[go: up one dir, main page]

JP2010051236A - Method and apparatus for controlling water circulation in oceanic bonito-fishing boat - Google Patents

Method and apparatus for controlling water circulation in oceanic bonito-fishing boat Download PDF

Info

Publication number
JP2010051236A
JP2010051236A JP2008219223A JP2008219223A JP2010051236A JP 2010051236 A JP2010051236 A JP 2010051236A JP 2008219223 A JP2008219223 A JP 2008219223A JP 2008219223 A JP2008219223 A JP 2008219223A JP 2010051236 A JP2010051236 A JP 2010051236A
Authority
JP
Japan
Prior art keywords
fresh seawater
circulating water
amount
circulation path
live bait
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219223A
Other languages
Japanese (ja)
Other versions
JP4513110B2 (en
Inventor
Katsunori Masui
克教 増井
Kaneyuki Matsunaga
謙之 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2008219223A priority Critical patent/JP4513110B2/en
Publication of JP2010051236A publication Critical patent/JP2010051236A/en
Application granted granted Critical
Publication of JP4513110B2 publication Critical patent/JP4513110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Abstract

【課題】遠洋鰹釣り漁船の活餌装置で、各種ポンプや新鮮海水の冷却装置に要する動力を低減して、省エネを達成する。
【解決手段】 複数の活餌槽12、曝気タンク26及び調整槽16を介設した蓄養水の循環路14と、船外から新鮮海水を汲み上げる新鮮海水供給路34と、循環水の一部を船外に排出する排水路44と、新鮮海水を排水と熱交換させて一次冷却する熱交換器40と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置50とを備え、二次冷却した新鮮海水を循環路14に供給し、活餌を蓄養する活餌槽数の減少に対応して各活餌槽12設定換水量維持しながら、循環路14の循環水量を減少させ、循環水量に供給する新鮮海水量を設定換水量に対して必要量以上となるように制御すると共に、調整槽16の水面レベルLを検出し、該水面レベルを一定に維持するように排水量を制御する。
【選択図】図1
[PROBLEMS] To achieve energy saving by reducing the power required for various pumps and a cooling device for fresh seawater in a live bait device of a pelagic fishing boat.
[Solution] The circulation path 14 of the farm water which provided the several live food tank 12, the aeration tank 26, and the adjustment tank 16;, A fresh seawater supply path 34 for pumping fresh seawater from the outside of the ship, a drainage path 44 for discharging a part of the circulating water to the outside of the ship, a heat exchanger 40 for primary cooling by exchanging heat of the fresh seawater with the drainage, and freezing A cooling device 50 that constitutes the cycle and performs secondary cooling of the freshly cooled fresh seawater.Preparation, Supply freshly cooled fresh seawater to the circulation path 14LiveFeed the foodLive food tankEach corresponding to the decrease in numberLive food tank12ofSet water exchange rateTheMaintenanceWhile reducing the amount of circulating water in the circulation path 14 and controlling the amount of fresh seawater supplied to the amount of circulating water to be greater than the required amount with respect to the set amount of exchanged water, the water level L of the adjustment tank 16 is detected, The amount of drainage is controlled so as to keep the water level constant.
[Selection] Figure 1

Description

本発明は、活き鰯等の活餌を蓄養する活餌倉を備えた遠洋鰹1本釣り漁船において、活餌倉に循環水を循環したり新鮮海水を供給するポンプ類及び冷却装置の動力低減を可能にした循環水制御方法及び装置に関する。   The present invention relates to a pelagic rod single fishing fishing boat equipped with a live bait for raising live bait such as live bales and the like, and power reduction of pumps and cooling devices for circulating circulating water and supplying fresh seawater to the live bait The present invention relates to a circulating water control method and apparatus that make it possible.

遠洋鰹一本釣り漁船では、餌鰯の蓄養として、例えば10〜14の活餌倉を使用して、活き鰯を漁場まで運ぶ。各活餌倉の容積は、例えば20〜30mである。遠洋鰹一本釣り漁船では、27〜30℃ほどの水温の海洋で操業することが多い。
一方、活餌倉内に蓄養されている活き鰯は、27℃以上に水温が上昇すると、急激に斃死率が高くなるので、活餌倉内の水温は、鰯の蓄養に最適な温度である14〜17℃ほどに保持されている。また、活餌倉内の環境水を循環して換水すると共に、活鰯の死滅の要因である魚倉の汚染(アンモニアなど)を防ぐため、魚倉内に換水量の30%以上の割合で新鮮海水を取り入れることが良いとされている。
In an ocean-going single fishing fishing boat, for example, 10 to 14 live baits are used as bait farms to carry live kites to a fishing ground. The volume of each live bait is, for example, 20 to 30 m 3 . A pelagic fishing boat is often operated in the ocean with a water temperature of about 27-30 ° C.
On the other hand, when the water temperature rises to 27 ° C. or higher, the dredging rate rapidly increases when the water temperature in the live bait is raised to 27 ° C. or higher. It is kept at about 17 ° C. In addition to circulating the environmental water in the live bait store, the fresh water is used in the fish store at a rate of 30% or more of the water change rate in order to prevent contamination of the fish store (such as ammonia), which is the cause of the killing of live fish. It is said that it is good to adopt.

特許文献1(特開昭57−36921号公報)に、本出願人が提案している漁船内の活餌装置が開示されている。以下この活餌装置を図5により説明する。
図5において、活魚貝類を蓄養する蓄養倉01、蓄養倉環境水への酸素の供給と炭酸ガスの除去を行なう曝気装置02、及び循環ポンプPが循環路03により連絡されている。循環路03における曝気装置02の下流側及び上流側には、船外の新鮮海水を給水する新鮮海水供給路04及び活餌倉01からの低温排水を船外に排出する排水路05が夫々接続されている。
Patent Document 1 (Japanese Patent Laid-Open No. 57-36921) discloses a live bait device in a fishing boat proposed by the present applicant. Hereinafter, this live food device will be described with reference to FIG.
In FIG. 5, a storage 01 for raising live fish shellfish, an aeration device 02 for supplying oxygen to the storage environment water and removing carbon dioxide, and a circulation pump P 1 are connected by a circulation path 03. Connected to the downstream side and the upstream side of the aeration apparatus 02 in the circulation path 03 are a fresh seawater supply path 04 for supplying fresh seawater outside the ship and a drainage path 05 for discharging low-temperature drainage from the live bait 01 to the outside of the ship, respectively. Has been.

船外の新鮮海水を新鮮海水ポンプPによって新鮮海水供給路04に汲み上げ、新鮮海水供給路04に汲み上げられた新鮮海水は、一次冷却器06及び二次冷却器07を経て循環路03に供給される。汲み上げた新鮮海水を冷却するための冷却装置012が設けられ、冷却装置012は、二次冷却器07、冷媒圧縮機08、凝縮器09、膨張弁010及びこれらの機器に冷媒を循環する冷媒経路011からなる冷凍サイクルを構成している。
排水路05は、循環路03との接続部から分岐し、流量調整弁013、一次冷却器06を経て、冷却装置012の凝縮器09に導入され、さらに船外に導設されている。
The outboard fresh seawater pumped up in fresh sea water supply passage 04 by fresh sea water pump P 2, fresh seawater pumped up in fresh sea water supply path 04 is supplied to the circulation path 03 through the primary cooler 06 and a secondary cooler 07 Is done. A cooling device 012 for cooling the pumped fresh seawater is provided. The cooling device 012 is a secondary cooler 07, a refrigerant compressor 08, a condenser 09, an expansion valve 010, and a refrigerant path for circulating the refrigerant to these devices. A refrigeration cycle consisting of 011 is configured.
The drainage channel 05 branches from the connection with the circulation channel 03, is introduced into the condenser 09 of the cooling device 012 through the flow rate adjusting valve 013 and the primary cooler 06, and is further led out of the ship.

かかる構成において、新鮮海水ポンプPによって汲み上げられた新鮮海水を、一次冷却器06で循環路03から流量調整弁013を経た低温排水と熱交換させて予冷却する。その後、低温排水は、凝縮器09で高温ガス冷媒を液化した後、船外に排出される。
新鮮海水は、一次冷却器06で予冷却された後、二次冷却器07で冷却され、その後、循環路03に供給される。
In this configuration, fresh fresh seawater pumped up by the sea water pump P 2, the primary cooler 06 the low-temperature waste water and to heat exchange through the flow control valve 013 from the circulation path 03 to pre-cool. Thereafter, the low temperature waste water is liquefied by the condenser 09 and then discharged out of the ship.
Fresh seawater is precooled by the primary cooler 06, then cooled by the secondary cooler 07, and then supplied to the circulation path 03.

特許文献1の活餌装置では、新鮮海水を一次冷却器06で低温排水と熱交換させて予冷却するようにし、また、新鮮海水を予冷却した後の低温排水で高温ガス冷媒を液化させ、これによって、冷却装置012の所要動力を低減するようにしている。   In the live bait device of Patent Document 1, the fresh seawater is pre-cooled by heat exchange with the low-temperature drainage in the primary cooler 06, and the high-temperature gas refrigerant is liquefied in the low-temperature drainage after precooling the fresh seawater, As a result, the required power of the cooling device 012 is reduced.

特開昭57−36921号公報JP 57-36921 A

遠洋鰹一本釣り漁船の活餌装置では、前述のように、循環ポンプPや新鮮海水ポンプP、その他排水路04に設けられる排水ポンプ等、多数のポンプが使用されており、これらポンプの所要動力の合計は100kWを超えている。 As described above, a large number of pumps such as the circulation pump P 1 , the fresh seawater pump P 2 , and other drainage pumps provided in the drainage channel 04 are used in the live bait device for a pelagic fishing boat. The total power is over 100kW.

操業が始まると餌鰯を餌に鰹を釣るため、操業の経過に伴って餌鰯が消費される。そのため、餌鰯の減少に伴って餌鰯を蓄養する活餌倉の数が減少していく。活餌倉の数が減少すると、活餌倉全体の換水量の調整が必要となる。この場合、従来は、活餌倉の循環水量を、循環ポンプの吐出バルブの開度を調整して循環ポンプの揚程を揚げることにより、ポンプ能力を落として調整していた。しかし、吐出バルブで流量を減少しても、ポンプ動力の削減量は少なく、効率の悪い運転となっていた。   When the operation starts, the bait is caught in the bait, so the bait is consumed as the operation progresses. For this reason, the number of live bait for feeding bait decreases with the decrease of bait. If the number of live bait holds decreases, it will be necessary to adjust the amount of water exchanged in the entire live feed hold. In this case, conventionally, the amount of circulating water in the live bait was adjusted by lowering the pump capacity by adjusting the opening of the discharge valve of the circulation pump and raising the head of the circulation pump. However, even if the flow rate is reduced by the discharge valve, the reduction amount of the pump power is small and the operation is inefficient.

新鮮海水ポンプについては、新鮮海水ポンプの流量調整が難しいため、活餌倉数が減っても減少前の汲み上げ量を維持していた。これによって、換水量の30%以上の新鮮海水の供給量を維持していた。そのため、活餌倉数が減っても、新鮮海水を汲み上げるポンプの動力、及び新鮮海水を冷却する冷却装置の負荷は減少しなかった。   As for the fresh seawater pump, it was difficult to adjust the flow rate of the fresh seawater pump, so the pumping volume before the decrease was maintained even if the number of live baits was reduced. As a result, the supply amount of fresh seawater of 30% or more of the water exchange amount was maintained. Therefore, even if the number of live baits was reduced, the power of the pump that pumps fresh seawater and the load of the cooling device that cools the fresh seawater did not decrease.

また、新鮮海水を冷却する冷却装置において、圧縮機としてスクリュー圧縮機を用いた場合、スクリュー圧縮機の容量制御は、スライド弁により、圧縮直前の吸入ガスをバイパスさせて吸入側へ戻すようにしている。ちなみに、レシプロ圧縮機の場合は、吸入弁を開けたまま圧縮動作を行って吸入ガスをバイパスする機構を取っている。
スクリュー圧縮機は、このような機構から、容量制御範囲は広く、レシプロ圧縮機の段階制御では追従できない領域まで使用できるので、鰹一本釣り漁船のように負荷領域の広い分野に使用されている。
In addition, in a cooling device that cools fresh seawater, when a screw compressor is used as the compressor, the capacity control of the screw compressor is performed by bypassing the suction gas immediately before compression and returning it to the suction side by a slide valve. Yes. Incidentally, in the case of a reciprocating compressor, a mechanism is employed in which the suction gas is bypassed by performing a compression operation while the suction valve is open.
Because of such a mechanism, the screw compressor has a wide capacity control range and can be used up to an area that cannot be followed by the phase control of the reciprocating compressor. Therefore, the screw compressor is used in a wide load area such as a single fishing boat.

しかし、低負荷時の多い鰹一本釣り漁船では、スライド弁式の容量制御では、低負荷時の時、冷凍能力に対して消費電力が多く、冷却効率が悪化するという問題がある。   However, in a single-fishing fishing boat with many low loads, the slide valve type capacity control has a problem that when the load is low, power consumption is large with respect to the refrigerating capacity and the cooling efficiency deteriorates.

また、図6に示すように、排水路05に排水ポンプPを設けて、一次冷却器06に低温排水を供給するように構成した場合、排水ポンプPの流量調整を行なうため、排水路05に戻り管路014を設け、戻り管路014に電磁弁015を介設して、電磁弁015の開閉により、低温排水の流量を調整していた。
しかし、電磁弁015の開閉は、オンオフ制御であるため、低温排水の精度良い流量調整はできなかった。
In addition, as shown in FIG. 6, when a drainage pump P 3 is provided in the drainage channel 05 and the low-temperature drainage is supplied to the primary cooler 06, the drainage channel is used to adjust the flow rate of the drainage pump P 3. A return pipe 014 is provided in 05, and an electromagnetic valve 015 is provided in the return pipe 014, and the flow rate of the low-temperature drainage is adjusted by opening and closing the electromagnetic valve 015.
However, since the opening / closing of the solenoid valve 015 is on / off control, the flow rate of the low temperature drainage cannot be adjusted with high accuracy.

本発明は、かかる従来技術の課題に鑑み、遠洋鰹一本釣り漁船の活餌装置において、各種ポンプや冷却装置に要する動力を低減して、省エネを達成することを目的とする。   An object of the present invention is to achieve energy saving by reducing the power required for various pumps and cooling devices in a live bait device for a pelagic single fishing boat.

かかる目的を達成するため、本発明の遠洋鰹釣り漁船の循環水制御方法は、
複数の活餌倉と、該活餌倉と調整倉間に循環水を循環させる循環路と、船外から新鮮海水を汲み上げる新鮮海水供給路と、循環水の一部を船外に排出する排水路と、新鮮海水を排水と熱交換させて一次冷却する熱交換器と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置とを用意し、二次冷却した新鮮海水を該循環路に供給するようにした遠洋鰹釣り漁船の循環水制御方法において、
活餌を蓄養する活餌倉数の減少に対応して該活餌倉を設定換水量に維持するように前記循環路の循環水量を制御すると共に、循環水量に対する新鮮海水量の供給割合が常に一定となるように新鮮海水供給量を制御することにより、新鮮海水供給量と新鮮海水供給に要するポンプ動力及び新鮮海水の冷却に要する前記冷却装置の所要動力を低減するようにしたものである。
In order to achieve such an object, the circulating water control method for a pelagic fishing boat of the present invention comprises:
Multiple live bait warehouses, a circulation path that circulates the circulating water between the live bait warehouse and the adjustment warehouse, a fresh seawater supply path that pumps fresh seawater from the outside of the ship, and a drain that discharges a part of the circulating water to the outside of the ship And a heat exchanger that primarily cools the fresh seawater by exchanging heat with the wastewater, and a cooling device that forms a refrigeration cycle and performs secondary cooling of the freshly cooled fresh seawater. In the circulating water control method for a pelagic fishing boat that is supplied to the circulation path,
Corresponding to the decrease in the number of live bait for raising live bait, the circulating water amount in the circulation path is controlled so as to maintain the live bait in the set water exchange amount, and the supply ratio of fresh seawater to the circulating water amount is always By controlling the fresh seawater supply amount to be constant, the fresh seawater supply amount, the pump power required for fresh seawater supply, and the required power of the cooling device required for cooling the fresh seawater are reduced.

本発明方法では、活餌を蓄養する活餌倉の減少に対応して、活餌倉内の環境水の循環量を減少していくと共に、循環水量に対する新鮮海水量の混合割合を常に一定となるように制御する。これによって、1個当りの活餌倉の換水量を減少させず、かつ循環水に加える新鮮海水量の割合を減少させることなく、設定量を保持したまま新鮮海水の汲み上げ量を減少できる。そのため、新鮮海水ポンプの所要動力を低減できると共に、新鮮海水を冷却する冷却装置の動力をも低減でき、これによって、活餌装置の省エネを達成できる。   In the method of the present invention, the circulation rate of the environmental water in the live bait store is reduced in response to the decrease in the live feed storey for feeding live bait, and the mixing ratio of the fresh seawater amount to the circulating water amount is always constant. To control. As a result, the amount of fresh seawater pumped can be reduced while maintaining the set amount without reducing the amount of water exchanged in the live bait per unit and without reducing the ratio of the amount of fresh seawater added to the circulating water. Therefore, the required power of the fresh seawater pump can be reduced, and the power of the cooling device that cools the fresh seawater can also be reduced, thereby achieving energy saving of the live bait device.

本発明方法において、前記循環路の循環水量、新鮮海水供給路の新鮮海水供給量及び排水路の排水量をこれら各流路に設けられた移送ポンプの回転数制御により制御すると共に、前記冷却装置の回転圧縮機を回転数制御することにより、新鮮海水を設定温度に二次冷却するようにするとよい。   In the method of the present invention, the amount of circulating water in the circulation path, the amount of fresh seawater in the fresh seawater supply path, and the amount of drainage in the drainage path are controlled by controlling the number of revolutions of a transfer pump provided in each of these flow paths, It is good to carry out secondary cooling of fresh seawater to preset temperature by controlling rotation speed of a rotary compressor.

移送ポンプの回転数制御を行なうと、移送ポンプの回転力(トルク)は流体速度の2乗に反比例するため、回転数制御によりポンプの流量を少なくすると、必要な動力は回転数の3乗に比例して小さくなる。これによって、前記各流路に設けられた移送ポンプを回転数制御し、活餌を蓄養する活餌倉の減少に対応して、低回転数で運転することにより、大幅な省エネ(省電力)が可能になる。   When the rotational speed of the transfer pump is controlled, the rotational force (torque) of the transfer pump is inversely proportional to the square of the fluid velocity. Therefore, if the flow rate of the pump is reduced by controlling the rotational speed, the required power is increased to the third power of the rotational speed. Proportionally decreases. As a result, the number of rotations of the transfer pumps provided in each of the flow paths is controlled, and by operating at a low number of rotations corresponding to the decrease in live bait storage for live food, significant energy saving (power saving) Is possible.

また、冷凍サイクルを構成する冷却装置の回転圧縮機を回転数制御することにより、新鮮海水を設定温度に二次冷却するようにすれば、低負荷運転の多い遠洋鰹釣り漁船では、低負荷運転時の消費電力を低減できるので、さらに省エネを達成できる。
また、ポンプや回転圧縮機の起動時も、従来の起動方式と比べ大電流発生の虞がなく、安定したリニアスタートとなるため、発電機への負荷も低減される。
In addition, by controlling the rotational speed of the rotary compressor of the cooling device that constitutes the refrigeration cycle so that the fresh seawater is secondarily cooled to the set temperature, the pelagic fishing boat with many low-load operations can be operated at a low load. Because it can reduce power consumption at the time, further energy saving can be achieved.
Also, when starting the pump or rotary compressor, there is no risk of generating a large current as compared with the conventional starting method, and a stable linear start is achieved, so the load on the generator is also reduced.

また、前記本発明方法に直接使用可能な本発明の遠洋鰹釣り漁船の循環水制御装置は、
複数の活餌倉と、該活餌倉内の環境水を循環して換水する循環路と、船外から新鮮海水を汲み上げる新鮮海水供給路と、循環水の一部を船外に排出する排水路と、新鮮海水を排水と熱交換させて一次冷却する熱交換器と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置とを備え、二次冷却した新鮮海水を該循環路に供給するようにした遠洋鰹釣り漁船の活餌装置において、
前記循環路、新鮮海水供給路及び排水路に夫々回転数制御可能な移送ポンプを設け、活餌を蓄養する活餌倉数の減少に対応して、該活餌倉を設定換水量に維持するように前記循環路の循環水量を制御すると共に、循環水量に対する新鮮海水量の供給割合が常に一定となるように、前記移送ポンプで前記各流路の流量を制御するように構成したものである。
In addition, the circulating water control device for the pelagic fishing boat of the present invention that can be directly used in the method of the present invention,
A plurality of live bait warehouses, a circulation path that circulates and changes the environmental water in the live bait warehouse, a fresh seawater supply path that pumps fresh seawater from the outside of the ship, and a drainage path that discharges a portion of the circulating water to the outside of the ship A heat exchanger that heat-exchanges fresh seawater with waste water and performs primary cooling, and a cooling device that constitutes a refrigeration cycle and performs secondary cooling of the primary cooled fresh seawater, and circulates the secondary cooled fresh seawater. In a live bait device for a pelagic fishing boat that is supplied to the road,
A transfer pump capable of controlling the number of rotations is provided in each of the circulation path, fresh seawater supply path and drainage path, and the live bait is maintained at a set water exchange amount corresponding to a decrease in the number of live bait for raising live bait. In this way, the circulating water amount in the circulation path is controlled, and the flow rate of each flow path is controlled by the transfer pump so that the supply ratio of the fresh seawater amount to the circulating water amount is always constant. .

本発明装置では、活餌の消費に伴う活餌倉数の減少に応じて、活餌倉が設定された換水量を維持するように循環水量を減少すると共に、循環水に対する新鮮海水の混合割合を常に一定となるように制御するので、活餌倉数の減少と共に、新鮮海水の汲み上げ量を減少できる。従って、新鮮海水ポンプの所要動力を低減できると共に、新鮮海水を冷却する冷却装置の動力をも低減できる。
また、循環路、新鮮海水供給路及び排水路に夫々設けられた移送ポンプを回転数制御して、流量を制御することにより、活餌を蓄養する活餌倉の減少に対応して、各移送ポンプを低回転数で運転でき、大幅な省エネ(省電力)が可能になる。
In the device according to the present invention, in accordance with the decrease in the number of live baits that accompany consumption of live bait, the amount of circulating water is reduced so as to maintain the amount of water that the live bait has been set, and the mixing ratio of fresh seawater to the circulating water Is controlled so as to be always constant, the amount of fresh seawater pumped up can be reduced as the number of live baits is reduced. Therefore, the required power of the fresh seawater pump can be reduced, and the power of the cooling device that cools the fresh seawater can be reduced.
In addition, by controlling the number of rotations of the transfer pumps provided in the circulation path, fresh seawater supply path and drainage path respectively, and controlling the flow rate, each transfer can be performed in response to the decrease in live food storage for feeding live food. The pump can be operated at a low rotational speed, and significant energy saving (power saving) becomes possible.

本発明装置において、前記調整倉内の循環水面レベルを検出するレベル計と、該レベル計の検出値を入力して該循環水面レベルが常に一定となるように前記排水路の排水量を制御するコントローラとを設けるとよい。これによって、活餌倉を循環する環境水の循環水量を安定させ、各活餌倉の換水量を設定値に保持するのが容易になる。   In the apparatus of the present invention, a level meter that detects a circulating water level in the adjustment unit, and a controller that controls a drainage amount of the drainage channel so that the circulating water level is always constant by inputting a detection value of the level meter. It is good to provide. Thereby, it becomes easy to stabilize the circulating water amount of the environmental water circulating through the live bait and to maintain the water exchange amount of each live bait at the set value.

また、本発明装置において、循環路に設けられた曝気タンクと、該曝気タンク上流側の循環路に設けられた空気混合器と、該空気混合器に接続された空気供給管の空気圧を検出する空気圧センサと、該空気圧センサの検出値に基づいて該循環路の循環水量を制御するコントローラとを設け、該コントローラによって循環水の酸素溶存量を設定値に保持するように構成するとよい。
これによって、循環水中の溶存酸素量を活餌の蓄養に好適な量に保持することができる。
In the apparatus of the present invention, the air pressure of the aeration tank provided in the circulation path, the air mixer provided in the circulation path upstream of the aeration tank, and the air supply pipe connected to the air mixer is detected. An air pressure sensor and a controller that controls the amount of circulating water in the circulation path based on a detection value of the air pressure sensor may be provided, and the oxygen dissolved amount of the circulating water may be held at a set value by the controller.
As a result, the amount of dissolved oxygen in the circulating water can be maintained at an amount suitable for livestock cultivation.

本発明方法によれば、複数の活餌倉と、該活餌倉と調整倉間に循環水を循環させる循環路と、船外から新鮮海水を汲み上げる新鮮海水供給路と、循環水の一部を船外に排出する排水路と、新鮮海水を排水と熱交換させて一次冷却する熱交換器と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置とを用意し、二次冷却した新鮮海水を該循環路に供給するようにした遠洋鰹釣り漁船の循環水制御方法において、活餌を蓄養する活餌倉数の減少に対応して該活餌倉を設定換水量に維持するように前記循環路の循環水量を制御すると共に、循環水量に対する新鮮海水量の供給割合が常に一定となるように新鮮海水供給量を制御することにより、漁獲操業の継続に伴う活餌倉数の減少に応じて、新鮮海水の汲み上げ量を減少でき、従って、新鮮海水供給量と新鮮海水供給に要するポンプ動力及び新鮮海水の冷却に要する前記冷却装置の所要動力を低減できるので、従来に比べて大幅な省エネを達成できる。   According to the method of the present invention, a plurality of live baits, a circulation path for circulating the circulating water between the live baits and the adjustment warehouse, a fresh seawater supply path for pumping fresh seawater from the outside of the ship, and a part of the circulating water A drainage channel for discharging the seawater to the outside of the ship, a heat exchanger for primary cooling by exchanging heat with fresh seawater and drainage, and a cooling device for secondary cooling of the freshly cooled seawater that constitutes the refrigeration cycle, In the circulating water control method of a pelagic fishing boat that supplies freshly cooled fresh seawater to the circulation path, the live bait is set in response to a decrease in the number of live bait for breeding live bait. By controlling the amount of fresh water in the circulation path so that the supply rate of fresh seawater is always constant with respect to the amount of fresh water, As the number of warehouses decreases, the amount of fresh seawater pumped can be reduced. Accordingly, it is possible to reduce the required power of the cooling device required for cooling the pump power and the fresh seawater required for fresh seawater supply and fresh seawater supply, significant energy savings can be achieved as compared with the prior art.

また、本発明装置によれば、複数の活餌倉と、該活餌倉と調整倉間に循環水を循環させる循環路と、船外から新鮮海水を汲み上げる新鮮海水供給路と、循環水の一部を船外に排出する排水路と、新鮮海水を排水と熱交換させて一次冷却する熱交換器と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置とを備え、二次冷却した新鮮海水を該循環路に供給するようにした遠洋鰹釣り漁船の循環水制御装置において、前記循環路、新鮮海水供給路及び排水路に夫々回転数制御可能な移送ポンプを設け、活餌を蓄養する活餌倉数の減少に対応して、該活餌倉を設定換水量に維持するように前記循環路の循環水量を制御すると共に、循環水量に対する新鮮海水量の供給割合が常に一定となるように、前記移送ポンプで前記各流路の流量を制御するように構成したことにより、漁獲操業の継続に伴う活餌倉数の減少に応じて、新鮮海水の汲み上げ量を減少できる。
従って、新鮮海水供給量と新鮮海水供給に要するポンプ動力及び新鮮海水の冷却に要する前記冷却装置の所要動力を低減できるので、従来に比べて大幅な省エネを達成できる。
In addition, according to the present invention device, a plurality of live baits, a circulation path for circulating the circulating water between the live baits and the adjustment warehouse, a fresh seawater supply path for pumping fresh seawater from the outside of the ship, and the circulating water Equipped with a drainage channel that discharges a part of the ship, a heat exchanger that heat-exchanges fresh seawater with wastewater and performs primary cooling, and a cooling device that forms a refrigeration cycle and cools the freshly-cooled fresh seawater secondary. In a circulating water control device for a pelagic fishing boat that supplies freshly cooled fresh seawater to the circulation path, a transfer pump capable of controlling the rotation speed is provided in the circulation path, fresh seawater supply path, and drainage path, respectively. Corresponding to the decrease in the number of live bait for raising live bait, the circulating water amount of the circulation path is controlled so as to maintain the live bait for the set amount of water exchange, and the supply ratio of the fresh seawater amount to the circulating water amount Each flow path with the transfer pump so that is always constant With the arrangements to control the flow rate, in response to a decrease of the active bait number warehouse due to continuation of the fishing operation can be reduced to the amount pumped fresh seawater.
Accordingly, the amount of fresh seawater supplied, the pump power required for supplying fresh seawater, and the required power of the cooling device required for cooling the fresh seawater can be reduced, so that significant energy saving can be achieved as compared with the conventional case.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

本発明の一実施形態を図1〜図4に基づいて説明する。図1は、本実施形態に係る遠洋鰹釣り漁船の活餌装置の全体構成図である。
図1において、漁船内で餌鰯の蓄養として、左右に例えば合計14倉の活餌倉12A、12B、・・・が配置されている。各活餌倉12は、1倉当り例えば20〜30mの容積を有している。各活餌倉12には夫々換水のための循環路14が接続され、設定された換水量で各活餌倉内の海水が循環されている。換水量(m/h)は、活餌倉内にある環境水の循環量(m/h)と新鮮海水供給量(m/h)との合計から餌桶に流れ出る量を減算した流量である。
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is an overall configuration diagram of a live bait device for a pelagic fishing boat according to the present embodiment.
In FIG. 1, for example, a total of 14 live bait holds 12A, 12B,... Each live bait 12 has a volume of, for example, 20 to 30 m 3 per store. Each live bait 12 is connected to a circulation path 14 for changing water, and the sea water in each live bait is circulated with a set amount of change. The amount of water exchanged (m 3 / h) is the flow rate obtained by subtracting the amount flowing out of the bait basket from the total amount of circulating environmental water (m 3 / h) and fresh seawater supply (m 3 / h) in the live bait. It is.

海水循環路14には、調整倉16が介設されると共に、複数台の海水循環ポンプ18が並列に設けられている。各海水循環ポンプ18には、夫々インバータ回路20が設けられ、インバータ回路20によって、各海水循環ポンプ18の回転数を無段階に制御可能に構成されている。調整倉16内の液面レベルLはレベル計22によって検出され、海水循環路14の循環水量は、液面レベルLが常に一定となるように制御されている。   The seawater circulation path 14 is provided with an adjustment warehouse 16 and a plurality of seawater circulation pumps 18 are provided in parallel. Each seawater circulation pump 18 is provided with an inverter circuit 20, and the inverter circuit 20 is configured so that the rotation speed of each seawater circulation pump 18 can be controlled steplessly. The liquid level L in the adjustment chamber 16 is detected by the level meter 22, and the amount of circulating water in the seawater circulation path 14 is controlled so that the liquid level L is always constant.

海水循環路14において、海水循環ポンプ18の下流側に空気混合器24が介設され、空気混合器24の下流側に曝気タンク26が介設されている。空気混合器24にはブロア26から配管28を通して空気が供給されると共に、圧力センサ30で配管28を通る空気圧を検出している。そして、コントローラ32によって、配管28内の空気圧が設定圧となるように、インバータ回路20を制御し、海水循環ポンプ18の回転数を制御している。これによって、曝気タンク26内の循環水の溶存酸素量を常に設定された値とすることができる。   In the seawater circulation path 14, an air mixer 24 is provided on the downstream side of the seawater circulation pump 18, and an aeration tank 26 is provided on the downstream side of the air mixer 24. Air is supplied to the air mixer 24 from the blower 26 through the pipe 28, and the air pressure passing through the pipe 28 is detected by the pressure sensor 30. Then, the inverter 32 is controlled by the controller 32 so that the air pressure in the pipe 28 becomes the set pressure, and the rotational speed of the seawater circulation pump 18 is controlled. Thereby, the dissolved oxygen amount of the circulating water in the aeration tank 26 can be always set to a set value.

活餌装置10には、船外の新鮮海水を汲み上げる新鮮海水供給路34が設けられている。新鮮海水供給路34には新鮮海水ポンプ36が設けられ、新鮮海水ポンプ36で船外の新鮮海水を汲み上げている。汲み上げられた30℃の新鮮海水は、まず熱交換器40で18℃に冷却され、その後海水クーラ42で14℃に冷却された後、海水循環路14に供給される。新鮮海水ポンプ36にはインバータ回路38が設けられ、インバータ回路38によって新鮮海水ポンプ36は無段階に回転数制御され、流量を制御可能に構成されている。   The live bait apparatus 10 is provided with a fresh seawater supply path 34 for pumping fresh seawater outside the ship. A fresh seawater pump 36 is provided in the fresh seawater supply path 34, and fresh seawater outside the ship is pumped up by the fresh seawater pump 36. The pumped fresh seawater at 30 ° C. is first cooled to 18 ° C. by the heat exchanger 40, then cooled to 14 ° C. by the seawater cooler 42, and then supplied to the seawater circulation path 14. The fresh seawater pump 36 is provided with an inverter circuit 38, and the fresh seawater pump 36 is steplessly controlled by the inverter circuit 38 so that the flow rate can be controlled.

調整倉16には循環水の排水路44が設けられ、排水路44には複数の排水ポンプ46が並列に設けられている。排水ポンプ46にはインバータ回路48が設けられて、インバータ回路48によって排水ポンプ46の回転数を無段階に制御可能に構成されている。これによって、排水ポンプ46の流量を制御可能に構成している。排水ポンプ46によって調整倉16から排出された16℃の排水は、熱交換器40で新鮮海水と熱交換して、新鮮海水を予冷却した後、船外に排出される。   The adjustment warehouse 16 is provided with a drainage path 44 for circulating water, and the drainage path 44 is provided with a plurality of drainage pumps 46 in parallel. The drain pump 46 is provided with an inverter circuit 48 so that the inverter circuit 48 can control the rotation speed of the drain pump 46 steplessly. As a result, the flow rate of the drainage pump 46 can be controlled. The 16 ° C. drainage discharged from the adjustment chamber 16 by the drainage pump 46 is heat-exchanged with the fresh seawater by the heat exchanger 40, and after precooling the fresh seawater, it is discharged outside the ship.

新鮮海水ポンプ36で汲み上げられ海水循環路14に供給される新鮮海水と、排水路44から排出される排水とは、同量となるように制御され、これによって、調整倉16内の液面レベルLが常に一定に保持される。即ち、コントローラ49によって、液面レベルLが一定となるように、排水ポンプ46の回転数を制御している。   The fresh seawater pumped up by the fresh seawater pump 36 and supplied to the seawater circulation path 14 and the drainage discharged from the drainage path 44 are controlled so as to have the same amount. L is always kept constant. That is, the rotational speed of the drainage pump 46 is controlled by the controller 49 so that the liquid level L is constant.

活餌装置10には、冷媒、例えばNHを冷媒とした冷凍サイクルを構成する冷却装置50が設けられている。冷却装置50の圧縮機はスクリュー圧縮機52が使用されている。スクリュー圧縮機52の駆動モータ54にはインバータ回路56が設けられ、インバータ回路56によって、スクリュー圧縮機52のロータ軸の回転数制御を可能としている。冷媒がスクリュー圧縮機52から冷媒循環路58に設けられた図示しない凝縮器及び膨張弁60を通して海水クーラ42に供給され、冷媒で新鮮海水を冷却している。 The live bait apparatus 10 is provided with a cooling device 50 constituting a refrigeration cycle using a refrigerant, for example, NH 3 as a refrigerant. A screw compressor 52 is used as the compressor of the cooling device 50. The drive motor 54 of the screw compressor 52 is provided with an inverter circuit 56, and the inverter circuit 56 can control the rotational speed of the rotor shaft of the screw compressor 52. The refrigerant is supplied from the screw compressor 52 to the seawater cooler 42 through a condenser and an expansion valve 60 (not shown) provided in the refrigerant circulation path 58 to cool fresh seawater with the refrigerant.

コントローラ62でインバータ回路56及び膨張弁60の開度を制御し、海水クーラ42より下流側の新鮮海水供給路34に新鮮海水の温度を検出する温度センサ64を設け、海水クーラ42下流側の新鮮海水の温度が14℃となるように、コントローラ62で駆動モータ54の回転数及び海水クーラ42に流れる冷媒量を制御している。
なお、活餌装置10の各流路には、流量調節のための手動操作弁66が設けられている。
The controller 62 controls the opening degree of the inverter circuit 56 and the expansion valve 60, and a temperature sensor 64 for detecting the temperature of fresh seawater is provided in the fresh seawater supply path 34 downstream of the seawater cooler 42. The controller 62 controls the rotational speed of the drive motor 54 and the amount of refrigerant flowing in the seawater cooler 42 so that the temperature of the seawater becomes 14 ° C.
A manual operation valve 66 for adjusting the flow rate is provided in each flow path of the live bait apparatus 10.

かかる構成の活餌装置10において、船外から新鮮海水供給路34に汲み上げられた30℃の新鮮海水は、熱交換器40で排水により18℃に冷却され、さらに海水クーラ42で14℃に冷却された後、循環路14に供給される。餌鰯の死滅の要因である活餌倉12の汚染(アンモニアなど)を防ぐため、換水量の30%以上の新鮮海水を供給する。
例えば、活餌倉12の容量が30mである場合、活餌倉の供給水量は、45m/hとし、この内、循環水量を30m/hとし、新鮮海水供給量を15m/hとする。
In the live bait apparatus 10 having such a configuration, the 30 ° C. fresh seawater pumped from the outside of the ship to the fresh seawater supply channel 34 is cooled to 18 ° C. by the drainage by the heat exchanger 40 and further cooled to 14 ° C. by the seawater cooler 42. Is supplied to the circulation path 14. In order to prevent contamination of the live bait 12 (ammonia etc.), which is a cause of the death of the bait, supply fresh seawater of 30% or more of the water exchange amount.
For example, when the capacity of the live bait 12 is 30 m 3 , the amount of water supplied to the live bait is 45 m 3 / h, of which the amount of circulating water is 30 m 3 / h and the amount of fresh seawater is 15 m 3 / h. And

こうして、図1に示すように、新鮮海水を加えて活餌倉12に供給する循環水の温度を15℃とし、活餌倉12から出る循環水の温度及び排水路44から排出される排水の温度を16℃となるように制御する。   Thus, as shown in FIG. 1, the temperature of the circulating water added to the fresh bait 12 with fresh seawater is set to 15 ° C., the temperature of the circulating water coming out of the live bait 12 and the drainage discharged from the drainage channel 44. The temperature is controlled to be 16 ° C.

鰹一本釣り漁船には、活餌倉12以外に、−20℃のブライン(NaCl)で満たし捕獲した鰹を瞬時に凍結する複数の、例えば4倉の凍結倉を備えている。図2で、該凍結倉にブラインを供給する冷凍装置70の構成を説明する。図2において、冷凍装置70は、例えばNH等を冷媒とする冷凍サイクルを構成している。圧縮機72はスクリュー圧縮機であり、そのロータ軸は駆動モータ74で回転駆動される。 In addition to the live bait 12, the single fishing fishing boat is provided with a plurality of, for example, 4 freezers for instantaneously freezing traps filled with -20 ° C brine (NaCl). With reference to FIG. 2, the configuration of the refrigeration apparatus 70 that supplies brine to the freezer will be described. In FIG. 2, the refrigeration apparatus 70 constitutes a refrigeration cycle using, for example, NH 3 as a refrigerant. The compressor 72 is a screw compressor, and its rotor shaft is rotationally driven by a drive motor 74.

駆動モータ74にインバータ回路76が設けられ、インバータ回路76で駆動モータ74の回転数を無段階に制御可能としている。冷凍装置70では、スクリュー圧縮機72から冷媒循環路78に設けられた図示しない凝縮器及び膨張弁80を通してブラインクーラ88に送られる。ブラインクーラ88で低温冷媒により−20℃に冷却されたブライン(NaCl)は、図示しない凍結倉に送られ、該凍結倉に貯留される。そして、漁獲した鰹を該凍結倉に入れて凍結する。凍結倉で凍結された鰹は、その後、活き鰯を餌として消費して空となった活餌倉に入れられる。活餌倉には直膨式のヘアピンコイルが設けられており、該ヘアピンコイルに低温ブラインが供給され、活餌倉内は−50℃に保冷される。   The drive motor 74 is provided with an inverter circuit 76, and the inverter circuit 76 can control the rotation speed of the drive motor 74 steplessly. In the refrigeration apparatus 70, the screw compressor 72 is sent to the brine cooler 88 through a condenser and an expansion valve 80 (not shown) provided in the refrigerant circulation path 78. The brine (NaCl) cooled to −20 ° C. by the low-temperature refrigerant in the brine cooler 88 is sent to a freezer not shown and stored in the freezer. Then, the caught salmon is put in the freezer and frozen. The salmon frozen in the freezer is then put into the live bait that has been emptied by consuming live salmon as bait. The live bait is provided with a directly-expanded hairpin coil, low temperature brine is supplied to the hairpin coil, and the live bait is kept at -50 ° C.

ブラインクーラ88の出口側の冷媒循環路78に圧力センサ84が設けられている。圧力センサ84で冷媒循環路78内を通る冷媒圧力を検出し、該冷媒圧を設定値に保持するように、コントローラ86でスクリュー圧縮機72の駆動モータ74の回転数及び膨張弁80の開度を制御する。   A pressure sensor 84 is provided in the refrigerant circulation path 78 on the outlet side of the brine cooler 88. The controller 86 detects the refrigerant pressure passing through the refrigerant circulation path 78 by the pressure sensor 84, and the controller 86 keeps the refrigerant pressure at the set value so that the controller 86 rotates the rotational speed of the drive motor 74 of the screw compressor 72 and the opening degree of the expansion valve 80. To control.

漁獲操業が進むと、活餌倉内の餌鰯が消費され、餌鰯を蓄養する活餌倉が減少する。餌鰯がいなくなった活餌倉は、餌鰯を蓄養するための環境を保持する必要はなく、前述のように、漁獲した鰹の保冷倉として利用される。
本実施形態では、餌鰯を蓄養する活餌倉の減少に比例して循環水量及び新鮮海水の汲み上げ量を減少させ、これによって、活餌倉の減少に対して、換水率を一定に保持するようにしている。
As the fishing operation progresses, the bait in the live bait will be consumed, and the live bait that feeds the bait will decrease. The live bait where the bait is no longer needed does not need to maintain an environment for feeding bait, and is used as a cold storage for fish that have been caught as described above.
In this embodiment, the amount of circulating water and the amount of fresh seawater pumped up are reduced in proportion to the decrease in the live bait for feeding bait, thereby keeping the water conversion rate constant against the decrease in the live bait. I am doing so.

このため、餌鰯を蓄養する活餌倉の減少に対応して新鮮海水の汲み上げ量を減少できるので、新鮮海水ポンプ36の所要動力を低減できると共に、新鮮海水の冷却に要する冷却装置50の所要動力を新鮮海水量に対応して節減することができる。
例えば、餌鰯を蓄養する活餌倉が14倉であり、各活餌倉の容積が30mであって、当初の循環水量が432mで、新鮮海水の供給量が200mであったとする。
その後、餌鰯を蓄養する活餌倉が7倉に半減したとき、従来方式であれば、新鮮海水供給量は200mと変わらないが、本実施形態では、新鮮海水供給量が100mに半減するので、新鮮海水ポンプ36の動力を低減できると共に、冷却装置50の所要動力も半減する。従って、従来の方式に比べて、大幅な省エネを達成できる。
For this reason, since the pumping amount of fresh seawater can be reduced corresponding to the reduction of the live bait for raising bait, the required power of the fresh seawater pump 36 can be reduced and the cooling device 50 required for cooling the fresh seawater is required. Power can be saved corresponding to the amount of fresh seawater.
For example, it is assumed that there are 14 live bait storages for feeding bait, the volume of each live bait store is 30 m 3 , the initial circulating water volume is 432 m 3 , and the supply amount of fresh seawater is 200 m 3. .
Thereafter, when the live bait storage for feeding bait is reduced to half, if it is a conventional method, the fresh seawater supply amount is not changed to 200 m 3 , but in this embodiment, the fresh seawater supply amount is reduced to 100 m 3 . Therefore, the power of the fresh seawater pump 36 can be reduced and the required power of the cooling device 50 is also halved. Therefore, significant energy saving can be achieved as compared with the conventional method.

また、海水循環ポンプ18、新鮮海水ポンプ36及び排水ポンプ46を回転数制御すると、ポンプの流量特性において、ポンプの流量は、回転数に比例し必要な動力は回転数の3乗に比例して小さくなる。
従って、前記ポンプ類を回転数制御して、低負荷時に低回転数で運転することにより、大幅な省エネ(省電力)が可能になる。
また、ポンプ18、36、46やスクリュー圧縮機52の起動時も、従来の起動方式と比べ大電流発生の虞がなく、安定したリニアスタートとなるため、発電機への負荷も低減される。
Further, when the rotational speed of the seawater circulation pump 18, the fresh seawater pump 36, and the drainage pump 46 is controlled, the pump flow rate is proportional to the rotational speed and the necessary power is proportional to the third power of the rotational speed. Get smaller.
Therefore, by controlling the rotational speed of the pumps and operating at a low rotational speed when the load is low, significant energy saving (power saving) is possible.
Further, when the pumps 18, 36, 46 and the screw compressor 52 are started, there is no possibility of generating a large current as compared with the conventional starting method, and a stable linear start is performed, so that the load on the generator is also reduced.

また、冷却装置50の圧縮機としてスクリュー圧縮機52を用いたことにより、容量制御範囲が広い長所を有すると共に、低負荷運転の多い遠洋鰹釣り漁船では、低負荷時の消費電力を低減できるので、さらに省エネを達成できる。   In addition, the use of the screw compressor 52 as the compressor of the cooling device 50 has the advantage that the capacity control range is wide, and power consumption at low load can be reduced in a pelagic fishing boat with many low load operations. Furthermore, energy saving can be achieved.

また、本実施形態では、調整倉16内の循環水の液面レベルLを液面レベル計22で検出し、液面レベルLが常に一定となるように、コントローラ49で排水路44の排水量を制御しているので、活餌倉内の循環水量を安定させることができる。
さらに、配管28内の空気圧を検知し、該空気圧が設定値になるように循環水量を制御しているので、曝気タンク26内の酸素溶存量を設定値に保持できる。そのため、活餌倉12内の酸素溶存量を餌鰯の生存に最適な値に保持できる。
In the present embodiment, the liquid level L of the circulating water in the adjustment chamber 16 is detected by the liquid level meter 22, and the controller 49 controls the amount of drainage of the drainage channel 44 so that the liquid level L is always constant. Since it is controlled, the amount of circulating water in the live bait can be stabilized.
Further, since the air pressure in the pipe 28 is detected and the amount of circulating water is controlled so that the air pressure becomes a set value, the dissolved oxygen amount in the aeration tank 26 can be held at the set value. Therefore, the amount of dissolved oxygen in the live bait 12 can be maintained at an optimum value for survival of the bait.

図3は、新鮮海水ポンプ36の従来方式による吐出バルブ閉時又は本実施形態による回転数制御と流量(m/h)との関係を示す線図である。図3において、必要能力が75m/hの時、従来方式の吐出バルブ閉操作では、約14.5kwの消費動力であるのに対し、本実施形態の回転数制御では、約8.5kwとなり、6.0kw(45%)の動力削減となる。 FIG. 3 is a diagram showing the relationship between the rotational speed control and the flow rate (m 3 / h) when the discharge valve is closed by the conventional method of the fresh seawater pump 36 or according to this embodiment. In FIG. 3, when the required capacity is 75 m 3 / h, the conventional discharge valve closing operation consumes about 14.5 kw, whereas the rotation speed control of this embodiment gives about 8.5 kw. , 6.0 kw (45%) power reduction.

図4は、本実施形態と従来方式の冷却装置50の所要動力の差を示すもので、冷却装置50を構成する圧縮機として、スクリュー圧縮機を使用した場合である。従来方式では、餌鰯を蓄養する活餌倉が減少しても、新鮮海水の汲み上げ量が変わらないので、新鮮海水ポンプ36及び冷却装置50の所要動力は変わらない。あるいはスクリュー圧縮機をスライド弁方式で容量制御しても、低負荷時の冷凍能力に対して消費電力が多く、効率がわるい。   FIG. 4 shows a difference in required power between the present embodiment and the conventional cooling device 50, and shows a case where a screw compressor is used as a compressor constituting the cooling device 50. In the conventional system, even if the number of live bait storage for feeding bait decreases, the amount of fresh seawater pumped does not change, so the required power of the fresh seawater pump 36 and the cooling device 50 does not change. Alternatively, even if the capacity of the screw compressor is controlled by the slide valve method, the power consumption is large for the refrigerating capacity at the time of low load, and the efficiency is poor.

一方、本実施形態では、餌鰯を蓄養する活餌倉の減少に対応させて新鮮海水の汲み上げ量を減少させ、新鮮海水量の減少に対して駆動モータ52をインバータ回路56で回転数制御することにより対応した。
図4において、縦棒は本実施形態と従来方式との各冷凍能力(%)における動力差を示す。例えば、所要動力が冷凍能力に対して50%の時に、従来のバイパス制御では約155kwの消費動力に対し、本実施形態では約110kwであり、45kwの消費動力が削減できる。
On the other hand, in this embodiment, the pumping amount of fresh seawater is reduced corresponding to the decrease in the live bait for feeding bait, and the rotational speed of the drive motor 52 is controlled by the inverter circuit 56 in response to the decrease in the amount of fresh seawater. It responded by.
In FIG. 4, the vertical bars indicate the power difference in each refrigeration capacity (%) between the present embodiment and the conventional method. For example, when the required power is 50% of the refrigeration capacity, the power consumption of about 155 kw in the conventional bypass control is about 110 kw in this embodiment, and the power consumption of 45 kw can be reduced.

このように、冷却装置の低負荷運転の多い活餌装置では、冷却装置の動力削減が顕著である。   As described above, in a live bait device having a low load operation of the cooling device, the power reduction of the cooling device is remarkable.

本発明によれば、遠洋鰹一本釣り漁船の活餌装置において、各流路に設けられたポンプ類や新鮮海水を冷却する冷却装置の所要動力を削減でき、省エネを可能とする。   ADVANTAGE OF THE INVENTION According to this invention, in the live bait | feed apparatus of a pelagic shore single fishing boat, the required motive power of the cooling devices which cool the pumps provided in each flow path and fresh seawater can be reduced, and energy saving is enabled.

本発明の一実施形態に係る活餌装置の全体構成図である。1 is an overall configuration diagram of a live food device according to an embodiment of the present invention. 前記実施形態に係る凍結倉用の冷凍装置の系統図である。It is a systematic diagram of the freezing apparatus for freezers which concerns on the said embodiment. 前記実施形態と従来方式との新鮮海水ポンプの動力差を示す線図である。It is a diagram which shows the power difference of the fresh seawater pump of the said embodiment and a conventional system. 前記実施形態と従来方式との冷却装置の動力差を示す線図である。It is a diagram which shows the power difference of the cooling device of the said embodiment and a conventional system. 従来の活餌装置の全体構成図である。It is a whole block diagram of the conventional live food feeder. 従来の活餌装置の別な例を示す一部構成図である。It is a partial block diagram which shows another example of the conventional live food feeder.

符号の説明Explanation of symbols

10 活餌装置
12A、12B 活餌倉
14 循環路
16 調整倉
18 循環ポンプ
22 液面レベル計
24 空気混合器
26 曝気タンク
20、38、48、56、76 インバータ回路
34 新鮮海水供給路
36 新鮮海水ポンプ
40 熱交換器
42 海水クーラ
44 排水路
46 排水ポンプ
50 冷却装置
52 スクリュー圧縮機
DESCRIPTION OF SYMBOLS 10 Live bait apparatus 12A, 12B Live bait 14 Circulation path 16 Adjustment warehouse 18 Circulation pump 22 Liquid level meter 24 Air mixer 26 Aeration tank 20, 38, 48, 56, 76 Inverter circuit 34 Fresh seawater supply path 36 Fresh seawater Pump 40 Heat exchanger 42 Seawater cooler 44 Drainage channel 46 Drainage pump 50 Cooling device 52 Screw compressor

Claims (5)

複数の活餌倉と、該活餌倉と調整倉間に循環水を循環させる循環路と、船外から新鮮海水を汲み上げる新鮮海水供給路と、循環水の一部を船外に排出する排水路と、新鮮海水を排水と熱交換させて一次冷却する熱交換器と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置とを用意し、二次冷却した新鮮海水を該循環路に供給するようにした遠洋鰹釣り漁船の循環水制御方法において、
活餌を蓄養する活餌倉数の減少に対応して該活餌倉を設定換水量に維持するように前記循環路の循環水量を制御すると共に、循環水量に対する新鮮海水量の供給割合が常に一定となるように新鮮海水供給量を制御することにより、新鮮海水供給量と新鮮海水供給に要するポンプ動力及び新鮮海水の冷却に要する前記冷却装置の所要動力を低減するようにしたことを特徴とする遠洋鰹釣り漁船の循環水制御方法。
Multiple live bait warehouses, a circulation path that circulates the circulating water between the live bait warehouse and the adjustment warehouse, a fresh seawater supply path that pumps fresh seawater from the outside of the ship, and a drain that discharges a portion of the circulating water And a heat exchanger that primarily cools the fresh seawater by exchanging heat with the wastewater, and a cooling device that forms a refrigeration cycle and performs secondary cooling of the freshly cooled fresh seawater. In the circulating water control method for a pelagic fishing boat that is supplied to the circulation path,
Corresponding to the decrease in the number of live bait for raising live bait, the circulating water amount in the circulation path is controlled so as to maintain the live bait in the set water exchange amount, and the supply ratio of fresh seawater to the circulating water amount is always By controlling the amount of fresh seawater to be constant, the amount of fresh seawater supplied, the pump power required for fresh seawater supply, and the required power of the cooling device required for cooling the fresh seawater are reduced. To control the circulating water of fishing boats.
前記循環路の循環水量、新鮮海水供給路の新鮮海水供給量及び排水路の排水量をこれら各流路に設けられた移送ポンプの回転数制御により制御すると共に、
前記冷却装置の回転圧縮機を回転数制御することにより、新鮮海水を設定温度に二次冷却するようにしたことを特徴とする請求項1に記載の遠洋鰹釣り漁船の循環水制御方法。
Controlling the circulating water volume of the circulation path, the fresh seawater supply volume of the fresh seawater supply path and the drainage volume of the drainage path by controlling the number of rotations of the transfer pump provided in each of these flow paths,
The circulating water control method for a pelagic fishing boat according to claim 1, wherein the seawater is secondarily cooled to a set temperature by controlling the rotational speed of the rotary compressor of the cooling device.
複数の活餌倉と、該活餌倉と調整倉間に循環水を循環させる循環路と、船外から新鮮海水を汲み上げる新鮮海水供給路と、循環水の一部を船外に排出する排水路と、新鮮海水を排水と熱交換させて一次冷却する熱交換器と、冷凍サイクルを構成し一次冷却された新鮮海水を二次冷却する冷却装置とを備え、二次冷却した新鮮海水を該循環路に供給するようにした遠洋鰹釣り漁船の循環水制御装置において、
前記循環路、新鮮海水供給路及び排水路に夫々回転数制御可能な移送ポンプを設け、活餌を蓄養する活餌倉数の減少に対応して、該活餌倉を設定換水量に維持するように前記循環路の循環水量を制御すると共に、循環水量に対する新鮮海水量の供給割合が常に一定となるように、前記移送ポンプで前記各流路の流量を制御するように構成したことを特徴とする遠洋鰹釣り漁船の循環水制御装置。
Multiple live bait warehouses, a circulation path that circulates the circulating water between the live bait warehouse and the adjustment warehouse, a fresh seawater supply path that pumps fresh seawater from the outside of the ship, and a drain that discharges a part of the circulating water to the outside of the ship Path, a heat exchanger that heat-exchanges fresh seawater with waste water and performs primary cooling, and a cooling device that constitutes a refrigeration cycle and performs secondary cooling of the freshly-cooled fresh seawater. In the circulating water control device for pelagic fishing boats supplied to the circulation path,
A transfer pump capable of controlling the number of rotations is provided in each of the circulation path, fresh seawater supply path and drainage path, and the live bait is maintained at a set water exchange amount corresponding to a decrease in the number of live bait for raising live bait. In this way, the flow rate of each flow path is controlled by the transfer pump so that the circulating water amount of the circulation path is controlled and the supply ratio of the fresh seawater amount to the circulating water amount is always constant. Circulating water control device for pelagic fishing boats.
前記調整倉内の循環水面レベルを検出するレベル計と、該レベル計の検出値を入力して該循環水面レベルが常に一定となるように前記排水路の排水量を制御するコントローラとを設けたことを特徴とする請求項3に記載の遠洋鰹釣り漁船の循環水制御装置。   A level meter that detects a circulating water level in the adjustment chamber, and a controller that controls a drainage amount of the drainage channel by inputting a detection value of the level meter so that the circulating water level is always constant. The circulating water control device for a pelagic fishing boat according to claim 3, 前記循環路に設けられた曝気タンクと、該曝気タンク上流側の循環路に設けられた空気混合器と、該空気混合器に接続された空気供給管の空気圧を検出する空気圧センサと、該空気圧センサの検出値に基づいて該循環路の循環水量を制御するコントローラとを設け、該コントローラによって循環水の酸素溶存量を設定値に保持するように構成したことを特徴とする請求項3又は4に記載の遠洋鰹釣り漁船の循環水制御装置。   An aeration tank provided in the circulation path, an air mixer provided in the circulation path upstream of the aeration tank, an air pressure sensor for detecting an air pressure of an air supply pipe connected to the air mixer, and the air pressure 5. A controller for controlling the amount of circulating water in the circulation path based on a detection value of a sensor is provided, and the oxygen dissolved amount of the circulating water is held at a set value by the controller. A circulating water control device for a pelagic carp fishing boat described in 1.
JP2008219223A 2008-08-28 2008-08-28 Farm water control method and apparatus for pelagic fishing boat Active JP4513110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219223A JP4513110B2 (en) 2008-08-28 2008-08-28 Farm water control method and apparatus for pelagic fishing boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219223A JP4513110B2 (en) 2008-08-28 2008-08-28 Farm water control method and apparatus for pelagic fishing boat

Publications (2)

Publication Number Publication Date
JP2010051236A true JP2010051236A (en) 2010-03-11
JP4513110B2 JP4513110B2 (en) 2010-07-28

Family

ID=42067825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219223A Active JP4513110B2 (en) 2008-08-28 2008-08-28 Farm water control method and apparatus for pelagic fishing boat

Country Status (1)

Country Link
JP (1) JP4513110B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241910A (en) * 2011-05-13 2012-12-10 Mayekawa Mfg Co Ltd Dry type evaporator, and method for improving cop of existing dry type evaporator
JP2013231568A (en) * 2012-05-02 2013-11-14 Mayekawa Mfg Co Ltd Dual refrigerating appliance for being mounted on ship
KR101403706B1 (en) 2012-12-21 2014-06-09 강경조 Seawater Supply System For Culturing Fish or Shellfish
JP2016118385A (en) * 2016-02-02 2016-06-30 株式会社前川製作所 Refrigeration shipping boat
CN109287560A (en) * 2018-11-12 2019-02-01 中国水产科学研究院渔业机械仪器研究所 A circulating sewage system for aquaculture vessels
CN112173720A (en) * 2019-07-03 2021-01-05 上海和创船舶工程有限公司 Draining and conveying system for catch
KR102536173B1 (en) * 2022-11-30 2023-05-26 전남대학교산학협력단 Hybrid flow-through aquaculture system using with small amount of change water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104255639B (en) * 2014-10-10 2016-06-29 獐子岛集团股份有限公司 Multilamellar disassembled aquatic products support system temporarily
CN108800561A (en) * 2018-04-25 2018-11-13 刘方然 A kind of heating combined equipment using sea water heat energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836095U (en) * 1971-09-07 1973-04-28
JPS5736921A (en) * 1980-08-13 1982-02-27 Maekawa Seisakusho Kk KATSUGYOKAIRUISENNAICHIKUYOSOCHINIOKERUCHIKUYOKANKYOSUINOKOKORITSUREIKYAKUHO
JPS57194731A (en) * 1981-05-27 1982-11-30 Nisshin Kogyo Kk Method and apparatus for treating water in live bait chamber
JPS6146B2 (en) * 1980-06-26 1986-01-06 Asahi Chemical Ind
JPS6227465U (en) * 1985-08-05 1987-02-19
JPS63311071A (en) * 1987-06-12 1988-12-19 株式会社デンソー Water controller for fish preserve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836095U (en) * 1971-09-07 1973-04-28
JPS6146B2 (en) * 1980-06-26 1986-01-06 Asahi Chemical Ind
JPS5736921A (en) * 1980-08-13 1982-02-27 Maekawa Seisakusho Kk KATSUGYOKAIRUISENNAICHIKUYOSOCHINIOKERUCHIKUYOKANKYOSUINOKOKORITSUREIKYAKUHO
JPS6043091B2 (en) * 1980-08-13 1985-09-26 株式会社 前川製作所 Live fish and shellfish onboard cultivation equipment
JPS57194731A (en) * 1981-05-27 1982-11-30 Nisshin Kogyo Kk Method and apparatus for treating water in live bait chamber
JPS6227465U (en) * 1985-08-05 1987-02-19
JPS63311071A (en) * 1987-06-12 1988-12-19 株式会社デンソー Water controller for fish preserve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241910A (en) * 2011-05-13 2012-12-10 Mayekawa Mfg Co Ltd Dry type evaporator, and method for improving cop of existing dry type evaporator
JP2013231568A (en) * 2012-05-02 2013-11-14 Mayekawa Mfg Co Ltd Dual refrigerating appliance for being mounted on ship
KR101786563B1 (en) 2012-05-02 2017-11-15 마에카와 매뉴팩쳐링 캄파니 리미티드 Shipboard binary refrigeration system
KR101403706B1 (en) 2012-12-21 2014-06-09 강경조 Seawater Supply System For Culturing Fish or Shellfish
JP2016118385A (en) * 2016-02-02 2016-06-30 株式会社前川製作所 Refrigeration shipping boat
CN109287560A (en) * 2018-11-12 2019-02-01 中国水产科学研究院渔业机械仪器研究所 A circulating sewage system for aquaculture vessels
CN112173720A (en) * 2019-07-03 2021-01-05 上海和创船舶工程有限公司 Draining and conveying system for catch
KR102536173B1 (en) * 2022-11-30 2023-05-26 전남대학교산학협력단 Hybrid flow-through aquaculture system using with small amount of change water

Also Published As

Publication number Publication date
JP4513110B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4513110B2 (en) Farm water control method and apparatus for pelagic fishing boat
JP5324409B2 (en) Heat load cooling device and control device for heat load cooling device
KR20100136151A (en) Ship's cooling system
JP2020034272A (en) Slush generation method
JP4638393B2 (en) Sherbet ice making machine
JP4641413B2 (en) Method and system for freezing and preserving fish in a fishhouse
JP2012122371A (en) Cooling system and cooling method
KR20110002227A (en) Ship's stable cooling system
CN102009740A (en) Method and device for keeping fresh aquatic products by cold accumulation on board
US3822566A (en) Portable utility system
KR102173855B1 (en) Sherbet-type Seawater ice generator
KR100686730B1 (en) Live fish and fish carriers
CN110171554B (en) Water cooling system of refrigerated container for ship and working method thereof
CN114097158A (en) Refrigerator power control
JP5881379B2 (en) Fishing boat refrigeration equipment
JP2017006864A (en) Sterilizable cooling medium production system and production method
JP2018124057A (en) Slurry ice production method for seafood
JP3282152B2 (en) Water temperature control system for deep sea water and surface water for marine life production
KR100557805B1 (en) Fresh fish transport apparatus with cooling spray means
KR200479009Y1 (en) Cool and hot system for a ship
KR200367182Y1 (en) A device for cooling and conveying a fresh fish
JP2005180893A (en) Water ice continuous ice making equipment by switching water circulation with continuous control of solution concentration
WO2022138520A1 (en) Operation control method and cooling system
CN206511097U (en) A kind of fishing boat fresh-keeping system
KR100531728B1 (en) seawater ice chilling system for storing common squids in chilled seawater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

R150 Certificate of patent or registration of utility model

Ref document number: 4513110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250