[go: up one dir, main page]

JP2010062260A - Laminated chip component and its manufacturing method - Google Patents

Laminated chip component and its manufacturing method Download PDF

Info

Publication number
JP2010062260A
JP2010062260A JP2008225000A JP2008225000A JP2010062260A JP 2010062260 A JP2010062260 A JP 2010062260A JP 2008225000 A JP2008225000 A JP 2008225000A JP 2008225000 A JP2008225000 A JP 2008225000A JP 2010062260 A JP2010062260 A JP 2010062260A
Authority
JP
Japan
Prior art keywords
conductor pattern
film layer
chip component
conductor
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225000A
Other languages
Japanese (ja)
Inventor
Satoshi Higuchi
聡 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2008225000A priority Critical patent/JP2010062260A/en
Publication of JP2010062260A publication Critical patent/JP2010062260A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】 チップ内部に形成する素子数の増加を抑えつつ性能の向上が図れて小型化に有利となる積層チップ部品を提供すること
【解決手段】 セラミック材料の絶縁膜aと導体材料の導体パターンbを適宜な順に積層してチップ体を形成する。絶縁膜層にはそれぞれ導体パターンbを形成し、それらは容量素子Cおよび誘導素子Lとし、2段のLCフィルタの構成にする。絶縁膜層a2上で、容量素子パターンに帯状パターンb23,b24,b25を突き出し形状に設けて特性調整用の容量素子C61を形成する。絶縁膜層a6上で、誘導素子パターンに帯状パターンb63,b64を設けて特性調整用の容量素子C62を形成する。LCフィルタの段間でビア6,7は積層方向にジグザグ状に形成し、特性調整用の誘導素子L3にする。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a multilayer chip component which is advantageous for miniaturization by improving performance while suppressing an increase in the number of elements formed in a chip. An insulating film a made of a ceramic material and a conductor pattern made of a conductive material A chip body is formed by laminating b in an appropriate order. Conductive patterns b are formed on the insulating film layers, respectively, which are a capacitive element C and an inductive element L, and have a two-stage LC filter configuration. On the insulating film layer a <b> 2, band-like patterns b <b> 23, b <b> 24, b <b> 25 are provided in a protruding shape on the capacitive element pattern to form a capacitive element C <b> 61 for characteristic adjustment. On the insulating film layer a6, band-shaped patterns b63 and b64 are provided as inductive element patterns to form a capacitor C62 for adjusting characteristics. Vias 6 and 7 are formed in a zigzag shape in the stacking direction between the LC filter stages to form an inductive element L3 for characteristic adjustment.
[Selection] Figure 1

Description

本発明は、積層チップ部品およびその製造方法に関するもので、より具体的には、セラミック材料の絶縁膜と導電材料の導体パターンを適宜な順に積層してなるチップ体について、容量素子および誘導素子をなす導体パターンの配置構成の改良に関する。   The present invention relates to a multilayer chip component and a method of manufacturing the same, and more specifically, a capacitor element and an inductive element for a chip body in which an insulating film of a ceramic material and a conductor pattern of a conductive material are laminated in an appropriate order. The present invention relates to an improvement in the arrangement of conductor patterns.

周知のように、チップ部品と呼ばれる電子部品は、表面実装に使用するためリード端子を設けずに小片形状に小型化したチップ体の表面に形成した電極を、基板表面へ接触させて直接にはんだ付けすることになる。そして、チップ部品としては、絶縁膜と導体パターンを適宜の順に積層することにより、内部に導体パターンによる内部電極を内蔵したチップ体を形成する。導体パターンを適宜のパターン・配置レイアウトをとることで、内部電極は、容量素子を構成したり、誘導素子を構成したりする。よって、チップ部品は、この内部電極の形態によりコンデンサ(C:容量素子)やインダクタ(L:誘導素子)など、単体の機能素子として構成することもあるが、例えば特許文献1などに見られるように、チップ体には容量素子および誘導素子を適宜に内蔵させてローパスフィルタ等に構成することが行われている。   As is well known, an electronic component called a chip component is directly soldered by contacting an electrode formed on the surface of a chip body, which is miniaturized into small pieces without providing a lead terminal, for use in surface mounting, and contacting the substrate surface. Will be attached. As a chip component, an insulating film and a conductor pattern are laminated in an appropriate order to form a chip body in which an internal electrode of a conductor pattern is built. By taking an appropriate pattern / arrangement layout of the conductor pattern, the internal electrode constitutes a capacitive element or an inductive element. Therefore, the chip component may be configured as a single functional element such as a capacitor (C: capacitive element) or an inductor (L: inductive element) depending on the form of the internal electrode. In addition, a capacitor element and an inductive element are appropriately incorporated in the chip body to form a low-pass filter or the like.

このチップ部品(チップ体)の製造にあっては、絶縁膜には例えばセラミック材料を用い、絶縁シートに導体パターンを形成して積み重ねていくシート積層法や、絶縁ペーストと導体ペーストとを交互に塗り重ねていく印刷積層法などがある。何れにしても、チップ体の内部には容量素子および誘導素子をなす導体パターンおよびそれらの引き出しパターンを形成することになり、チップ体は積層を完了した後に所定温度で焼結される。
特開2002−204136号公報
In the manufacture of this chip component (chip body), for example, a ceramic material is used for the insulating film, and a sheet lamination method in which a conductive pattern is formed on an insulating sheet and stacked, or an insulating paste and a conductive paste are alternately used. There are several methods such as printing and laminating. In any case, a conductor pattern forming a capacitive element and an inductive element and a lead pattern thereof are formed inside the chip body, and the chip body is sintered at a predetermined temperature after completing the lamination.
JP 2002-204136 A

近年は、携帯電話機などの電子機器の薄型,軽量,高機能化により、これを構成する電子部品に対する小型化,高性能化,高周波化について強い要求がある。これにともない、積層チップ部品について小チップ化を進めたいが、その場合でも機能素子としての性能が低下したのでは回路素子には使用できないという問題となり、積層チップ部品は小型であることと、機能素子として高性能であることが強く求められる。   In recent years, there has been a strong demand for downsizing, high performance, and high frequency with respect to the electronic components that make up electronic devices such as mobile phones, which are thinner, lighter, and more functional. Along with this, we want to reduce the size of multilayer chip parts, but even in that case, if the performance as a functional element deteriorates, it becomes a problem that it can not be used for circuit elements. There is a strong demand for high performance as an element.

ローパスフィルタの例で言うと、小型であることはもちろん、所望周波数について減衰特性を良好にでき、できるだけ大きく減衰を得たいという要求がある。そこで減衰を大きく得るには、フィルタ回路を多段の構成にする必要があるが、多段の回路にすることは内部に形成する素子の数が増えるので、必然的にチップサイズが大きくなってしまい、相反する問題になっている。   In the case of the low-pass filter, there is a demand for not only a small size but also a good attenuation characteristic for a desired frequency and obtaining as much attenuation as possible. Therefore, in order to obtain a large attenuation, the filter circuit needs to have a multi-stage configuration. However, since the number of elements formed in the multi-stage circuit increases, the chip size inevitably increases. It is a conflicting problem.

この発明は上述した課題を解決するもので、その目的は、チップ体の内部に形成する素子数の増加を抑えつつ性能の向上が行うことで小チップ化ができ、ローパスフィルタの構成では所望周波数について減衰特性を良好にでき、大きく減衰を得ることができて高周波化が行える積層チップ部品およびその製造方法を提供することにある。   The present invention solves the above-described problems, and its purpose is to reduce the size of the chip by improving the performance while suppressing the increase in the number of elements formed inside the chip body. It is an object of the present invention to provide a multilayer chip component that can improve the attenuation characteristic, obtain a large attenuation, and increase the frequency, and a manufacturing method thereof.

上記した目的を達成するために、本発明に係る積層チップ部品は、(1)セラミック材料の絶縁膜と導体材料の導体パターンを適宜な順に積層することによりチップ体を形成し、当該チップ体について少なくとも容量素子をなす膜層および誘導素子をなす膜層を有する積層チップ部品であって、導体パターンは、誘導素子を入出力間で直列に接続するとともに当該誘導素子の出力側は容量素子を接地間にわたすLCフィルタを2段に接続する構成をとり、入力側電極と連なる導体パターンおよび出力側電極と連なる導体パターンにそれぞれ帯状パターンを設け、それら帯状パターンが共振極調整のための容量素子を形成する構成とする。   In order to achieve the above-described object, a multilayer chip component according to the present invention includes: (1) a chip body is formed by laminating an insulating film of a ceramic material and a conductor pattern of a conductor material in an appropriate order; A laminated chip component having at least a film layer forming a capacitive element and a film layer forming an inductive element, wherein the conductor pattern connects the inductive element in series between the input and output, and the output side of the inductive element grounds the capacitive element The LC filter is connected in two stages, and a band pattern is provided on each of the conductor pattern connected to the input side electrode and the conductor pattern connected to the output side electrode, and these band patterns provide a capacitive element for adjusting the resonance pole. It is set as the structure to form.

また、(2)帯状パターンは複数を設けるとともに、相手側と交互に隣り合う配置にする構成もよい。この帯状パターンは、(3)誘導素子をなすための膜層に設けたり、(4)容量素子をなすための膜層に設けたりするとよい。   In addition, (2) a plurality of belt-like patterns may be provided, and a configuration in which the belt-like pattern is alternately adjacent to the other side may be employed. This strip pattern may be provided in (3) a film layer for forming an inductive element, or (4) provided in a film layer for forming a capacitive element.

また、(5)導体パターンについてLCフィルタを2段に接続する構成を採るとき、LCフィルタの段間で膜層の上下間を接続するビアは積層方向にジグザグ状に形成する構成にする。この(5)の発明に(1)〜(4)の発明を組合せることもできる。   Further, (5) when the LC filter is connected in two stages with respect to the conductor pattern, the vias connecting the upper and lower sides of the film layer between the LC filter stages are formed in a zigzag shape in the stacking direction. The inventions of (1) to (4) can be combined with the invention of (5).

また、本発明に係る積層チップ部品の製造方法は 、(6)セラミック材料の絶縁膜と導体材料の導体パターンを適宜な順に積層することによりチップ体を形成し、当該チップ体の内部に導体パターンによる電極体を内蔵する積層チップ部品の製造方法であって、チップ体は絶縁ペーストと導体ペーストとを交互に塗り重ねていく印刷積層法により積層し、当該印刷積層において導体パターンは、誘導素子を入出力間で直列に接続するとともに当該誘導素子の出力側は容量素子を接地間にわたすLCフィルタを2段に接続する構成をとり、入力側電極と連なる導体パターンおよび出力側電極と連なる導体パターンにそれぞれ帯状パターンを設け、それら帯状パターンが共振極調整のための容量素子を形成する。   Further, the method for manufacturing a multilayer chip component according to the present invention includes: (6) a chip body is formed by laminating an insulating film of a ceramic material and a conductor pattern of a conductor material in an appropriate order, and the conductor pattern is formed inside the chip body. The chip body is laminated by a printing lamination method in which an insulating paste and a conductor paste are alternately applied, and the conductor pattern is formed of an inductive element in the printed lamination. The inductive element is connected in series and the output side of the inductive element has a configuration in which the LC filter that connects the capacitive element to the ground is connected in two stages. The conductor pattern that is connected to the input side electrode and the conductor pattern that is connected to the output side electrode Are provided with band-shaped patterns, and these band-shaped patterns form capacitive elements for adjusting the resonance poles.

また、本発明に係る積層チップ部品の製造方法は、(7)印刷積層において導体パターンについてLCフィルタを2段に接続する構成を採るとき、LCフィルタの段間で膜層の上下間を接続するビアは積層方向にジグザグ状に形成する。   Further, in the method for manufacturing a multilayer chip component according to the present invention, (7) when a configuration in which the LC filter is connected in two stages for the conductor pattern in the print lamination, the upper and lower layers of the film layer are connected between the LC filter stages. The vias are formed in a zigzag shape in the stacking direction.

したがって本発明では、該当膜層において帯状パターンを設けるので容量素子を形成でき、その容量素子が入出力間にわたるため2段のLCフィルタについて共振極の調整が行える。帯状パターンは、誘導素子をなすための膜層に設ける、あるいは容量素子をなすための膜層に設ければよい。これは新たに膜層の追加を必要とせず、本来構成のための膜層に作り込むことができ、チップ内部の素子構成は2段のLCフィルタそのままであり、追加は共振極調整のための容量素子のみなので、小チップ化に有利がある。   Therefore, in the present invention, since a band-like pattern is provided in the corresponding film layer, a capacitive element can be formed. Since the capacitive element extends between input and output, the resonance pole can be adjusted for the two-stage LC filter. The band-shaped pattern may be provided in a film layer for forming an inductive element or in a film layer for forming a capacitive element. This does not require the addition of a new film layer, can be built into the film layer for the original configuration, the element configuration inside the chip remains as a two-stage LC filter, and the addition is for adjusting the resonance pole Since it is only a capacitive element, it is advantageous for downsizing.

LCフィルタの段間で膜層の上下間を接続するビアについて積層方向にジグザグ状に形成することでは、ジグザグ形状であるため当該部位は誘導性を示し、誘導素子として機能させることができる。この誘導素子はLCフィルタの段間に位置し、このため、共振極について周波数特性の調整が行える。ジグザグ形状のビアは積層方向へ延びることから、チップ体は積層高さがいくぶん増すことになるが、取り付け面の占有サイズはそのままに保つことができ、小チップ化を損なうことはない。   By forming the vias connecting the upper and lower sides of the film layers between the stages of the LC filter in a zigzag shape in the stacking direction, since the zigzag shape is formed, the portion exhibits inductivity and can function as an inductive element. This inductive element is located between the stages of the LC filter. Therefore, the frequency characteristics of the resonance pole can be adjusted. Since the zigzag-shaped via extends in the stacking direction, the stack height of the chip body is somewhat increased, but the size of the mounting surface can be kept as it is, and the chip size reduction is not impaired.

本発明に係る積層チップ部品では、本来構成の特性を調整するため容量素子,誘導素子を、本来構成のための膜層に作り込むことができ、新たに膜層の追加を必要としない。このため、チップ内部に形成する素子数の増加を抑えつつ性能の向上が行えて小チップ化が図れる。   In the multilayer chip component according to the present invention, the capacitor element and the inductive element can be formed in the film layer for the original structure in order to adjust the characteristics of the original structure, and no additional film layer is required. Therefore, the performance can be improved while suppressing an increase in the number of elements formed inside the chip, and the chip can be reduced.

したがって、ローパスフィルタの構成をとる場合は、調整用の容量素子,誘導素子により所望周波数について減衰特性を良好にでき、大きく減衰を得ることができて高周波化が行える。   Therefore, in the case of adopting a low-pass filter configuration, it is possible to improve the attenuation characteristic for a desired frequency by the adjustment capacitive element and the inductive element, and to obtain a large attenuation and to increase the frequency.

図1〜図5は、本発明の好適な一実施の形態を示している。本実施形態の積層チップ部品は、セラミック材料による絶縁膜aと導体材料による導体パターンbとを適宜な順に積層することによりチップ体1を形成する。このチップ体1には、少なくとも容量素子をなす膜層および誘導素子をなす膜層を有し、それら素子の相互の接続によりローパスフィルタを構成している。チップ体1は、図2に示すように略矩形状の小片に形成し、そのチップ体1の対向する2面に入力電極2および出力電極3をそれぞれ設けるとともに、側面に接地電極4,5を設けている。   1 to 5 show a preferred embodiment of the present invention. In the multilayer chip component of this embodiment, the chip body 1 is formed by laminating an insulating film a made of a ceramic material and a conductor pattern b made of a conductive material in an appropriate order. The chip body 1 has at least a film layer that forms a capacitive element and a film layer that forms an inductive element, and a low-pass filter is configured by connecting these elements to each other. The chip body 1 is formed in a substantially rectangular small piece as shown in FIG. 2, and the input electrode 2 and the output electrode 3 are provided on the two opposing surfaces of the chip body 1, respectively, and the ground electrodes 4 and 5 are provided on the side surfaces. Provided.

チップ体1の内部のローパスフィルタは、図3に示すようになっている。これは図4に示すLC積分回路を2段に連結した分布定数型の構成と基本的には等価であるが、入出力間に容量素子C6を配置し、誘導素子L1と誘導素子L2との段間で容量素子C4,C1,C2との間に誘導素子L3を配置した構成にしている。つまりローパスフィルタの構成は、基本的には図4に示すように、誘導素子L1を入出力間で直列に接続し、誘導素子L1の出力側は容量素子C4を介して接地させてLC積分回路とする。2段目も同様に誘導素子L2を直列に接続して出力側は容量素子C5を介して接地させる。そして誘導素子L1,誘導素子L2には容量素子C1,C2をそれぞれ並列に接続し、入力電極2側へ容量素子C3を接続して他端は接地させる。本発明にあっては、図3に示すように、入出力間に容量素子C6を接続する。さらに、誘導素子L1と誘導素子L2との段間で、容量素子C4,C1,C2との間に誘導素子L3を接続している。容量素子C6は後述するように、2つの容量素子C61,C62からなり、並列容量の合成になっている。   The low-pass filter inside the chip body 1 is as shown in FIG. This is basically equivalent to a distributed constant type configuration in which the LC integration circuit shown in FIG. 4 is connected in two stages. However, a capacitive element C6 is arranged between the input and output, and the induction element L1 and the induction element L2 are connected to each other. The inductive element L3 is arranged between the capacitive elements C4, C1, and C2 between the stages. That is, the configuration of the low-pass filter is basically as shown in FIG. 4, in which the inductive element L1 is connected in series between the input and output, and the output side of the inductive element L1 is grounded via the capacitive element C4. And Similarly, in the second stage, the induction element L2 is connected in series, and the output side is grounded via the capacitive element C5. Capacitance elements C1 and C2 are connected in parallel to the induction element L1 and the induction element L2, respectively, the capacitance element C3 is connected to the input electrode 2 side, and the other end is grounded. In the present invention, as shown in FIG. 3, a capacitive element C6 is connected between the input and output. Further, the induction element L3 is connected between the capacitive elements C4, C1, and C2 between the stages of the induction element L1 and the induction element L2. As will be described later, the capacitive element C6 includes two capacitive elements C61 and C62, and is a combination of parallel capacitors.

チップ体1の形成は印刷積層法を用いて行う。つまり、セラミック材料による絶縁ペーストと、導体材料による導体ペーストとを交互にスクリーン印刷していく。それらペーストは、1回刷り出す(塗る)と厚みが例えば3〜5μmになるので、これを塗っては乾燥させて積み重ねていく。チップ部品の製造では、ワークとしては生産性の面から複数個分の大きさのワーク積層体を製作し、そのワーク積層体を十分に乾燥させた後に各単体に切断して焼成する。   The chip body 1 is formed using a printing lamination method. That is, the insulating paste made of the ceramic material and the conductor paste made of the conductive material are alternately screen-printed. Since these pastes are printed (applied) once and have a thickness of, for example, 3 to 5 μm, they are applied, dried and stacked. In the manufacture of chip parts, a workpiece laminate having a plurality of sizes is manufactured as a workpiece from the viewpoint of productivity, and the workpiece laminate is sufficiently dried and then cut into individual pieces and fired.

セラミック材料には例えばガラスを添加して低温焼結化した誘電体セラミックスを使用する。これは例えば、ホウケイ酸ガラスをアルミナに体積で70:30の比率に混合した誘電体材料を使用し、これにビヒクルとしてエチルセルロースとテレピネールと分散剤,可塑剤を混合したものを配合して混練し、印刷用の絶縁ぺーストとすることができる。セラミック材料としては他にも例えばフェライト等の磁性セラミックスを使用してもよい。導体ペーストには銀ペーストを使用し、上記したビヒクルに混合する。また、導体ペーストは銀パラジウムでもよい。   As the ceramic material, for example, dielectric ceramics added with glass and sintered at a low temperature is used. For example, a dielectric material in which a borosilicate glass is mixed with alumina in a volume ratio of 70:30 is used, and a mixture of ethyl cellulose, terpineol, a dispersant, and a plasticizer is mixed and kneaded as a vehicle. Insulating paste for printing. In addition, for example, magnetic ceramics such as ferrite may be used as the ceramic material. A silver paste is used as the conductor paste and is mixed with the vehicle described above. The conductor paste may be silver palladium.

具体的には、絶縁膜aは図1に示すa1からa7までの7層およびビア部分での複数層であり、上の最外層a7には導体パターンを形成しないが、第1の絶縁膜層a1から第6の絶縁膜層a6についてそれぞれ導体パターンbを形成している。   Specifically, the insulating film a is a seven layer from a1 to a7 shown in FIG. 1 and a plurality of layers in the via portion, and no conductive pattern is formed on the uppermost layer a7, but the first insulating film layer Conductive patterns b are formed for the first to sixth insulating film layers a6.

絶縁膜層a1上には、容量素子C3,C5の接地側電極となる導体パターンb11を略方形に形成し、導体パターンb11は両側に張り出し部(スタブ)を有し、それぞれ接地電極4,5側の縁部に達している。   On the insulating film layer a1, a conductor pattern b11 serving as a ground side electrode of the capacitive elements C3 and C5 is formed in a substantially square shape, and the conductor pattern b11 has projecting portions (stubs) on both sides, and the ground electrodes 4 and 5 respectively. Reached the side edge.

絶縁膜層a2上には、入力電極2側に、容量素子C3,C1の電極となる導体パターンb21を略方形に形成し、入力電極2側の縁部に達する張り出し部を設けている。また、出力電極3側には容量素子C5,C2の電極となる導体パターンb22を略方形に形成し、出力電極5側の縁部に達する張り出し部を設けている。導体パターンb21には、当該膜層中央側に帯状パターンb23,b24を設けて導体パターンb22側へ向けて突き出し形状とし、対する導体パターンb22にも当該膜層中央側に帯状パターンb25を設けて導体パターンb21側へ向けて突き出し形状にしていて、これら帯状パターンb23,b24,b25は相手側と交互に隣り合う配置にしている。これにより、帯状パターンb23,b24,b25は容量素子C61を形成し、容量素子C61は入出力間にわたることから共振極調整のための容量素子となる。   On the insulating film layer a <b> 2, a conductor pattern b <b> 21 serving as the electrodes of the capacitive elements C <b> 3 and C <b> 1 is formed in a substantially square shape on the input electrode 2 side, and an overhanging portion reaching the edge on the input electrode 2 side is provided. Further, on the output electrode 3 side, a conductor pattern b22 serving as the electrodes of the capacitive elements C5 and C2 is formed in a substantially square shape, and an overhanging portion reaching the edge on the output electrode 5 side is provided. The conductor pattern b21 is provided with belt-like patterns b23 and b24 on the center side of the film layer so as to project toward the conductor pattern b22 side, and the conductor pattern b22 is provided with a belt-like pattern b25 on the center side of the film layer. The strip pattern b23, b24, b25 is arranged so as to be alternately adjacent to the counterpart side. As a result, the strip-like patterns b23, b24, and b25 form a capacitive element C61, and the capacitive element C61 extends between the input and output, and thus becomes a capacitive element for adjusting the resonance pole.

絶縁膜層a3上には、容量素子C1,C2,C4の電極となる導体パターンb31を略方形に形成し、中央部にビア6を設けて接続させている。ビア6はジグザク状に形成し、これは図5に示すように、絶縁膜aに対して導体パターンbを階段状に積層することで形成する。これにより、ビア6はジグザク形状であるため誘導性を示し、誘導素子L3の下側部位となる。   On the insulating film layer a3, a conductor pattern b31 serving as the electrodes of the capacitive elements C1, C2, and C4 is formed in a substantially rectangular shape, and a via 6 is provided in the center to be connected. The via 6 is formed in a zigzag shape, which is formed by laminating a conductor pattern b on the insulating film a in a step shape as shown in FIG. Thereby, since the via 6 has a zigzag shape, the via 6 shows inductivity and becomes a lower portion of the inductive element L3.

絶縁膜層a4上には、容量素子C4の接地側電極となる導体パターンb41を略ロ字形状に形成し、導体パターンb41は両側に張り出し部を有し、それぞれ接地電極4,5側の縁部に達している。導体パターンb41と絶縁した中央部にはビア7を設けて下層側と接続している。このビア7も下層側と同様にジグザク状に形成して延長させており、ジグザク形状であるため誘導性を示し、誘導素子L3の上側部位となる。   On the insulating film layer a4, a conductor pattern b41 serving as a ground side electrode of the capacitive element C4 is formed in a substantially square shape, and the conductor pattern b41 has projecting portions on both sides, and the edges on the ground electrodes 4 and 5 side, respectively. Has reached the department. A via 7 is provided in the central portion insulated from the conductor pattern b41 and connected to the lower layer side. The via 7 is also formed in a zigzag shape and extended like the lower layer side, and is inductive due to the zigzag shape, and becomes an upper part of the inductive element L3.

絶縁膜層a5上には、誘導素子L1,L2のコイル部となる引き回し導体パターンb51を形成している。引き回し導体パターンb51は中央部が下層側からのビア7と接続し、入力側および出力側とにそれぞれ延びていて入力電極2側の先端はビアにより上層a6の導体パターンb61と接続させ、出力電極3側の先端はビアにより上層a6の導体パターンb62と接続させる。そして絶縁膜層a6上には、誘導素子L1,L2の続きのコイル部となる引き回し導体パターンb61,b62を形成している。引き回し導体パターンb61は先端が入力電極2側のビアと接続し、略周回した他方端が入力電極2側の縁部に達している。引き回し導体パターンb62は先端が出力電極3側のビアと接続し、略周回した他方端が出力電極3側の縁部に達している。   On the insulating film layer a5, a lead conductor pattern b51 is formed which becomes a coil portion of the induction elements L1 and L2. The lead conductor pattern b51 has a central portion connected to the via 7 from the lower layer side, extends to the input side and the output side, and the tip on the input electrode 2 side is connected to the conductor pattern b61 of the upper layer a6 by the via to output electrode The tip on the 3 side is connected to the conductor pattern b62 of the upper layer a6 by a via. On the insulating film layer a6, lead-out conductor patterns b61 and b62 are formed as coil portions following the induction elements L1 and L2. The leading end of the routing conductor pattern b61 is connected to the via on the input electrode 2 side, and the other end that is substantially turned reaches the edge on the input electrode 2 side. The leading end of the routing conductor pattern b62 is connected to the via on the output electrode 3 side, and the other end that is substantially turned reaches the edge on the output electrode 3 side.

引き回し導体パターンb61には当該膜層中央側に帯状パターンb63を設けて引き回し導体パターンb61に沿う形状とし、対する引き回し導体パターンb62にも当該膜層中央側に帯状パターンb64を設けて引き回し導体パターンb62に沿う形状にしていて、これら帯状パターンb63,b64は互いに並び沿う配置にしている。これにより、帯状パターンb63,b64は容量素子C62を形成し、容量素子C62は入出力間にわたることから共振極調整のための容量素子となる。容量素子C62および容量素子C61は、ともに入出力間にわたり、並列容量の合成(C62+C61=C6)、容量素子C6として取り扱えばよい。   The routing conductor pattern b61 is provided with a strip pattern b63 on the center side of the film layer so as to follow the routing conductor pattern b61, and the routing conductor pattern b62 is also provided with a strip pattern b64 on the center side of the membrane layer. The strip patterns b63 and b64 are arranged along each other. As a result, the strip-like patterns b63 and b64 form a capacitive element C62, and the capacitive element C62 extends between the input and output, so that it becomes a capacitive element for adjusting the resonance pole. The capacitive element C62 and the capacitive element C61 may be handled as a capacitive element C6, which is a combination of parallel capacitors (C62 + C61 = C6) across the input and output.

容量素子C62は絶縁膜層a6上に、つまり誘導素子をなすための膜層a6に設けており、容量素子C61は絶縁膜層a2上に、つまり容量素子をなすための膜層a2に設けている。これら2つは何れか一方のみを設ける構成にしてもよく、所望する容量値および特性に合わせて選択的に構成を変更できる。   The capacitive element C62 is provided on the insulating film layer a6, that is, the film layer a6 for forming the inductive element, and the capacitive element C61 is provided on the insulating film layer a2, that is, the film layer a2 for forming the capacitive element. Yes. Only one of these two may be configured, and the configuration can be selectively changed in accordance with a desired capacitance value and characteristics.

本発明に係るローパスフィルタの構成、つまり図3に示す等価回路について数値解析を行ったところ、図6,図7に示すような減衰特性を得た。図6,図7には、図4に示した基本構成の等価回路における減衰特性(点線で示す)も併せてプロットしてある。   When the numerical analysis was performed on the configuration of the low-pass filter according to the present invention, that is, the equivalent circuit shown in FIG. 3, attenuation characteristics as shown in FIGS. 6 and 7 were obtained. FIGS. 6 and 7 also plot the attenuation characteristics (indicated by dotted lines) in the equivalent circuit of the basic configuration shown in FIG.

容量素子C6については図6から明らかなように、基本構成のローパスフィルタの構成では減衰を46dB程度しか得られなかったが、本発明に係るローパスフィルタの構成では50dB程度を得ることができ、容量素子C6により共振極の調整が良好に行えることを確認した。誘導素子L3については図7から明らかなように、基本構成のローパスフィルタの構成では減衰周波数は4.4GHz程度しか得られなかったが、本発明に係るローパスフィルタの構成ではより高周波側へシフトでき、4.7GHz程度を得ることができ、誘導素子L3により共振極の周波数調整が良好に行えることを確認した。   As is clear from FIG. 6, the capacitance element C6 has an attenuation of only about 46 dB with the basic configuration of the low-pass filter. However, with the configuration of the low-pass filter according to the present invention, about 50 dB can be obtained. It was confirmed that the resonance pole can be satisfactorily adjusted by the element C6. As is clear from FIG. 7, the inductive element L3 has a damping frequency of only about 4.4 GHz in the basic configuration of the low-pass filter, but can be shifted to a higher frequency side in the configuration of the low-pass filter according to the present invention. It was confirmed that about 4.7 GHz can be obtained, and that the frequency of the resonance pole can be satisfactorily adjusted by the inductive element L3.

このように、該当膜層において帯状パターンb23,b24,b25,b63,b64を設けるので容量素子C61,C62を形成でき、その容量素子C61,C62が入出力間にわたるため2段のLCフィルタについて共振極の調整が行える。   As described above, since the band-like patterns b23, b24, b25, b63, and b64 are provided in the corresponding film layers, the capacitive elements C61 and C62 can be formed. The pole can be adjusted.

帯状パターンb23,b24,b25,b63,b64は、誘導素子をなすための膜層に設けたり、あるいは容量素子をなすための膜層に設けたりすればよい。このようにすると、新たに膜層の追加を必要とせず、本来構成のための膜層に作り込むことができ、チップ内部の素子構成は2段のLCフィルタそのままであり、追加は共振極調整のための容量素子C6のみなので、小チップ化に有利となる。   The band-like patterns b23, b24, b25, b63, and b64 may be provided on a film layer for forming an inductive element or provided on a film layer for forming a capacitive element. In this way, it is not necessary to add a new film layer, and it can be built in the film layer for the original configuration, the element configuration inside the chip is the same as the two-stage LC filter, and the addition is the resonance pole adjustment For this reason, only the capacitance element C6 is advantageous for downsizing.

LCフィルタの段間で膜層の上下間を接続するビア6,7について積層方向にジグザグ状に形成することでは、ジグザグ形状であるため当該部位は誘導性を示し、誘導素子L3として機能させることができる。この誘導素子L3はLCフィルタの段間に位置し、このため、共振極について周波数特性の調整が行える。   By forming the vias 6 and 7 connecting the upper and lower layers of the LC filter between the LC filter stages in a zigzag shape in the stacking direction, the portion is inductive and functions as the inductive element L3 because of the zigzag shape. Can do. This inductive element L3 is located between the stages of the LC filter. Therefore, the frequency characteristics of the resonance pole can be adjusted.

ジグザグ形状のビア6,7は積層方向へ延びることから、チップ体1は積層高さがいくぶん増すことになるが、取り付け面の占有サイズはそのままに保つことができ、小チップ化を損なうことはない。   Since the zigzag-shaped vias 6 and 7 extend in the stacking direction, the stack height of the chip body 1 is somewhat increased. However, the occupied size of the mounting surface can be maintained as it is, and the reduction of the chip size is impaired. Absent.

本発明にあっては、本来構成の特性を調整するため容量素子C6,誘導素子L3を追加することができ、これは本来構成のための膜層に作り込むことができ、新たに膜層の追加を必要としない。このため、チップ内部に形成する素子数の増加を抑えて性能の向上が行えるので小チップ化を図ることができる。   In the present invention, the capacitance element C6 and the inductive element L3 can be added to adjust the characteristics of the original configuration, which can be built into the film layer for the original configuration. Does not require addition. For this reason, an increase in the number of elements formed in the chip can be suppressed and the performance can be improved, so that a small chip can be achieved.

したがって、ローパスフィルタの構成では、調整用の容量素子C6,誘導素子L3により所望周波数について減衰特性を良好にでき、大きく減衰を得ることができ高周波化が行える。例えば、携帯電話等の用途では高調波を遮断することが重要である。そこで本発明によれば、チップ体1には共振極調整のための素子のみを追加するのでチップサイズを小さくでき、2倍高調波および3倍高調波を格段に減衰させることができる。また、調整用の容量素子,誘導素子はパターン変更等によりその値を適宜に設定でき、減衰特性,周波数特性を所望に得ることが容易に行える。   Therefore, in the configuration of the low-pass filter, the adjustment capacitive element C6 and the inductive element L3 can improve the attenuation characteristic for the desired frequency, and can obtain a large attenuation and increase the frequency. For example, in applications such as mobile phones, it is important to block harmonics. Therefore, according to the present invention, since only the element for adjusting the resonance pole is added to the chip body 1, the chip size can be reduced, and the second harmonic and the third harmonic can be significantly attenuated. Further, the values of the adjusting capacitive element and the inductive element can be appropriately set by changing the pattern or the like, and the attenuation characteristic and the frequency characteristic can be easily obtained as desired.

本発明に係る積層チップ部品の一実施の形態であり、各層を分離して示す斜視図である。FIG. 2 is a perspective view showing an embodiment of the multilayer chip component according to the present invention, with each layer separated. 図1に示す積層チップ部品の外観を説明する斜視図である。It is a perspective view explaining the external appearance of the multilayer chip component shown in FIG. 図1に示す積層チップ部品の電気的な構成を説明する等価回路図である。FIG. 2 is an equivalent circuit diagram illustrating an electrical configuration of the multilayer chip component shown in FIG. 1. ローパスフィルタの基本構成を説明する等価回路図である。It is an equivalent circuit diagram explaining the basic composition of a low pass filter. ビアを説明する断面図である。It is sectional drawing explaining a via | veer. ローパスフィルタをなす積層チップ部品の減衰特性を示し、容量素子C6に係る特性を説明するグラフである。It is a graph which shows the attenuation | damping characteristic of the multilayer chip component which makes | forms a low-pass filter, and demonstrates the characteristic which concerns on the capacitive element C6. ローパスフィルタをなす積層チップ部品の減衰特性を示し、誘導素子L3に係る特性を説明するグラフである。It is a graph which shows the attenuation | damping characteristic of the multilayer chip component which makes | forms a low-pass filter, and demonstrates the characteristic which concerns on the induction element L3.

符号の説明Explanation of symbols

1 チップ体
2 入力電極
3 出力電極
4,5 接地電極
6,7 ビア
a 絶縁膜
a1 第1の絶縁膜層
a2 第2の絶縁膜層
a3 第3の絶縁膜層
a4 第4の絶縁膜層
a5 第5の絶縁膜層
a6 第6の絶縁膜層
a7 第7の絶縁膜層
b 導体パターン
b21,b22,b31,b41 導体パターン
b23,b24,b25,b63,b64 帯状パターン
b51,b61,b62 引き回し導体パターン
C1,C2,C3,C4,C5,C61,C62,C6 容量素子
L1,L2,L3 誘導素子
DESCRIPTION OF SYMBOLS 1 Chip body 2 Input electrode 3 Output electrode 4, 5 Ground electrode 6, 7 Via a Insulating film a1 1st insulating film layer a2 2nd insulating film layer a3 3rd insulating film layer a4 4th insulating film layer a5 5th insulating film layer a6 6th insulating film layer a7 7th insulating film layer b Conductor pattern b21, b22, b31, b41 Conductor pattern b23, b24, b25, b63, b64 Strip pattern b51, b61, b62 Leading conductor Patterns C1, C2, C3, C4, C5, C61, C62, C6 Capacitance elements L1, L2, L3 Inductive elements

Claims (7)

セラミック材料の絶縁膜と導体材料の導体パターンを適宜な順に積層することによりチップ体を形成し、当該チップ体について少なくとも容量素子をなす膜層および誘導素子をなす膜層を有する積層チップ部品であって、
前記導体パターンは、前記誘導素子を入出力間で直列に接続するとともに当該誘導素子の出力側は前記容量素子を接地間にわたすLCフィルタを2段に接続する構成をとり、入力側電極と連なる導体パターンおよび出力側電極と連なる導体パターンにそれぞれ帯状パターンを設け、それら帯状パターンが共振極調整のための容量素子を形成することを特徴とする積層チップ部品。
A chip body is formed by laminating an insulating film of a ceramic material and a conductor pattern of a conductor material in an appropriate order, and the chip body is a multilayer chip component having at least a film layer forming a capacitive element and a film layer forming an inductive element. And
The conductor pattern has a configuration in which the inductive element is connected in series between the input and output, and the output side of the inductive element has a configuration in which the LC filter that connects the capacitive element to the ground is connected in two stages, and is connected to the input side electrode A multilayer chip component comprising a conductor pattern and a conductor pattern connected to an output side electrode, each of which is provided with a belt-like pattern, and the belt-like pattern forms a capacitive element for adjusting a resonance pole.
前記帯状パターンは複数を設けるとともに、相手側と交互に隣り合う配置にすることを特徴とする請求項1に記載の積層チップ部品。   2. The multilayer chip component according to claim 1, wherein a plurality of the belt-like patterns are provided and are arranged alternately adjacent to the other side. 前記帯状パターンは、前記誘導素子をなすための膜層に設けることを特徴とする請求項1,2の何れか1項に記載の積層チップ部品。   3. The multilayer chip component according to claim 1, wherein the strip pattern is provided in a film layer for forming the inductive element. 前記帯状パターンは、前記容量素子をなすための膜層に設けることを特徴とする請求項1,2の何れか1項に記載の積層チップ部品。   The multilayer chip component according to claim 1, wherein the strip pattern is provided in a film layer for forming the capacitor element. セラミック材料の絶縁膜と導体材料の導体パターンを適宜な順に積層することによりチップ体を形成し、当該チップ体について少なくとも容量素子をなす膜層および誘導素子をなす膜層を有する積層チップ部品であって、
前記導体パターンは、前記誘導素子を入出力間で直列に接続するとともに当該誘導素子の出力側は前記容量素子を接地間にわたすLCフィルタを2段に接続する構成をとり、前記LCフィルタの段間で前記膜層の上下間を接続するビアは積層方向にジグザグ状に形成することを特徴とする積層チップ部品。
A chip body is formed by laminating an insulating film of a ceramic material and a conductor pattern of a conductor material in an appropriate order, and the chip body is a multilayer chip component having at least a film layer forming a capacitive element and a film layer forming an inductive element. And
The conductor pattern has a configuration in which the inductive element is connected in series between the input and output, and the output side of the inductive element is configured to connect the LC filter that connects the capacitive element to the ground in two stages. A laminated chip component, wherein vias connecting between the upper and lower sides of the film layer are formed in a zigzag shape in the laminating direction.
セラミック材料の絶縁膜と導体材料の導体パターンを適宜な順に積層することによりチップ体を形成し、当該チップ体の内部に前記導体パターンによる電極体を内蔵する積層チップ部品の製造方法であって、
前記チップ体は絶縁ペーストと導体ペーストとを交互に塗り重ねていく印刷積層法により積層し、当該印刷積層において前記導体パターンは、前記誘導素子を入出力間で直列に接続するとともに当該誘導素子の出力側は前記容量素子を接地間にわたすLCフィルタを2段に接続する構成をとり、入力側電極と連なる導体パターンおよび出力側電極と連なる導体パターンにそれぞれ帯状パターンを設け、それら帯状パターンが共振極調整のための容量素子を形成することを特徴とする積層チップ部品の製造方法。
A chip body is formed by laminating an insulating film of a ceramic material and a conductor pattern of a conductor material in an appropriate order, and a manufacturing method of a multilayer chip component in which an electrode body with the conductor pattern is built in the chip body,
The chip body is laminated by a printing lamination method in which an insulating paste and a conductor paste are alternately applied. In the printing lamination, the conductor pattern connects the inductive elements in series between the input and output and the inductive elements. The output side has a structure in which the LC filter that connects the capacitive element to the ground is connected in two stages, and a strip pattern is provided on each of the conductor pattern connected to the input side electrode and the conductor pattern connected to the output side electrode, and these band patterns resonate. A method of manufacturing a laminated chip component, comprising forming a capacitor element for pole adjustment.
セラミック材料の絶縁膜と導体材料の導体パターンを適宜な順に積層することによりチップ体を形成し、当該チップ体の内部に前記導体パターンによる電極体を内蔵する積層チップ部品の製造方法であって、
前記チップ体は絶縁ペーストと導体ペーストとを交互に塗り重ねていく印刷積層法により積層し、当該印刷積層において前記導体パターンは、前記誘導素子を入出力間で直列に接続するとともに当該誘導素子の出力側は前記容量素子を接地間にわたすLCフィルタを2段に接続する構成をとり、前記LCフィルタの段間で前記膜層の上下間を接続するビアは積層方向にジグザグ状に形成することを特徴とする積層チップ部品の製造方法。
A chip body is formed by laminating an insulating film of a ceramic material and a conductor pattern of a conductor material in an appropriate order, and a manufacturing method of a multilayer chip component in which an electrode body with the conductor pattern is built in the chip body,
The chip body is laminated by a printing lamination method in which an insulating paste and a conductor paste are alternately applied. In the printing lamination, the conductor pattern connects the inductive elements in series between the input and output and the inductive elements. The output side has a configuration in which the LC filter that connects the capacitive element between the grounds is connected in two stages, and vias that connect the upper and lower sides of the film layer between the stages of the LC filter are formed in a zigzag shape in the stacking direction. A method of manufacturing a multilayer chip component characterized by the above.
JP2008225000A 2008-09-02 2008-09-02 Laminated chip component and its manufacturing method Pending JP2010062260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225000A JP2010062260A (en) 2008-09-02 2008-09-02 Laminated chip component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225000A JP2010062260A (en) 2008-09-02 2008-09-02 Laminated chip component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2010062260A true JP2010062260A (en) 2010-03-18

Family

ID=42188766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225000A Pending JP2010062260A (en) 2008-09-02 2008-09-02 Laminated chip component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2010062260A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688179A (en) * 2015-03-24 2017-05-17 株式会社村田制作所 Lowpass filter
CN107947752A (en) * 2017-12-29 2018-04-20 中国电子科技集团公司第四十三研究所 A kind of bandpass filter
US12244285B2 (en) 2020-05-25 2025-03-04 Murata Manufacturing Co., Ltd. LC filter, and diplexer and multiplexer using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306586A (en) * 1995-05-08 1996-11-22 Tdk Corp Multilayer noise filter
JPH09219315A (en) * 1996-02-08 1997-08-19 Murata Mfg Co Ltd Inductor built-in electronic component
JP2001156569A (en) * 1999-11-26 2001-06-08 Murata Mfg Co Ltd Layered lc composite component
JP2002204136A (en) * 2000-12-28 2002-07-19 Soshin Electric Co Ltd Stacked low-pass filter
JP2002252534A (en) * 2001-02-26 2002-09-06 Matsushita Electric Ind Co Ltd High frequency filter
JP2003017968A (en) * 2001-06-28 2003-01-17 Tdk Corp Layered filter
JP2003158437A (en) * 2001-09-06 2003-05-30 Murata Mfg Co Ltd Lc filter circuit, laminate type lc filter, multiplexer, and radio communication device
JP2003243230A (en) * 2002-02-19 2003-08-29 Fdk Corp Via connection structure for multilayer electronic components
JP2006148736A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Noise filter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08306586A (en) * 1995-05-08 1996-11-22 Tdk Corp Multilayer noise filter
JPH09219315A (en) * 1996-02-08 1997-08-19 Murata Mfg Co Ltd Inductor built-in electronic component
JP2001156569A (en) * 1999-11-26 2001-06-08 Murata Mfg Co Ltd Layered lc composite component
JP2002204136A (en) * 2000-12-28 2002-07-19 Soshin Electric Co Ltd Stacked low-pass filter
JP2002252534A (en) * 2001-02-26 2002-09-06 Matsushita Electric Ind Co Ltd High frequency filter
JP2003017968A (en) * 2001-06-28 2003-01-17 Tdk Corp Layered filter
JP2003158437A (en) * 2001-09-06 2003-05-30 Murata Mfg Co Ltd Lc filter circuit, laminate type lc filter, multiplexer, and radio communication device
JP2003243230A (en) * 2002-02-19 2003-08-29 Fdk Corp Via connection structure for multilayer electronic components
JP2006148736A (en) * 2004-11-24 2006-06-08 Matsushita Electric Ind Co Ltd Noise filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688179A (en) * 2015-03-24 2017-05-17 株式会社村田制作所 Lowpass filter
EP3168989A4 (en) * 2015-03-24 2018-02-21 Murata Manufacturing Co., Ltd. Lowpass filter
US10110193B2 (en) 2015-03-24 2018-10-23 Murata Manufacturing Co., Ltd. Low pass filter
CN106688179B (en) * 2015-03-24 2020-04-24 株式会社村田制作所 Low-pass filter
CN107947752A (en) * 2017-12-29 2018-04-20 中国电子科技集团公司第四十三研究所 A kind of bandpass filter
US12244285B2 (en) 2020-05-25 2025-03-04 Murata Manufacturing Co., Ltd. LC filter, and diplexer and multiplexer using same

Similar Documents

Publication Publication Date Title
KR100986217B1 (en) Laminated coil parts
KR100976347B1 (en) Multilayer capacitors
JP5353911B2 (en) Electronic components and board modules
KR20150014224A (en) Multilayered ceramic capacitor, the method of the same and board for mounting the same
JP2012256757A (en) Lc composite component and mounting structure of lc composite component
US9444424B2 (en) Polar-type low pass filter and demultiplexer equipped therewith
JP2014045165A (en) Multi-layered chip electronic component
JP2010034272A (en) Multilayer capacitor and method for adjusting equivalent series resistance value of multilayer capacitor
JP5605342B2 (en) Electronic components and board modules
JP2002093623A (en) Multilayer inductor
JP4961818B2 (en) Multilayer capacitor
JP5201223B2 (en) Electronic components and board modules
JP2010062260A (en) Laminated chip component and its manufacturing method
JP2014003269A (en) Multilayer chip electronic component
JP6232836B2 (en) Capacitor element
JP2008053543A (en) Multilayer chip parts
JP4530866B2 (en) Filter element and electronic module
JP4051252B2 (en) Noise filter
JP5294319B2 (en) Multilayer chip balun element
JP2006246124A (en) Multilayer noise filter
JP2008054122A (en) Multilayer chip parts
KR100372848B1 (en) Integrated chip part with low inductance for high frequency and fabricating method therefor
JP2007266219A (en) Multilayer chip component and manufacturing method thereof
JP2604139Y2 (en) Multilayer chip components
JP2007097118A (en) Multilayer LC filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110802

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Effective date: 20120502

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120906