[go: up one dir, main page]

JP2010033896A - Paste composition for granting water-repellent characteristics and manufacturing method for gas diffusion layer - Google Patents

Paste composition for granting water-repellent characteristics and manufacturing method for gas diffusion layer Download PDF

Info

Publication number
JP2010033896A
JP2010033896A JP2008195075A JP2008195075A JP2010033896A JP 2010033896 A JP2010033896 A JP 2010033896A JP 2008195075 A JP2008195075 A JP 2008195075A JP 2008195075 A JP2008195075 A JP 2008195075A JP 2010033896 A JP2010033896 A JP 2010033896A
Authority
JP
Japan
Prior art keywords
paste composition
gas diffusion
diffusion layer
water
conductive porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008195075A
Other languages
Japanese (ja)
Other versions
JP4978578B2 (en
Inventor
Naoya Takeuchi
直也 竹内
Rei Hiromitsu
礼 弘光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008195075A priority Critical patent/JP4978578B2/en
Publication of JP2010033896A publication Critical patent/JP2010033896A/en
Application granted granted Critical
Publication of JP4978578B2 publication Critical patent/JP4978578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a paste composition capable of giving excellent conductivity and excellent water-repellent characteristics to a conductive porous base material for a fuel cell. <P>SOLUTION: The paste composition used to give water-repellent characteristics to the conductive porous base material (gas diffusion layer 1) for a fuel cell is provided. The paste composition contains a non-polymer system fluorine material, fluorine resin, a dispersant, and water. The non-polymer system fluorine material exists in the water in a dispersed state. Excellent conductivity and excellent water-repellent characteristics can be given to the conductive porous base material (gas diffusion layer 1) for a fuel cell by using the paste composition. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、燃料電池用導電性多孔質基材に撥水性を付与するための新規なペースト組成物及びそれを用いた撥水性が付与されたガス拡散層の新規な製造方法に関する。   The present invention relates to a novel paste composition for imparting water repellency to a conductive porous substrate for fuel cells and a novel method for producing a gas diffusion layer imparted with water repellency using the same.

固体高分子形燃料電池を構成する電解質膜−電極接合体(MEA)は、ガス拡散層、触媒層、イオン伝導性固体高分子電解質膜、触媒層及びガス拡散層が順次積層された構造を有している。   The electrolyte membrane-electrode assembly (MEA) constituting the polymer electrolyte fuel cell has a structure in which a gas diffusion layer, a catalyst layer, an ion conductive solid polymer electrolyte membrane, a catalyst layer, and a gas diffusion layer are sequentially laminated. is doing.

このうち、ガス拡散層は、セパレータから供給されるガスを触媒層に均一に行き渡らせる役割を果たすため、良好なガス拡散性(ガス透過性)を備えていることが必要とされる。また、触媒層で発生した電子が効率的にセパレータへ輸送されるための導電性を有していることも必要である。このため、ガス拡散層の材質には、カーボンペーパー等の導電性多孔質基材が一般的に使用されている。   Among these, since the gas diffusion layer plays a role in uniformly distributing the gas supplied from the separator to the catalyst layer, it is required to have good gas diffusibility (gas permeability). In addition, it is necessary that the electrons generated in the catalyst layer have conductivity to be efficiently transported to the separator. For this reason, a conductive porous substrate such as carbon paper is generally used as the material of the gas diffusion layer.

さらにガス拡散層に求められている性能として、撥水性が挙げられる。これは、電池反応により触媒層で水が発生し、この生成水がガス拡散層の細孔を埋めてしまうとガス拡散性に悪影響を及ぼすため、水はけを良くし、速やかに水をMEA外部に排出させるためである。   Furthermore, water repellency is mentioned as the performance calculated | required by the gas diffusion layer. This is because water is generated in the catalyst layer due to the cell reaction, and if this generated water fills the pores of the gas diffusion layer, the gas diffusibility is adversely affected. This is for discharging.

ところが、カーボンペーパー等の導電性多孔質基材そのものには、一般的に撥水性が備わっていない。そこで、撥水性を付与するために、ポリテトラフルオロエチレン等のフッ素系樹脂からなる撥水層を導電性多孔質基材に形成させる方法が行われている(特許文献1)。   However, the conductive porous substrate itself such as carbon paper generally does not have water repellency. Therefore, in order to impart water repellency, a method of forming a water repellent layer made of a fluorine-based resin such as polytetrafluoroethylene on a conductive porous substrate has been performed (Patent Document 1).

また、フッ化ピッチが溶解したフッ素系有機溶剤を導電性多孔質基材に塗布し、当該有機溶剤を乾燥及び除去することにより、フッ化ピッチを固着する方法も提案されている(特許文献2)。   In addition, a method of fixing the fluorinated pitch by applying a fluorinated organic solvent in which the fluorinated pitch is dissolved to a conductive porous substrate, and drying and removing the organic solvent has been proposed (Patent Document 2). ).

しかしながら、特許文献1に記載の技術では、電気抵抗が高いフッ素系樹脂を多量に使用するため、ガス拡散層及びMEA全体の電気抵抗が高くなり、導電性の低下が避けられない。またフッ素系樹脂からなる層では、撥水性が十分に改良されたとは言えない。   However, in the technique described in Patent Document 1, since a large amount of fluororesin having a high electric resistance is used, the electric resistance of the gas diffusion layer and the entire MEA is increased, and a decrease in conductivity is inevitable. In addition, it cannot be said that the water repellency is sufficiently improved in the layer made of a fluorine resin.

一方、特許文献2に記載の技術ではフッ化ピッチは導電性多孔質基材に結着しにくいため、フッ化ピッチを主成分とする撥水材が当該基材から脱落し、撥水性が長期に亘って発揮されないおそれがある。また特許文献2に記載の技術では、フッ素系の有機溶剤を使用するため、環境面からも好ましくない。
特開2003−115302公報 特開2000−67874公報
On the other hand, in the technique described in Patent Document 2, since the fluorinated pitch is difficult to bind to the conductive porous substrate, the water-repellent material mainly composed of the fluorinated pitch is dropped from the substrate, and the water repellency is long-term. There is a risk that it will not be exhibited over a period of time. Further, the technique described in Patent Document 2 uses a fluorine-based organic solvent, which is not preferable from the viewpoint of the environment.
JP 2003-115302 A JP 2000-67874 A

本発明は、燃料電池用導電性多孔質基材に、一段と優れた導電性及び撥水性を付与できるガス拡散層の製造方法及びそれに用いるペースト組成物を提供することを課題とする。   An object of the present invention is to provide a method for producing a gas diffusion layer capable of imparting more excellent conductivity and water repellency to a conductive porous substrate for fuel cells, and a paste composition used therefor.

本発明者らは、上記課題に鑑み、鋭意研究を重ねてきた。その結果、特定の成分を含有させたペースト組成物を使用し、当該ペースト組成物の乾燥及び焼成物を導電性多孔質基材の内部に形成させることにより、上記課題を解決できることを見い出した。本発明は、このような知見に基づき完成されたものである。   In view of the above problems, the present inventors have made extensive studies. As a result, it has been found that the above problem can be solved by using a paste composition containing a specific component and forming a dried and fired product of the paste composition inside the conductive porous substrate. The present invention has been completed based on such findings.

本発明は、下記項1〜5に示すペースト組成物、それを用いたガス拡散層の製造方法及びそれにより得られるガス拡散層を提供する。
項1.燃料電池用導電性多孔質基材に撥水性を付与するために用いられるペースト組成物であって、前記ペースト組成物は、非ポリマー系フッ素材料、フッ素系樹脂、分散剤及び水を含有し、且つ非ポリマー系フッ素材料は前記水中に分散状態で存在している、ペースト組成物。
項2.非ポリマー系フッ素材料が、非ポリマー系フッ素材料及びフッ素系樹脂の合計量に対して、20〜90重量%の割合で含まれている、項1に記載のペースト組成物。
項3.非ポリマー系フッ素材料がフッ化ピッチである項1又は2に記載のペースト組成物。
項4.項1〜3のいずれかに記載のペースト組成物中に、燃料電池用導電性多孔質基材を浸漬する工程、並びに当該ペースト組成物を乾燥及び焼成する工程を備えた、ガス拡散層の製造方法。
項5.項4に記載の製造方法により得られるガス拡散層。
項6.項5に記載のガス拡散層を用いた固体高分子形燃料電池。
This invention provides the paste composition shown to the following items 1-5, the manufacturing method of a gas diffusion layer using the same, and the gas diffusion layer obtained by it.
Item 1. A paste composition used for imparting water repellency to a conductive porous substrate for a fuel cell, the paste composition comprising a non-polymer fluorine material, a fluorine resin, a dispersant and water, The non-polymeric fluorine material is present in a dispersed state in the water.
Item 2. Item 2. The paste composition according to Item 1, wherein the nonpolymeric fluorine material is contained in a proportion of 20 to 90% by weight with respect to the total amount of the nonpolymeric fluorine material and the fluorine resin.
Item 3. Item 3. The paste composition according to Item 1 or 2, wherein the non-polymeric fluorine material is fluorinated pitch.
Item 4. Item 4. Production of a gas diffusion layer comprising a step of immersing a conductive porous substrate for a fuel cell in the paste composition according to any one of items 1 to 3, and a step of drying and firing the paste composition. Method.
Item 5. Item 5. A gas diffusion layer obtained by the production method according to Item 4.
Item 6. Item 6. A polymer electrolyte fuel cell using the gas diffusion layer according to Item 5.

ペースト組成物
本発明のペースト組成物は、燃料電池用導電性多孔質基材の表面に撥水性を付与するために用いられるためのペースト組成物であって、前記ペースト組成物は、非ポリマー系フッ素材料、フッ素系樹脂、分散剤及び水を含有し、且つ非ポリマー系フッ素材料は前記水中に分散状態で存在している。このペースト組成物を使用して、当該ペースト組成物の乾燥及び焼成物を導電性多孔質基材内部に形成させることにより、優れた導電性と撥水性とを兼備するガス拡散層を得ることができる。
Paste composition The paste composition of the present invention is a paste composition for use in imparting water repellency to the surface of a conductive porous substrate for a fuel cell, and the paste composition is a non-polymer type. It contains a fluorine material, a fluorine resin, a dispersant and water, and the non-polymer fluorine material exists in a dispersed state in the water. Using this paste composition, a dried and fired product of the paste composition can be formed inside the conductive porous substrate to obtain a gas diffusion layer having both excellent conductivity and water repellency. it can.

非ポリマー系フッ素材料は、フッ素を含有し、且つ重量平均分子量が1000〜5000程度のものであれば特に限定されない。これらは、公知又は市販のものを使用できる。本発明では特に導電性のものが好ましく、例えば、フッ化ピッチ、フッ化黒鉛等が挙げられる。このような非ポリマー系フッ素材料を含有させることにより、ガス拡散層に高い撥水性を持たせることが可能となり、触媒層上で生成される水を効率的に外部に排出することができ、水によるガス拡散層内部の細孔の閉塞を防ぐことができる。また、導電性多孔質基材に一段と優れた導電性を付与することもできる。   The non-polymeric fluorine material is not particularly limited as long as it contains fluorine and has a weight average molecular weight of about 1000 to 5000. These may be known or commercially available. In the present invention, a conductive material is particularly preferable, and examples thereof include fluorinated pitch and fluorinated graphite. By containing such a non-polymeric fluorine material, the gas diffusion layer can have high water repellency, and water generated on the catalyst layer can be efficiently discharged to the outside. It is possible to prevent clogging of the pores inside the gas diffusion layer. Further, it is possible to impart further excellent conductivity to the conductive porous substrate.

非ポリマー系フッ素材料のF/C原子は限定的でないが、通常1〜2程度、好ましくは1.1〜1.6程度とすればよい。平均粒子径は、0.5μm〜50μm程度、好ましくは1μm〜30μm程度である。   The F / C atom of the non-polymeric fluorine material is not limited, but is usually about 1 to 2, preferably about 1.1 to 1.6. The average particle diameter is about 0.5 μm to 50 μm, preferably about 1 μm to 30 μm.

本発明のフッ素系樹脂は、フッ素を含有し、重量平均分子量が50万〜3000万のポリマーであれば特に限定されない。これらは、公知又は市販のものを使用できる。例えば、ポリテトラフルオロエチレン樹脂、フッ化エチレンプロピレン樹脂、パーフロロアルコキシ樹脂、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−エチレン共重合体等が挙げられる。このようなフッ素系樹脂を含有することにより、ガス拡散層に撥水性を持たせると共に、非ポリマー系フッ素材料を導電性多孔質基材内部により強固に結着できるため、撥水性を長期に亘り維持させることができる。   The fluororesin of the present invention is not particularly limited as long as it contains fluorine and has a weight average molecular weight of 500,000 to 30 million. These may be known or commercially available. For example, polytetrafluoroethylene resin, fluorinated ethylene propylene resin, perfluoroalkoxy resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer Etc. By containing such a fluororesin, the gas diffusion layer can have water repellency, and the non-polymeric fluorine material can be more firmly bound to the inside of the conductive porous substrate. Can be maintained.

分散剤は、フッ素系樹脂及び非ポリマー系フッ素材料を水(ペースト組成物)中で分散させることができるものである限り限定されず、公知又は市販のものが使用できる。このような分散剤としては、例えば、ポリオキシエチレンアルキレンアルキルエーテル、ポリエチレングリコールアルキルエーテル、ポリオキシエチレン脂肪酸エステル、酸性基含有構造変性ポリアクリレート等が挙げられる。これらは、1種単独で又は2種以上併用できる。   The dispersant is not limited as long as it can disperse the fluororesin and the non-polymeric fluoromaterial in water (paste composition), and a known or commercially available dispersant can be used. Examples of such a dispersant include polyoxyethylene alkylene alkyl ether, polyethylene glycol alkyl ether, polyoxyethylene fatty acid ester, and acid group-containing structure-modified polyacrylate. These can be used alone or in combination of two or more.

本発明のペースト組成物は、導電性炭素粒子を含有しないことが好ましい。導電性炭素粒子としては、例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等のカーボンブラック;黒鉛;活性炭等が挙げられる。   The paste composition of the present invention preferably contains no conductive carbon particles. Examples of the conductive carbon particles include carbon black such as channel black, furnace black, ketjen black, acetylene black, and lamp black; graphite; activated carbon and the like.

ペースト組成物の配合割合は上記成分を含有する限り限定的ではないが、例えば、非ポリマー系フッ素材料及びフッ素系樹脂の合計量100重量部に対して、分散剤5〜300重量部程度、好ましくは10〜200重量部程度、水50〜3000重量部程度、好ましくは100〜2500重量部程度とすればよい。   The blending ratio of the paste composition is not limited as long as it contains the above components, but for example, about 5 to 300 parts by weight of a dispersant, preferably about 100 parts by weight of the total amount of the non-polymeric fluorine material and the fluorine resin. Is about 10 to 200 parts by weight, water is about 50 to 3000 parts by weight, preferably about 100 to 2500 parts by weight.

特に非ポリマー系フッ素材料が、非ポリマー系フッ素材料及びフッ素系樹脂の合計量に対して、20〜90重量%、特に30〜80重量%の割合で含まれていることが好ましい。この範囲とすることにより、より一層高い導電性及び撥水性を保持できる。   In particular, the non-polymeric fluorine material is preferably contained in a proportion of 20 to 90% by weight, particularly 30 to 80% by weight, based on the total amount of the non-polymeric fluorine material and the fluorine-based resin. By setting it as this range, still higher conductivity and water repellency can be maintained.

ガス拡散層の製造方法
本発明のガス拡散層は、上記本発明のペースト組成物中に、導電性多孔質基材を含浸し、次いで、乾燥及び焼成を行う工程を経ることにより得られる。
Method for Producing Gas Diffusion Layer The gas diffusion layer of the present invention can be obtained by impregnating the conductive porous base material in the paste composition of the present invention, followed by drying and firing.

導電性多孔質基材としては、燃料電池(特に、固体高分子形燃料電池)で一般的に使用されているものを用いればよく、公知又は市販のものを用いることができる。例えば、カーボンペーパー、カーボンクロス、カーボン不織布(カーボンフェルト)等が挙げられる。   As the conductive porous substrate, those generally used in fuel cells (in particular, polymer electrolyte fuel cells) may be used, and known or commercially available materials can be used. For example, carbon paper, carbon cloth, carbon non-woven fabric (carbon felt) and the like can be mentioned.

またカーボンペーパーの特性について、東レ製のTGP−H−060を例にとり言及すると、厚み:190μm、電気抵抗:厚み方向80mΩ・cm、面方向5.8mΩ・cm、気孔率:78%、嵩密度:0.44g/cm3、表面粗さ:8μm、等である。 Regarding the characteristics of carbon paper, taking TGP-H-060 made by Toray as an example, thickness: 190 μm, electric resistance: thickness direction 80 mΩ · cm, surface direction 5.8 mΩ · cm, porosity: 78%, bulk density : 0.44 g / cm 3 , surface roughness: 8 μm, and the like.

導電性多孔質基材の厚みは限定的ではないが、通常50μm〜1000μm程度、好ましくは100μm〜400μm程度とすればよい。   The thickness of the conductive porous substrate is not limited, but is usually about 50 μm to 1000 μm, preferably about 100 μm to 400 μm.

ペースト組成物の導電性多孔質基材への付与量は限定的でないが、固形分換算で、例えば、0.5〜30g/m2程度、好ましくは1〜15g/m2程度とすればよい。 Application amount of the conductive porous substrate of the paste composition is not limited, in terms of solid content, for example, 0.5 to 30 g / m 2, preferably about may be set to 1 to 15 g / m 2 approximately .

乾燥温度は限定的ではなく、例えば、大気中にて50〜150℃程度、好ましくは90〜120℃程度とすればよい。   The drying temperature is not limited, and may be, for example, about 50 to 150 ° C., preferably about 90 to 120 ° C. in the atmosphere.

乾燥時間は、乾燥温度等に応じて適宜決定すればよいが、通常10〜30分程度である。   The drying time may be appropriately determined according to the drying temperature or the like, but is usually about 10 to 30 minutes.

乾燥後に行う焼成時の温度も限定的ではなく、例えば、大気中にて200〜400℃、好ましくは250〜350℃程度とすればよい。   The temperature at the time of baking performed after drying is not limited, for example, 200 to 400 ° C., preferably about 250 to 350 ° C. in the air.

焼成時間は、焼成温度等に応じて適宜決定すればよいが、通常10〜180分程度、好ましくは30〜150分程度とすればよい。   The firing time may be appropriately determined according to the firing temperature or the like, but is usually about 10 to 180 minutes, preferably about 30 to 150 minutes.

ガス拡散層
本発明のガス拡散層は、上記の方法により得られるものであり、導電性多孔質基材内部に、本発明ペースト組成物の乾燥及び焼成物を含んでいる。このようなガス拡散層は、良好な導電性及び撥水性を兼備しているため、MEA全体の導電性能を向上させることができ、また、MEAの触媒層で発生する水をより効率的にガス拡散層外部(ひいては、MEA外部)に排出できる。このため、本発明のガス拡散層を用いた燃料電池は、優れた電池性能を発揮する。
Gas Diffusion Layer The gas diffusion layer of the present invention is obtained by the above method, and contains the dried and fired product of the paste composition of the present invention inside the conductive porous substrate. Since such a gas diffusion layer has both good conductivity and water repellency, it is possible to improve the conductivity performance of the entire MEA, and more efficiently gas the water generated in the MEA catalyst layer. It can be discharged outside the diffusion layer (and hence outside the MEA). For this reason, the fuel cell using the gas diffusion layer of the present invention exhibits excellent cell performance.

ペースト組成物中の分散剤は、ガス拡散層(GDL)の焼成時に分解されるため、拡散層中に存在していない。フッ素系樹脂は、焼成後に溶解し、ガス拡散層の繊維上に付着した状態になっている。非ポリマー系フッ素材料は、ガス拡散層上に粒子状で分散している状態になっている。   Since the dispersant in the paste composition is decomposed when the gas diffusion layer (GDL) is fired, it is not present in the diffusion layer. The fluororesin is dissolved after firing and is in a state of adhering onto the fibers of the gas diffusion layer. The non-polymeric fluorine material is in a state of being dispersed in the form of particles on the gas diffusion layer.

ペースト組成物の乾燥及び焼成物が導電性多孔質基材内部に存在している量は、限定的ではないが、導電性多孔質基材を基準にして、通常1〜15g/m2、好ましくは2〜12g/m2程度である。 The amount of the dried and fired paste composition present in the conductive porous substrate is not limited, but usually 1 to 15 g / m 2 , preferably based on the conductive porous substrate. Is about 2 to 12 g / m 2 .

本発明のガス拡散層は、固体高分子形燃料電池用のガス拡散層として使用することができる。具体的には、公知又は市販のイオン伝導性固体高分子電解質膜の両面に触媒層(カソード触媒層及びアノード触媒層)が積層された電解質膜−触媒層積層体(カソード触媒層/電解質膜/アノード触媒層)を用意し、次いで、この両面(カソード触媒層及びアノード触媒層)の少なくとも一つの面に、本発明のガス拡散層を積層させることにより、電解質膜−電極接合体(ガス拡散層/カソード触媒層/電解質膜/アノード触媒層/ガス拡散層)を作製して、これを使用すればよい。   The gas diffusion layer of the present invention can be used as a gas diffusion layer for a polymer electrolyte fuel cell. Specifically, an electrolyte membrane-catalyst layer laminate (cathode catalyst layer / electrolyte membrane / layer) in which catalyst layers (cathode catalyst layer and anode catalyst layer) are laminated on both sides of a known or commercially available ion conductive solid polymer electrolyte membrane. An anode catalyst layer) is prepared, and then the gas diffusion layer of the present invention is laminated on at least one surface of the both surfaces (cathode catalyst layer and anode catalyst layer), whereby an electrolyte membrane-electrode assembly (gas diffusion layer) / Cathode catalyst layer / electrolyte membrane / anode catalyst layer / gas diffusion layer) may be prepared and used.

本発明によれば、非ポリマー系フッ素材料、フッ素系樹脂、分散剤及び水を含有し、且つ非ポリマー系フッ素材料は前記水中に分散状態で存在しているペースト組成物を使用するため、一段と優れた導電性と撥水性とを兼備するガス拡散層を製造できる。   According to the present invention, since the paste composition containing a non-polymeric fluorine material, a fluorine-based resin, a dispersant and water, and the non-polymeric fluorine material is present in a dispersed state in the water is used, A gas diffusion layer having both excellent conductivity and water repellency can be produced.

また、本発明のペースト組成物は、溶剤としてフッ素系溶剤ではなく、水を使用するため、環境面でも良好である。   Moreover, since the paste composition of this invention uses water instead of a fluorine-type solvent as a solvent, it is favorable also in an environmental aspect.

本発明のペースト組成物において、非ポリマー系フッ素材料とフッ素系樹脂とを特定の割合で含有させると、非ポリマー系フッ素材料をより強固に導電性多孔質基材内部に固定でき、長期に亘って優れた撥水性及び導電性を維持できる。   In the paste composition of the present invention, when a non-polymeric fluorine material and a fluorine-based resin are contained at a specific ratio, the non-polymeric fluorine material can be more firmly fixed inside the conductive porous substrate and can be used for a long time. Excellent water repellency and conductivity can be maintained.

従って、本発明により得られるガス拡散層を用いると、優れた電池性能を有する固体高分子形燃料電池を製造することができる。   Therefore, when the gas diffusion layer obtained by the present invention is used, a polymer electrolyte fuel cell having excellent battery performance can be produced.

以下に実施例を挙げて、本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples.

<ペースト組成物の調製>
ペースト組成物の調製には、下記に示す材料を使用した。
分散剤:ポリオキシエチレンアルキレンアルキルエーテル(エマルゲンMS110、花王社製)
非ポリマー性フッ素材料:フッ化ピッチ、大阪ガス社製、重量平均分子量は約3000、平均粒子径は1.2〜30μm
フッ素系樹脂:ポリテトラフルオロエチレン(PTFE)、ダイキン社製、重量平均分子量は50〜3000万
実施例1〜4
分散剤、非ポリマー性フッ素材料、フッ素樹脂及び水を表1に示す割合(重量部)で配合して、メディア分散により60分程度分散させることにより、本発明の導電性多孔質基材撥水処理用ペースト組成物を調製した。
<Preparation of paste composition>
In preparing the paste composition, the following materials were used.
Dispersant: Polyoxyethylene alkylene alkyl ether (Emulgen MS110, manufactured by Kao Corporation)
Non-polymeric fluorine material: Fluorinated pitch, manufactured by Osaka Gas Co., Ltd., weight average molecular weight is about 3000, average particle diameter is 1.2-30 μm
Fluorine resin: polytetrafluoroethylene (PTFE), manufactured by Daikin, weight average molecular weight of 50 to 30 million Examples 1 to 4
The conductive porous substrate water repellent of the present invention is prepared by blending a dispersant, a non-polymeric fluorine material, a fluororesin and water in the proportions (parts by weight) shown in Table 1 and dispersing for about 60 minutes by media dispersion. A treatment paste composition was prepared.

Figure 2010033896
Figure 2010033896

比較例1
分散剤20重量部、フッ素系樹脂100重量部及び水2000重量部を配合し、実施例1と同様にして、比較のためのペースト組成物を調製した。
Comparative Example 1
A paste composition for comparison was prepared in the same manner as in Example 1 by blending 20 parts by weight of a dispersant, 100 parts by weight of a fluororesin, and 2000 parts by weight of water.

<ガス拡散層の製造>
導電性多孔質基材としてカーボンペーパー(東レ製;TGP−H−060)を用いた。この導電性多孔質基材を、実施例1〜4及び比較例1で調製した各ペースト組成物に3分間含浸させた(導電性多孔質基材内部に各ペースト組成物が5.0g/m2程度含浸)後、大気雰囲気中95℃で20分程度乾燥させ、次いで大気雰囲気中で300℃、2時間程焼成を行うことにより、撥水性を備えたガス拡散層を製造した。
<Manufacture of gas diffusion layer>
Carbon paper (manufactured by Toray; TGP-H-060) was used as the conductive porous substrate. The conductive porous substrate was impregnated with each paste composition prepared in Examples 1 to 4 and Comparative Example 1 for 3 minutes (each paste composition was 5.0 g / m inside the conductive porous substrate). After about 2 impregnation), it was dried at 95 ° C. for about 20 minutes in an air atmosphere, and then baked for about 2 hours at 300 ° C. in the air atmosphere to produce a gas diffusion layer having water repellency.

<燃料電池の作製及びその評価試験>
(1)電解質膜−触媒層積層体の製造
白金触媒担持炭素粒子4g(田中貴金属工業社製「TEC10E50E」)、イオン伝導性高分子電解質膜溶液40g(Nafion5wt%溶液:「DE-520」デュポン社製)、蒸留水12g、n−ブタノール20g及びt−ブタノール20gを配合し、分散機にて攪拌混合することにより、アノード触媒層形成用ペースト組成物及びカソード触媒層形成用ペースト組成物を得た。
<Production of fuel cell and its evaluation test>
(1) Production of electrolyte membrane-catalyst layer laminate 4 g of platinum catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), 40 g of ion conductive polymer electrolyte membrane solution (Nafion 5 wt% solution: “DE-520” DuPont) Manufactured), 12 g of distilled water, 20 g of n-butanol and 20 g of t-butanol were mixed and stirred and mixed in a disperser to obtain a paste composition for forming an anode catalyst layer and a paste composition for forming a cathode catalyst layer. .

アノード触媒層形成用ペースト組成物及びカソード触媒層形成用ペースト組成物を、それぞれアプリケーターを用いて転写基材(材質:ポリエチレンテレフタラートフィルム)上に塗工し、95℃で30分程度乾燥させることにより触媒層を形成させて、アノード触媒層形成用転写シート及びカソード触媒層形成用転写シートを作製した。なお、触媒層の塗工量は、アノード触媒層、カソード触媒層共に白金担持量が0.45mg/cm2程度となるようにした。 The paste composition for forming the anode catalyst layer and the paste composition for forming the cathode catalyst layer are each coated on a transfer substrate (material: polyethylene terephthalate film) using an applicator and dried at 95 ° C. for about 30 minutes. A catalyst layer was formed by the above, and an anode catalyst layer forming transfer sheet and a cathode catalyst layer forming transfer sheet were prepared. The coating amount of the catalyst layer was such that the platinum loading amount was about 0.45 mg / cm 2 for both the anode catalyst layer and the cathode catalyst layer.

上記で作製したアノード触媒層形成用転写シート及びカソード触媒層形成用転写シートを用いて、電解質膜各面に、熱プレスを行った後、転写基材のみを剥がすことにより、電解質膜−触媒層積層体を作製した。   Using the anode catalyst layer-forming transfer sheet and cathode catalyst layer-forming transfer sheet prepared above, each surface of the electrolyte membrane was hot pressed, and then only the transfer substrate was peeled off, so that the electrolyte membrane-catalyst layer A laminate was produced.

(2)燃料電池の製造
上記で作製した電解質膜−触媒層積層体の両面に、実施例1〜4及び比較例1の各ペースト組成物を用いて製造したガス拡散層を積層させることにより、電解質膜−電極接合体(MEA)を得、次いで、得られたMEAを燃料電池セルに組み込むことにより、固体高分子形燃料電池(実施例1〜4及び比較例1のガス拡散層を用いて製造した固体高分子形燃料電池)を製造した。
(2) Production of fuel cell By laminating the gas diffusion layers produced using the paste compositions of Examples 1 to 4 and Comparative Example 1 on both surfaces of the electrolyte membrane-catalyst layer laminate produced above, By obtaining an electrolyte membrane-electrode assembly (MEA) and then incorporating the obtained MEA into a fuel cell, the polymer electrolyte fuel cells (using the gas diffusion layers of Examples 1 to 4 and Comparative Example 1) Manufactured polymer electrolyte fuel cell).

性能試験
(a)ガス拡散層の評価
(i) 導電性
固体高分子形燃料電池用の電池評価セル(JARI製燃料電池評価セル)を使用し、そのセル中にガス拡散層を2枚挟み込み、1〜6Nm圧力でセルを締め、各圧力でのセル抵抗値を燃料電池交流抵抗測定器(チノー社製)により測定した。通常の電池評価時で適用しているセル締め圧は4Nmであるため、その圧力での抵抗値を測定した結果、ペースト組成物中にフッ化ピッチを添加することで導電性が向上することが確認できた(表2参照)。
(ii) 撥水性
フッ化ピッチを添加した実施例1〜4において、150〜160°と高い接触角を示すことが確認できた。このため実施例1〜4のペースト組成物を用いて作製したガス拡散層を使用することで、カソードでの生成水の高い排出性を示すと考えられる。なお、導電性多孔質基材との接触角は、自動接触角測定器(英弘精機(株)製、「OCA20」)を用い、1マイクロリットル程度のペースト組成物の液滴を導電性多孔質基材表面に滴下し、30秒後の接触角を観測することにより求められる。
Performance test (a) Evaluation of gas diffusion layer
(i) Conductivity Using a battery evaluation cell for a polymer electrolyte fuel cell (JARI fuel cell evaluation cell), two gas diffusion layers are sandwiched in the cell, and the cell is tightened at a pressure of 1 to 6 Nm. The cell resistance value under pressure was measured with a fuel cell AC resistance measuring instrument (manufactured by Chino Corporation). Since the cell clamping pressure applied at the time of normal battery evaluation is 4 Nm, as a result of measuring the resistance value at that pressure, the conductivity can be improved by adding a fluorinated pitch to the paste composition. It was confirmed (see Table 2).
(ii) Water repellency In Examples 1 to 4 to which fluorinated pitch was added, it was confirmed that a high contact angle of 150 to 160 ° was exhibited. For this reason, it is thought that the high discharge | emission property of the produced water in a cathode is shown by using the gas diffusion layer produced using the paste composition of Examples 1-4. The contact angle with the conductive porous substrate was determined by using an automatic contact angle measuring device (“OCA20” manufactured by Eihiro Seiki Co., Ltd.) to drop a paste composition droplet of about 1 microliter into the conductive porous material. It is calculated | required by dripping on the base-material surface and observing the contact angle 30 seconds after.

(b)電池性能評価
上記のMEAを使用しての電池性能評価を、以下の条件により行った。
(B) Battery performance evaluation Battery performance evaluation using the above MEA was performed under the following conditions.

セル温度:80℃
加湿温度:カソード80℃、アノード70℃
ガス利用率:カソード40%、アノード70%
負荷電流を1.25〜25Aまで変動させた時のセル電圧値の測定を行った。ガス拡散の影響がより顕著である1000mA/cm2において、実施例1〜4では570mV〜580mVと実用可能レベルであり、比較例1の554mVより高い性能を示し、この性能は、フッ化ピッチ配合量の増加と共により顕著なものとなった。
Cell temperature: 80 ° C
Humidification temperature: cathode 80 ° C, anode 70 ° C
Gas utilization rate: cathode 40%, anode 70%
The cell voltage value was measured when the load current was varied from 1.25 to 25A. At 1000 mA / cm 2 where the influence of gas diffusion is more conspicuous, Examples 1-4 have practical levels of 570 mV to 580 mV, which is higher than 554 mV of Comparative Example 1, and this performance is a combination of fluorinated pitches. It became more noticeable as the amount increased.

更に電流遮断法(北斗電工株式会社製、カレントパルスジェネレーターHC-114)により内部抵抗(オーミック抵抗)を1.25〜20Aの負荷電流範囲で測定した。その結果を図2に示す。図2によれば、比較例1では、実施例1〜4よりも高いオーム損値を示した。これは、GDLでの細孔を生成水及び凝結水による閉塞でのガス拡散性の影響が起因し、このことから実施例1〜4では比較例1よりも生成水及び凝結水の排出状況が良好、つまり高い撥水性を発現することを示している。   Furthermore, the internal resistance (ohmic resistance) was measured in a load current range of 1.25 to 20 A by a current interruption method (Hokuto Denko Co., Ltd., current pulse generator HC-114). The result is shown in FIG. According to FIG. 2, Comparative Example 1 showed a higher ohmic loss value than Examples 1-4. This is due to the influence of gas diffusibility due to the blockage of the pores in the GDL with the produced water and condensed water, and from this, the discharge status of the produced water and condensed water is higher in Examples 1 to 4 than in Comparative Example 1. It shows good, that is, high water repellency.

上記の結果から、実施例1〜4のペースト組成物は、格段に優れた導電性及び撥水性を兼備するガス拡散層を製造するために有効なペースト組成物であることが確認できた。   From the above results, it was confirmed that the paste compositions of Examples 1 to 4 were effective paste compositions for producing a gas diffusion layer having both excellent conductivity and water repellency.

以上の結果を表2にまとめて示す。   The above results are summarized in Table 2.

Figure 2010033896
Figure 2010033896

また、表2に示すGDL抵抗値から、実施例1〜4の方が比較例1より良好なガス拡散性を示すことが確認できた。   Moreover, from the GDL resistance values shown in Table 2, it was confirmed that Examples 1 to 4 showed better gas diffusibility than Comparative Example 1.

上記の結果から実施例1〜4は、格段に優れた導電性及び撥水性を兼備するガス拡散層を製造するために有効なペースト組成物であることが確認できた。   From the above results, Examples 1 to 4 were confirmed to be effective paste compositions for producing a gas diffusion layer having both excellent conductivity and water repellency.

図1は、本発明のガス拡散層の概念図を示す。FIG. 1 shows a conceptual diagram of a gas diffusion layer of the present invention. 図2は、電流遮断法によるオーム損失の測定結果を示すグラフである。FIG. 2 is a graph showing a measurement result of ohmic loss by the current interruption method.

符号の説明Explanation of symbols

1.ガス拡散層
2.アノード触媒層
3.イオン伝導性固体高分子電解質
4.カソード触媒層
5.電解質膜−電極接合体
1. 1. Gas diffusion layer 2. Anode catalyst layer 3. Ion conductive solid polymer electrolyte 4. Cathode catalyst layer Electrolyte membrane-electrode assembly

Claims (6)

燃料電池用導電性多孔質基材に撥水性を付与するために用いられるペースト組成物であって、前記ペースト組成物は、非ポリマー系フッ素材料、フッ素系樹脂、分散剤及び水を含有し、且つ非ポリマー系フッ素材料は前記水中に分散状態で存在している、ペースト組成物。   A paste composition used for imparting water repellency to a conductive porous substrate for a fuel cell, the paste composition comprising a non-polymer fluorine material, a fluorine resin, a dispersant and water, A non-polymeric fluorine material is present in a dispersed state in the water. 非ポリマー系フッ素材料が、非ポリマー系フッ素材料及びフッ素系樹脂の合計量に対して、20〜90重量%の割合で含まれている、請求項1に記載のペースト組成物。   The paste composition according to claim 1, wherein the non-polymeric fluorine material is contained in a proportion of 20 to 90% by weight with respect to the total amount of the non-polymeric fluorine material and the fluorine-based resin. 非ポリマー系フッ素材料がフッ化ピッチである請求項1又は2に記載のペースト組成物。   The paste composition according to claim 1 or 2, wherein the non-polymeric fluorine material is fluorinated pitch. 請求項1〜3のいずれかに記載のペースト組成物中に、燃料電池用導電性多孔質基材を浸漬する工程、並びに当該ペースト組成物を乾燥及び焼成する工程を備えた、ガス拡散層の製造方法。   A gas diffusion layer comprising a step of immersing the conductive porous substrate for a fuel cell in the paste composition according to any one of claims 1 to 3, and a step of drying and firing the paste composition. Production method. 請求項4に記載の製造方法により得られるガス拡散層。   A gas diffusion layer obtained by the production method according to claim 4. 請求項5に記載のガス拡散層を用いた固体高分子形燃料電池。   A polymer electrolyte fuel cell using the gas diffusion layer according to claim 5.
JP2008195075A 2008-07-29 2008-07-29 Paste composition for imparting water repellency and method for producing gas diffusion layer Expired - Fee Related JP4978578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195075A JP4978578B2 (en) 2008-07-29 2008-07-29 Paste composition for imparting water repellency and method for producing gas diffusion layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195075A JP4978578B2 (en) 2008-07-29 2008-07-29 Paste composition for imparting water repellency and method for producing gas diffusion layer

Publications (2)

Publication Number Publication Date
JP2010033896A true JP2010033896A (en) 2010-02-12
JP4978578B2 JP4978578B2 (en) 2012-07-18

Family

ID=41738129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195075A Expired - Fee Related JP4978578B2 (en) 2008-07-29 2008-07-29 Paste composition for imparting water repellency and method for producing gas diffusion layer

Country Status (1)

Country Link
JP (1) JP4978578B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216642A (en) * 1975-07-29 1977-02-08 Hitachi Ltd Porous electrode for fuel cell
JPH03266360A (en) * 1990-03-16 1991-11-27 Fuji Electric Co Ltd Electrode catalyst layer for fuel cells
JPH07211324A (en) * 1994-01-19 1995-08-11 Osaka Gas Co Ltd Electrode catalyst composition, electrode material, and manufacture thereof
WO2000011741A1 (en) * 1998-08-20 2000-03-02 Matsushita Electric Industrial Co., Ltd. Fuel cell and method of menufacture thereof
JP2000067874A (en) * 1998-08-20 2000-03-03 Matsushita Electric Ind Co Ltd Fuel cell and method of manufacturing the same
WO2007081443A2 (en) * 2006-01-05 2007-07-19 Matsushita Electric Industrial Co., Ltd. Cathode electrodes for direct oxidation fuel cells and systems operating with concentrated liquid fuel at low oxidant stoichiometry

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216642A (en) * 1975-07-29 1977-02-08 Hitachi Ltd Porous electrode for fuel cell
JPH03266360A (en) * 1990-03-16 1991-11-27 Fuji Electric Co Ltd Electrode catalyst layer for fuel cells
JPH07211324A (en) * 1994-01-19 1995-08-11 Osaka Gas Co Ltd Electrode catalyst composition, electrode material, and manufacture thereof
WO2000011741A1 (en) * 1998-08-20 2000-03-02 Matsushita Electric Industrial Co., Ltd. Fuel cell and method of menufacture thereof
JP2000067874A (en) * 1998-08-20 2000-03-03 Matsushita Electric Ind Co Ltd Fuel cell and method of manufacturing the same
WO2007081443A2 (en) * 2006-01-05 2007-07-19 Matsushita Electric Industrial Co., Ltd. Cathode electrodes for direct oxidation fuel cells and systems operating with concentrated liquid fuel at low oxidant stoichiometry

Also Published As

Publication number Publication date
JP4978578B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP4930644B1 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JP5822428B2 (en) Gas diffusion layer and polymer electrolyte fuel cell using the same
JP5266794B2 (en) Catalyst layer for polymer electrolyte fuel cell and method for producing the same
EP2677579A1 (en) Membrane-electrode assembly for fuel cell, manufacturing method thereof, and solid polymer fuel cell using membrane-electrode assembly
KR20150015486A (en) Gas diffusion electrode substrate for fuel cell
JP2007194004A (en) Method for producing gas diffusion layer for polymer electrolyte fuel cell and membrane electrode assembly
JP5292729B2 (en) Method for producing gas diffusion layer and paste composition for producing gas diffusion layer
JP2007317435A (en) Solid polymer fuel cell and manufacturing method therefor
JP2012074280A (en) Gas diffusion layer for fuel cell
JP5151210B2 (en) Electrode for polymer electrolyte fuel cell
JP6094386B2 (en) Conductive porous layer for battery and method for producing the same
JP5217256B2 (en) Conductive porous sheet and method for producing the same
JP5608972B2 (en) Water repellent layer forming paste composition and gas diffusion layer manufacturing method
JP4993024B1 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
JP4985737B2 (en) Gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer, membrane-electrode assembly, and polymer electrolyte fuel cell for fuel cell
JP2011076739A (en) Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
JP4978578B2 (en) Paste composition for imparting water repellency and method for producing gas diffusion layer
JP5401860B2 (en) Water repellent layer forming paste composition and gas diffusion layer manufacturing method
JP5674703B2 (en) Conductive porous layer for battery and method for producing the same
JP2017037715A (en) Gas diffusion layer for battery, membrane electrode assembly for battery using the same, and battery
JP4930643B1 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
JP2010238513A (en) Catalyst particle containing aggregate body for solid polymer fuel cell
JP5472349B2 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110427

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120214

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees