[go: up one dir, main page]

JP2010057322A - モータ装置の設計方法 - Google Patents

モータ装置の設計方法 Download PDF

Info

Publication number
JP2010057322A
JP2010057322A JP2008221763A JP2008221763A JP2010057322A JP 2010057322 A JP2010057322 A JP 2010057322A JP 2008221763 A JP2008221763 A JP 2008221763A JP 2008221763 A JP2008221763 A JP 2008221763A JP 2010057322 A JP2010057322 A JP 2010057322A
Authority
JP
Japan
Prior art keywords
frequency
diameter dimension
motor device
motor
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008221763A
Other languages
English (en)
Inventor
Shigeki Ota
重喜 太田
Masakazu Kamei
正和 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuba Corp
Original Assignee
Mitsuba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuba Corp filed Critical Mitsuba Corp
Priority to JP2008221763A priority Critical patent/JP2010057322A/ja
Publication of JP2010057322A publication Critical patent/JP2010057322A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】コンピュータを用いてアマチュア軸に設ける溝部の直径寸法を最適化し、設計期間の短縮化を図る。
【解決手段】第5ステップ(S10)で求めた固有振動周波数(PF)(1次〜4次)(φa〜φn)と、第3ステップ(S7)で求めた高周波領域周波数(HF)(1次〜4次)とを、第6ステップ(S12〜S15)において比較部により比較し、周波数差が70Hz以上となる最適直径寸法(φs)を決定し、第7ステップ(S16)において最適直径寸法(φs)をディスプレイに表示するようにした。アマチュア軸の各溝部の直径寸法(φ)を複数の試作品を製作せずに最適化することができ、ワイパモータの設計期間の大幅な短縮化を図ることができる。
【選択図】図6

Description

本発明は、アマチュア軸に設ける溝部の直径寸法を、コンピュータを用いて最適化するようにしたモータ装置の設計方法に関する。
従来、自動車等の車両に搭載されるワイパ装置やパワーウィンド装置等には、電動モータ(駆動源)が設けられている。このような車載用の電動モータとしてはブラシ付きの直流モータがあり、ブラシ付きの直流モータは、モータケース(ヨーク)の内部に回転自在に設けられるコアと、コアのスロットに巻装されるコイルと、コアの回転中心に設けられるアマチュア軸と、アマチュア軸に一体に設けられてコイルの端部が接続されるコンミテータ(整流子)とを備えている。
ブラシ付きの直流モータとしては、例えば、特許文献1に記載された電動モータが知られている。この特許文献1に記載された電動モータは、ワイパ装置の駆動源、つまり車載用の電動モータとして用いられるものであり、この種の電動モータは、車両デザインの自由度向上やレイアウト性向上等の理由から、小型でありながら高出力が得られるようにすることが望まれている。
そこで、このような要請に対応して小型かつ高出力が得られる電動モータを得るために、例えば、アマチュア軸のコアと近接する位置に、アマチュア軸の周方向に沿う溝部を設け、当該溝部にコイルを巻装することが挙げられる。つまり、溝部に入り込むようコイルを巻装することによりコイルの巻き数を増加させ、その結果、小型かつ高出力が得られる電動モータを提供することが可能となる。
特開2003−032966号公報(図1)
しかしながら、コイルの巻き数を増加させるために、単にアマチュア軸の所定箇所に溝部を形成したのでは、高出力化は期待できるものの、アマチュア軸の形状変更に伴って作動音が増大する虞がある。つまり、アマチュア軸の形状変更によりアマチュア軸の固有振動周波数が変化し、仮に、アマチュア軸の固有振動周波数と、モータ装置の作動時における振動周波数(ブラシの摺接ノイズ等による振動周波数)とが一致するような場合には、それぞれの周波数で共振が発生して大きな作動音が発生することになる。
各周波数が近似することにより共振が発生(作動音が増大)するか否かを検証するには、まず、アマチュア軸に設ける溝部の寸法の候補を複数挙げて、各寸法の溝部に対応した複数の試作品を製作する。そして、実際に各試作品を規定の回転数(定格回転数(無負荷))で作動させ、そのときの作動音を騒音計等の計測機器により測定する。このように、複数の試作品を実際に作動させて検証する必要があり、試作品の製作や作動音の測定等に手間がかかり、ひいては設計期間の長期化を招くといった問題が生じ得る。
本発明の目的は、コンピュータを用いてアマチュア軸に設ける溝部の直径寸法を最適化し、設計期間の短縮化を図ることができるモータ装置の設計方法を提供することにある。
本発明のモータ装置の設計方法は、ヨーク内に回転自在に設けられ、回転中心から放射状に延びる複数のティースおよび当該各ティース間に形成される複数のスロットを有するコアと、前記コアの回転中心に設けられるアマチュア軸と、前記アマチュア軸の軸方向に沿う前記コアの一側および他側に設けられ、前記アマチュア軸の周方向に沿う第1溝部および第2溝部と、前記アマチュア軸の前記第1溝部側に設けられる整流子と、前記複数のスロットに巻装され、端部が前記整流子に電気的に接続されるコイルとを備えるモータ装置の設計方法であって、記憶手段に格納された複数の異なるモータ装置のデータ群から、設計対象とする設計対象データを選択する第1ステップと、前記設計対象データのモータ基準回転数に基づいて、演算手段により前記設計対象データにおけるベース周波数を求める第2ステップと、前記ベース周波数に基づいて、前記演算手段により前記設計対象データにおける高周波領域周波数を求める第3ステップと、前記第1溝部および前記第2溝部の直径寸法を、入力手段により前記演算手段に複数入力する第4ステップと、前記各直径寸法に対応した前記設計対象データにおけるアマチュア軸の固有振動周波数を、前記演算手段により求める第5ステップと、前記第5ステップで求めた各固有振動周波数と前記第3ステップで求めた高周波領域周波数とを比較手段により比較し、周波数差が所定値以上となる最適直径寸法を決定する第6ステップと、前記最適直径寸法を表示手段に表示する第7ステップとを有することを特徴とする。
本発明のモータ装置の設計方法は、前記第3ステップでは、前記高周波領域周波数を、前記ベース周波数と、前記スロットのスロット数と、周波数の次数とを積算して求めることを特徴とする。
本発明のモータ装置の設計方法は、前記第6ステップでは、周波数差が70Hz以上となる前記第1溝部および前記第2溝部の直径寸法を、前記最適直径寸法に決定することを特徴とする。
本発明のモータ装置の設計方法は、前記第6ステップでは、前記最適直径寸法の決定条件に、前記アマチュア軸の強度条件および組立条件を加えることを特徴とする。
本発明のモータ装置の設計方法は、前記第7ステップでは、前記最適直径寸法の表示に加えて、前記アマチュア軸の振動状態をシミュレーション表示することを特徴とする。
本発明によれば、第5ステップで求めた各固有振動周波数と、第3ステップで求めた高周波領域周波数とを、第6ステップにおいて比較手段により比較し、周波数差が所定値以上となる最適直径寸法を決定し、第7ステップにおいて最適直径寸法を表示手段に表示するようにしたので、共振の発生(作動音の増大)が抑制された第1溝部および第2溝部を備えたアマチュア軸を設計することができる。したがって、複数の試作品を製作した上で、実際に各試作品を作動させて検証する作業が不要となる。アマチュア軸に設ける溝部の直径寸法を複数の試作品を製作せずに最適化することができるので、設計期間の短縮化を図ることができ、ひいては製造コストを低減することができる。
本発明によれば、第3ステップでは、高周波領域周波数を、ベース周波数と、スロットのスロット数と、周波数の次数とを積算して求めるので、記憶部に格納されたモータ装置のデータを用いて高周波領域周波数を求めることができる。したがって、高周波領域周波数を求めるために別途データ等を入力する作業が不要となる。
本発明によれば、第6ステップでは、周波数差が70Hz以上となる第1溝部および第2溝部の直径寸法を、最適直径寸法に決定するので、アマチュア軸の回転数のバラツキ(モータ装置の個体差)により高周波領域周波数に差が生じる場合であっても、共振の発生を確実に抑制することができる。
本発明によれば、第6ステップでは、最適直径寸法の決定条件に、アマチュア軸の強度条件および組立条件を加えるので、耐久性および生産性にも優れたモータ装置を設計することができる。
本発明によれば、第7ステップでは、最適直径寸法の表示に加えて、アマチュア軸の振動状態をシミュレーション表示するので、モータ装置の作動状態の可否を容易に検証することができる。
以下、本発明の一実施の形態について図面を用いて詳細に説明する。図1は本発明に係る設計方法により設計したモータ装置の断面図を、図2(a),(b)は図1のモータ装置のアマチュア軸組立体を説明する説明図をそれぞれ表している。
図1に示すように、モータ装置としてのワイパモータ10は、自動車等の車両に設けられるリヤガラスを払拭するリヤワイパ装置(図示せず)の駆動源として用いられ、ワイパモータ10は、モータ本体部20とギヤケース部40とを備えている。
モータ本体部20は、磁性材料よりなる鋼板等をプレス加工することにより有底状に形成されたヨーク21を有している。ヨーク21の内部には、断面が略円弧形状に形成された一対のマグネット(永久磁石)22が対向配置されており、その内側には、所定の隙間を介してアマチュア軸組立体23が回転自在に設けられている。
図2に示すように、アマチュア軸組立体23は、磁性材料よりなる複数の鋼板を積層して形成されたコア24を有している。コア24は、図2(b)に示すように、当該コア24の回転中心側に設けられる芯部24aと、コア24の回転中心から放射状に延びる複数のティース24bとを備えている。芯部24aおよび各ティース24bは、打ち抜き加工(プレス加工)によりそれぞれ一体に形成されている。
本実施の形態においては、各ティース24bは、芯部24aの周方向に沿って略等間隔で10個設けられており、各ティース24b間には10個のスロット24cが形成されている。各スロット24cには、銅製の線材等よりなるコイル25が重ね巻きにより巻装されている。
コア24の回転中心、つまり芯部24aの中心部分には、アマチュア軸26が貫通して固定されており、当該アマチュア軸26は、コア24とともに回転するようになっている。
アマチュア軸26の基端側(図中右側)には凹部26aが設けられており、凹部26aには、アマチュア軸26のスラスト荷重を受けるスチールボール(鋼球)27が収容されている(図1参照)。スチールボール27は、アマチュア軸26の凹部26aとヨーク21の底部側(図中右側)に設けられたスラストプレート21aとの間に配置され、凹部26aおよびスラストプレート21aのそれぞれに線接触あるいは点接触するようになっている。また、アマチュア軸26の基端側は、ヨーク21の底部側に設けられたラジアル軸受28により回転自在に支持されている。
アマチュア軸26の先端側(図中左側)には、螺旋状のギヤ歯(詳細図示せず)よりなるウォーム26bが一体に設けられている。ウォーム26bの先端側は、ギヤケース部40のケース41に設けられたスラスト軸受29により支持されており、ウォーム26bの基端側は、ケース41に設けられたラジアル軸受30により回動自在に支持されている。
アマチュア軸26の軸方向に沿うコア24の近傍には、第1溝部31および第2溝部32が一体に設けられている。第1溝部31はコア24の一側(図中左側)に設けられ、第2溝部32はコア24の他側(図中右側)に設けられている。各溝部31,32は、アマチュア軸26の周方向に沿うよう環状に形成されており、その直径寸法は何れもφ5(mm)に設定されている。なお、アマチュア軸26のウォーム26b,各溝部31,32を除く他の部分の直径寸法はφ7(mm)に設定されている。
アマチュア軸26の第1溝部31側には、当該アマチュア軸26と同心状に略筒状に形成されたコンミテータ(整流子)33が設けられている。コンミテータ33はアマチュア軸26とともに回転するようになっており、導電性を有する鋼材よりなる複数の接触片33aを備えている。各接触片33aは、溶融樹脂をモールド成形することにより略筒状に一体化されており、各接触片33aは、各スロット24cの数と同じ数だけ(10個)設けられている。各接触片33aには、各スロット24cから延ばされたコイル25の端部が電気的に接続されている。
各溝部31,32には、各スロット24cに巻装されたコイル25が入り込んでいる。コイル25は、各スロット24c間を跨ぐよう各溝部31,32の部分で折り返されて、その際に各溝部31,32内に配置されるようになっている。このように、各溝部31,32内にコイル25の折り返し部分を入り込ませることにより、コイル25の所謂「巻き太り」を抑え、ひいてはコイル25の良好な組立性確保と巻き数増加とを実現させている。これによりワイパモータ10の外形寸法を大型化させずに高出力化を図っている。
モータ本体部20とギヤケース部40との間には、図1に示すように、プラスチック等の樹脂材料により略円筒状に形成されたブラシホルダ34が装着されている。ブラシホルダ34は、一対のカーボン製のブラシ35を移動自在に保持しており、各ブラシ35は、コンミテータ33の各接触片33aに摺接するようになっている。
ギヤケース部40は、溶融したアルミ材料等を鋳造することにより有底状に形成されたケース41を有しており、ケース41の内部には、減速機構42および運動変換機構43が収容されている。また、ケース41には、図示しない車両側の外部コネクタ(給電コネクタ)が接続される樹脂製のコネクタ接続部44が一体に設けられており、コネクタ接続部44内のターミナル44aを介して、各ブラシ35に駆動電流が供給されるようになっている。
減速機構42は、ケース41内に突出されたウォーム26bと、ケース41内に回転自在に設けられたウォームホイール45とから構成されている。ウォームホイール45の回転中心には回転軸45aが設けられ、ウォームホイール45の外周側にはウォーム26bと噛み合うギヤ歯(平歯車)45b(詳細図示せず)が設けられている。減速機構42は、アマチュア軸26の回転を所定の速度にまで減速し、回転軸45aを介して高トルク化された出力を出力するようになっている。
ウォームホイール45の回転軸45aから所定距離離間した位置には、セクタギヤ46の一端側(図中右側)が回動自在に設けられており、セクタギヤ46の一端側は、ウォームホイール45の回転に伴って、回転軸45aの周囲を移動するようになっている。セクタギヤ46の他端側(図中左側)には、略扇形状のギヤ本体46aが設けられており、ギヤ本体46aには、ギヤ歯(平歯車)46bが一体に設けられている。
ギヤ本体46aのギヤ歯46bには、出力歯車47のギヤ歯(平歯車)47aが噛み合わされており、出力歯車47は、セクタギヤ46の揺動に伴って揺動運動するようになっている。出力歯車47の回転中心には、一端側がケース41の外部に突出された出力軸47bの他端側が一体に設けられている。
セクタギヤ46の他端側と出力軸47bの他端側との間には、連結板48の端部がそれぞれ回動自在に設けられている。連結板48は、セクタギヤ46の他端側と出力軸47bの他端側との間の距離を一定に保ち、各ギヤ歯46b,47aの噛み合い状態を維持するようになっている。ここで、運動変換機構43は、セクタギヤ46,出力歯車47および連結板48により構成されている。
アマチュア軸26の回転に伴いウォームホイール45が回転すると、セクタギヤ46の一端側が回転軸45aの周囲を移動する。これに伴い、セクタギヤ46のギヤ本体46aが揺動し、この揺動運動が出力歯車47に伝達されて出力軸47bが揺動する。このように、運動変換機構43は、減速機構42の回転運動を出力軸47bの揺動運動に変換し、出力軸47bの一端側に装着されるリヤワイパアーム(図示せず)を揺動運動させるようになっている。
次に、ワイパモータ10の設計方法について図面を用いて詳細に説明する。図3は本発明に係る設計方法を実行するコンピュータの構成図を、図4はアマチュア軸の振動状態の表示内容を説明する説明図を、図5は比較部の処理内容を説明する説明図を、図6は図3のコンピュータの処理内容を示すフローチャートを、図7は周波数(Hz)−音圧レベル(dB)グラフをそれぞれ表している。
図3に示すように、本発明に係る設計方法を実行するコンピュータ50は、記憶部(記憶手段)51,演算部(演算手段)52,シミュレーション部53,比較部(比較手段)54および表示制御部55を備えている。また、コンピュータ50には、入力手段としてのキーボード56および表示手段としてのディスプレイ57が接続されている。
記憶部51は、図6に示すフローチャートを実行するプログラムに加えて、複数の異なるワイパモータのデータ群(基準データ群)が予め格納されている。基準データ群は、フロント用やリヤ用等、さらには減速比の異なる既存のワイパモータの種々のデータ(アマチュア軸の直径,アマチュア軸の長さ,コアの直径,コアの長さ等)により構成されている。本発明に係る設計方法は、記憶部51に格納された基準データ群に基づいて、設計すべき新規のワイパモータ10(低騒音型ワイパモータ)を設計するようになっている。
演算部52は、操作者によるキーボード56からの入力データ(仕様選定データ)に基づき、記憶部51から一のワイパモータ10の基準データ(設計対象データ)を抽出する。そして、演算部52は所定の演算処理を実行し、設計対象データ(仕様a)に基づくベース周波数(BF)および高周波領域周波数(HF)を算出する。ここで、ベース周波数(BF)は下記式(1)により求められ、高周波領域周波数(HF)は下記式(2)により求められる。
BF(Hz)=R(rpm)×SR×1/60・・・式(1)
BF:ベース周波数
R:モータ基準回転数(定格回転数(無負荷))
SR:減速機構の減速比
ベース周波数(BF)は、ワイパモータ10が回転することにより発生する周波数を表し、この場合、仕様aのモータ基準回転数(R)と、仕様aの減速機構42の減速比(SR)とから求めることができる。ここで、仕様aのモータ基準回転数(R)を「40.00rpm」,仕様aの減速比(SR)を「86.50」とすると、仕様aのベース周波数(BF)は「57.60Hz」となる。
HF(Hz)=BF(Hz)×S(個)×周波数の次数(自然数)・・・式(2)
HF:高周波領域周波数
S:スロットの個数
高周波領域周波数(HF)は、各ブラシ35のコンミテータ33への摺接等により発生する振動(ノイズ)に起因するもので、約300Hz〜2500Hzの範囲の高周波数を指している。高周波領域周波数(HF)は、アマチュア軸26が一回転するときに各ブラシ35が各接触片33aを何回乗り越えるかにより決定される。ここで、仕様aのベース周波数(BF)を「57.60Hz」,仕様aのスロット24cの個数(S)を「10個」とすると、仕様aの高周波領域周波数(HF)(1次〜4次)は、「576.00Hz(1次)」,「1152.00Hz(2次)」,「1728.00Hz(3次)」,「2304.00Hz(4次)」となる。
演算部52では、ベース周波数(BF)および高周波領域周波数(HF)(1次〜4次)の算出に加えて、操作者によるキーボード56からの入力データ(第1,第2溝部31,32の直径寸法データ)に基づき、各溝部31,32を有するアマチュア軸26の固有振動周波数(PF)(1次〜4次)を求める。ここで、設計すべき各溝部31,32の直径寸法(φ)としては、比較対象を生成するために幾つかの候補(φa〜φn)を入力しておく。固有振動周波数(PF)は、入力した各溝部31,32の直径寸法(φa〜φn),アマチュア軸26の長さ,重さ,コア24の長さ,重さ,アマチュア軸26とコア24との位置関係等により求められる。
演算部52で求めたアマチュア軸26の固有振動周波数(PF)(1次〜4次)(φa〜φn)は、シミュレーション部53に送出される。シミュレーション部53では、候補(φa〜φn)に対応するアマチュア軸26の振動状態を、それぞれFEM(Finite Element Method)解析によりシミュレートする。具体的には、図4に示すアマチュア軸組立体23を複数のメッシュにより3次元モデル化(図中破線円B部参照)し、複数のメッシュを振動規模に応じて色分けする処理を行う。そして、シミュレーション部53におけるシミュレーション結果は、ディスプレイ57にシミュレーション表示するために表示制御部55へ送出される。
比較部54は、演算部52で求めた高周波領域周波数(HF)(1次〜4次)および、固有振動周波数(PF)(1次〜4次)(φa〜φn)に基づいて、図5に示す比較表を生成し、高周波領域周波数(HF)(1次〜4次)と、候補(φa〜φn)に対応する固有振動周波数(PF)(1次〜4次)とをそれぞれ比較する。比較部54では、各次数(1〜4)のそれぞれにおいて所定の周波数差(70Hz以上の差)を有する候補を選定、つまり共振の発生を抑えられる各溝部31,32の直径寸法を最適直径寸法(φs)として決定する。ここで、所定の周波数差を70Hz以上としたのは、モータ本体部20の個体差によるモータ基準回転数のバラツキ(±5rpm)を考慮し、余裕を持たせた十分な大きさの周波数差とするためである。
比較部54における最適直径寸法(φs)の決定条件には、アマチュア軸26の強度条件や組立条件が加えられる。ここで、アマチュア軸26の強度条件とは、各溝部31,32の直径寸法が小さすぎて「強度不足」が生じているか否かを強度計算により判定する条件のことである。また、アマチュア軸26の組立条件とは、各溝部31,32の直径寸法が大きすぎてコイル25の「巻き太り」が生じるか否かを組立シミュレーションにより判定する条件のことである。
表示制御部55では、シミュレーション部53におけるシミュレーション結果(図4参照)と、比較部54で生成した比較表(図5参照)とを、ディスプレイ57に表示させる制御を行う。これにより、操作者は、ディスプレイ57を目視することで、入力した候補(φa〜φn)のアマチュア軸26の振動状態を認識することができ、また、入力した候補(φa〜φn)のうちの最適直径寸法(φs)を認識することができる。
次に、コンピュータ50の処理内容について、図6に示すフローチャートを用いて詳細に説明する。
[設計対象データの選定工程]
まず、コンピュータ50を起動させて記憶部51に格納されたプログラムを実行する(ステップS1)。次いで、キーボード56を介して、今回設計対象とする仕様選定データ(仕様a)を入力する(ステップS2)。ステップS3では、演算部52が仕様aに基づいて記憶部51内の基準データ群を参照する。ステップS4では、基準データ群の中に仕様aの基準データ(設計対象データ)があるか否かを判定し、Yesと判定した場合にはステップS5に進み、Noと判定した場合にはステップS2に戻る。
[ベース周波数(BF)の算出工程]
ステップS5では、仕様aの基準データ(設計対象データ)を記憶部51から抽出する。ステップS6では、上記式(1)に基づいて、演算部52により仕様aのベース周波数(BF)を算出する。ここで、ステップS2〜ステップS5の処理内容が本発明における第1ステップを構成し、ステップS6の処理内容が本発明における第2ステップを構成している。
[高周波領域周波数(HF)(1次〜4次)の算出工程]
ステップS7では、上記式(2)に基づいて、演算部52により、図5中破線部(I)に示す高周波領域周波数(HF)(1次〜4次)を算出する。ここで、ステップS7の処理内容が本発明における第3ステップを構成している。
[各溝部の直径寸法候補の入力工程]
ステップS8では、キーボード56を介して、各溝部31,32の直径寸法の候補(φa〜φn)を演算部52に入力する。ここでは、図5中破線部(II)に示すように、No.1(φ3)〜No.4(φ6)の4つの候補を入力している。なお、図5中破線部(II)のNo.5(無し)は、比較のための各溝部31,32が無いものを示している。
ステップS9では、ステップS8で入力されたNo.1(φ3)〜No.4(φ6)の数値が適正か否か、つまりNo.1(φ3)〜No.4(φ6)の数値がアマチュア軸26の他の部分の直径寸法φ7(mm)よりも小さいか否かを判定する。Yesと判定した場合にはステップS10に進み、Noと判定した場合にはステップS8に戻る。ここで、ステップS8およびステップS9の処理内容が本発明における第4ステップを構成している。
[固有振動周波数(PF)(1次〜4次)(φa〜φn)の算出工程]
ステップS10では、演算部52により、ステップS8で入力されたNo.1(φ3)〜No.4(φ6)のそれぞれについて、図5中破線部(II)に示すように、アマチュア軸26の固有振動周波数(PF)(1次〜4次)を求める。ここで、ステップS10の処理内容が本発明における第5ステップを構成している。
ステップS11では、シミュレーション部53により、ステップS10で求めたアマチュア軸26の固有振動周波数(PF)(1次〜4次)に基づいて、No.1(φ3)〜No.4(φ6)のそれぞれに対応するアマチュア軸組立体23の3次元モデルを生成(FEM解析)する。ここでは、No.5(無し)の3次元モデルも生成し、その後、各3次元モデルはそれぞれディスプレイ57に表示される。
[最適直径寸法(φs)の決定工程]
ステップS12では、比較部54により、図5中破線部(I)の高周波領域周波数(HF)(1次〜4次)と、図5中破線部(II)のNo.1(φ3)〜No.5(無し)に対応する固有振動周波数(PF)(1次〜4次)とに基づいて、図5に示す比較表を生成するとともに、高周波領域周波数(HF)と各固有振動周波数(PF)とをそれぞれ比較する比較処理を実行する。
ステップS13では、No.1(φ3)〜No.4(φ6)の中から、各次数(1〜4)のそれぞれにおいて70Hz以上の差を有する直径寸法(φ)のものを選定する。ここでは、図5に示すようにNo.1(φ3)〜No.3(φ5)の3つが、周波数比較の観点から最適直径寸法(φs)として選定される。
ステップS14では、ステップS13で選定したNo.1(φ3)〜No.3(φ5)が諸条件を満たすか否か、つまり、図5中破線部(III)に示すように、No.1(φ3)〜No.3(φ5)がそれぞれ「強度条件」および「組立条件」の双方を満たすか否かを判定する。Yesと判定した場合にはステップS15に進み、Noと判定した場合にはステップS8に戻る。
ステップS15では、No.1(φ3)〜No.3(φ5)のうち、「強度条件」および「組立条件」の双方を十分に満たすものを1つ選定、つまり図5に示すようにNo.3(φ5)を選定する。そして、選定したNo.3(φ5)を、「周波数比較条件」,「強度条件」および「組立条件」の何れをも満たす最適直径寸法(φs)として最終的に決定し、No.3(φ5)の総合判定を「○」とする。ここで、ステップS12〜ステップS15の処理内容が本発明における第6ステップを構成している。
[ディスプレイ表示工程]
ステップS16では、シミュレーション表示(図4参照)および最適直径寸法(φs)(図5参照)の表示に加え、No.3(φ5)にて量産に移行可能である旨の内容、つまり「量産移行許可」等をディスプレイ57に表示させ、これにより操作者は、低騒音化を実現できる各溝部31,32の最適直径寸法(φs)を認識することができる。その後、ステップS17に進んで本プログラムが終了する。ここで、ステップS16の処理内容が本発明における第7ステップを構成している。
図7は、従来の設計方法によるワイパモータ(図示せず)の作動音と、本発明の設計方法によるワイパモータ10の作動音とを比較したグラフ(実測値)を示しており、FFT(Fast Fourier Transform)解析により得たものである。図7に示すように、Over All値で従来例が「34.00dB」であったのに対し、本発明では「28.80dB」となり「5.20dB」の作動音低減が図れた。特に、耳障りとなる2次成分周波数(1200Hz)の近傍において、大幅に作動音を低減させることができた(図中破線円部分参照)。なお、図7に示すグラフは、何れもモータ基準回転数「40.00rpm」で、かつ無負荷状態における測定結果である。
ここで、従来の設計方法によるグラフ(一点鎖線)は、製作した複数の試作品の中で最も作動音が最小となるものをピックアップしたものであり、各試作品の中には、本発明の設計方法により見出した最適直径寸法(φs)のものが存在しなかった。つまり、本発明の設計方法においては、試作品を製作すること無く最適直径寸法(φs)を容易に導き出すことができるが、従来の設計方法において本発明と同等の結果を得るためには、最適直径寸法(φs)が得られる可能性を高めるために、より多くの試作品を製作することが必要となる。
以上詳述したように、本実施の形態に係るモータ装置の設計方法によれば、第5ステップで求めた固有振動周波数(PF)(1次〜4次)(φa〜φn)と、第3ステップで求めた高周波領域周波数(HF)(1次〜4次)とを、第6ステップにおいて比較部54により比較し、周波数差が70Hz以上となる最適直径寸法(φs)を決定し、第7ステップにおいて最適直径寸法(φs)をディスプレイ57に表示するようにしたので、共振の発生(作動音の増大)が抑制された第1溝部31および第2溝部32を備えたアマチュア軸26を設計することができる。
したがって、従前のように、複数の試作品を製作した上で、実際に各試作品を作動させて検証する作業が不要となる。アマチュア軸26に設ける各溝部31,32の直径寸法(φ)を複数の試作品を製作せずに最適化することができるので、ワイパモータ10の設計期間の大幅な短縮化を図ることができ、ひいては製造コストを低減することができる。
また、本実施の形態に係るモータ装置の設計方法によれば、第3ステップでは、高周波領域周波数(HF)(1次〜4次)、ベース周波数(BF)と、スロット24cのスロット数と、周波数の次数とを積算して求めるので、記憶部51に格納されたワイパモータ10のデータ(設計対象データ)を用いて高周波領域周波数を求めることができる。したがって、高周波領域周波数を求めるために別途データ等を入力する作業が不要となる。
さらに、本実施の形態に係るモータ装置の設計方法によれば、第6ステップでは、周波数差が70Hz以上となる第1溝部31および第2溝部32の直径寸法(φ)を、最適直径寸法(φs)に決定するので、アマチュア軸26の回転数のバラツキ(ワイパモータ10の個体差)により高周波領域周波数に差が生じる場合であっても、共振の発生を確実に抑制することができる。
また、本実施の形態に係るモータ装置の設計方法によれば、第6ステップでは、最適直径寸法(φs)の決定条件に、アマチュア軸26の強度条件および組立条件を加えるので、耐久性および生産性にも優れたワイパモータ10を設計することができる。
さらに、本実施の形態に係るモータ装置の設計方法によれば、第7ステップでは、最適直径寸法(φs)の表示に加えて、アマチュア軸26の振動状態をシミュレーション表示するので、ワイパモータ10の作動状態の可否を容易に検証することができる。
本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記実施の形態においては、本発明の設計方法を、車両のリヤガラスを払拭するリヤワイパ装置のワイパモータ10に適用したものを示したが、本発明はこれに限らず、車両のフロントガラスを払拭するフロントワイパ装置のワイパモータに適用することもできる。また、この他に、車載用の電動モータとしてのパワーウィンドモータや電動サンルーフ用モータ,電動スライドドア用モータ等にも本発明を適用することができる。
さらに、上記実施の形態においては、本発明の設計方法を、車両に搭載されるワイパモータ10に適用したものを示したが、本発明はこれに限らず、例えば、航空機や鉄道車両,建設機械等に設けられるワイパ装置のワイパモータに適用することもできる。
本発明に係る設計方法により設計したモータ装置の断面図である。 (a),(b)は、図1のモータ装置のアマチュア軸組立体を説明する説明図である。 本発明に係る設計方法を実行するコンピュータの構成図である。 アマチュア軸の振動状態の表示内容を説明する説明図である。 比較部の処理内容を説明する説明図である。 図3のコンピュータの処理内容を示すフローチャートである。 周波数(Hz)−音圧レベル(dB)グラフである。
符号の説明
10 ワイパモータ(モータ装置)
20 モータ本体部
21 ヨーク
21a スラストプレート
23 アマチュア軸組立体
24 コア
24a 芯部
24b ティース
24c スロット
25 コイル
26 アマチュア軸
26a 凹部
26b ウォーム
27 スチールボール
28 ラジアル軸受
29 スラスト軸受
30 ラジアル軸受
31 第1溝部
32 第2溝部
33 コンミテータ(整流子)
33a 接触片
34 ブラシホルダ
35 ブラシ
40 ギヤケース部
41 ケース
42 減速機構
43 運動変換機構
44 コネクタ接続部
44a ターミナル
45 ウォームホイール
45a 回転軸
46 セクタギヤ
46a ギヤ本体
46b ギヤ歯
47 出力歯車
47b 出力軸
48 連結板
50 コンピュータ
51 記憶部(記憶手段)
52 演算部(演算手段)
53 シミュレーション部
54 比較部(比較手段)
55 表示制御部
56 キーボード(入力手段)
57 ディスプレイ(表示手段)

Claims (5)

  1. ヨーク内に回転自在に設けられ、回転中心から放射状に延びる複数のティースおよび当該各ティース間に形成される複数のスロットを有するコアと、
    前記コアの回転中心に設けられるアマチュア軸と、
    前記アマチュア軸の軸方向に沿う前記コアの一側および他側に設けられ、前記アマチュア軸の周方向に沿う第1溝部および第2溝部と、
    前記アマチュア軸の前記第1溝部側に設けられる整流子と、
    前記複数のスロットに巻装され、端部が前記整流子に電気的に接続されるコイルとを備えるモータ装置の設計方法であって、
    記憶手段に格納された複数の異なるモータ装置のデータ群から、設計対象とする設計対象データを選択する第1ステップと、
    前記設計対象データのモータ基準回転数に基づいて、演算手段により前記設計対象データにおけるベース周波数を求める第2ステップと、
    前記ベース周波数に基づいて、前記演算手段により前記設計対象データにおける高周波領域周波数を求める第3ステップと、
    前記第1溝部および前記第2溝部の直径寸法を、入力手段により前記演算手段に複数入力する第4ステップと、
    前記各直径寸法に対応した前記設計対象データにおけるアマチュア軸の固有振動周波数を、前記演算手段により求める第5ステップと、
    前記第5ステップで求めた各固有振動周波数と前記第3ステップで求めた高周波領域周波数とを比較手段により比較し、周波数差が所定値以上となる最適直径寸法を決定する第6ステップと、
    前記最適直径寸法を表示手段に表示する第7ステップとを有することを特徴とするモータ装置の設計方法。
  2. 請求項1記載のモータ装置の設計方法において、前記第3ステップでは、前記高周波領域周波数を、前記ベース周波数と、前記スロットのスロット数と、周波数の次数とを積算して求めることを特徴とするモータ装置の設計方法。
  3. 請求項1または2記載のモータ装置の設計方法において、前記第6ステップでは、周波数差が70Hz以上となる前記第1溝部および前記第2溝部の直径寸法を、前記最適直径寸法に決定することを特徴とするモータ装置の設計方法。
  4. 請求項3記載のモータ装置の設計方法において、前記第6ステップでは、前記最適直径寸法の決定条件に、前記アマチュア軸の強度条件および組立条件を加えることを特徴とするモータ装置の設定方法。
  5. 請求項1〜4のいずれか1項に記載のモータ装置の設計方法において、前記第7ステップでは、前記最適直径寸法の表示に加えて、前記アマチュア軸の振動状態をシミュレーション表示することを特徴とするモータ装置の設計方法。
JP2008221763A 2008-08-29 2008-08-29 モータ装置の設計方法 Pending JP2010057322A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008221763A JP2010057322A (ja) 2008-08-29 2008-08-29 モータ装置の設計方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221763A JP2010057322A (ja) 2008-08-29 2008-08-29 モータ装置の設計方法

Publications (1)

Publication Number Publication Date
JP2010057322A true JP2010057322A (ja) 2010-03-11

Family

ID=42072654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221763A Pending JP2010057322A (ja) 2008-08-29 2008-08-29 モータ装置の設計方法

Country Status (1)

Country Link
JP (1) JP2010057322A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051241A1 (ja) 2011-10-07 2013-04-11 カルソニックカンセイ株式会社 バッテリの充電率推定装置及び充電率推定方法
JP2013179791A (ja) * 2012-02-29 2013-09-09 Mitsubishi Electric Corp 電動機の電機子
JP2016123273A (ja) * 2016-03-25 2016-07-07 株式会社ミツバ モータおよびワイパモータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051241A1 (ja) 2011-10-07 2013-04-11 カルソニックカンセイ株式会社 バッテリの充電率推定装置及び充電率推定方法
US8918300B2 (en) 2011-10-07 2014-12-23 Calsonic Kansei Corporation Apparatus and method for battery state of charge estimation
JP2013179791A (ja) * 2012-02-29 2013-09-09 Mitsubishi Electric Corp 電動機の電機子
JP2016123273A (ja) * 2016-03-25 2016-07-07 株式会社ミツバ モータおよびワイパモータ

Similar Documents

Publication Publication Date Title
JP5720939B2 (ja) ロータユニット、回転電機、およびロータユニットの製造方法
US20140346918A1 (en) Motor and method of manufacturing motor
US10502282B2 (en) Drive device
JP2009268156A (ja) 回転電機のコイル組立体製造方法
JP2010057322A (ja) モータ装置の設計方法
JP6365151B2 (ja) 回転電機
JP2011188724A (ja) 回転電機のステータ及び回転電機のステータにおけるコイル製造方法
CN112672945B (zh) 辅助机构和电动助力转向装置
JP6070748B2 (ja) ロータユニット
JP5251625B2 (ja) 曲げ加工装置
CN101010859B (zh) 磁性转子和活动磁铁式计量仪器、以及步进电动机
KR101872440B1 (ko) 레졸버
JP4626211B2 (ja) 波動歯車装置、伝達比可変装置、及び波動歯車装置の製造方法
JP2017079596A (ja) ロータユニット
JP2019041569A (ja) ステータの製造方法、モータの製造方法、巻線方法、ステータ、及びモータ
JP6267895B2 (ja) モータ装置
JP4606714B2 (ja) 電動モータ
CN212588155U (zh) 马达和马达单元
JP5129613B2 (ja) 電動モータ
JP2008259278A (ja) アマチュアの巻線方法、モータ装置および車両用ワイパ装置
WO2012114428A1 (ja) 回転電機のユニットコア
JP6257163B2 (ja) 回転軸およびそれを用いた減速機構付きモータ
JP4798651B2 (ja) インナーロータ型モータ
JP4292956B2 (ja) 電動機
US12044290B2 (en) Speed reduction mechanism