[go: up one dir, main page]

JP2010021165A - Phase-changing heat dissipating member - Google Patents

Phase-changing heat dissipating member Download PDF

Info

Publication number
JP2010021165A
JP2010021165A JP2006299649A JP2006299649A JP2010021165A JP 2010021165 A JP2010021165 A JP 2010021165A JP 2006299649 A JP2006299649 A JP 2006299649A JP 2006299649 A JP2006299649 A JP 2006299649A JP 2010021165 A JP2010021165 A JP 2010021165A
Authority
JP
Japan
Prior art keywords
powder
phase change
change type
type heat
heat radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006299649A
Other languages
Japanese (ja)
Inventor
Itaru Utsuki
格 宇津木
Yasuhiko Itabashi
康彦 板橋
Toshitaka Yamagata
利貴 山縣
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2006299649A priority Critical patent/JP2010021165A/en
Priority to PCT/JP2007/070842 priority patent/WO2008053785A1/en
Priority to TW96141004A priority patent/TW200849514A/en
Publication of JP2010021165A publication Critical patent/JP2010021165A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】
低熱抵抗かつ作業性に優れた、電子部品の放熱材料に適したフェーズチェンジ型放熱部材を提供すること。
【解決手段】
30〜120℃で軟化する樹脂を含む有機成分が15〜35質量%、平均粒径0.3〜0.8μmの粉末aと、平均粒径0.9〜1.9μmの粉末bとが、a/b=7/3〜3/7の体積比の割合である無機充填材65〜90質量%を含有してなる熱伝導性樹脂組成物からなる層の少なくとも一面に、ビッカース硬さが24Hv以下である金属層が積層されてなることを特徴とするフェ−ズチェンジ型放熱部材であり、また、粉末a、粉末bが窒化アルミニウム及び/又はアルミナ粉及び/又は酸化亜鉛粉であることを特徴とする前記のフェーズチェンジ型放熱部材であり、さらには、金属層が錫またはインジウムまたはそれらの少なくとも1を含む合金であることを特徴とする前述のフェーズチェンジ型放熱部材である。
【選択図】なし
【Task】
To provide a phase change type heat radiating member suitable for a heat radiating material of an electronic component having low heat resistance and excellent workability.
[Solution]
An organic component containing a resin that softens at 30 to 120 ° C. is 15 to 35% by mass, a powder a having an average particle size of 0.3 to 0.8 μm, and a powder b having an average particle size of 0.9 to 1.9 μm, A Vickers hardness of 24 Hv is provided on at least one surface of a layer made of a thermally conductive resin composition containing 65 to 90% by mass of an inorganic filler having a volume ratio of a / b = 7/3 to 3/7. A phase change type heat radiating member characterized in that the following metal layers are laminated, and the powder a and the powder b are aluminum nitride and / or alumina powder and / or zinc oxide powder. The above-mentioned phase change type heat radiating member, wherein the metal layer is tin or indium or an alloy containing at least one of them.
[Selection figure] None

Description

本発明は、電子部品の放熱材料として適したフェーズチェンジ型放熱部材に関する。   The present invention relates to a phase change type heat radiation member suitable as a heat radiation material for electronic components.

近年の電子回路の高集積化に伴い、回路から発生する熱をいかに外部へ逃がすかという放熱の問題が深刻となっている。その対策として、シリコーンゴムに熱伝導性無機粉末が充填された硬化物からなる放熱シート、シリコーンゲルに熱伝導性無機粉末が充填され、柔軟性を有する硬化物からなる放熱スペーサー、液状シリコーンに熱伝導性無機粉末が充填された流動性のある放熱グリース、樹脂の相変化を利用したフェーズチェンジ型放熱部材等が例示される。これらのうち、薄化が容易なものはグリース及びフェーズチェンジ型放熱部材であるが、作業性の点でフェーズチェンジが好まれる。   With the recent high integration of electronic circuits, the problem of heat dissipation, which is how to release heat generated from the circuit to the outside, has become serious. As countermeasures, a heat dissipation sheet made of a cured product in which silicone rubber is filled with a thermally conductive inorganic powder, a heat dissipation spacer made of a cured product having flexibility in which a silicone gel is filled with a thermally conductive inorganic powder, and heat is applied to liquid silicone. Examples include fluid heat-dissipating grease filled with conductive inorganic powder, phase-change heat-dissipating members using phase change of resin, and the like. Of these, those that can be easily thinned are grease and phase change type heat radiating members, but phase change is preferred in terms of workability.

但し、更なる作業性の向上が求められる場合や、繰り返し再使用する場合には、その少なくとも一面に熱伝導率が高く粘着性の無い層、具体的には金属箔が積層された形で用いられることがある。その場合は熱伝導性率の観点からアルミニウムや銅が用いられることが多いが(特許文献1)、フェーズチェンジ層と金属箔層との層間の接触抵抗により、積層体としての放熱特性が低下してしまう問題があった。
特開2004−75760号公報
However, when further improvement in workability is required or when it is reused repeatedly, it is used in a form in which at least one surface thereof has a high thermal conductivity and is not sticky, specifically a metal foil laminated. May be. In that case, aluminum and copper are often used from the viewpoint of thermal conductivity (Patent Document 1), but the heat dissipation characteristics as a laminate deteriorate due to the contact resistance between the phase change layer and the metal foil layer. There was a problem.
JP 2004-75760 A

本発明の目的は、上記に鑑み、高熱伝導性かつ作業性に優れ、更に繰り返し再使用した場合にも特性劣化のない、電子部品の放熱材料に適したフェーズチェンジ型放熱部材を提供することである。   In view of the above, an object of the present invention is to provide a phase change type heat radiating member suitable for a heat radiating material for electronic parts, which has high thermal conductivity and excellent workability, and does not deteriorate characteristics even when repeatedly used. is there.

すなわち、本発明は、30〜120℃で軟化する樹脂を含む有機成分が15〜35質量%、平均粒径0.3〜0.8μmの粉末aと、平均粒径0.9〜1.9μmの粉末bとが、a/b=7/3〜3/7の体積比の割合である無機充填材65〜90質量%を含有してなる熱伝導性樹脂組成物からなる層の少なくとも一面に、ビッカース硬さが24Hv以下である金属層が積層されてなることを特徴とするフェ−ズチェンジ型放熱部材である。また、本発明は、粉末aがアルミナ粉及び/又は酸化亜鉛、粉末bが窒化アルミニウム粉であることを特徴とする前記のフェーズチェンジ型放熱部材である。更に、本発明は、金属層が、錫またはインジウムまたはそれらの少なくとも1を含む合金であることを特徴とする前述のフェーズチェンジ型放熱部材である。 That is, in the present invention, the organic component containing a resin softening at 30 to 120 ° C. is 15 to 35% by mass, the powder a having an average particle size of 0.3 to 0.8 μm, and the average particle size of 0.9 to 1.9 μm. And at least one surface of a layer made of a thermally conductive resin composition containing 65 to 90% by mass of an inorganic filler having a volume ratio of a / b = 7/3 to 3/7. A phase change type heat dissipating member, wherein a metal layer having a Vickers hardness of 24 Hv or less is laminated. Further, the present invention is the above-described phase change type heat radiating member, wherein the powder a is alumina powder and / or zinc oxide, and the powder b is aluminum nitride powder. Furthermore, the present invention is the above-described phase change type heat radiating member, wherein the metal layer is tin or indium or an alloy containing at least one of them.

本発明によれば、熱伝導性樹脂組成物層(以下フェーズチェンジ層とする)中の無機充填材を所定量とし、更にフェーズチェンジ層に積層する金属箔の硬さを制御することによって、高放熱性、作業性良好、繰り返し使用時の特性劣化防止などの効果を奏することができる。 According to the present invention, the inorganic filler in the heat conductive resin composition layer (hereinafter referred to as a phase change layer) is set to a predetermined amount, and further by controlling the hardness of the metal foil laminated on the phase change layer, Effects such as heat dissipation, good workability, and prevention of characteristic deterioration during repeated use can be achieved.

本発明において、フェーズチェンジ層に積層される金属箔として、ビッカース硬度で24以下のもの、具体的に例を挙げれば錫、インジウムを用いることにより、高い放熱特性を得ることができる。これは軟らかいことにより、荷重負荷時に有機結合層内にある無機系材料との間の接触が強化され、有機無機混合層と金属箔との界面の熱抵抗を小さくすることができるためと考えられる。金属箔の硬度が高いとこの部分の抵抗が大きくなり、例えば銅のように熱伝導率の高い材料を用いても放熱特性は低下する。   In the present invention, high heat dissipation characteristics can be obtained by using a metal foil laminated on the phase change layer having a Vickers hardness of 24 or less, specifically, tin or indium. This is considered to be because the softness enhances the contact between the inorganic material in the organic bonding layer when a load is applied and reduces the thermal resistance at the interface between the organic-inorganic mixed layer and the metal foil. . When the hardness of the metal foil is high, the resistance of this portion increases, and even if a material having high thermal conductivity such as copper is used, the heat dissipation characteristics are deteriorated.

本発明において、粉末a、粉末bは窒化アルミニウム粉及び/又はアルミナ粉及び/又は酸化亜鉛粉及び/又は金属アルミニウム粉であることが好ましい。さらに好ましくは粉末aに酸化亜鉛粉及び窒化アルミニウム粉、粉末bに窒化アルミニウム粉を用いることである。これにより高熱伝導と高充填性、流動性を並立させることができる。またその他炭化ケイ素、窒化ケイ素、窒化ホウ素などから選ばれた一種又は2種以上の粉末を、粉末a、bあわせた無機系充填材の合計中、10質量%まで含有していても良い。   In the present invention, the powder a and the powder b are preferably aluminum nitride powder and / or alumina powder and / or zinc oxide powder and / or metal aluminum powder. More preferably, zinc oxide powder and aluminum nitride powder are used for powder a, and aluminum nitride powder is used for powder b. Thereby, high heat conductivity, high filling property, and fluidity can be combined. In addition, one or two or more kinds of powders selected from silicon carbide, silicon nitride, boron nitride and the like may be contained up to 10% by mass in the total of the inorganic fillers including powders a and b.

充填材は、平均粒径の異なる2種類又はそれ以上の粉末が使用される。すなわち、平均粒径0.3〜0.8μmの粉末aと、平均粒径0.9〜1.9μmの粉末bとが、a/b=7/3〜3/7の体積比となるように使用される。この時、粉末a、粉末bはそれぞれ複数の粉末からなっていても良い。これにより本発明のフェーズチェンジ層の流動性が向上するとともに、荷重印加時の金属層への接触も向上する。粉末aの平均粒径が0.3μm以下だと充填が困難になり、また流動性が低下してフェーズチェンジ層の薄化が困難になる。一方粉末bの平均粒径が1.9μmを超える場合は、繰り返し使用した場合にフェーズチェンジ層が何らかの変質を起こし、放熱特性が低下する場合がある。なお本明細書内において、平均粒径とはレーザー回折式粒度分布測定装置にて、センサで検出した粒子による回折/散乱光の光強度分布のデータから粒度分布を計算したものであり、測定される粒子径の値に相対粒子量(差分%)を掛けて、相対粒子量の合計(100%)で割って求められた体積平均粒径を表す。   As the filler, two or more kinds of powders having different average particle diameters are used. That is, the powder a having an average particle size of 0.3 to 0.8 μm and the powder b having an average particle size of 0.9 to 1.9 μm have a volume ratio of a / b = 7/3 to 3/7. Used for. At this time, each of the powder a and the powder b may be composed of a plurality of powders. This improves the fluidity of the phase change layer of the present invention and also improves the contact with the metal layer when a load is applied. When the average particle size of the powder a is 0.3 μm or less, filling becomes difficult, and the fluidity is lowered, making it difficult to thin the phase change layer. On the other hand, when the average particle size of the powder b exceeds 1.9 μm, the phase change layer may undergo some alteration when repeatedly used, and the heat dissipation characteristics may deteriorate. In this specification, the average particle size is a particle size distribution calculated from the data of the light intensity distribution of the diffracted / scattered light by the particles detected by a sensor using a laser diffraction particle size distribution measuring device. The volume average particle size obtained by multiplying the value of the particle size by the relative particle amount (difference%) and dividing by the sum of the relative particle amounts (100%).

充填材の含有率は、フェーズチェンジ層構成物中、65〜90質量%とする。65質量%未満では熱伝導率が低く、いくら薄化しても低熱抵抗化は困難となる。また、90質量%を超えると、フェーズチェンジ層の流動性が低くなり、薄化しにくくなる。   The content rate of a filler shall be 65-90 mass% in a phase change layer structure. If it is less than 65% by mass, the thermal conductivity is low, and it is difficult to reduce the thermal resistance no matter how thin it is. Moreover, when it exceeds 90 mass%, the fluidity | liquidity of a phase change layer will become low and it will become difficult to thin.

粉末a、bとしては高熱伝導性を有するものが好ましく、その意味では各種金属粉やセラミックス粉が好ましいが、コストと熱伝導特性、安全性などを考慮すると、粉末aとしては耐湿信頼性が高いアルミナ粉及び/又は酸化亜鉛が、粉末bとしては熱伝導性の高い窒化アルミニウム粉が特に好ましい。それ以外の場合、例えば金属アルミニウム等の金属粉も使用できるが、その場合熱伝導率は高いものの、金属微粉となることから粉の活性が非常に高くなり、爆発の危険性が高くなるなど取り扱いにくくなる。   As the powders a and b, those having high thermal conductivity are preferable, and in this sense, various metal powders and ceramic powders are preferable. However, considering the cost, thermal conductivity characteristics, safety, etc., the powder a has high moisture resistance reliability. Alumina powder and / or zinc oxide is particularly preferable, and the powder b is particularly preferably aluminum nitride powder having high thermal conductivity. In other cases, metal powder such as metal aluminum can also be used. In this case, although the thermal conductivity is high, the powder becomes very active due to the metal fine powder, and handling such as increased risk of explosion. It becomes difficult.

本発明のフェーズチェンジ層の有機成分においては、温度30〜120℃で軟化する有機成分を含有していることが好ましい。軟化温度が30℃未満では室温状態でも軟化しやすくなって取扱に支障を来し、一方120℃を超えて軟化させるためには非常に高温にする必要があり好ましくない。このような樹脂を例示すれば、ポリエチレン、ポリプロピレン、エチレンーαオレフィン共重合体、エチレンー酢酸ビニル共重合体等の熱可塑性樹脂や、その他常温では固体であり加熱により低粘度の流体になるもの、例えばマイクロクリスタリンワックス、モンタン酸ワックス、モンタン酸エステルワックス等のワックス類、また室温で固体であるパラフィンワックス等が挙げられる。これらの一種又は二種以上、またこれらに適宜流動パラフィンを加える。マトリックスをこのような有機成分で構成することにより、加熱時の流動性を極めて高くすることができ薄化が容易となるため、熱抵抗を減少させることができる。 The organic component of the phase change layer of the present invention preferably contains an organic component that softens at a temperature of 30 to 120 ° C. If the softening temperature is less than 30 ° C., it tends to soften even at room temperature and hinders handling. On the other hand, in order to soften above 120 ° C., a very high temperature is required, which is not preferable. Examples of such resins include polyethylene, polypropylene, ethylene-α olefin copolymers, thermoplastic resins such as ethylene-vinyl acetate copolymers, and other materials that are solid at room temperature and become a low-viscosity fluid upon heating, for example, Examples thereof include waxes such as microcrystalline wax, montanic acid wax, and montanic acid ester wax, and paraffin wax that is solid at room temperature. One or more of these, and liquid paraffin are added as appropriate. By constituting the matrix with such an organic component, the fluidity at the time of heating can be made extremely high and the thinning can be facilitated, so that the thermal resistance can be reduced.

また本発明のフェーズチェンジ層においては、有機成分として上記のほかに、例えば粘着性を付与するための粘着剤や無機充填材分散性向上のための分散剤、界面活性剤、カップリング剤など、各種添加剤などを適宜用いても良い。 In the phase change layer of the present invention, in addition to the above as an organic component, for example, a pressure-sensitive adhesive for imparting tackiness, a dispersant for improving dispersibility of inorganic fillers, a surfactant, a coupling agent, etc. Various additives may be used as appropriate.

本発明のフェーズチェンジ層組成物は、上記諸材料を加温しながら万能混合撹拌機、ニーダー等で混練し、厚み0.01mm〜0.5mmにシート成形することによって製造することができる。厚みが0.5mmを超えると、低熱抵抗化が困難になる。また0.01mm未満では、発熱性電子部品の凹凸への追従が困難になるため、接触が不十分となり、熱抵抗が増加する。 The phase change layer composition of the present invention can be produced by kneading the above materials with a universal mixing stirrer, a kneader or the like while heating them, and forming a sheet to a thickness of 0.01 mm to 0.5 mm. If the thickness exceeds 0.5 mm, it is difficult to reduce the thermal resistance. On the other hand, if it is less than 0.01 mm, it becomes difficult to follow the unevenness of the heat-generating electronic component, so that the contact becomes insufficient and the thermal resistance increases.

シート成形は、上記フェーズチェンジ層を、金属錫や金属インジウム等の箔に乗せ、所定厚さの金型で加熱プレスするか、加熱しながらロールコーター等で所定の空間を通過させるか、又はフェーズチェンジ層をトルエン等の溶剤で溶解させ、ドクターブレード法などで塗工した後ラミネーターで調整する等によって行うことができる。箔の厚みは0.005〜0.2mmが好ましい。0.005mm未満では取り扱いが難しくシワが入りやすく、0.2mmを超えると柔軟性が低下する。 In the sheet molding, the phase change layer is placed on a foil of metal tin, metal indium or the like and heated and pressed with a mold having a predetermined thickness, or is passed through a predetermined space with a roll coater or the like while being heated. The change layer can be dissolved by a solvent such as toluene, applied by a doctor blade method, etc., and then adjusted by a laminator. The thickness of the foil is preferably 0.005 to 0.2 mm. If it is less than 0.005 mm, it is difficult to handle and wrinkles easily, and if it exceeds 0.2 mm, the flexibility is lowered.

本発明のフェーズチェンジ型放熱部材は、MPUやパワートランジスタ、トランス等の発熱性電子部品からの熱を放熱フィンや放熱ファン等の放熱部品に伝熱させるために使用され、発熱性電子部品と放熱部品の間に挟みこまれて使用される。これによって、発熱性電子部品と放熱部品間の伝熱が良好となり、発熱性電子部品の誤作動を著しく軽減させることができる。 The phase change type heat radiating member of the present invention is used to transfer heat from heat generating electronic parts such as MPU, power transistor and transformer to heat radiating parts such as heat radiating fins and heat radiating fans. Used by being sandwiched between parts. As a result, heat transfer between the heat-generating electronic component and the heat-dissipating component is improved, and malfunction of the heat-generating electronic component can be significantly reduced.

以下、実施例及び比較例を挙げて更に具体的に本発明を説明する。 Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

実施例1〜7
粉末aとして、市販のアルミナ(住友化学社製AA-05 平均粒径0.5μ)、酸化亜鉛粉(堺化学社製「第一種」平均粒径0.6μm)を、また粉末bとして、市販の窒化アルミニウム粉(トクヤマ社製「Hグレード」;平均粒径1.6μm)を用い、これらを表1に示す割合で混合して無機充填材を調整した。なお、平均粒径はレーザー回折式粒度分布測定装置(日機装社製マイクロトラックMT3200)で評価した。
Examples 1-7
As powder a, commercially available alumina (AA-05 average particle size 0.5 μm manufactured by Sumitomo Chemical Co., Ltd.), zinc oxide powder (“Class 1” average particle size 0.6 μm manufactured by Sakai Chemical Co., Ltd.), and powder b, Commercially available aluminum nitride powder (“H grade” manufactured by Tokuyama Corporation; average particle diameter of 1.6 μm) was used, and these were mixed at a ratio shown in Table 1 to prepare an inorganic filler. The average particle diameter was evaluated with a laser diffraction particle size distribution measuring apparatus (Microtrack MT3200 manufactured by Nikkiso Co., Ltd.).

Figure 2010021165
Figure 2010021165

一方、有機成分として、流動パラフィン(松村石油社製「モレスコホワイトP−350P」)、エチレンー酢酸ビニル共重合体(EVA)(東ソー社製「ウルトラセン725」)、ホットメルト接着剤(松村石油社製「モレスコメルトTN−530S」)を準備し、無機充填材と共に表1の割合で配合し、150℃に過熱した万能混合撹拌機の容器に入れ、15分間混合しながら真空脱泡し、冷却してから取り出してフェーズチェンジ層組成物とした。 On the other hand, liquid paraffin (“Moleco White P-350P” manufactured by Matsumura Oil Co., Ltd.), ethylene-vinyl acetate copolymer (EVA) (“Ultrasen 725” manufactured by Tosoh Corp.), hot melt adhesive (Matsumura Oil Co., Ltd.) "Molescommelt TN-530S") was prepared, blended together with inorganic fillers in the proportions shown in Table 1, placed in a universal mixing stirrer container heated to 150 ° C, vacuum degassed while mixing for 15 minutes, and cooled Then, it was taken out to obtain a phase change layer composition.

このフェーズチェンジ層組成物を、厚さ0.02mm、幅160mmの金属錫箔(日本製箔社製、ビッカース硬さ20Hv)もしくはインジウム箔(日本製箔社製、ビッカース硬さ16Hv)に乗せ、120℃に設定された遠赤外加熱炉を通して加熱を行い、流動性樹脂を溶融させた状態にしてから、その上面に、厚さ0.1mm、幅160mmの片面シリコーン処理PETフィルムのシリコーン処理面を接面させて配置し、0.2mmのギャップを設けたコンマコーターの間を通した。これを長さ400mmに切断した後冷却し、PETフィルムをはがして、厚み0.1mm、幅150mm、長さ400mmのフェーズチェンジ型放熱部材を得た。 This phase change layer composition is placed on a metal tin foil (made by Nippon Foil Co., Ltd., Vickers hardness 20 Hv) or indium foil (made by Nippon Foil Co., Ltd., Vickers hardness 16 Hv) having a thickness of 0.02 mm and a width of 160 mm, and 120 After heating through a far-infrared heating furnace set at 0 ° C. to melt the flowable resin, a silicone-treated surface of a one-side silicone-treated PET film having a thickness of 0.1 mm and a width of 160 mm is formed on the upper surface. They were placed in contact with each other and passed through a comma coater with a 0.2 mm gap. This was cut to a length of 400 mm and then cooled, and the PET film was peeled off to obtain a phase change type heat radiation member having a thickness of 0.1 mm, a width of 150 mm, and a length of 400 mm.

得られたフェーズチェンジ型放熱部材の熱抵抗は、10mm角の試料装着部分を持つ、ヒーターを埋め込んだ銅製治具と銅製冷却治具との間にはさみ、4.2kgの荷重をかけてセットした後、ヒーターに電力20Wをかけて30分間保持し、挟まれた放熱部材部分に発生する温度差(℃)を測定した。これを室温まで放冷してフェーズチェンジ型放熱部材を一旦取り外した後、再度セットして同様に荷重、電力をかけて測定を行った。この操作を繰り返し、計5回の測定を行った。熱抵抗値は式:熱抵抗(℃/W)=温度差(℃)/電力(W)、により算出した。それぞれ1回目と5回目の測定結果を表1に示す。 The thermal resistance of the obtained phase change type heat radiating member was set with a load of 4.2 kg between a copper jig with a 10 mm square sample mounting portion and a copper cooling jig embedded with a heater. Thereafter, the heater was applied with electric power of 20 W and held for 30 minutes, and the temperature difference (° C.) generated in the sandwiched heat radiation member portion was measured. This was allowed to cool to room temperature, the phase change type heat radiating member was once removed, then set again, and the measurement was performed with the load and power applied in the same manner. This operation was repeated, and a total of five measurements were performed. The thermal resistance value was calculated by the formula: thermal resistance (° C./W)=temperature difference (° C.) / Power (W). Table 1 shows the results of the first and fifth measurements, respectively.

比較例1〜2
金属箔としてアルミニウム(ビッカース硬度25Hv)及び銅(ビッカース硬度46Hv)を用いた以外は、実施例1に準じてフェーズチェンジ型放熱部材を作製した。得られたものの熱抵抗値は表1の通りとなり、実施例に比べて高い熱抵抗値を示した。
Comparative Examples 1-2
A phase change type heat radiating member was produced according to Example 1 except that aluminum (Vickers hardness 25 Hv) and copper (Vickers hardness 46 Hv) were used as the metal foil. The obtained thermal resistance values were as shown in Table 1, showing a higher thermal resistance value than the Examples.

比較例3
粉末aとして、市販のアルミナ(住友化学社製AA-05 平均粒径0.5μ)を、粉末bとして、市販の金属アルミニウム粉(ミネルコ社製#800、平均粒径2.5μm)を用いたこと以外は、実施例1に準じてフェーズチェンジ型放熱部材を製造した。得られたものは実施例1〜7に比べて、繰り返し5回目の測定結果で高い熱抵抗値を示した。
Comparative Example 3
Commercially available alumina (AA-05 average particle size 0.5 μm manufactured by Sumitomo Chemical Co., Ltd.) was used as powder a, and commercially available metal aluminum powder (# 800 manufactured by Minerco, average particle size 2.5 μm) was used as powder b. A phase change type heat radiating member was manufactured according to Example 1 except for the above. What was obtained showed a high thermal resistance value in the measurement results of the fifth repetition compared to Examples 1-7.

比較例4、5
有機成分の割合を、本発明の範囲を逸脱した表1の組成とした以外は、実施例1と同様にフェーズチェンジ型放熱部材を製造した。得られたものは実施例に比べて高い熱抵抗値を示す(比較例4)か、流動性が悪すぎてシート化できないもの(比較例5)であった。
Comparative Examples 4 and 5
A phase change type heat radiating member was produced in the same manner as in Example 1 except that the ratio of the organic component was changed to the composition shown in Table 1 outside the scope of the present invention. What was obtained showed a high thermal resistance value compared to the Examples (Comparative Example 4) or was too poor to be formed into a sheet (Comparative Example 5).

本発明のフェーズチェンジ型放熱部材は、各種電子部品など、熱を発生するもの全ての放熱用途に適用できる。

The phase change type heat radiating member of the present invention can be applied to all heat radiating applications such as various electronic parts that generate heat.

Claims (6)

30〜120℃で軟化する樹脂を含む有機成分が10〜35質量%、平均粒径0.3〜0.8μmの粉末aと、平均粒径0.9〜1.9μmの粉末bとが、a/b
=7/3〜3/7の体積比の割合である無機充填材65〜90質量%を含有してなる熱伝導性樹脂組成物からなる層の少なくとも一面に、ビッカース硬さが24Hv以下である金属層が積層されてなることを特徴とするフェ−ズチェンジ型放熱部材。
10 to 35% by mass of an organic component containing a resin that softens at 30 to 120 ° C., a powder a having an average particle size of 0.3 to 0.8 μm, and a powder b having an average particle size of 0.9 to 1.9 μm, a / b
= Vickers hardness is 24 Hv or less on at least one surface of a layer made of a thermally conductive resin composition containing 65 to 90% by mass of an inorganic filler having a volume ratio of 7/3 to 3/7. A phase change type heat dissipating member, wherein a metal layer is laminated.
粉末aがアルミナ粉及び/又は酸化亜鉛粉であることを特徴とする請求項1に記載のフェーズチェンジ型放熱部材。 The phase change type heat radiation member according to claim 1, wherein the powder a is alumina powder and / or zinc oxide powder. 粉末bが窒化アルミニウム粉であることを特徴とする請求項1または請求項2に記載のフェーズチェンジ型放熱部材。 The phase change type heat radiation member according to claim 1, wherein the powder b is an aluminum nitride powder. 金属層が、錫またはインジウムまたはそれらの少なくとも1を含む合金であることを特徴とする請求項1〜3のいずれか一項に記載のフェーズチェンジ型放熱部材。 The phase change type heat radiation member according to any one of claims 1 to 3, wherein the metal layer is tin or indium or an alloy containing at least one of them. 金属層の厚さが0.005〜0.2mmであることを特徴とする請求項1〜4のいずれか一項に記載のフェーズチェンジ型放熱部材。 The thickness of a metal layer is 0.005-0.2 mm, The phase change type thermal radiation member as described in any one of Claims 1-4 characterized by the above-mentioned. 熱伝導性樹脂組成物からなる層の厚さが0.01〜0.5mmであることを特徴とする請求項1〜5のいずれか一項に記載のフェーズチェンジ型放熱部材。
The thickness of the layer which consists of a heat conductive resin composition is 0.01-0.5 mm, The phase change type thermal radiation member as described in any one of Claims 1-5 characterized by the above-mentioned.
JP2006299649A 2006-11-02 2006-11-02 Phase-changing heat dissipating member Pending JP2010021165A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006299649A JP2010021165A (en) 2006-11-02 2006-11-02 Phase-changing heat dissipating member
PCT/JP2007/070842 WO2008053785A1 (en) 2006-11-02 2007-10-25 Phase-change heat dissipating member
TW96141004A TW200849514A (en) 2006-11-02 2007-10-31 Phase-change heat dissipating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006299649A JP2010021165A (en) 2006-11-02 2006-11-02 Phase-changing heat dissipating member

Publications (1)

Publication Number Publication Date
JP2010021165A true JP2010021165A (en) 2010-01-28

Family

ID=39344127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006299649A Pending JP2010021165A (en) 2006-11-02 2006-11-02 Phase-changing heat dissipating member

Country Status (3)

Country Link
JP (1) JP2010021165A (en)
TW (1) TW200849514A (en)
WO (1) WO2008053785A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008022A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Acceleration sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182257B2 (en) * 1993-02-02 2001-07-03 電気化学工業株式会社 Heat dissipation sheet
JP3794996B2 (en) * 2002-08-13 2006-07-12 電気化学工業株式会社 Thermally conductive resin composition and phase change type heat radiation member
JP2006245523A (en) * 2005-02-04 2006-09-14 Dainippon Printing Co Ltd Heat dissipating sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012008022A (en) * 2010-06-25 2012-01-12 Panasonic Electric Works Co Ltd Acceleration sensor

Also Published As

Publication number Publication date
WO2008053785A1 (en) 2008-05-08
TW200849514A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
US11776868B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
US6869642B2 (en) Phase change thermal interface composition having induced bonding property
TWI344196B (en) Melting temperature adjustable metal thermal interface materials and use thereof
JP4546086B2 (en) Dry heat interface material
US20070241303A1 (en) Thermally conductive composition and method for preparing the same
JP2007277406A (en) Highly heat-conductive resin compound, highly heat-conductive resin molded article, compounding particle for heat-releasing sheet, highly heat-conductive resin compound, highly heat-conductive resin molded article, heat-releasing sheet, and method for producing the same
TW200908257A (en) Enhanced thermal conducting formulations
JP2002003830A (en) High thermal conductive composition and its use
JP3794996B2 (en) Thermally conductive resin composition and phase change type heat radiation member
TWI555767B (en) Thermal interface material with epoxidized nutshell oil
JP4749631B2 (en) Heat dissipation member
JP2003113313A (en) Heat-conductive composition
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP2010021165A (en) Phase-changing heat dissipating member
WO2008037559A1 (en) Use of an adhesive composition for die-attaching high power semiconductors
JP3739335B2 (en) Heat dissipation member and power module
JP4119287B2 (en) Heat dissipation member and connection structure
JP7077526B2 (en) Composite member
JP2008108859A (en) Phase change type heat dissipation material
JP4027807B2 (en) Phase change type multilayer sheet
JP4409118B2 (en) Granular material for forming heat dissipation member and its use
JP2002020625A (en) High thermal conductive composition and its use
JP2003023127A (en) Granular material for heat radiation member formation of electronic equipment and applications
JP3978056B2 (en) Heat dissipation member and connection structure
JP3976642B2 (en) Heat dissipation member and connection structure