[go: up one dir, main page]

JP2010054312A - Method of measuring contact angle - Google Patents

Method of measuring contact angle Download PDF

Info

Publication number
JP2010054312A
JP2010054312A JP2008218965A JP2008218965A JP2010054312A JP 2010054312 A JP2010054312 A JP 2010054312A JP 2008218965 A JP2008218965 A JP 2008218965A JP 2008218965 A JP2008218965 A JP 2008218965A JP 2010054312 A JP2010054312 A JP 2010054312A
Authority
JP
Japan
Prior art keywords
contact angle
sample
measured
probe
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008218965A
Other languages
Japanese (ja)
Other versions
JP5212712B2 (en
Inventor
Koji Yoshida
幸司 吉田
Sho Hatakeyama
翔 畠山
Masaaki Kurihara
栗原  正彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008218965A priority Critical patent/JP5212712B2/en
Publication of JP2010054312A publication Critical patent/JP2010054312A/en
Application granted granted Critical
Publication of JP5212712B2 publication Critical patent/JP5212712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a contact angle capable of obtaining the contact angle of an area conveniently and precisely even in an area with a micrometer order or less, which is impossible to optically measure a contact angle. <P>SOLUTION: The method of measuring the contact angle includes the steps of measuring adhesion, with the cantilever of a scanning probe microscope, from a force curve acting between the distal end of the cantilever and a sample in an area referred on a sample, observing a droplet dropped on the area referred and measuring a contact angle referred; determining, from the adhesion of the area referred to, the contact angle of the area referred to, and Young's equation, the relational expression of the adhesion and the contact angle previously, measuring the adhesion from the force curve in the area where the contact angle on the sample to be measured, and determining the contact angle of the area where the angle to be measured by inserting the value of the adhesion of the area to be measured in the relational equation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体表面の液体による濡れ性を評価する尺度として用いられる接触角の測定方法に関し、特にミクロンメータからサブミクロンメータ領域の微細な箇所の走査型プローブ顕微鏡を用いた接触角測定方法に関する。   The present invention relates to a method for measuring a contact angle used as a measure for evaluating the wettability of a solid surface with a liquid, and more particularly, to a method for measuring a contact angle using a scanning probe microscope in a minute part in the micron to submicron range. .

一般に、試料の親水性や撥水性は、試料表面上の液滴の接触角により評価されている。この接触角とは、固体、液体および気体の3相の接触点において液体に引いた接線と固体面のなす角度のうち、液体を含む側の角度をいう。このような接触角の測定は、従来、角度を読み取れるゴニオメータ付きの光学顕微鏡を用い、液滴を側面から観察して接触角を直接測定する方法や、液滴の輪郭を撮影し、画像解析により角度を測定する方法などにより行っていた。   In general, the hydrophilicity and water repellency of a sample are evaluated by the contact angle of a droplet on the sample surface. This contact angle refers to the angle on the side containing the liquid among the angles formed between the tangent line drawn to the liquid and the solid surface at the contact point of the solid, liquid and gas phases. Conventionally, the contact angle can be measured by using an optical microscope with a goniometer that can read the angle, directly measuring the contact angle by observing the droplet from the side, or photographing the contour of the droplet and analyzing the image. This was done by measuring the angle.

例えば、図7には静滴法として知られる従来の接触角測定方法による接触角測定装置が示されている(特許文献1参照)。接触角測定装置はサンプル台71、液滴をサンプル73上に滴下するシリンジ74、注射針75、光源76、測定用カメラ77、測定結果演算・表示装置(パソコン)78からなり、光源76と滴下された液滴72・サンプル73と測定用カメラ77は同じ高さで、一列に並んでいる。滴下した液滴72と、水平に置かれたサンプル73が成す角度を接触角として測定用カメラ77で得られた画像から計測する。   For example, FIG. 7 shows a contact angle measuring device using a conventional contact angle measuring method known as a sessile drop method (see Patent Document 1). The contact angle measuring device comprises a sample stage 71, a syringe 74 for dropping a droplet on the sample 73, an injection needle 75, a light source 76, a measuring camera 77, and a measurement result calculation / display device (personal computer) 78. The droplets 72 and the sample 73 thus formed and the measurement camera 77 are arranged in a line at the same height. An angle formed by the dropped droplet 72 and the horizontally placed sample 73 is measured from an image obtained by the measurement camera 77 as a contact angle.

近年では、内径5μm程度の極細の注射針を用いることで、液滴量が10から1000ピコリットルで最小径数十μmの微小な液滴を作り、100μm以内の微細な面での接触角が測定できるようになり、半導体ウェハやガラス基板などに設けられた微細パターンに係る濡れ性の評価に用いられている。
特開2007−108007号公報
In recent years, by using an ultra-fine injection needle with an inner diameter of about 5 μm, a droplet with a droplet volume of 10 to 1000 picoliters and a minimum diameter of several tens of μm is produced, and the contact angle on a fine surface within 100 μm is It can be measured and used for evaluation of wettability related to a fine pattern provided on a semiconductor wafer, a glass substrate or the like.
JP 2007-108007 A

しかしながら、半導体、半導体用フォトマスク、ナノインプリント、マイクロマシンなどに用いられるパターンの微細化はますます進展しており、より微細な領域における物質表面の評価手法として、ミクロンメータ・オーダあるいはそれ以下の微小領域における接触角の測定値が求められるようになっている。しかし、蒸気圧の関係で液滴を小さくすることができず、例えば水はミクロンメータ・オーダ以下の水滴を作ることができず、結果としてミクロンメータ・オーダ以下の微小な局所領域における接触角の測定ができないという問題があった。このように、試料上に液滴を形成し、その液滴の接触角を光学的に測定する従来の接触角測定方法には測定できる領域に限界があった。   However, the miniaturization of patterns used in semiconductors, semiconductor photomasks, nanoimprints, micromachines, etc. is progressing more and more, and as a method for evaluating the material surface in a finer area, a micrometer order or smaller area is used. The measured value of the contact angle at is obtained. However, due to the vapor pressure, the droplets cannot be made smaller, for example, water cannot form water droplets on the order of micrometer order or less, and as a result, the contact angle in a minute local region on the order of micrometer order or less. There was a problem that measurement was not possible. As described above, the conventional contact angle measurement method in which a droplet is formed on a sample and the contact angle of the droplet is optically measured has a limit in the measurable region.

そこで、本発明は、上記の問題点に鑑みてなされたものである。すなわち、本発明の目的は、接触角を測定する領域がミクロンメータ・オーダ以下であり、液滴を形成して接触角を光学的に測定することが不可能な領域においても、簡便にかつ精度良くその領域の接触角を得ることができる接触角測定方法を提供することである。   Therefore, the present invention has been made in view of the above problems. That is, the object of the present invention is to provide a simple and accurate measurement even in a region where the contact angle is measured in the micrometer order or less and the contact angle cannot be optically measured by forming a droplet. It is an object to provide a contact angle measuring method capable of obtaining the contact angle of the region well.

上記の課題を解決するために、本発明者は種々検討の結果、走査型プローブ顕微鏡を用い、そのカンチレバーの探針と試料との間に働く付着力を計測して接触角との関係を求め、本発明の接触角測定方法を完成したものである。   In order to solve the above-mentioned problems, the present inventor obtained a relationship with the contact angle by measuring the adhesion force acting between the cantilever probe and the sample using a scanning probe microscope as a result of various studies. The contact angle measurement method of the present invention has been completed.

請求項1の発明に係る接触角測定方法は、試料上の液滴の接触角測定方法であって、前記試料上の液滴の接触角を光学的に計測することが可能な領域を参照とする領域とし、 走査型プローブ顕微鏡のカンチレバーを用いて、前記試料上の参照とする領域において該カンチレバーの探針先端と試料との間に働くフォースカーブから付着力を計測し、光学顕微鏡を用いて、前記参照とする領域に滴下した液滴を側面から観察して参照とする領域の接触角を計測し、前記参照とする領域の付着力と、前記参照とする領域の接触角と、ヤングの式を基にして、予め付着力と接触角との関係式を求めておき、次に、前記試料上の接触角を測定すべき領域において該カンチレバーの探針先端と試料との間に働くフォースカーブから付着力を計測し、前記測定すべき領域の付着力の値を前記関係式に挿入して前記測定すべき領域の接触角を求めることを特徴とするものである。   The contact angle measurement method according to the invention of claim 1 is a contact angle measurement method of a droplet on a sample, and refers to a region where the contact angle of a droplet on the sample can be optically measured. Using the cantilever of the scanning probe microscope, the adhesion force is measured from the force curve acting between the tip of the cantilever probe and the sample in the reference region on the sample, and the optical microscope is used. The contact angle of the reference region is measured by observing a droplet dropped on the reference region from the side, and the adhesion force of the reference region, the contact angle of the reference region, and Young's Based on the equation, a relational expression between the adhesion force and the contact angle is obtained in advance, and then the force acting between the tip of the cantilever probe and the sample in the region where the contact angle on the sample is to be measured. Measure the adhesive force from the curve, It is characterized in that the value of the adhesion of Teisu should region was inserted into the equation determining the contact angle of the area to be the measurement.

請求項2の発明に係る接触角測定方法は、請求項1に記載の接触角測定方法において、前記カンチレバーの探針と試料との間に働く付着力が、ファンデルワールス力とメニスカス力との和で示されることを特徴とするものである。   A contact angle measuring method according to a second aspect of the present invention is the contact angle measuring method according to the first aspect, wherein an adhesion force acting between the probe of the cantilever and the sample is a van der Waals force and a meniscus force. It is characterized by being expressed in the sum.

請求項3の発明に係る接触角測定方法は、請求項1または請求項2に記載の接触角測定方法において、前記付着力をFとし、前記カンチレバーの探針先端の曲率半径をR、前記探針の表面エネルギーの分散力成分をγd C、前記カンチレバーの探針と試料との間にメニスカスを形成した液体の表面エネルギーをγL、液体の表面エネルギーの分散力成分をγd L、キャリブレーション係数をA、液滴の接触角をθとすると、前記測定すべき領域の接触角θは次式で与えられることを特徴とするものである。

Figure 2010054312
A contact angle measurement method according to a third aspect of the present invention is the contact angle measurement method according to the first or second aspect, wherein the adhesion force is F, the radius of curvature of the tip of the probe of the cantilever is R, and the probe is measured. Γ d C is the dispersion force component of the surface energy of the needle, γ L is the surface energy of the liquid in which the meniscus is formed between the cantilever probe and the sample, and γ d L is the dispersion force component of the surface energy of the liquid. The contact angle θ of the region to be measured is given by the following equation, where A is the motion coefficient and A is the contact angle of the droplet.
Figure 2010054312

請求項4の発明に係る接触角測定方法は、請求項1〜請求項3のいずれか1項に記載の接触角測定方法において、前記試料上の測定すべき領域が、試料表面の水平方向の幅が少なくとも一方向でミクロンメータからサブミクロンメータの領域であることを特徴とするものである。   The contact angle measuring method according to a fourth aspect of the invention is the contact angle measuring method according to any one of the first to third aspects, wherein the region to be measured on the sample is in the horizontal direction of the sample surface. The width is at least one direction and is in the micrometer to submicrometer range.

請求項5の発明に係る接触角測定方法は、請求項1〜請求項4のいずれか1項に記載の接触角測定方法において、前記カンチレバーの探針と試料との間に働く付着力の計測を恒湿環境下で行うことを特徴とするものである。   The contact angle measurement method according to the invention of claim 5 is the contact angle measurement method according to any one of claims 1 to 4, wherein the adhesion force acting between the probe of the cantilever and the sample is measured. Is performed in a constant humidity environment.

本発明の接触角測定方法によれば、従来の接触角測定方法が適用できる試料上の広い領域における接触角測定に加えて、さらに、従来は測定ができなかった試料上のミクロンオーダからサブミクロンオーダの微小な局所領域についても接触角測定をすることが可能となり、微小領域の濡れ性の評価が非破壊で可能となる。さらに、AFMのカンチレバーの探針で付着力を測定できる数十ナノメータの超微小領域での接触角を予測することも可能となる。   According to the contact angle measuring method of the present invention, in addition to the contact angle measurement in a wide area on the sample to which the conventional contact angle measuring method can be applied, the micron order on the sample that could not be measured conventionally is submicron. It is possible to measure a contact angle even in a small local region of the order, and it is possible to evaluate the wettability of the micro region in a non-destructive manner. Furthermore, it is possible to predict the contact angle in an ultra-fine region of several tens of nanometers where the adhesion force can be measured with the AFM cantilever probe.

以下、図面に基づいて、本発明の最良の実施形態に係る接触角測定方法について詳細に説明する。   Hereinafter, a contact angle measurement method according to the best embodiment of the present invention will be described in detail with reference to the drawings.

本発明では、走査型プローブ顕微鏡のカンチレバーを用いて、前記試料上の参照とする領域において該カンチレバーと試料との間に働く付着力を計測する。本発明において、参照とする領域とは、試料上の液滴を光学顕微鏡で直接観察して接触角を求めることが可能な従来の接触角測定方法が適用できる広い領域、例えば、数10μm角以上の領域を示すものである。参照とする領域で計測して得られた接触角が、参照とする領域の接触角である。測定にあたり、試料上の参照とする領域は、測定すべき微小領域と同じ表面状態であることが望ましい。
本発明において、試料上の参照とする領域における付着力の計測と接触角の計測との計測の順番は、特に限定されることはなく、どちらが先であっても良い。
In the present invention, using the cantilever of the scanning probe microscope, the adhesion force acting between the cantilever and the sample is measured in the reference region on the sample. In the present invention, the region to be referred to is a wide region to which a conventional contact angle measuring method capable of obtaining a contact angle by directly observing a droplet on a sample with an optical microscope, for example, several tens of μm square or more. This area is shown. The contact angle obtained by measuring in the reference area is the contact angle of the reference area. In the measurement, it is desirable that the reference region on the sample has the same surface state as the minute region to be measured.
In the present invention, the order of measurement of the adhesion force measurement and the contact angle measurement in the reference region on the sample is not particularly limited, and either may be first.

本発明において、付着力の測定に用いる走査型プローブ顕微鏡としては、片持ち梁の一端に探針を設けたカンチレバーと称するプローブで試料表面を走査し、試料表面のパターンの寸法や形状を計測する顕微鏡が用いられ、原子間力顕微鏡(Atomic Force Microsccope;以後、AFMと記す)が最も好ましいが、例えば、走査型トンネル顕微鏡(Scanning Tunneling Microscope;STM)などのカンチレバータイプの走査型プローブ顕微鏡(Scanning Probe Microscope;SPM)と総称されている他の顕微鏡でも用いることが可能である。以下の説明では、本発明の接触角測定方法をAFMに用いた場合を例に述べる。   In the present invention, as a scanning probe microscope used for measuring the adhesion force, the surface of the sample is scanned with a probe called a cantilever provided with a probe at one end of the cantilever, and the size and shape of the pattern on the sample surface are measured. A microscope is used, and an atomic force microscope (hereinafter referred to as “AFM”) is most preferable. It can also be used with other microscopes collectively called Microscope (SPM). In the following description, a case where the contact angle measuring method of the present invention is used for AFM will be described as an example.

図1に、本発明の付着力の測定に用いるAFMの一例として測定原理図を示す。図1に示すように、試料11表面にカンチレバー構造を有する微小な探針12を徐々に近づけていくと、ある距離で両者の間に引力あるいは斥力が働き、探針12を備えたカンチレバー13に歪みが生じる。歪みはカンチレバー13の背面に当てられたレーザ光14の反射角の変化により光センサー15で検出され、試料11表面で探針12を走査したときにカンチレバー13の歪み量が一定となるように、試料11と探針12間の距離が制御される。試料11表面の走査(X方向、Y方向)と、試料11と探針12間の距離の制御(Z方向)はピエゾスキャナー16により行われ、各スキャナーに印加された電圧を解析処理することで試料11表面の像が得られる。探針を測定すべき領域の所定の位置に移動したら、フォースカーブを求め付着力の測定を行う。   FIG. 1 shows a measurement principle diagram as an example of an AFM used for measuring the adhesion force of the present invention. As shown in FIG. 1, when a small probe 12 having a cantilever structure is gradually brought closer to the surface of the sample 11, an attractive force or a repulsive force acts between them at a certain distance, and the cantilever 13 provided with the probe 12 Distortion occurs. The distortion is detected by the optical sensor 15 due to the change in the reflection angle of the laser beam 14 applied to the back surface of the cantilever 13, and the amount of distortion of the cantilever 13 is constant when the probe 12 is scanned on the surface of the sample 11. The distance between the sample 11 and the probe 12 is controlled. The scanning of the surface of the sample 11 (X direction, Y direction) and the control of the distance between the sample 11 and the probe 12 (Z direction) are performed by the piezo scanner 16, and the voltage applied to each scanner is analyzed. An image of the surface of the sample 11 is obtained. When the probe is moved to a predetermined position in the region to be measured, the force curve is obtained and the adhesion force is measured.

フォースカーブ(フォースディスタンスカーブとも呼ばれる)とは、AFMの探針と試料間の距離の上限・下限を設定して定点を上下動させ、探針と試料間の距離とカンチレバーに働く力(カンチレバーのたわみ量)との関係をプロットした曲線である。そのフォースカーブから読み取った振れの量とカンチレバーのバネ定数から、フックの法則により付着力が求まる。   The force curve (also called force distance curve) is the upper and lower limits of the distance between the AFM probe and the sample, and the fixed point is moved up and down. The distance between the probe and the sample and the force acting on the cantilever (cantilever It is a curve plotting the relationship with the amount of deflection). From the amount of deflection read from the force curve and the spring constant of the cantilever, the adhesion force can be obtained according to Hooke's law.

上記のように、AFMは、所定のバネ定数を有する弾性体からなる100μm〜2000μm長のカンチレバーの自由端部に鋭く尖った探針を設けており、この探針を試料に近づけて、探針先端と試料表面の原子間にファンデルワールス力などの引力を作用させ、これにより生じるカンチレバーの変位から試料の局所的な形状や物性を測定する装置である。   As described above, the AFM is provided with a sharp pointed probe at the free end of a cantilever having a length of 100 μm to 2000 μm made of an elastic body having a predetermined spring constant. This is a device that measures the local shape and physical properties of a sample from the displacement of the cantilever caused by an attractive force such as van der Waals force acting between atoms at the tip and the sample surface.

本発明で用いるカンチレバーの探針の材質、形状としては、従来用いられている材質、形状の探針が適用できる。すなわち、探針の材質としては、シリコン、窒化シリコン、酸化シリコン、炭化シリコンなどが用いられ、さらに上記の材料表面に導電性を付与するために金、チタンなどの金属、あるいはカーボンなどを被覆したものが用いられる。探針の形状としては、ピラミッド型の四角錐、円錐などの先端を尖鋭化させた形状が用いられ、例えば四角錐の場合、先端部の頂角は70度前後、曲率半径は約数10nm程度である。探針はカンチレバーと一体で作製されていてもよいし、あるいはカンチレバーとは別に作製した探針をカンチレバーに取り付けてあってもよい。   As the material and shape of the cantilever probe used in the present invention, conventionally used materials and shapes can be applied. That is, as the probe material, silicon, silicon nitride, silicon oxide, silicon carbide or the like is used, and further, a metal such as gold or titanium, or carbon is coated to impart conductivity to the material surface. Things are used. As the shape of the probe, a shape having a sharpened tip such as a pyramid-shaped quadrangular pyramid or cone is used. For example, in the case of a quadrangular pyramid, the apex angle of the tip is about 70 degrees and the radius of curvature is about several tens of nm. It is. The probe may be manufactured integrally with the cantilever, or a probe manufactured separately from the cantilever may be attached to the cantilever.

次に、カンチレバーの探針と試料との間に働く付着力についてさらに説明する。
図2は、カンチレバーの探針と試料との間に働く付着力を説明する模式図である。図2に示すように、試料21表面にカンチレバーの探針22を近づけると、試料21と探針22との間には表面力が働いて付着力を生じる。この付着力をFとすると、付着力(F)は、図2および数式(1)に示すように、試料21と探針22との固体間原子同士が吸引するファンデルワールス力(f1)と、大気中の水分が凝縮して試料21と探針22との間に形成されたメニスカス力(f2)との和で表される。大気中の水分凝縮があるので、付着力の測定においては、試料21上にあらかじめ液滴(水滴)を形成する必要はない。
F=f1+f2=4πR(γd Cγd Sample 1/2+4πRγLcosθ …(1)
ここで、R:カンチレバー探針先端の曲率半径、γd C:カンチレバー探針の表面エネルギーの分散力成分、γd Sample:試料の表面エネルギーの分散力成分、γL:メニスカスを形成した液体(水)の表面エネルギー、θ:液体(水)の接触角である。
Next, the adhesion force acting between the cantilever probe and the sample will be further described.
FIG. 2 is a schematic diagram for explaining the adhesion force acting between the probe of the cantilever and the sample. As shown in FIG. 2, when the cantilever probe 22 is brought close to the surface of the sample 21, a surface force acts between the sample 21 and the probe 22 to generate an adhesive force. Assuming that this adhesion force is F, the adhesion force (F) is the van der Waals force (f 1 ) attracted by the inter-solid atoms of the sample 21 and the probe 22 as shown in FIG. And the meniscus force (f 2 ) formed between the sample 21 and the probe 22 by condensation of moisture in the atmosphere. Since there is moisture condensation in the atmosphere, it is not necessary to form droplets (water droplets) on the sample 21 in advance in measuring the adhesion force.
F = f 1 + f 2 = 4πR (γ d C γ d Sample ) 1/2 + 4πRγ L cos θ (1)
Here, R: radius of curvature of tip of cantilever probe, γ d C : dispersive force component of surface energy of cantilever probe, γ d Sample : dispersive force component of surface energy of sample, γ L : liquid forming meniscus ( Surface energy of water), θ: contact angle of liquid (water).

一方、液体と固体表面との間の現象は、簡単には液体の固体表面への濡れの程度で表される。図3は、試料表面の液体に働く力を説明する模式図である。図3に示すように、試料31の表面に液滴33が形成されたとき、濡れ性つまり親水性、撥水性の程度を表す接触角に関して、試料の表面エネルギーをγSample、試料と液体間の界面エネルギーをγSL、液体の表面エネルギーをγL、接触角をθとすると、3つの矢印で示す力関係が釣り合い、次のヤングの式(2)が成り立つ。
γSample =γLcosθ+γSL …(2)
On the other hand, the phenomenon between the liquid and the solid surface is simply expressed by the degree of wetting of the liquid onto the solid surface. FIG. 3 is a schematic diagram illustrating the force acting on the liquid on the sample surface. As shown in FIG. 3, when the droplet 33 is formed on the surface of the sample 31, the surface energy of the sample is expressed as γ Sample , between the sample and the liquid with respect to the contact angle representing the degree of wettability, that is, hydrophilicity and water repellency. When the interface energy is γ SL , the liquid surface energy is γ L , and the contact angle is θ, the force relationship indicated by the three arrows is balanced, and the following Young's formula (2) holds.
γ Sample = Γ L cosθ + γ SL (2)

また、接触している固体と液体の2つの媒質の界面において、試料を液体でぬらす時の付着仕事WSLは、次の数式(3)で表される。
WSL=γSample L−γSL …(3)
The adhesion work W SL when the sample is wetted with liquid at the interface between the two solid and liquid media in contact is expressed by the following equation (3).
W SL = γ Sample + γ L −γ SL (3)

ここで、主に分散力のみが2つの媒質の相互作用に寄与する場合には、メニスカスを形成した水の表面エネルギーの分散力成分をγd Lとして、
WSL=2(γd Sampleγd L )1/2
となり、数式(3)から、試料と液体間の界面エネルギーγSLは数式(4)で表される。
γSL=γSampleL−2(γd Sampleγd L )1/2 …(4)
Here, when only the dispersion force mainly contributes to the interaction of the two media, the dispersion force component of the surface energy of the water that formed the meniscus is γ d L ,
W SL = 2 (γ d Sample γ d L ) 1/2
From the equation (3), the interfacial energy γ SL between the sample and the liquid is expressed by the equation (4).
γ SL = γ Sample + γ L −2 (γ d Sample γ d L ) 1/2 (4)

上記の数式(2)と数式(4)より、
(γd Sample1/2 =γL (1+cosθ)/2(γd L )1/2 …(5)
を得る。
From the above formula (2) and formula (4),
d Sample ) 1/2 = γ L (1 + cos θ) / 2 (γ d L ) 1/2 (5)
Get.

上記の数式(1)と数式(5)より、付着力Fと接触角θとの関係は数式(6)で表される。ここでは、試料が主に分散力による相互作用があるものとしている。
F=4πR(γd C1/2γL (1+cosθ)/2(γd L )1/2+4πRγLcosθ …(6)
From the above formulas (1) and (5), the relationship between the adhesion force F and the contact angle θ is expressed by formula (6). Here, it is assumed that the sample has an interaction mainly due to dispersion force.
F = 4πR (γ d C ) 1/2 γ L (1 + cos θ) / 2 (γ d L ) 1/2 + 4πRγ L cos θ (6)

実際の付着力の測定においては、探針先端の曲率半径Rやカンチレバーのバネ定数など測定器起因のキャリブレーションが必要となる。また、試料やカンチレバーの表面ラフネスなど、付着力が低下する要因も含まれる。そこで、付着力の測定値をFexpとし、キャリブレーション係数をAとすると、
Fexp=AF=A[4πR(γd C1/2γL(1+cosθ)/2(γd L1/2+4πRγd Lcosθ]
となり、次式に示す接触角θが求められる。

Figure 2010054312
ここで、上記の接触角θの数式に用いている各符号の意味を改めて以下に記す。
θ:液体(水)の接触角、F:試料とカンチレバー探針との間に働く付着力、R:カンチレバー探針先端の曲率半径、γd C:カンチレバー探針の表面エネルギーの分散力成分、γL:液体(水)の表面エネルギー、γd L:液体(水)の表面エネルギーの分散力成分、A:キャリブレーション係数 In the actual measurement of the adhesive force, calibration due to a measuring instrument such as the curvature radius R of the tip of the probe and the spring constant of the cantilever is required. In addition, factors such as the surface roughness of the sample and the cantilever are included. Therefore, if the measured value of adhesive force is F exp and the calibration coefficient is A,
F exp = AF = A [4πR (γ d C ) 1/2 γ L (1 + cos θ) / 2 (γ d L ) 1/2 + 4πRγ d L cos θ]
Thus, the contact angle θ shown in the following equation is obtained.
Figure 2010054312
Here, the meaning of each symbol used in the mathematical formula of the contact angle θ will be described again below.
θ: contact angle of liquid (water), F: adhesion force acting between sample and cantilever probe, R: radius of curvature of cantilever probe tip, γ d C : dispersion force component of surface energy of cantilever probe, γ L : surface energy of liquid (water), γ d L : dispersion force component of surface energy of liquid (water), A: calibration coefficient

本発明の接触角測定方法では、試料とカンチレバー探針との間に形成されるメニスカスの曲率半径rkは、下記の数式(7)に示されるようにケルビン(Kelvin)の式として、相対湿度に関係付けられる。
rk= γV/RTlog(p/ps) …(7)
ここで、 p/ps :相対湿度、γ:表面エネルギー、V:モル体積、R:気体定数、T:温度、rk:曲率半径(Kelvin半径)
In the contact angle measuring method of the present invention, the radius of curvature r k of the meniscus formed between the sample and the cantilever probe is expressed as the Kelvin equation as shown in the following equation (7). Related to.
r k = γV / RTlog (p / p s ) (7)
Where p / p s : relative humidity, γ: surface energy, V: molar volume, R: gas constant, T: temperature, r k : radius of curvature (Kelvin radius)

メニスカスが球形凹面の水メニスカスで、測定温度20℃、γV/RTが0.54nmとした場合、曲率半径は相対湿度に対して変化する。図4は、試料とカンチレバー探針との間に形成されるメニスカスの曲率半径と計測環境の相対湿度との関係を示す図である。
図4に示されるように、湿度の増加により曲率半径は増加し、結果として、メニスカス力が働く面積が増大することになり、湿度の変化に対する曲率半径の変化率は、湿度が高いほど大きくなり、湿度60%以上では急速に曲率半径が大きくなる。付着力を計測する環境の湿度の変化はメニスカスの曲率半径の変化を生じ、付着力の値を変動させる。したがって、本発明における付着力の計測は、相対湿度50%以下、より好ましくは相対湿度40%以下の低湿度で、湿度が一定(恒湿)となるような環境で行うのが好ましい。
When the meniscus is a spherical concave water meniscus, the measurement temperature is 20 ° C., and γV / RT is 0.54 nm, the radius of curvature changes with respect to the relative humidity. FIG. 4 is a diagram showing the relationship between the radius of curvature of the meniscus formed between the sample and the cantilever probe and the relative humidity of the measurement environment.
As shown in FIG. 4, the radius of curvature increases as the humidity increases. As a result, the area where the meniscus force works increases, and the rate of change of the radius of curvature relative to the change in humidity increases as the humidity increases. When the humidity is 60% or more, the radius of curvature rapidly increases. A change in the humidity of the environment in which the adhesion force is measured causes a change in the radius of curvature of the meniscus, which fluctuates the value of the adhesion force. Therefore, the measurement of the adhesive force in the present invention is preferably performed in an environment where the humidity is constant (constant humidity) at a relative humidity of 50% or less, more preferably at a low humidity of 40% or less.

上記のように、接触角θの数式〔数1〕を用いて、AFMにより計測したフォースカーブから求めた付着力Fから試料表面上の接触角θの値を求めることができる。AFMのカンチレバー探針先端は極めて小さいので、試料のミクロンメータからサブミクロンメータの領域のみならず、数十ナノメータの超微小領域での接触角を予測することも可能となる。
以下、実施例により、本発明を詳細に説明する。
As described above, the value of the contact angle θ on the sample surface can be obtained from the adhesive force F obtained from the force curve measured by the AFM, using the mathematical formula [Equation 1] of the contact angle θ. Since the tip of the AFM cantilever probe is extremely small, it is possible to predict the contact angle not only in the micrometer to submicrometer region of the sample but also in the ultrafine region of several tens of nanometers.
Hereinafter, the present invention will be described in detail by way of examples.

試料として、微細なライン/スペースの凹凸パターンが一主面上に形成された石英ガラス製のナノインプリント用テンプレートを用いた。このテンプレートのパターン側全面に気相法で離型剤(オプツールDSX:ダイキン工業社製)を成膜し、テンプレート表面を離型剤で表面処理をした場合の表面の水の濡れ性の評価方法に本発明の接触角測定方法を適用した。以下の付着力の計測を含む接触角測定方法の実施は、温度20℃、湿度40%の恒温、恒湿環境下で行った。   As a sample, a nanoimprint template made of quartz glass in which a fine line / space uneven pattern was formed on one main surface was used. Method of evaluating surface water wettability when a mold release agent (OPTOOL DSX: manufactured by Daikin Industries, Ltd.) is formed on the entire pattern side of the template and the template surface is surface treated with the mold release agent. The contact angle measurement method of the present invention was applied to the above. The contact angle measurement method including the following measurement of adhesion force was performed in a constant temperature and humidity environment with a temperature of 20 ° C. and a humidity of 40%.

先ず、走査型プローブ顕微鏡としてAFM(L-trace:エスアイアイ・ナノテクノロジー社製)を用い、カンチレバーには材質がシリコン(Si)の探針を使用して、試料上の参照とする領域においてカンチレバーの探針と試料との間に働く付着力を計測した。参照とする領域は、パターン幅が数十μm以上ある広い領域であり、数箇所を測定してそれぞれの付着力の計測値を得た。   First, an AFM (L-trace: manufactured by SII Nano Technology) is used as a scanning probe microscope, a probe made of silicon (Si) is used as a cantilever, and a cantilever is used in a reference region on a sample. The adhesion force acting between the probe and the sample was measured. The region to be referred to was a wide region having a pattern width of several tens of μm or more.

次に、接触角計(DM500:協和界面科学社製)を用いて、接触角計の注射針の先端から上記の参照とする領域に蒸留水を水滴として滴下し、試料表面上に形成された水滴を、光学顕微鏡を用いて側面から観察して参照とする領域の接触角を計測した。測定は参照とする領域の数箇所で行った。   Next, using a contact angle meter (DM500: manufactured by Kyowa Interface Science Co., Ltd.), distilled water was dropped as a water droplet from the tip of the injection needle of the contact angle meter to the region to be referred to, and formed on the sample surface. The contact angle of the area to be referred to was measured by observing the water droplet from the side using an optical microscope. Measurements were taken at several locations in the reference area.

次に、上記で得られた参照とする領域の付着力Fと、参照とする領域の接触角と、ヤングの式を基にして、付着力と接触角との関係式を求めた。ここで、探針にSiを用いているが、表面に自然酸化膜が形成されているものとし、探針の表面エネルギーγC=γSiO2として表す。
F=4πR(γSiO2γSample1/2+4πRγLcosθ
Rはカンチレバー探針先端の曲率半径、γは表面エネルギーであり、γSample:試料の表面エネルギー、γL:メニスカスを形成した水の表面エネルギー、θは水の接触角である。
Next, a relational expression between the adhesion force and the contact angle was obtained based on the adhesion force F of the reference region obtained above, the contact angle of the reference region, and the Young's formula. Here, although Si is used for the probe, it is assumed that a natural oxide film is formed on the surface, and the surface energy of the probe is expressed as γ C = γ SiO 2 .
F = 4πR (γ SiO2 γ Sample ) 1/2 + 4πRγ L cosθ
R is the radius of curvature of the tip of the cantilever probe, γ is the surface energy, γ Sample is the surface energy of the sample, γ L is the surface energy of the water forming the meniscus, and θ is the contact angle of water.

上記の実施例では、探針の材質としてよく用いられるSiを例にし、その表面に自然酸化膜が形成されているものとし、表面エネルギーγSiO2を用いているが、探針に他の材質を用いた場合には、その材質に対応した表面エネルギー値が用いられる。 In the above embodiment, Si, which is often used as a probe material, is used as an example, and a natural oxide film is formed on the surface thereof. Surface energy γ SiO2 is used, but other materials are used for the probe. When used, the surface energy value corresponding to the material is used.

また、試料表面に形成された水滴には、次のヤングの式が成り立つ。γSLは試料と水滴間の界面エネルギーである。
γSample =γLcosθ+γSL
Further, the following Young's formula is established for water droplets formed on the sample surface. γ SL is the interfacial energy between the sample and the water droplet.
γ Sample = Γ L cosθ + γ SL

一方、接触している固体と液体の2つの媒質の界面において、試料を水でぬらしている時には、上記のように付着仕事に関する数式から、下記の関係が成り立つ。
γSL=γSampleL−2(γd Sampleγd L )1/2
On the other hand, when the sample is wetted with water at the interface between the two solid and liquid media that are in contact, the following relationship is established from the formula relating to the adhesion work as described above.
γ SL = γ Sample + γ L −2 (γ d Sample γ d L ) 1/2

したがって、次式が得られる。
(γd Sample1/2 =γL (1+cosθ)/2(γd L )1/2
Therefore, the following equation is obtained.
d Sample ) 1/2 = γ L (1 + cos θ) / 2 (γ d L ) 1/2

以上の数式から、測定器起因のキャリブレーション係数をAとし接触角θを求めると、接触角θは次式で表される。

Figure 2010054312
From the above formula, when the contact angle θ is obtained by setting the calibration coefficient due to the measuring instrument to A, the contact angle θ is expressed by the following formula.
Figure 2010054312

図5は、この接触角θの式の計算値と、上記の参照とする領域のカンチレバー探針と試料の間に働く付着力と、上記試料表面の参照とする領域での水滴の接触角との実際の計測値とを図示したものである。   FIG. 5 shows the calculated value of the contact angle θ, the adhesion force acting between the cantilever probe in the reference area and the sample, and the contact angle of the water droplet in the reference area on the sample surface. The actual measured values are illustrated.

図5において、縦軸は付着力(nN)、横軸は接触角(度)、黒丸が計測値、実線が接触角θの式の計算値である。2本の点線は、それぞれファンデルワールス力とメニスカス力の個別の計算値である。図5が示すように、実際の計測値と計算値とはほぼ一致しており、接触角θの式の計算値による値の信頼性の高さを示している。   In FIG. 5, the vertical axis represents the adhesion force (nN), the horizontal axis represents the contact angle (degree), the black circle represents the measured value, and the solid line represents the calculated value of the contact angle θ. The two dotted lines are individual calculated values of van der Waals force and meniscus force, respectively. As shown in FIG. 5, the actual measured value and the calculated value almost coincide with each other, indicating the high reliability of the value based on the calculated value of the contact angle θ formula.

図6は、カンチレバー探針と試料の間に働く付着力から試料表面の液体の接触角を算出する図であり、縦軸は接触角(度)、横軸は付着力(nN)、黒丸が計算値、白丸が計測値である。図6が示すように、実測値と計算値とはほぼ一致している。   FIG. 6 is a diagram for calculating the contact angle of the liquid on the sample surface from the adhesion force acting between the cantilever probe and the sample. The vertical axis represents the contact angle (degrees), the horizontal axis represents the adhesion force (nN), and the black circle represents The calculated value and the white circle are measured values. As shown in FIG. 6, the actual measurement value and the calculated value almost coincide with each other.

したがって、試料上の接触角を測定すべき領域において、カンチレバーの探針と試料との間に働く付着力を計測し、その付着力の値を接触角θの式に挿入して測定すべき領域の接触角を求める接触角測定方法が可能となる。   Therefore, in the region where the contact angle on the sample is to be measured, the adhesion force acting between the cantilever probe and the sample is measured, and the value of the adhesion force is inserted into the formula of the contact angle θ to be measured. A contact angle measurement method for obtaining the contact angle of the contact is possible.

本発明の接触角測定方法によれば、上記に示すカンチレバーの探針と試料との間に働く付着力Fと接触角θとの関係式が求まれば、同一の測定条件においては、従来の光学的な接触角測定方法で測定していた測定箇所においても、光学的な接触角測定方法を用いずに、AFMのフォーカスカーブから付着力を計測し、上記の関係式に挿入して接触角を求めることが可能となる。   According to the contact angle measuring method of the present invention, if the relational expression between the contact force θ and the adhesion force F acting between the cantilever probe and the sample shown above is obtained, Even at the measurement location measured by the optical contact angle measurement method, the adhesion force is measured from the focus curve of the AFM without using the optical contact angle measurement method, and inserted into the above relational expression to obtain the contact angle. Can be obtained.

さらに、本発明の接触角測定方法によれば、従来の接触角測定方法では測定が不可能であったミクロンオーダからサブミクロンオーダの微小な局所領域の接触角を測定できるだけではなく、AFMのカンチレバーの探針で付着力を測定できる数十ナノメータの超微小領域での接触角を予測することも可能となる。   Furthermore, according to the contact angle measurement method of the present invention, not only can a contact angle be measured from a micron order to a submicron order, but also a cantilever of an AFM, which cannot be measured by the conventional contact angle measurement method. It is also possible to predict the contact angle in the ultra-fine region of several tens of nanometers where the adhesive force can be measured with this probe.

本発明の付着力の測定に用いるに用いるAFMの一例としての測定原理図である。It is a measurement principle figure as an example of AFM used for measuring the adhesive force of the present invention. カンチレバー探針と試料の間に働く付着力を説明する模式図である。It is a schematic diagram explaining the adhesive force which acts between a cantilever probe and a sample. 試料表面の液体に働く力を説明する模式図である。It is a schematic diagram explaining the force which acts on the liquid of a sample surface. 試料とカンチレバー探針との間に形成されるメニスカスの曲率半径と相対湿度との関係を示す図である。It is a figure which shows the relationship between the curvature radius of the meniscus formed between a sample and a cantilever probe, and relative humidity. カンチレバー探針と試料の間に働く付着力と試料表面の液体の接触角との相関関係を示す図である。It is a figure which shows the correlation with the contact force of the liquid force of the adhesion force which acts between a cantilever probe and a sample, and a sample surface. カンチレバー探針と試料の間に働く付着力から試料表面の液体の接触角を算出する図である。It is a figure which calculates the contact angle of the liquid of a sample surface from the adhesive force which acts between a cantilever probe and a sample. 従来の接触角測定方法による接触角測定装置の一例を示す図である。It is a figure which shows an example of the contact angle measuring apparatus by the conventional contact angle measuring method.

符号の説明Explanation of symbols

11、21 試料
12、22 カンチレバーの探針
13 カンチレバー
14 レーザ光
15 光センサー
16 ピエゾスキャナー
17a X、Y軸走査システム
17b Z軸サーボシステム
18 コンピュータ
19 プリアンプ
20 モニター
23 水
1 ファンデルワールス力
2 メニスカス力
31 試料
33 液滴
71 サンプル台
72 液滴
73 サンプル
74 シリンジ
75 注射針
76 光源
77 測定用カメラ
78 測定結果演算・表示装置(パソコン)
11, 21 Sample 12, 22 Cantilever probe 13 Cantilever 14 Laser light 15 Optical sensor 16 Piezo scanner 17a X, Y axis scanning system 17b Z axis servo system 18 Computer 19 Preamplifier 20 Monitor 23 Water f 1 Van der Waals force f 2 Meniscus force 31 Sample 33 Droplet 71 Sample stage 72 Droplet 73 Sample 74 Syringe 75 Injection needle 76 Light source 77 Measuring camera 78 Measurement result calculation / display device (PC)

Claims (5)

試料上の液滴の接触角測定方法であって、
前記試料上の液滴の接触角を光学的に計測することが可能な領域を参照とする領域とし、
走査型プローブ顕微鏡のカンチレバーを用いて、前記試料上の参照とする領域において該カンチレバーの探針先端と試料との間に働くフォースカーブから付着力を計測し、
光学顕微鏡を用いて、前記参照とする領域に滴下した液滴を側面から観察して参照とする領域の接触角を計測し、
前記参照とする領域の付着力と、前記参照とする領域の接触角と、ヤングの式を基にして、予め付着力と接触角との関係式を求めておき、
次に、前記試料上の接触角を測定すべき領域において該カンチレバーの探針先端と試料との間に働くフォースカーブから付着力を計測し、
前記測定すべき領域の付着力の値を前記関係式に挿入して前記測定すべき領域の接触角を求めることを特徴とする接触角測定方法。
A method for measuring the contact angle of a droplet on a sample, comprising:
The region where the contact angle of the droplet on the sample can be optically measured is referred to as a region,
Using the cantilever of the scanning probe microscope, the adhesion force is measured from the force curve acting between the tip of the cantilever probe and the sample in the reference region on the sample,
Using an optical microscope, measure the contact angle of the reference area by observing from the side the droplet dropped on the reference area,
Based on the adhesion force of the region to be referred to, the contact angle of the region to be referred to, and the Young's formula, a relational expression between the adhesion force and the contact angle is obtained in advance.
Next, in the region where the contact angle on the sample is to be measured, the adhesion force is measured from the force curve acting between the tip of the cantilever probe and the sample,
A contact angle measurement method, wherein the contact angle value of the region to be measured is obtained by inserting an adhesion force value of the region to be measured into the relational expression.
前記カンチレバーの探針と試料との間に働く付着力が、ファンデルワールス力とメニスカス力との和で示されることを特徴とする請求項1に記載の接触角測定方法。   The contact angle measuring method according to claim 1, wherein an adhesion force acting between the cantilever probe and the sample is indicated by a sum of van der Waals force and meniscus force. 前記付着力をFとし、前記カンチレバーの探針先端の曲率半径をR、前記探針の表面エネルギーの分散力成分をγd C、前記カンチレバーの探針と試料との間にメニスカスを形成した液体の表面エネルギーをγL、液体の表面エネルギーの分散力成分をγd L、キャリブレーション係数をA、液滴の接触角をθとすると、前記測定すべき領域の接触角θは次式で与えられることを特徴とする請求項1または請求項2に記載の接触角測定方法。
Figure 2010054312
A liquid in which the adhesion force is F, the radius of curvature of the tip of the cantilever probe is R, the dispersion force component of the surface energy of the probe is γ d C , and a meniscus is formed between the cantilever probe and the sample. Where γ L is the surface energy of the liquid, γ d L is the dispersion force component of the surface energy of the liquid, A is the calibration coefficient, and θ is the contact angle of the droplet. The contact angle measuring method according to claim 1, wherein the contact angle is measured.
Figure 2010054312
前記試料上の測定すべき領域が、試料表面の水平方向の幅が少なくとも一方向でミクロンメータからサブミクロンメータの領域であることを特徴とする請求項1〜請求項3のいずれか1項に記載の接触角測定方法。   The region to be measured on the sample is a region from a micrometer to a submicrometer in at least one horizontal width of the sample surface. The contact angle measuring method as described. 前記カンチレバーの探針と試料との間に働く付着力の計測を恒湿環境下で行うことを特徴とする請求項1〜請求項4のいずれか1項に記載の接触角測定方法。   The contact angle measurement method according to any one of claims 1 to 4, wherein the adhesion force acting between the probe of the cantilever and the sample is measured in a constant humidity environment.
JP2008218965A 2008-08-28 2008-08-28 Contact angle measurement method Expired - Fee Related JP5212712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218965A JP5212712B2 (en) 2008-08-28 2008-08-28 Contact angle measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218965A JP5212712B2 (en) 2008-08-28 2008-08-28 Contact angle measurement method

Publications (2)

Publication Number Publication Date
JP2010054312A true JP2010054312A (en) 2010-03-11
JP5212712B2 JP5212712B2 (en) 2013-06-19

Family

ID=42070405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218965A Expired - Fee Related JP5212712B2 (en) 2008-08-28 2008-08-28 Contact angle measurement method

Country Status (1)

Country Link
JP (1) JP5212712B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106456A1 (en) * 2009-11-02 2011-05-05 Schlumberger Technology Corporation Material wettability characterization and chemical additive evaluation
WO2016171339A1 (en) * 2015-04-21 2016-10-27 한국산업기술대학교산학협력단 Apparatus and method for measuring wetting angle of reactive liquid oxide and solid oxide
KR101762703B1 (en) 2017-03-03 2017-08-04 한국지질자원연구원 Method of measuring the hydrophobicity and hydrophilicity of specimen and apparatus therefor
JP2018021863A (en) * 2016-08-05 2018-02-08 富士電機株式会社 Gas detector and gas detection method
CN109269976A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of frictional force between solid liquid interface under electric field
CN109269978A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of adhesion strength between solid liquid interface under electric field
WO2021220868A1 (en) * 2020-05-01 2021-11-04 富士フイルム株式会社 Physical property measuring method, physical property measuring device, and probe
US11489975B2 (en) 2020-03-03 2022-11-01 FUJIFIIM Business Innovation Corp. Information processing device for calculating a contact angle and computer readable medium for the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113741A (en) * 1993-10-18 1995-05-02 Ryoden Semiconductor Syst Eng Kk Adhesion measuring instrument, adhesion measuring method and manufacture of semiconductor
JP2004508573A (en) * 2000-09-13 2004-03-18 マルバニー,ポール,チャールズ Micro cantilever rheometer
JP2007171006A (en) * 2005-12-22 2007-07-05 Mitsui Chemical Analysis & Consulting Service Inc Surface observation method using scanning probe atomic force microscope
WO2008051214A1 (en) * 2006-10-23 2008-05-02 John Samuel Batchelder Apparatus and method for measuring surface energies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113741A (en) * 1993-10-18 1995-05-02 Ryoden Semiconductor Syst Eng Kk Adhesion measuring instrument, adhesion measuring method and manufacture of semiconductor
JP2004508573A (en) * 2000-09-13 2004-03-18 マルバニー,ポール,チャールズ Micro cantilever rheometer
JP2007171006A (en) * 2005-12-22 2007-07-05 Mitsui Chemical Analysis & Consulting Service Inc Surface observation method using scanning probe atomic force microscope
WO2008051214A1 (en) * 2006-10-23 2008-05-02 John Samuel Batchelder Apparatus and method for measuring surface energies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013003995; 福西晃朗, 森康維: '原子間力顕微鏡を用いた湿潤雰囲気下での粒子・平板間付着力の測定' 粉体工学会誌 Vol.41, No.3, 20040310, Page.162-168 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110106456A1 (en) * 2009-11-02 2011-05-05 Schlumberger Technology Corporation Material wettability characterization and chemical additive evaluation
US8201439B2 (en) * 2009-11-02 2012-06-19 Schlumberger Technology Corporation Material wettability characterization and chemical additive evaluation
WO2016171339A1 (en) * 2015-04-21 2016-10-27 한국산업기술대학교산학협력단 Apparatus and method for measuring wetting angle of reactive liquid oxide and solid oxide
JP2018021863A (en) * 2016-08-05 2018-02-08 富士電機株式会社 Gas detector and gas detection method
KR101762703B1 (en) 2017-03-03 2017-08-04 한국지질자원연구원 Method of measuring the hydrophobicity and hydrophilicity of specimen and apparatus therefor
WO2018159929A1 (en) * 2017-03-03 2018-09-07 한국지질자원연구원 Method for measuring hydrophobicity (hydrophilicity) of specimen and measurement device therefor
CN109269976A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of frictional force between solid liquid interface under electric field
CN109269978A (en) * 2018-11-16 2019-01-25 西南科技大学 Measure the measuring device and measuring method of adhesion strength between solid liquid interface under electric field
CN109269976B (en) * 2018-11-16 2023-10-03 西南科技大学 Measuring device and measuring method for measuring friction force between solid-liquid interfaces in electric field
CN109269978B (en) * 2018-11-16 2024-01-30 西南科技大学 Measuring device and measuring method for measuring adhesion force between solid-liquid interfaces under electric field
US11489975B2 (en) 2020-03-03 2022-11-01 FUJIFIIM Business Innovation Corp. Information processing device for calculating a contact angle and computer readable medium for the same
WO2021220868A1 (en) * 2020-05-01 2021-11-04 富士フイルム株式会社 Physical property measuring method, physical property measuring device, and probe
JPWO2021220868A1 (en) * 2020-05-01 2021-11-04
JP7445750B2 (en) 2020-05-01 2024-03-07 富士フイルム株式会社 Physical property measuring method and physical property measuring device
US12253449B2 (en) 2020-05-01 2025-03-18 Fujifilm Corporation Physical property measurement method, physical property measurement device, and probe

Also Published As

Publication number Publication date
JP5212712B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5212712B2 (en) Contact angle measurement method
Cho et al. Young's modulus, Poisson's ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices
CN107923928B (en) Apparatus and method for inspecting the surface of a sample
Wang et al. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction
WO2015085316A1 (en) Force measurement with real-time baseline determination
CN103196411A (en) Probe shape evaluation method for a scanning probe microscope
US20080266575A1 (en) Hybrid Contact Mode Scanning Cantilever System
KR100956165B1 (en) A atom-microscope using surface analysis measurement based on flowing resistance of fluid
Clifford et al. Improved methods and uncertainty analysis in the calibration of the spring constant of an atomic force microscope cantilever using static experimental methods
CN111879450B (en) System and method for measuring microscopic interaction force of interface under micron scale
JP2012533891A (en) Leveling apparatus and method
CN106104278B (en) scanning probe microscope
Bhushan Wear and mechanical characterisation on micro-to picoscales using AFM
JPH09502018A (en) Microscopy probe
Fukuzawa et al. Mechanical design and force calibration of dual-axis micromechanical probe for friction force microscopy
Brand et al. Smart sensors and calibration standards for high precision metrology
Tian et al. Structure design and experimental investigation of a multi-function stylus profiling system for characterization of engineering surfaces at micro/nano scales
Klauser et al. Measurement of sub-nanonewton forces inside a scanning electron microscope
Acharige et al. Capillary force on a tilted cylinder: Atomic Force Microscope (AFM) measurements
Xue et al. Measurement and modeling of adhesion energy between two rough microelectromechanical system (MEMS) surfaces
RU2540283C2 (en) Walking robot-nanopositioner and method of controlling movement thereof
Shin et al. Quantitative measurements of nanoparticle layer thicknesses near the contact line region after droplet drying-out
Danzebrink et al. Dimensional nanometrology at PTB
JP4471295B2 (en) Atomic force microscope probe
Dixson et al. Toward accurate linewidth metrology using atomic force microscopy and tip characterization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5212712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees