の作業状態監視制御装置又は請求項2記載の回路遮断器。
The device usage state detecting means is a detecting means for detecting a current and a voltage flowing in an electric circuit,
For the power value obtained from the detected current and the detected voltage detected by the detecting means,
Compare the current data sampled every predetermined time with time,
3. The work state monitoring and control device according to claim 1, or the circuit breaker according to claim 2, wherein if the change width data as a result of the comparison is equal to or less than a predetermined threshold value, it is determined that the work is finished.
前記機器使用状態検出手段は,電路に流れる電流を検出する検出手段であって,
該検出手段により検出された検出電流に対して,
所定時間毎にサンプリングされた電流データに基づいて,
電流波形の様相をパラメータ化し,
該パラメータを経時的に比較した結果の変化値データが,
予め定められた閾値以下であれば作業が終了したと判断することを特徴とする請求項1記載の作業状態監視制御装置又は請求項2記載の回路遮断器。


The device usage state detecting means is a detecting means for detecting a current flowing in the electric circuit,
For the detected current detected by the detecting means,
Based on current data sampled every predetermined time,
Parameterize the aspect of the current waveform,
Change value data as a result of comparing the parameters over time is:
3. The work state monitoring control device according to claim 1, or the circuit breaker according to claim 2, wherein the work is judged to have been completed if it is equal to or less than a predetermined threshold value.


JP2008225361A 2008-09-03 2008-09-03 Working state monitoring controller and circuit breaker Pending JP2010063247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225361A JP2010063247A (en) 2008-09-03 2008-09-03 Working state monitoring controller and circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225361A JP2010063247A (en) 2008-09-03 2008-09-03 Working state monitoring controller and circuit breaker

Publications (1)

Publication Number Publication Date
JP2010063247A true JP2010063247A (en) 2010-03-18

Family

ID=42189437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225361A Pending JP2010063247A (en) 2008-09-03 2008-09-03 Working state monitoring controller and circuit breaker

Country Status (1)

Country Link
JP (1) JP2010063247A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063246A (en) * 2008-09-03 2010-03-18 Tempearl Ind Co Ltd Circuit breaker device
JP2012152004A (en) * 2011-01-19 2012-08-09 Fuji Electric Fa Components & Systems Co Ltd Standby power reduction apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566829U (en) * 1992-02-17 1993-09-03 オリエント電子株式会社 Illumination interlocking power cutoff device and silent interlocking power cutoff device
JPH10215508A (en) * 1997-01-29 1998-08-11 Fujita Corp Switchboard
JPH10288639A (en) * 1997-02-13 1998-10-27 Toshiba Corp Apparatus and method for monitoring malfunction of electric apparatus
JP2007330070A (en) * 2006-06-09 2007-12-20 Hanshin Electric Co Ltd Electronic equipment supervisory system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566829U (en) * 1992-02-17 1993-09-03 オリエント電子株式会社 Illumination interlocking power cutoff device and silent interlocking power cutoff device
JPH10215508A (en) * 1997-01-29 1998-08-11 Fujita Corp Switchboard
JPH10288639A (en) * 1997-02-13 1998-10-27 Toshiba Corp Apparatus and method for monitoring malfunction of electric apparatus
JP2007330070A (en) * 2006-06-09 2007-12-20 Hanshin Electric Co Ltd Electronic equipment supervisory system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063246A (en) * 2008-09-03 2010-03-18 Tempearl Ind Co Ltd Circuit breaker device
JP2012152004A (en) * 2011-01-19 2012-08-09 Fuji Electric Fa Components & Systems Co Ltd Standby power reduction apparatus

Similar Documents

Publication Publication Date Title
US9564753B2 (en) Transformer protection circuit and method
US9397494B2 (en) Electrical monitoring device and method for safeguarding the protective function of a type A residual current device (RCD)
US20100073832A1 (en) Power cutoff device automatically operated upon occurrence of spark on electric wire
KR100861229B1 (en) Power cut-off device that operates automatically when sparking of electric line
CN101256917A (en) Circuit breaker with adjustable arc-flash protection and wireless sensor and method of use
JP6076499B2 (en) Electronic circuit breaker
JP5155687B2 (en) Wiring equipment
JP6098334B2 (en) Power supply device, power supply system, and control method for power supply device
KR102058400B1 (en) Apparatus for discriminating instantaneous current in power grid line
EP2324547A2 (en) Method for preventing electric shock by contact with connected-to-ground electric appliances and installations, and apparatus therefor
KR100789915B1 (en) Standby power cut-off device in multi-tap and its method
JP6509029B2 (en) Distribution board
JP2010063247A (en) Working state monitoring controller and circuit breaker
KR20110048831A (en) Leakage Current Sensing Circuit and Earth Leakage Breaker Using Current Distribution Law
JP5166174B2 (en) Circuit breaker
KR200440531Y1 (en) Earth leakage breaker
JP5382433B2 (en) Power supply device
KR101030193B1 (en) Distribution board with neutral wire replacement function and neutral wire replacement method
JP5322340B2 (en) Method and apparatus for demagnetizing transformer core using direct current
JP5145172B2 (en) Circuit breaker
US20230079175A1 (en) Auto recovery circuit breaker and auto recovery circuit breaker with transmitter
JP5537779B2 (en) Current interrupt device
KR200421306Y1 (en) Power Supply with Leakage Early Warning
JP2007325399A (en) Distribution board
JP2010086791A (en) Wiring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402