JP2010048134A - Exhaust emission control device for internal combustion engine - Google Patents
Exhaust emission control device for internal combustion engine Download PDFInfo
- Publication number
- JP2010048134A JP2010048134A JP2008211846A JP2008211846A JP2010048134A JP 2010048134 A JP2010048134 A JP 2010048134A JP 2008211846 A JP2008211846 A JP 2008211846A JP 2008211846 A JP2008211846 A JP 2008211846A JP 2010048134 A JP2010048134 A JP 2010048134A
- Authority
- JP
- Japan
- Prior art keywords
- nox
- fuel
- fuel supply
- exhaust gas
- storage reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 15
- 239000000446 fuel Substances 0.000 claims abstract description 132
- 239000003054 catalyst Substances 0.000 claims abstract description 115
- 238000000746 purification Methods 0.000 claims abstract description 35
- 239000007789 gas Substances 0.000 description 55
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- 230000002745 absorbent Effects 0.000 description 13
- 239000002250 absorbent Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 8
- 239000013618 particulate matter Substances 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- -1 potassium K Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002828 fuel tank Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
【課題】燃料消費量を少なく維持しつつNOx浄化率を高く維持する。
【解決手段】NOx吸蔵還元触媒27u,27dを排気通路内に配置し、NOx吸蔵還元触媒に燃料を供給する燃料供給手段32u,32dをそれぞれ設ける。NOx吸蔵還元触媒から吸蔵されているNOxを放出させて還元すべきときには燃料供給手段からそれぞれ対応するNOx吸蔵還元触媒に燃料を供給することにより流入排気ガスの空燃比が理論空燃比又はリッチになるようにする。NOx吸蔵還元触媒の温度をそれぞれ検出する。燃料供給手段からの燃料供給量の合計値が目標値にほぼ一致するようにこれら燃料供給手段からの燃料供給量をそれぞれ設定すると共に、設定される燃料供給量とNOx吸蔵還元触媒の温度とに基づきNOx吸蔵還元触媒のNOx浄化率をそれぞれ算出してこれらNOx浄化率の合計値が許容値を越えるように、燃料供給手段からの燃料供給量をそれぞれ設定する。
【選択図】図1An object of the present invention is to maintain a high NOx purification rate while maintaining a low fuel consumption.
NOx storage reduction catalysts 27u, 27d are disposed in an exhaust passage, and fuel supply means 32u, 32d for supplying fuel to the NOx storage reduction catalyst are provided. When the NOx occluded from the NOx occlusion reduction catalyst is to be released and reduced, the fuel is supplied from the fuel supply means to the corresponding NOx occlusion reduction catalyst, so that the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich. Like that. The temperature of the NOx storage reduction catalyst is detected. The fuel supply amounts from these fuel supply means are respectively set so that the total value of the fuel supply amounts from the fuel supply means substantially matches the target value, and the set fuel supply amount and the temperature of the NOx storage reduction catalyst are set. The NOx purification rate of the NOx storage reduction catalyst is calculated based on each, and the fuel supply amount from the fuel supply means is set so that the total value of these NOx purification rates exceeds the allowable value.
[Selection] Figure 1
Description
本発明は内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust emission control device for an internal combustion engine.
機関排気通路内に2つのNOx吸蔵還元触媒を直列配置し、各NOx吸蔵還元触媒は流入排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出して還元し、これらNOx吸蔵還元触媒から吸蔵されているNOxを放出させて還元すべきときにはリッチ空燃比のもとで燃焼を行うようにした内燃機関が公知である(特許文献1参照)。リッチ空燃比のもとでの燃焼が行われると、2つのNOx吸蔵還元触媒に流入する排気ガスの空燃比がリッチに切り換えられ、したがって2つのNOx吸蔵還元触媒からNOxが放出され還元される。 Two NOx occlusion reduction catalysts are arranged in series in the engine exhaust passage, and each NOx occlusion reduction catalyst occludes NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, and the air-fuel ratio of the inflowing exhaust gas is theoretically When the air-fuel ratio or rich, the stored NOx is released and reduced, and when the NOx stored from these NOx storage-reduction catalysts should be released and reduced, combustion is performed under the rich air-fuel ratio. Is known (see Patent Document 1). When combustion is performed under a rich air-fuel ratio, the air-fuel ratio of the exhaust gas flowing into the two NOx storage reduction catalysts is switched to rich, so that NOx is released from the two NOx storage reduction catalysts and reduced.
しかしながら、リッチ空燃比のもとで燃焼が行われたときに排気ガス中に含まれる未燃HC,COは上流側のNOx吸蔵還元触媒で酸化され、下流側のNOx吸蔵還元触媒に十分な量の未燃HC,COが供給されず、したがって下流側のNOx吸蔵還元触媒においてNOxを十分に放出し還元することができないおそれがある。 However, when combustion is performed under a rich air-fuel ratio, unburned HC and CO contained in the exhaust gas are oxidized by the upstream NOx storage reduction catalyst, and a sufficient amount for the downstream NOx storage reduction catalyst Thus, there is a possibility that NOx is not sufficiently released and reduced in the downstream NOx storage reduction catalyst.
この問題点は、排気通路内に直列配置された複数のNOx吸蔵還元触媒に対しそれぞれ燃料を供給する燃料供給手段を設けることで解決できると考えられる。 This problem can be solved by providing fuel supply means for supplying fuel to each of the plurality of NOx storage reduction catalysts arranged in series in the exhaust passage.
しかしながら、この場合に、すべてのNOx吸蔵還元触媒のNOx浄化率をそれぞれ高くしようとすると、各燃料供給手段から多量の燃料を供給する必要があり、したがって燃料消費量が大きくなるおそれがある。 However, in this case, if an attempt is made to increase the NOx purification rate of all NOx storage reduction catalysts, it is necessary to supply a large amount of fuel from each fuel supply means, and there is a risk that the fuel consumption will increase.
本発明によれば、機関排気通路内に複数のNOx吸蔵還元触媒を直列配置し、各NOx吸蔵還元触媒は流入排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOxを吸蔵し流入排気ガスの空燃比が理論空燃比又はリッチになると吸蔵したNOxを放出して還元し、これらNOx吸蔵還元触媒に燃料を供給する燃料供給手段をそれぞれ設け、これらNOx吸蔵還元触媒から吸蔵されているNOxを放出させて還元すべきときにはこれら燃料供給手段からそれぞれ対応するNOx吸蔵還元触媒に燃料を供給することにより流入排気ガスの空燃比が理論空燃比又はリッチになるようにし、これらNOx吸蔵還元触媒の温度をそれぞれ検出し、これら燃料供給手段からの燃料供給量の合計値が目標値にほぼ一致するようにこれら燃料供給手段からの燃料供給量をそれぞれ設定すると共に、該設定される燃料供給量と該検出されたNOx吸蔵還元触媒の温度とに基づきNOx吸蔵還元触媒のNOx浄化率をそれぞれ算出してこれらNOx浄化率の合計値が許容値を越えるように、燃料供給手段からの燃料供給量をそれぞれ設定している。 According to the present invention, a plurality of NOx storage reduction catalysts are arranged in series in the engine exhaust passage, and each NOx storage reduction catalyst stores NOx contained in the exhaust gas when the air-fuel ratio of the inflowing exhaust gas is lean, When the air-fuel ratio of the gas becomes the stoichiometric air-fuel ratio or rich, the stored NOx is released and reduced, and fuel supply means for supplying fuel to these NOx storage reduction catalysts is provided, respectively, and the NOx stored from these NOx storage reduction catalysts When the fuel is to be released and reduced, fuel is supplied from the fuel supply means to the corresponding NOx storage reduction catalyst so that the air-fuel ratio of the inflowing exhaust gas becomes the stoichiometric air-fuel ratio or rich. Each temperature is detected, and these fuel supply means are set so that the total value of the fuel supply amount from these fuel supply means substantially matches the target value. And the NOx purification rate of the NOx occlusion reduction catalyst are calculated based on the set fuel supply amount and the detected temperature of the NOx occlusion reduction catalyst, respectively. The amount of fuel supplied from the fuel supply means is set so that the total value exceeds the allowable value.
燃料消費量を少なく維持しつつNOx浄化率を高く維持することができる。 The NOx purification rate can be kept high while keeping the fuel consumption low.
図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明はガソリン機関にも適用することができる。 FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine. The present invention can also be applied to a gasoline engine.
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電磁制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7cの出口に連結され、コンプレッサ7cの入口は吸気導入管8を介してエアフローメータ9及びエアクリーナ10に順次連結される。吸気ダクト6内には電気制御式スロットル弁11が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置12が配置される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7tの入口に連結され、排気タービン7tの出口は排気後処理装置20に連結される。
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electromagnetically controlled fuel injection valve for injecting fuel into each
各燃料噴射弁3は燃料供給管13を介してコモンレール14に連結され、このコモンレール14は電気制御式の吐出量可変な燃料ポンプ15を介して燃料タンク16に連結される。燃料タンク16内の燃料は燃料ポンプ15によってコモンレール14内に供給され、コモンレール14内に供給された燃料は各燃料供給管13を介して燃料噴射弁3に供給される。なお、コモンレール14にはコモンレール14内の燃料圧を検出する燃料圧センサ(図示しない)が取り付けられており、燃料圧センサからの信号に基づきコモンレール14内の燃料圧が目標圧に一致するように燃料ポンプ15の燃料吐出量が制御される。
Each
排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRという。)通路17を介して互いに連結され、EGR通路17内には電気制御式EGR制御弁18が配置される。また、EGR通路17周りにはEGR通路17内を流れるEGRガスを冷却するための冷却装置19が配置される。
The
排気後処理装置20は排気タービン7tの出口に連結された排気管21を具備し、この排気管21はケーシング22に連結される。ケーシング22内には三元触媒23が収容される。ケーシング22は排気管24を介してケーシング25に連結される。ケーシング25内の上流側にはSOxトラップ触媒26が収容され、下流側にはNOx吸蔵還元触媒27uが収容される。ケーシング25は排気管28を介してケーシング29に連結される。ケーシング29の上流側にはNOx吸蔵還元触媒27dが収容され、下流側にはパティキュレートフィルタ30が収容される。さらに、ケーシング29には排気管31が連結される。本発明による実施例では、ケーシング22,25は機関本体1に隣接配置され、ケーシング29は車両床下に配置される。
The
排気管21,28にはそれぞれ対応する排気管21,28内に燃料(炭化水素)を供給するための燃料添加弁のような燃料供給手段32u,32dがそれぞれ取り付けられる。なお、燃料供給手段32uを排気管24又はSOxトラップ触媒26下流でかつNOx吸蔵還元触媒27u上流のケーシング25内に配置してもよい。また、排気管28にはケーシング25から流出する排気ガスの温度を検出する温度センサ33uが取り付けられ、この排気ガスの温度はNOx吸蔵還元触媒27uの温度TNuを表している。また、排気管31にはケーシング29から流出する排気ガスの温度を検出する温度センサ33dが取り付けられ、この排気ガスの温度はNOx吸蔵還元触媒27dの温度TNdを表している。
Fuel supply means 32u and 32d such as fuel addition valves for supplying fuel (hydrocarbon) into the
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。エアフローメータ9及び温度センサ33u,33dの出力電圧はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。また、アクセルペダル49にはアクセルペダル49の踏み込み量に比例した出力電圧を発生する負荷センサ50が接続され、負荷センサ50の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。さらに、クランクシャフトが例えば30度回転するごとに出力パルスを発生するクランク角センサ51が入力ポート45に接続される。CPU44ではクランク角センサ51からの出力パルスに基づいて機関回転数が算出される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁3、スロットル弁11の駆動装置、燃料ポンプ15、EGR制御弁18、及び燃料供給手段32u,32dに接続される。
The
パティキュレートフィルタ30はハニカム構造をなしており、互いに平行をなして延びる複数個の排気流通路を具備する。これら排気流通路は下流端が栓により閉塞された排気ガス流入通路と、上流端が栓により閉塞された排気ガス流出通路とにより構成される。したがって排気ガス流入通路及び排気ガス流出通路は薄肉の隔壁を介して交互に配置される。言い換えると、排気ガス流入通路及び排気ガス流出通路は各排気ガス流入通路が4つの排気ガス流出通路によって包囲され、各排気ガス流出通路が4つの排気ガス流入通路によって包囲されるように配置される。パティキュレートフィルタ30は例えばコージライトのような多孔質材料から形成されており、したがって排気ガス流入通路内に流入した排気ガスは周囲の隔壁内を通って隣接する排気ガス流出通路内に流出する。
The
排気ガス中に含まれる粒子状物質はパティキュレートフィルタ30上に捕集され、順次酸化される。しかしながら捕集される粒子状物質の量が酸化される粒子状物質の量よりも多くなると粒子状物質がパティキュレートフィルタ30上に次第に堆積し、この場合粒子状物質の堆積量が増大すると機関出力の低下を招いてしまう。
Particulate matter contained in the exhaust gas is collected on the
そこで本発明による実施例では、パティキュレートフィルタ30上に堆積した粒子状物質の量が許容量を越えたときには、排気ガスの空燃比をリーンに維持しつつパティキュレートフィルタ30の温度を例えば600℃程度まで上昇させる昇温制御を行い、それによって堆積した粒子状物質を酸化除去するようにしている。パティキュレートフィルタ30上に堆積した粒子状物質の量が許容量を越えたか否かは例えばパティキュレートフィルタ30の前後差圧に基づいて判断することができる。また、昇温制御は例えば燃料供給手段32dから燃料を供給しこの供給燃料をNOx吸蔵還元触媒27d又はパティキュレートフィルタ30内で酸化することにより行うことができる。
Therefore, in the embodiment according to the present invention, when the amount of the particulate matter deposited on the
NOx吸蔵還元触媒27u,27dはハニカム構造をなしており、薄肉の隔壁により互いに分離された複数個の排気ガス流通路を具備する。各隔壁の両側表面上には例えばアルミナからなる触媒担体が担持されており、図2(A)及び2(B)はこの触媒担体55の表面部分の断面を図解的に示している。図2(A)及び2(B)に示されるように触媒担体55の表面上には貴金属触媒56が分散して担持されており、更に触媒担体55の表面上にはNOx吸収剤57の層が形成されている。
The NOx
本発明による実施例では、貴金属触媒56として白金Pt、パラジウムPd、オスミウムOs、金Au、ロジウムRh、イリジウムIr、ルテニウムRuから選ばれた少なくとも一つが用いられ、NOx吸収剤57を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられる。
In the embodiment according to the present invention, at least one selected from platinum Pt, palladium Pd, osmium Os, gold Au, rhodium Rh, iridium Ir, and ruthenium Ru is used as the
吸気通路、燃焼室5及び、排気通路内の或る位置よりも上流の排気通路内に供給された空気及び燃料(炭化水素)の比をその位置における排気ガスの空燃比と称すると、NOx吸収剤57は流入する排気ガスの空燃比がリーンのときにはNOxを吸収し、流入する排気ガス中の酸素濃度が低下すると吸収したNOxを放出するNOxの吸放出作用を行う。
If the ratio of air and fuel (hydrocarbon) supplied into the intake passage, the
すなわち、貴金属触媒56として白金Ptを用いNOx吸収剤57を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンのとき、すなわち排気ガス中の酸素濃度が高いときには排気ガス中に含まれるNOは図2(A)に示されるように白金Pt56上において酸化されてNO2となり、次いでNOx吸収剤57内に吸収されて炭酸バリウムBaCO3と結合しながら硝酸イオンNO3 −の形でNOx吸収剤57内に拡散する。このようにしてNOxがNOx吸収剤57内に吸収される。排気ガス中の酸素濃度が高い限り白金Pt56の表面でNO2が生成され、NOx吸収剤57のNOx吸収能力が飽和しない限りNO2がNOx吸収剤57内に吸収されて硝酸イオンNO3 −が生成される。
That is, the case where platinum Pt is used as the
これに対し、排気ガスの空燃比がリッチにされると排気ガス中の酸化濃度が低下するために反応が逆方向(NO3 −→NO2)に進み、斯くして図2(B)に示されるようにNOx吸収剤57内の硝酸イオンNO3 −がNO2の形でNOx吸収剤57から放出される。次いで放出されたNOxは排気ガス中に含まれるHC,COによって還元される。
In contrast, reactions opposite direction to the air-fuel ratio of the exhaust gas is oxidized concentration in the exhaust gas is made rich to decrease - proceed to (NO 3 → NO 2), in Figure 2 and thus (B) As shown, nitrate ions NO 3 − in the
本発明による実施例では、酸素過剰のもとでの燃焼が継続して行われる。したがって、NOx吸蔵還元触媒27u,27d内に流入する排気ガスの空燃比はリーンに維持され、このとき排気ガス中のNOxがNOx吸蔵還元触媒27u,27d内に吸蔵される。しかしながら、機関運転が継続されるとNOx吸蔵還元触媒27u,27d内に吸蔵されているNOx量が多くなり、ついにはNOx吸蔵還元触媒27u,27dによりNOxを吸蔵できなくなってしまう。そこで本発明による実施例ではNOx吸蔵還元触媒27u,27dがNOxにより飽和する前に排気ガスの空燃比を一時的にリッチし、それによってNOx吸蔵還元触媒27u,27dからNOxを放出させ、排気ガス中のHC,COによりN2等に還元するようにしている。
In an embodiment according to the present invention, combustion under an excess of oxygen continues. Therefore, the air-fuel ratio of the exhaust gas flowing into the NOx
すなわち、本発明による実施例では、NOx吸蔵還元触媒27u,27dに単位時間当り吸蔵されるNOx量が例えば機関負荷率KL及び機関回転数Neといった機関運転状態の関数としてマップの形で予めROM42内に記憶されており、このNOx量を積算することによってNOx吸蔵還元触媒27u,27dに吸蔵されている総NOx量が算出される。その上で、NOx吸蔵還元触媒27u,27dの総NOx吸蔵量が上限NOx量を越えるごとに燃料供給手段32u,32dから燃料(炭化水素)が供給され、NOx吸蔵還元触媒27u,27dへの流入排気ガスの空燃比が一時的にリッチに切り換えられる。その結果、NOx吸蔵還元触媒27u,27dからNOxが放出され還元される。なお、機関負荷率KLは全負荷に対する機関負荷の割合をいう。
That is, in the embodiment according to the present invention, the amount of NOx stored per unit time in the NOx
ところが、排気ガス中にはSOxすなわちSO2が含まれており、このSO2がNOx吸蔵還元触媒27u,27dに流入するとこのSO2は白金Pt56において酸化されてSO3となる。次いでこのSO3はNOx吸収剤57内に吸収されて炭酸バリウムBaCO3と結合しながら硫酸イオンSO4 2−の形でNOx吸収剤57内に拡散し、安定した硫酸塩BaSO4を生成する。しかしながら、この硫酸塩BaSO4は安定していて分解しづらく、排気ガスの空燃比を単にリッチにしただけでは硫酸塩BaSO4は分解されずにそのまま残る。したがってNOx吸収剤57内には時間が経過するにつれて硫酸塩BaSO4が増大することになり、斯くして時間が経過するにつれてNOx吸蔵還元触媒27u,27dの吸蔵容量が低下することになる。
However, the exhaust gas contains SOx That SO 2, the SO 2 When this SO 2 flows into the NOx
そこで本発明による実施例では、NOx吸蔵還元触媒27u,27dの上流にSOxトラップ触媒26を配置してこのSOxトラップ触媒26により排気ガス中に含まれるSOxを捕獲し、それによってNOx吸蔵還元触媒27u,27dにSOxが流入しないようにしている。次にこのSOxトラップ触媒26について説明する。
Therefore, in the embodiment according to the present invention, the
このSOxトラップ触媒26は例えばハニカム構造をなしており、薄肉の隔壁により互いに分離された複数個の排気ガス流通路を具備する。各隔壁の両側表面上には例えばアルミナからなる触媒担体が担持されており、図3はこの触媒担体60の表面部分の断面を図解的に示している。図3に示されるように触媒担体60の表面上にはコート層61が形成されており、このコート層61の表面上には貴金属触媒62が分散して担持されている。
The
本発明による実施例では、貴金属触媒62として白金が用いられており、コート層61を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。すなわち、SOxトラップ触媒26のコート層61は強塩基性を呈している。
In the embodiment according to the present invention, platinum is used as the
排気ガス中に含まれるSOxすなわちSO2は図3に示されるように白金Pt62において酸化され、次いでコート層61内に捕獲される。すなわち、SO2は硫酸イオンSO4 2−の形でコート層61内に拡散し、硫酸塩を形成する。なお、上述したようにコート層61は強塩基性を呈しており、したがって図3に示されるように排気ガス中に含まれるSO2の一部は直接コート層61内に捕獲される。このようにして、SOxトラップ触媒26内にSOxが捕獲され、NOx吸蔵還元触媒27u,27d内にSOxが吸蔵されるのが阻止される。
As shown in FIG. 3, SOx contained in the exhaust gas, that is, SO 2 is oxidized in
ここで、図4を参照しながらNOx吸蔵還元触媒のNOx浄化率EFFについて説明する。図4からわかるように、触媒温度TNが低いときには触媒温度TNが高くなるほどNOx浄化率EFFが高くなり、触媒温度TNが高いときには触媒温度TNが高くなるほどNOx浄化率EFFが低くなる。また、燃料供給量QAFが多くなるほどNOx浄化率EFFが高くなる。すなわち、NOx浄化率EFFはNOx吸蔵還元触媒の温度TNと、NOx吸蔵還元触媒への燃料供給量QAFとに応じて定まるということになる。なお、NOx吸蔵還元触媒に流入するNOx量をNOXi、NOx吸蔵還元触媒から流出するNOx量をNOXoで表すと、NOx浄化率EFFは(NOXi−NOXo)/NOXiで表すことができる。 Here, the NOx purification rate EFF of the NOx storage reduction catalyst will be described with reference to FIG. As can be seen from FIG. 4, when the catalyst temperature TN is low, the NOx purification rate EFF increases as the catalyst temperature TN increases, and when the catalyst temperature TN is high, the NOx purification rate EFF decreases as the catalyst temperature TN increases. Further, the NOx purification rate EFF increases as the fuel supply amount QAF increases. That is, the NOx purification rate EFF is determined according to the temperature TN of the NOx storage reduction catalyst and the fuel supply amount QAF to the NOx storage reduction catalyst. When the NOx amount flowing into the NOx storage reduction catalyst is represented by NOXi and the NOx amount flowing out from the NOx storage reduction catalyst is represented by NOXo, the NOx purification rate EFF can be represented by (NOXi−NOXo) / NOXi.
さて、本発明による実施例では、上述したようにNOx吸蔵還元触媒27u,27dからNOxを放出させ還元させるべきときに、燃料供給手段32u,32dからそれぞれ対応するNOx吸蔵還元触媒27u,27dに燃料が供給される。この場合の燃料供給手段32u,32dからの燃料供給量QAFu,QAFdは本発明による実施例では次の2つの条件を満たすように設定される。
In the embodiment according to the present invention, as described above, when NOx should be released and reduced from the NOx
第1の条件は、燃料供給量QAFu,QAFdの合計値SQAF(=QAFu+QAFd)があらかじめ定められた目標値TGTにほぼ一致するということにある。 The first condition is that the total value SQAF (= QAFu + QAFd) of the fuel supply amounts QAFu and QAFd substantially coincides with a predetermined target value TGT.
第2の条件は、NOx吸蔵還元触媒27u,27dのNOx浄化率EFFu,EFFdの合計値SEFF(=EFFu+EFFd)が許容値ALWよりも大きいということにある。
The second condition is that the total value SEFF (= EFFu + EFFd) of the NOx purification rates EFFu and EFFd of the NOx
このようにすると、燃料消費量を少なく維持しつつ、NOx浄化率合計値SEFFで表されるNOx吸蔵還元触媒27u,27d全体のNOx浄化率を高く維持することができる。
In this way, the NOx purification rate of the entire NOx
具体的には、NOx浄化率EFFu,EFFdは上述したように触媒温度TNu,TNd及び燃料供給量QAFu,QAFdの関数であるので、温度センサ33u,33dにより触媒温度TNu,TNdを検出すればNOx浄化率EFFu,EFFdはそれぞれ燃料供給量QAFu,QAFdの関数fu(QAFu),fd(QAFd)となる。その上で、SQAF(=QAFu+QAFd)=TGTを満たしつつSEFF(=EFFu+EFFd)>ALWを満たすQAFu,QAFdが求められる。
Specifically, since the NOx purification rates EFFu and EFFd are functions of the catalyst temperatures TNu and TNd and the fuel supply amounts QAFu and QAFd as described above, if the catalyst temperatures TNu and TNd are detected by the
なお、NOx浄化率EFFu,EFFdを例えば次のような対数関数で近似することができる。 The NOx purification rates EFFu and EFFd can be approximated by, for example, the following logarithmic function.
EFFu=au・log(bu・QAFu+1)
EFFd=ad・log(bd・QAFd+1)
ここで、au,buは触媒温度TNuに応じて定まる係数であり、ad,bdは触媒温度TNdに応じて定まる係数である。
EFFu = au · log (bu · QAFu + 1)
EFFd = ad · log (bd · QAFd + 1)
Here, au and bu are coefficients determined according to the catalyst temperature TNu, and ad and bd are coefficients determined according to the catalyst temperature TNd.
したがって、触媒温度TNu,TNdを検出して係数au,bu,ad,bdを決定すれば、NOx浄化率EFFu,EFFdを表す関数fu(QAFu),fd(QAFd)が決まる。 Therefore, when the catalyst temperatures TNu and TNd are detected and the coefficients au, bu, ad, and bd are determined, functions fu (QAFu) and fd (QAFd) representing the NOx purification rates EFFu and EFFd are determined.
図5(A),(B)に示される例を参照すると、燃料供給量QAFu,QAFdをそれぞれTGT/2+q,TGT/2−qに設定した場合(X)には、NOx浄化率EFFu,EFFdはそれぞれEFFuX,EFFdXとなるので、この場合のNOx浄化率合計値SEFFは許容値ALWよりも小さくなる。これに対し、燃料供給量QAFu,QAFdをそれぞれTGT/2−q,TGT/2+qに設定した場合(Y)には、NOx浄化率EFFu,EFFdはそれぞれEFFuY,EFFdYとなり、NOx浄化率合計値SEFFは許容値ALWよりも大きくなる。したがって、燃料供給量QAFu,QAFdをそれぞれTGT/2−q,TGT/2+qに設定することができる。 Referring to the examples shown in FIGS. 5A and 5B, when the fuel supply amounts QAFu and QAFd are set to TGT / 2 + q and TGT / 2-q, respectively (X), the NOx purification rates EFFu and EFFd Are EFFuX and EFFdX, respectively, and in this case, the total NOx purification rate value SEFF is smaller than the allowable value ALW. On the other hand, when the fuel supply amounts QAFu and QAFd are set to TGT / 2−q and TGT / 2 + q, respectively (Y), the NOx purification rates EFFu and EFFd become EFFuY and EFFdY, respectively, and the total NOx purification rate SEFF Becomes larger than the allowable value ALW. Therefore, the fuel supply amounts QAFu and QAFd can be set to TGT / 2−q and TGT / 2 + q, respectively.
Yで示される例ではXで示される例に比べてNOx浄化率EFFuが小さくなっている。しかしながら、NOx浄化率EFFu,EFFdそれぞれを考えるのではなく、NOx浄化率合計値SEFFで表されるNOx吸蔵還元触媒27u,27d全体のNOx浄化率を大きくしようとするのが本発明の考え方である。
In the example indicated by Y, the NOx purification rate EFFu is smaller than in the example indicated by X. However, the concept of the present invention is not to consider the NOx purification rates EFFu and EFFd, but to increase the NOx purification rates of the entire NOx
なお、上述した2つの条件を満たす燃料供給量QAFu,QAFdが複数組存在する場合もある。この場合には、例えばNOx浄化率合計値SEFFが最大となる燃料供給量QAFu,QAFdを選択することもできるし、NOx浄化率EFFu,EFFdが高いほうのNOx吸蔵還元触媒27u,27dへの燃料供給量QAFu,QAFdが最も多い燃料供給量QAFu,QAFdを選択することもできる。
There may be a plurality of sets of fuel supply amounts QAFu and QAFd that satisfy the two conditions described above. In this case, for example, the fuel supply amounts QAFu and QAFd that maximize the NOx purification rate total value SEFF can be selected, or the fuel to the NOx
図6は本発明による実施例のNOx放出制御を実行するためのルーチンを示している。このルーチンはあらかじめ定められた設定時間ごとの割り込みによって実行される。 FIG. 6 shows a routine for executing the NOx release control of the embodiment according to the present invention. This routine is executed by interruption every predetermined time.
図6を参照すると、まずステップ100ではNOx吸蔵還元触媒27u,27dからNOxを放出させ還元させるべきか否かが判別される。吸蔵還元触媒27u,27dからNOxを放出させ還元させるべきでないときには処理サイクルを終了する。吸蔵還元触媒27u,27dからNOxを放出させ還元させるべきときには次いでステップ101に進み、触媒温度TNu,TNdが温度センサ33u,33dによって検出される。続くステップ102では、NOx浄化率EFFu,EFFdを表す関数fu(QAFu),fd(QAFd)が触媒温度TNu,TNdに基づいて決定される。続くステップ103では、関数式fu(QAFu),fd(QAFd)を用いて、燃料供給量合計値SQAFが目標値に一致しかつNOx浄化率合計値SEFFが許容値を越えるように燃料供給量QAFu,QAFdが設定される。続くステップ104では燃料供給手段32u,32dからそれぞれQAFu,QAFdだけ燃料が供給される。
Referring to FIG. 6, first, at
これまで述べてきた本発明による実施例では、排気通路内に2つのNOx吸蔵還元触媒及び2つの燃料供給手段が設けられる。しかしながら、3つ以上のNOx吸蔵還元触媒及び燃料供給手段を設けることもできる。 In the embodiments according to the present invention described so far, two NOx storage reduction catalysts and two fuel supply means are provided in the exhaust passage. However, three or more NOx storage reduction catalysts and fuel supply means may be provided.
また、三元触媒23、SOxトラップ触媒26及びパティキュレートフィルタ30をそれぞれ省略することもできる。あるいは、NOx吸蔵還元触媒27dをパティキュレートフィルタ30上に形成することもできる。
Further, the three-
さらに、SOxトラップ触媒26として、アルミナからなる担体上に鉄Fe,マンガンMn,ニッケルNi,スズSnのような遷移金属及びリチウムLiから選ばれた少なくとも一つを担持した触媒を用いることもできる。
Further, as the
また、排気通路内の最上流に配置されたNOx吸蔵還元触媒への流入排気ガスを理論空燃比又はリッチにするために、燃焼室から排出される排気ガスの空燃比を理論空燃比又はリッチにするようにしてもよい。この場合、燃焼混合気の空燃比を理論空燃比又はリッチにし又は膨張行程もしくは排気行程に燃料噴射弁から追加の燃料を噴射することにより、燃焼室から排出される排気ガスの空燃比を理論空燃比又はリッチにすることができる。 In addition, in order to make the exhaust gas flowing into the NOx storage reduction catalyst arranged at the uppermost stream in the exhaust passage into the stoichiometric air-fuel ratio or rich, the air-fuel ratio of the exhaust gas discharged from the combustion chamber is made to the stoichiometric air-fuel ratio or rich. You may make it do. In this case, the air-fuel ratio of the combustion mixture is made the stoichiometric air-fuel ratio or rich, or additional fuel is injected from the fuel injection valve in the expansion stroke or the exhaust stroke, so that the air-fuel ratio of the exhaust gas discharged from the combustion chamber is the theoretical air-fuel ratio. It can be fuel ratio or rich.
1 機関本体
20 排気後処理装置
27u,27d NOx吸蔵還元触媒
32u,32d 燃料供給手段
33u,33d 温度センサ
DESCRIPTION OF
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008211846A JP2010048134A (en) | 2008-08-20 | 2008-08-20 | Exhaust emission control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008211846A JP2010048134A (en) | 2008-08-20 | 2008-08-20 | Exhaust emission control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010048134A true JP2010048134A (en) | 2010-03-04 |
Family
ID=42065412
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008211846A Pending JP2010048134A (en) | 2008-08-20 | 2008-08-20 | Exhaust emission control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010048134A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120090303A1 (en) * | 2010-03-18 | 2012-04-19 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
WO2013031027A1 (en) | 2011-08-29 | 2013-03-07 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
US9010090B2 (en) | 2010-10-18 | 2015-04-21 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
US9623375B2 (en) | 2010-03-15 | 2017-04-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
DE102014223113B4 (en) * | 2014-01-09 | 2021-05-06 | Ford Global Technologies, Llc | Nitrogen oxide storage catalytic converter with multiple injection |
-
2008
- 2008-08-20 JP JP2008211846A patent/JP2010048134A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9623375B2 (en) | 2010-03-15 | 2017-04-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
US20120090303A1 (en) * | 2010-03-18 | 2012-04-19 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
CN102782274A (en) * | 2010-03-18 | 2012-11-14 | 丰田自动车株式会社 | Exhaust purification device for internal combustion engine |
US8689543B2 (en) * | 2010-03-18 | 2014-04-08 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
US9010090B2 (en) | 2010-10-18 | 2015-04-21 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
WO2013031027A1 (en) | 2011-08-29 | 2013-03-07 | トヨタ自動車株式会社 | Exhaust gas purification system for internal combustion engine |
US9181889B2 (en) | 2011-08-29 | 2015-11-10 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
DE102014223113B4 (en) * | 2014-01-09 | 2021-05-06 | Ford Global Technologies, Llc | Nitrogen oxide storage catalytic converter with multiple injection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4155320B2 (en) | Exhaust gas purification device for internal combustion engine | |
CN100547233C (en) | internal combustion engine | |
US7181904B2 (en) | Exhaust purification device of compression ignition type internal combustion engine | |
JP2009114879A (en) | Exhaust gas purification device for internal combustion engine | |
JP2007297918A (en) | Exhaust gas purification device for internal combustion engine | |
JP2009156168A (en) | Exhaust gas purification device for internal combustion engine | |
JPWO2010116535A1 (en) | Exhaust gas purification device for internal combustion engine | |
JP2010048134A (en) | Exhaust emission control device for internal combustion engine | |
US7891175B2 (en) | Exhaust purification device of compression ignition type internal combustion engine | |
EP1995419A1 (en) | Exhaust gas purifier of compression ignition internal combustion engine | |
JP4285460B2 (en) | Exhaust gas purification device for internal combustion engine | |
CN101360893B (en) | Exhaust purification device for compression ignition internal combustion engine | |
JP4107320B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2009041441A (en) | Exhaust gas purification device for internal combustion engine | |
JP2010053712A (en) | Exhaust emission control device of internal combustion engine | |
JP2009209766A (en) | Exhaust emission control device of internal combustion engine | |
JP2009228525A (en) | Exhaust emission control device of internal combustion engine | |
JP4506544B2 (en) | Exhaust gas purification device for compression ignition type internal combustion engine | |
JP4506545B2 (en) | Exhaust gas purification device for compression ignition type internal combustion engine | |
JP4577249B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2008101565A (en) | Exhaust gas purification device for internal combustion engine | |
JPWO2010089901A1 (en) | Exhaust gas purification device for internal combustion engine | |
JP2009270438A (en) | Sox detecting device of internal combustion engine | |
JP2008128101A (en) | Exhaust gas purification device for internal combustion engine | |
JP2008121598A (en) | Exhaust gas purification device for internal combustion engine |