JP2010013315A - Manufacturing method of civil engineering material using steel slag - Google Patents
Manufacturing method of civil engineering material using steel slag Download PDFInfo
- Publication number
- JP2010013315A JP2010013315A JP2008174701A JP2008174701A JP2010013315A JP 2010013315 A JP2010013315 A JP 2010013315A JP 2008174701 A JP2008174701 A JP 2008174701A JP 2008174701 A JP2008174701 A JP 2008174701A JP 2010013315 A JP2010013315 A JP 2010013315A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- less
- particle size
- carbonation
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002893 slag Substances 0.000 title claims abstract description 195
- 239000000463 material Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 229910000831 Steel Inorganic materials 0.000 title abstract description 9
- 239000010959 steel Substances 0.000 title abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 89
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 38
- 230000032683 aging Effects 0.000 claims abstract description 37
- 238000000034 method Methods 0.000 claims abstract description 21
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000009628 steelmaking Methods 0.000 claims abstract description 9
- 238000010298 pulverizing process Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 claims description 2
- 238000007596 consolidation process Methods 0.000 abstract description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 7
- 239000011707 mineral Substances 0.000 abstract description 7
- 238000010583 slow cooling Methods 0.000 abstract description 6
- 208000035126 Facies Diseases 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 72
- 239000000292 calcium oxide Substances 0.000 description 36
- 235000012255 calcium oxide Nutrition 0.000 description 36
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 30
- 239000007789 gas Substances 0.000 description 17
- 239000001569 carbon dioxide Substances 0.000 description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 description 15
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000011575 calcium Substances 0.000 description 7
- 235000010755 mineral Nutrition 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 239000000378 calcium silicate Substances 0.000 description 3
- 229910052918 calcium silicate Inorganic materials 0.000 description 3
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 3
- 229910001653 ettringite Inorganic materials 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 2
- 238000009412 basement excavation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007922 dissolution test Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、製鉄所などで発生する鉄鋼スラグである高炉スラグ(徐冷スラグ(以下、「高炉除冷スラグ」とも記す。)、水砕スラグなど高炉から得られるスラグ)および製鋼スラグ(転炉スラグ、溶銑予備処理スラグ、二次精錬スラグなど製鋼工程において生成するスラグ)を使用し、固結が抑制された土木用材の製造方法に関するものである。 The present invention relates to blast furnace slag (slow-cooled slag (hereinafter also referred to as “blast furnace decooled slag”), slag obtained from a blast furnace such as granulated slag) and steel slag (converter). The present invention relates to a method for producing a civil engineering material in which caking is suppressed using slag produced in a steelmaking process such as slag, hot metal pretreatment slag, and secondary refining slag.
従来から高炉スラグおよび製鋼スラグは、土木用材として利用されてきた。
スラグを利用した土木用材は、強固な地盤を形成させるという目的で水硬性が有利に働き、施工した後に数日後には固結し始める。
Conventionally, blast furnace slag and steelmaking slag have been used as civil engineering materials.
Civil engineering materials using slag are advantageous in hydraulic properties for the purpose of forming a strong ground, and begin to consolidate after a few days after construction.
しかし、施工をした数日から数年後に、その施工箇所を掘り起し、新たに埋設物を埋める工事をしたり、植裁を施したり、さらに数十年が経過した後に再度掘り起こしたりするケースもある。 However, a few days to several years after the construction, the construction site is dug up, the construction is newly buried, the planting is performed, or the dug up again after several decades There is also.
このような場合に、固結した土木用材、特にスラグ路盤材は、掘り起こし作業に大きな力を必要とし、さらに、配管工事などでの掘削作業は、既埋設物の破損を引き起こす危険性もある。 In such a case, the consolidated civil engineering material, particularly the slag roadbed material, requires a large force for the excavation work, and further, the excavation work in the piping work or the like has a risk of causing damage to the existing objects.
このようなスラグ土木用材の固結硬化現象は、以下のような機構で進行すると考えられる。
まず、スラグ表面のCaOが周囲の水に溶解し、pH上昇(pH10〜11)が始まる。
CaO+H2O→Ca2++2OH-
このアルカリ刺激により、スラグ表面のガラス質のシリカ等の成分が溶出する。
SiO2+OH−→SiO3 2−+H2O
Such a consolidation hardening phenomenon of slag civil engineering materials is considered to proceed by the following mechanism.
First, CaO on the slag surface dissolves in the surrounding water, and pH increase (pH 10-11) starts.
CaO + H 2 O → Ca 2+ + 2OH −
Due to this alkali stimulation, components such as vitreous silica on the surface of the slag are eluted.
SiO 2 + OH − → SiO 3 2− + H 2 O
スラグ粒子近傍の液相中のカルシウム、シリコン、アルミニウム等の成分濃度が、各種水和生成物の析出条件まで上昇すると水和物の生成が始まり、珪酸カルシウム水和物(CaO-SiO2-H2Oゲル)や、エトリンガイト(3CaO・Al2O3・3CaSO4・32H2O)等の水和鉱物相を生成し、次第に層厚を増し、粒子同士の固結硬化へ至る。また、この水和物生成反応は、液相においてのみならず、スラグの表面近傍の粒子内部でも生じる。 When the concentration of components such as calcium, silicon, and aluminum in the liquid phase near the slag particles rises to the precipitation conditions for various hydrated products, the formation of hydrates begins, and calcium silicate hydrate (CaO—SiO 2 —H 2 O gel) and ettringite (3CaO.Al 2 O 3 .3CaSO 4 .32H 2 O) and other hydrated mineral phases are generated, and the layer thickness is gradually increased, leading to consolidation hardening of particles. In addition, this hydrate formation reaction occurs not only in the liquid phase but also inside the particles near the surface of the slag.
このスラグ路盤材の固結硬化を抑制する発明として、例えば、特許文献1に開示された方法が示されている。
特許文献1に示されている方法は、自由水を存在し始める水分値未満で、かつ、該水分値よりも10質量%少ない値以上の範囲となるように添加する水分量を調整した後に、炭酸ガスを含有し相対湿度が75〜100%のガスを流し、スラグを炭酸化させ、スラグの外周部に固結硬化をもたらす鉱物相が生成することを抑制し、スラグ粒同士が固結することのないようにするものである。
After adjusting the amount of water added so that the method shown in Patent Document 1 is less than the moisture value at which free water begins to exist and is in a range of 10% by mass less than the moisture value, A gas containing carbon dioxide gas and having a relative humidity of 75 to 100% is flowed to carbonize the slag, suppress the formation of a mineral phase that causes consolidation hardening on the outer periphery of the slag, and the slag particles are consolidated. It is intended to prevent this from happening.
しかし、上記従来技術の特許文献1においては、以下のような問題点がある。
スラグ自体を自由水が存在し始める水分値未満で、かつ、該水分値よりも10質量%少ない値以上の範囲となるように添加する水分量を調整することが必要である。しかも、炭酸ガスを含有する相対湿度75〜100%のガスを流し、スラグを炭酸化させるとしているが、スラグ表面がどの程度炭酸化され、何%以上炭酸化されることでスラグの外周部に固結硬化となる鉱物相を抑制できるのか規定されていない。
However, Patent Document 1 of the above prior art has the following problems.
It is necessary to adjust the amount of water to be added so that the slag itself is less than the moisture value at which free water begins to be present and more than 10% by mass less than the moisture value. Moreover, it is said that a slag is carbonized by flowing a gas having a relative humidity of 75 to 100% containing carbon dioxide gas. However, how much the slag surface is carbonated and how much or more is carbonized in the outer periphery of the slag. It is not stipulated whether the mineral phase that causes consolidation hardening can be suppressed.
ここに、本発明の課題は、そのような問題点を解決し、効率的にスラグ土木用材の固結を抑制できる製造方法を提供でき、特に粒度調整鉄鋼スラグ、クラッシャラン鉄鋼スラグの道路用鉄鋼スラグに有効に使用することが可能となる方法を提供することにある。 Here, the object of the present invention is to solve such problems and to provide a production method capable of efficiently suppressing the consolidation of slag civil engineering materials, and in particular, grain size-adjusted steel slag and steel slag for roads of crusheran steel slag. It is an object of the present invention to provide a method that can be used effectively.
上記課題を解決すべく検討した結果、本発明者は、高炉スラグおよび製鋼スラグ表面のCaOを不溶性鉱物相(CaCO3)に変化できれば、スラグ周囲の水を高pHにすることなく、珪酸カルシウム水和物およびエトリンガイトなどの水和物生成による固結硬化を抑制できるとの考えに至った。 As a result of studying to solve the above problems, the present inventor has found that calcium silicate water can be obtained without changing the water around the slag to a high pH if the CaO on the surface of the blast furnace slag and the steelmaking slag can be changed to an insoluble mineral phase (CaCO 3 ). It came to the idea that the caking hardening due to the formation of hydrates such as Japanese and ettringite can be suppressed.
つまり、炭酸ガスを含有した自由水(炭酸水)を、スラグ粒子の表面に接触させる(具体的には、炭酸水への浸漬や炭酸水の吹付けが例示される。)ことで、スラグ側から溶出したCaイオンと、自由水に溶解したCO2とが反応(炭酸化反応)することにより、各々のスラグ粒子表面にCaCO3が析出すると考えた。具体的には、スラグ表面を一定程度以上炭酸化することによって、高炉スラグおよび製鋼スラグの表面からのCaOの溶出を抑制できるため、pH上昇が抑制されると共に、土木用材の固結固化が抑制される。 That is, free water (carbonated water) containing carbon dioxide gas is brought into contact with the surface of the slag particles (specifically, immersion in carbonated water or spraying of carbonated water is exemplified), so that the slag side It was thought that CaCO 3 eluted from each slag particle surface by the reaction (carbonation reaction) of Ca ions eluted from the water and CO 2 dissolved in free water. Specifically, by carbonizing the surface of the slag to a certain extent or more, the elution of CaO from the surfaces of the blast furnace slag and the steelmaking slag can be suppressed, so that the pH increase is suppressed and the solidification and solidification of the civil engineering material is suppressed. Is done.
本発明は、以上の知見に基づいてなされたもので、その要旨は下記の通りである。
(1)高炉スラグおよび製鋼スラグから選ばれる1種または2種のスラグを、炭酸を含有した自由水に浸漬させることを特徴とする、土木用材の製造方法
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) A method for producing a material for civil engineering, characterized in that one or two slags selected from blast furnace slag and steelmaking slag are immersed in free water containing carbonic acid.
(2)粒径25mm以下の高炉徐冷スラグをエージング処理し、その後さらに炭酸化処理を行って製造する土木用材の製造方法であって、そのエージング処理および炭酸化処理をそれぞれ次のように行うことを特徴とする、土木用材の製造方法。 (2) A method for producing a civil engineering material produced by subjecting a blast furnace slow-cooled slag having a particle size of 25 mm or less to aging treatment, followed by further carbonation treatment, wherein the aging treatment and carbonation treatment are performed as follows. The manufacturing method of the material for civil engineering characterized by the above-mentioned.
(A)粒径25mm以下の高炉徐冷スラグをエージング処理して、そのエージング処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグに含有される遊離CaO含有率を、質量%で0.45%以下に管理すること。
(B)前記のエージング処理をしたスラグを、炭酸を含有しpHが3.5〜5.4に調整された自由水に浸漬する炭酸化処理によって、その炭酸化処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグの炭酸化率を15%以上に管理すること。
ここで、炭酸化率は、(炭酸化処理前のスラグ遊離CaO質量濃度―炭酸化処理後のスラグ遊離CaO質量濃度−炭酸化処理後のスラグ遊離Ca(OH)2質量濃度×0.76)/(炭酸化処理前のスラグ遊離CaO質量濃度)×100である。
(A) Aging treatment of blast furnace slow-cooled slag with a particle size of 25 mm or less, 1 kg of sample slag with a particle size of 0 to 25 mm after the aging treatment was randomly collected, and the whole was coarsely crushed and shrunk to a particle size of 5 mm or less 200 g collected from the sample slag having a particle size of 5 mm or less is pulverized and reduced to a particle size of 1 mm or less, and 50 g collected from the sample slag having a particle size of 1 mm or less is crushed to a particle size of 0.25 mm or less. The free CaO content contained in the collected 50 g of sample slag should be controlled to 0.45% or less by mass%.
(B) By the carbonation process which immerses the slag which carried out the said aging process in the free water which contained carbonic acid and was adjusted to pH 3.5-5.4, the particle size 0-25 mm after the carbonation process 1 kg of the sample slag was randomly sampled and coarsely crushed and reduced to a particle size of 5 mm or less. 200 g sampled from the sample slag having a particle size of 5 mm or less was crushed and reduced to a particle size of 1 mm or less. The carbonation rate of 50 g of sample slag collected by pulverizing 50 g of sample slag having a particle diameter of 1 mm or less to a particle size of 0.25 mm or less should be controlled to 15% or more.
Here, the carbonation rate is (slag free CaO mass concentration before carbonation treatment−slag free CaO mass concentration after carbonation treatment−slag free Ca (OH) 2 mass concentration after carbonation treatment × 0.76) / (Slag free CaO mass concentration before carbonation treatment) × 100.
(3)上記(2)に記載される方法により製造した土木用材を質量%で100〜30%、かつ粒径25mm以下の転炉スラグをエージング処理し、その後さらに炭酸化処理を行って製造する土木用材の製造方法であって、そのエージング処理と炭酸化処理をそれぞれ次のように行う方法により製造した土木用材を質量%で70%以下配合することを特徴とする土木用材の製造方法製造方法。
(C)粒径25mm以下の転炉スラグをエージング処理して、そのエージング処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグに含有される遊離CaO含有率を、質量%で4.5%以下に管理すること。
(D)前記のエージング処理をしたスラグを、炭酸を含有しpHが3.5〜5.4に調整された自由水に浸漬する炭酸化処理によって、その炭酸化処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグの炭酸化率を15%以上に管理すること。
ここで、炭酸化率は、(炭酸化処理前のスラグ遊離CaO質量濃度―炭酸化処理後のスラグ遊離CaO質量濃度−炭酸化処理後のスラグ遊離Ca(OH)2質量濃度×0.76)/(炭酸化処理前のスラグ遊離CaO質量濃度)×100である。
(3) A civil engineering material produced by the method described in (2) above is produced by aging treatment of converter slag having a mass% of 100 to 30% and a particle size of 25 mm or less, followed by further carbonation treatment. A method for producing a civil engineering material, comprising mixing 70% or less by mass of a civil engineering material produced by a method in which aging treatment and carbonation treatment are respectively performed as follows: .
(C) Aging of converter slag having a particle size of 25 mm or less, 1 kg of sample slag having a particle size of 0 to 25 mm after the aging treatment was randomly collected, and the whole was coarsely crushed and reduced to a particle size of 5 mm or less Then, 200 g collected from the sample slag having a particle size of 5 mm or less is crushed and reduced to a particle size of 1 mm or less, and 50 g collected from the sample slag having a particle size of 1 mm or less is crushed to a particle size of 0.25 mm or less and recovered. The content of free CaO contained in 50 g of sample slag thus obtained should be controlled to 4.5% or less by mass%.
(D) By the carbonation treatment in which the slag subjected to the aging treatment is immersed in free water containing carbonic acid and having a pH adjusted to 3.5 to 5.4, the particle size after the carbonation treatment is 0 to 25 mm. 1 kg of the sample slag was randomly sampled and coarsely crushed and reduced to a particle size of 5 mm or less. 200 g sampled from the sample slag having a particle size of 5 mm or less was crushed and reduced to a particle size of 1 mm or less. The carbonation rate of 50 g of sample slag collected by pulverizing 50 g of sample slag having a particle diameter of 1 mm or less to a particle size of 0.25 mm or less should be controlled to 15% or more.
Here, the carbonation rate is (slag free CaO mass concentration before carbonation treatment−slag free CaO mass concentration after carbonation treatment−slag free Ca (OH) 2 mass concentration after carbonation treatment × 0.76) / (Slag free CaO mass concentration before carbonation treatment) × 100.
(4)前記炭酸化処理により得られた土木用材がJIS A 5015に基づく一軸圧縮強度が0.7N/mm2以下であって、当該土木用材をJIS A 0058-1に基づき溶出させて得られた検液のpHが8.0以下である上記(2)または(3)に記載された土木用材の製造方法。 (4) The civil engineering material obtained by the carbonation treatment has a uniaxial compressive strength based on JIS A 5015 of 0.7 N / mm 2 or less, and is obtained by eluting the civil engineering material based on JIS A 0058-1. The method for producing a civil engineering material as described in (2) or (3) above, wherein the pH of the test solution is 8.0 or less.
本発明に係る製造方法は、高炉スラグおよび/または製鋼スラグが配合されたスラグ土木用材における固結硬化を効率的に抑制することができる。このため、得られた用材を道路用材や土木用材に有効に使用することが可能である。 The production method according to the present invention can efficiently suppress consolidation hardening in a slag civil engineering material containing blast furnace slag and / or steelmaking slag. For this reason, it is possible to use the obtained material effectively for road materials and civil engineering materials.
また、本発明に基づき炭酸化処理された徐冷スラグおよび転炉スラグは、表面が不溶性鉱物層で覆われているため、CaOやCa(OH)2が溶出して地下水のpHや海水のpHを上昇させる問題を生じさせることもない。したがって、各種骨材や路盤材、天然砂の代替原料としての利用が可能である。 Moreover, since the surface of the slow-cooled slag and converter slag carbonized according to the present invention is covered with an insoluble mineral layer, CaO and Ca (OH) 2 are eluted and the pH of groundwater and the pH of seawater There is no problem of raising Therefore, it can be used as an alternative raw material for various aggregates, roadbed materials, and natural sand.
しかも、処理に用いる炭酸ガスとして、製鉄所内の各種工場から排出されるガスに含まれる炭酸ガスを利用できるので、このガス中のCO2の大気への放散を抑制することができ、地球温暖化問題の解決手段の一つとしても位置づけることが可能である。 Moreover, since carbon dioxide contained in the gas discharged from various factories in the steel works can be used as carbon dioxide used for the treatment, it is possible to suppress the emission of CO 2 in the gas to the atmosphere, and global warming It can also be positioned as one of the means for solving problems.
以下、本発明を詳細に説明する。
高炉スラグおよび/または製鋼スラグを用いたスラグ土木用材の固結硬化を抑制する効率的な処理方法を開発するにあたって、スラグ遊離CaO濃度に対する炭酸化影響を検討した。
Hereinafter, the present invention will be described in detail.
In developing an efficient treatment method for suppressing consolidation hardening of slag civil engineering materials using blast furnace slag and / or steelmaking slag, the influence of carbonation on slag free CaO concentration was examined.
ここで、遊離CaO濃度とは、鉄鋼製造において添加された生石灰が、未溶解のままスラグ中に残存した濃度であり、具体的には全スラグ質量に対する残存CaO質量の比率(単位:質量%)として定義される。本発明においては、遊離CaO濃度の管理を『粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、この粒径5mm以下のサンプルスラグから200gを粒径1mm以下に粉砕・縮分し、この粒径1mm以下のサンプルスラグから採取した50gを粒度0.25mm以下に粉砕して回収した50gのサンプルスラグ』により行う。この粒径範囲のサンプルスラグを管理することで、サンプルの母集団の遊離CaO濃度を管理できることが分かったからである。この遊離CaO濃度が高い場合には、水と反応してCa(OH)2となり、スラグを膨張崩壊させる要因となる。したがって、エージング処理後のスラグについて上記の方法を適用して得られた50gのサンプルスラグに含有される遊離CaO濃度が0.45質量%以下(高炉除冷スラグ)、4.5質量%以下(転炉スラグ)になるように、粒径25mm以下のスラグをエージング処理すればよい。 Here, the free CaO concentration is a concentration in which quick lime added in steel production remains undissolved in the slag, and specifically, the ratio of the residual CaO mass to the total slag mass (unit: mass%). Is defined as In the present invention, the free CaO concentration is controlled as follows: “Sample slag having a particle size of 0 to 25 mm is randomly sampled and 1 kg of the sample slag is roughly crushed and reduced to a particle size of 5 mm or less. 200 g is pulverized and reduced to a particle size of 1 mm or less, and 50 g sampled from the sample slag having a particle size of 1 mm or less is crushed to a particle size of 0.25 mm or less and recovered. This is because it was found that the free CaO concentration of the sample population can be managed by managing the sample slag in this particle size range. When this free CaO concentration is high, it reacts with water to become Ca (OH) 2 , which causes the slag to expand and collapse. Therefore, the free CaO concentration contained in 50 g of sample slag obtained by applying the above method to the slag after aging treatment is 0.45 mass% or less (blast furnace decooling slag), 4.5 mass% or less ( A slag having a particle size of 25 mm or less may be aged so as to form a converter slag.
エージング処理された高炉徐冷スラグ(CaO:42%、SiO2:33.8%、Al2O3:14.4%、MgO:6.7%の一般的な高炉除冷スラグ)および転炉スラグ(CaO:44.3%、SiO2:13.8%、Al2O3:1.5%、MgO:6.4%の一般的な転炉スラグ)を、炭酸ガスを含有するガス(炭酸ガス濃度20%)を一定量(ガス圧4kg/cm2)流して、炭酸水の一般的なpHである3.5〜5.4に調整された、自由水(炭酸水)に浸漬した。 Aging treated slowly cooled blast furnace slag (CaO: 42%, SiO 2 : 33.8%, Al 2 O 3: 14.4%, MgO: 6.7% of the general blast furnace slow cooling slag) and Tenro Slag (a general converter slag of CaO: 44.3%, SiO 2 : 13.8%, Al 2 O 3 : 1.5%, MgO: 6.4%) is converted into a gas containing carbon dioxide ( A fixed amount (gas pressure 4 kg / cm 2 ) of carbon dioxide gas was flowed and immersed in free water (carbonated water) adjusted to 3.5 to 5.4, which is a general pH of carbonated water. .
本発明に使用される炭酸ガスを含有するガスとしては、実験室的には市販の炭酸ガスもしくは炭酸ガスに空気や市販の窒素またはアルゴンガスを混合したものを用いたが、実際に現場での処理方法については、例えば、製鉄所内の各種工場から排出されている排ガス、または炭酸塩を用いることが効率的である。 As a gas containing carbon dioxide used in the present invention, commercially available carbon dioxide or carbon dioxide mixed with air, commercially available nitrogen or argon gas was used in the laboratory. As for the treatment method, for example, it is efficient to use exhaust gas or carbonate discharged from various factories in the steelworks.
炭酸ガス含有ガス中の炭酸ガス濃度が低いと、炭酸化効果は低下するが、炭酸濃度が低いほど炭酸化の効率は高くなることから、炭酸化処理時間が延びる以外に特段の影響はない。 If the carbon dioxide gas concentration in the carbon dioxide-containing gas is low, the carbonation effect decreases. However, the lower the carbon dioxide concentration, the higher the carbonation efficiency.
このようにしてpH3.5〜5.4で炭酸を含む自由水(炭酸水)への浸漬によって炭酸化処理を行った高炉徐冷スラグおよび転炉スラグの任意の粒を樹脂に埋込み、断面を観察したところ、CaCO3に安定化していることが確認できた。また、pH3.5〜5.4の自由水へ浸漬し、炭酸化率(=(炭酸化処理前のスラグ遊離CaO濃度―炭酸化処理後の遊離CaO濃度−炭酸化処理後の遊離Ca(OH)2濃度)/(炭酸化処理前のスラグ遊離CaO濃度))が15.1%になるように炭酸化処理を行った前・後の、高炉徐冷スラグおよび転炉スラグについて、JIS K 0058−1(スラグ類の化学物質試験方法 第1部:溶出試験方法)に則り、得られた溶出液のpHを、いずれの場合も検体数を3として測定した。その結果を図1、図2に示す。なお、遊離CaO濃度はエチレングリコール抽出-原子吸光分析法で測定した。本発明においては、炭酸化率の管理を『粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、この粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、この粒径1mm以下のサンプルスラグから採取した50gを粒度0.25mm以下に粉砕して回収した50gのサンプルスラグ』により行う。この粒径範囲のサンプルスラグを管理することで、サンプルの母集団の炭酸化率を管理できると分かったからである。 Arbitrary grains of blast furnace slow-cooled slag and converter slag that have been carbonized by immersion in free water (carbonated water) containing carbonic acid at pH 3.5 to 5.4 are embedded in the resin, and the cross section is As a result of observation, it was confirmed that CaCO 3 was stabilized. Moreover, it is immersed in free water having a pH of 3.5 to 5.4, and the carbonation rate (= (slag free CaO concentration before carbonation treatment−free CaO concentration after carbonation treatment−free Ca (OH) after carbonation treatment) ) JIS K 0058 for the blast furnace slow-cooled slag and converter slag before and after the carbonation treatment was performed so that 2 concentration) / (slag free CaO concentration before carbonation treatment) was 15.1%. -1 (Method for testing chemical substances of slags, Part 1: Dissolution test method) The pH of the obtained eluate was measured with the number of specimens being 3 in each case. The results are shown in FIGS. The free CaO concentration was measured by ethylene glycol extraction-atomic absorption spectrometry. In the present invention, the carbonation rate is controlled as follows: “1 kg of sample slag having a particle size of 0 to 25 mm is randomly sampled, and the whole is coarsely crushed and reduced to a particle size of 5 mm or less. 200 g collected from the above is pulverized and reduced to a particle size of 1 mm or less, and 50 g sampled from the sample slag having a particle size of 1 mm or less is crushed to a particle size of 0.25 mm or less and recovered. This is because it was found that the carbonation rate of the sample population can be managed by managing the sample slag in this particle size range.
本結果より、本発明による炭酸処理、すなわち、浸漬後のスラグについて上記の方法を適用して得られた50gのサンプルスラグの炭酸化率が15%以上になるように、エージング処理後のスラグをpHが3.5〜5.4に調整された炭酸を含有する自由水に浸漬する処理を行うことで、pH11.2〜11.5の高炉徐冷スラグが6.0〜7.1に、pH12.4〜12.6の転炉スラグが6.9〜7.5に低下することが判明した。 From this result, the carbonation treatment according to the present invention, that is, the slag after the aging treatment so that the carbonation rate of 50 g sample slag obtained by applying the above method to the slag after immersion is 15% or more. By performing the treatment of immersing in free water containing carbonic acid whose pH is adjusted to 3.5 to 5.4, the blast furnace slow cooling slag having a pH of 11.2 to 11.5 is changed to 6.0 to 7.1. It has been found that the converter slag at pH 12.4 to 12.6 decreases to 6.9 to 7.5.
上記の15.1%の場合を含む複数の炭酸化率になるように炭酸化処理を行って得られた各種のスラグについて、炭酸化率と圧縮強度との関係を評価した結果を図3に示す。この結果より、本発明による炭酸処理を行うことで、処理後のスラグの圧縮強度を0.7N/mm2に抑制できることが判明した。 FIG. 3 shows the results of evaluating the relationship between the carbonation rate and the compressive strength of various slags obtained by performing the carbonation treatment so as to obtain a plurality of carbonation rates including the case of 15.1%. Show. From this result, it was found that the compression strength of the slag after the treatment can be suppressed to 0.7 N / mm 2 by performing the carbonic acid treatment according to the present invention.
以上の結果、特許文献1に開示された方法の、スラグ自体に自由水が存在し始める水分値未満で、かつ、該水分値よりも10質量%少ない値以上の範囲となるように添加する水分量を調整する必要もなく、炭酸ガスを含有した自由水である炭酸水を単に接触させることで、スラグからの溶出液のpHを8.0以下に調整、つまりスラグ表面のCaOを不溶性鉱物相(CaCO3)に変化させ、高pH雰囲気のスラグ粒子間で発生する珪酸カルシウム水和物およびエトリンガイトなどのスラグの固結硬化に寄与する水和物生成を抑制する効率的な処理方法を提供できることが確認できた。 As a result of the above, the water added by the method disclosed in Patent Document 1 is less than the moisture value at which free water begins to exist in the slag itself, and more than 10% by mass less than the moisture value. There is no need to adjust the amount, and the pH of the eluate from the slag is adjusted to 8.0 or less by simply contacting the carbonated water, which is free water containing carbon dioxide, that is, the CaO on the slag surface is adjusted to the insoluble mineral phase. It is possible to provide an efficient treatment method that suppresses formation of hydrates that contribute to consolidation hardening of slag such as calcium silicate hydrate and ettringite generated between slag particles in a high pH atmosphere by changing to (CaCO 3 ). Was confirmed.
前記したスラグ組成の高炉徐冷スラグ30kgを、3ヵ月間の大気エージングを施して、その含有する遊離CaO濃度を0.45質量%以下とした。この遊離CaOは、粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、この粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、この粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグを、前記したエチレングリコール抽出-原子吸光分析法により測定することにより管理した。 30 kg of the blast furnace slow-cooled slag having the slag composition described above was subjected to atmospheric aging for 3 months so that the free CaO concentration contained was 0.45 mass% or less. For this free CaO, 1 kg of sample slag with a particle size of 0 to 25 mm was randomly collected, and all of them were coarsely crushed and reduced to a particle size of 5 mm or less, and 200 g sampled from the sample slag with a particle size of 5 mm or less 50 g sample slag which was pulverized and reduced to 1 mm or less and collected from this sample slag having a particle size of 1 mm or less was pulverized to a particle size of 0.25 mm or less, and the above-described ethylene glycol extraction-atomic absorption analysis method was used. It managed by measuring by.
なお、この測定管理は一般的な粒径25mm以下の高炉徐冷スラグであれば、3ヵ月大気エージングによって達成できているので、毎回測定する必要はない。また、エージング処理の方法は「大気エージング」に限定されず、要するに「含有する遊離CaO濃度を0.45質量%以下」で管理されれば十分であるから、加圧雰囲気や水蒸気雰囲気に暴露するエージング処理であってもよい。さらに、この後で炭酸化処理に供される直前のスラグは、この「エージング処理されたスラグ」をそのまま用いれば良いのだが、念のため説明すれば、エージング処理後の炭酸化処理までの期間は、長くても3ヵ月であって、その程度の期間延長ではスラグ中の遊離CaOは実質的に不変(変化率≦0.1%)である。 Note that this measurement management can be achieved by atmospheric aging for 3 months if it is a general blast furnace slow cooling slag having a particle size of 25 mm or less, so it is not necessary to measure each time. Further, the method of aging treatment is not limited to “atmospheric aging”. In short, it is sufficient to control the “contained free CaO concentration to 0.45% by mass or less”, so that it is exposed to a pressurized atmosphere or a water vapor atmosphere. An aging process may be used. Furthermore, the slag immediately before being subjected to the carbonation treatment after this can be used as it is, but, as a precaution, the period from the aging treatment to the carbonation treatment Is 3 months at the longest, and free CaO in the slag is substantially unchanged (rate of change ≦ 0.1%) with such a prolonged period.
また、前記したスラグ組成の転炉スラグ30kgを、大気圧下で、100℃の水蒸気雰囲気の中で72時間エージング処理(蒸気エージング)を施して、その含有する遊離CaO濃度を4.5質量%以下とした。この遊離CaO濃度は、粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、この粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、この粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグを、前記したエチレングリコール抽出-原子吸光分析法により測定することにより管理した。 Further, 30 kg of converter slag having the above-mentioned slag composition was subjected to aging treatment (steam aging) for 72 hours in a steam atmosphere at 100 ° C. under atmospheric pressure, and the free CaO concentration contained was 4.5 mass%. It was as follows. This free CaO concentration is obtained by randomly collecting 1 kg of sample slag having a particle size of 0 to 25 mm, coarsely crushing and reducing the whole to a particle size of 5 mm or less, and 200 g sampled from the sample slag having a particle size of 5 mm or less. 50 g of sample slag which was pulverized and reduced to a diameter of 1 mm or less, collected from the sample slag having a particle diameter of 1 mm or less and pulverized to a particle diameter of 0.25 mm or less was recovered by the above-described ethylene glycol extraction-atomic absorption analysis. We managed by measuring by the method.
なお、この測定管理も、一般的な粒径25mm以下の転炉スラグであれば、72時間の蒸気エージングによって通常達成できているので、毎回測定する必要はない。また、エージング処理の方法は「蒸気エージング」に限定されず、要するに「含有する遊離CaO濃度を4.5質量%以下」で管理されれば十分である。さらに、この後で炭酸化処理に供される直前のスラグは、この「エージング処理されたスラグ」をそのまま用いればよいのだが、念のため説明すればエージング処理後の炭酸化処理までの期間は、長くても3ヵ月であって、その程度の期間を大気雰囲気下で経過しても、そのスラグ中の遊離CaOは0〜4.5質量%の間にあって、実質的に不変(変化率≦0.1%)である。 In addition, this measurement management is normally achieved by steam aging for 72 hours if it is a converter slag having a general particle diameter of 25 mm or less, and therefore it is not necessary to measure each time. In addition, the method of aging treatment is not limited to “steam aging”, and in short, it is sufficient if the “contained free CaO concentration is 4.5 mass% or less”. Furthermore, the slag immediately before being subjected to the carbonation treatment after this can be used as it is, but for the sake of explanation, the period until the carbonation treatment after the aging treatment is as follows. Even if it is 3 months at the longest and a period of time has passed in the air atmosphere, the free CaO in the slag is between 0 and 4.5% by mass and is substantially unchanged (change rate ≦ 0.1%).
これらエージング処理が完了した高炉徐冷スラグおよび転炉スラグを、濃度20%の炭酸ガスをガス圧4kg/cm2で吹き込み続けて得られた炭酸水(自由水、pH3.5〜5.4、水温20℃)に浸漬した。 Carbonated water (free water, pH 3.5 to 5.4, obtained by continuously blowing carbon dioxide gas with a concentration of 20% at a gas pressure of 4 kg / cm 2 into the blast furnace slow-cooled slag and converter slag after the completion of the aging treatment. It was immersed in a water temperature of 20 ° C.
この浸漬処理の処理時間を変化させることで、炭酸化率15、16%に調整した高炉徐冷スラグおよび転炉スラグを表1に示す条件に配合し、一軸圧縮強度試験要領(JIS A5015準拠)に則り、供試体を作成した。なお、炭酸化率を15%とするための浸漬時間は、上記の炭酸水では5分であった。 By changing the treatment time of this immersion treatment, the blast furnace slow cooling slag and converter slag adjusted to a carbonation rate of 15 and 16% were blended under the conditions shown in Table 1, and the uniaxial compressive strength test procedure (conforming to JIS A5015) Specimens were prepared according to the above. In addition, the immersion time for setting the carbonation rate to 15% was 5 minutes in the above carbonated water.
比較例として用いた供試体は、炭酸化率12、14%に調整した高炉徐冷スラグおよび転炉スラグを表1に示す条件に配合し、一軸圧縮強度用供試体の作成要領(JIS A5015準拠)にて作成した。 A specimen used as a comparative example was prepared by blending a blast furnace slow-cooled slag and a converter slag adjusted to a carbonation rate of 12 and 14% under the conditions shown in Table 1 and preparing a specimen for uniaxial compressive strength (according to JIS A5015). ).
作成した供試体を封緘し、温度20℃の恒温槽内で養生した試験結果を表2に示す。
本発明により作成した供試体は、どの養生期間においても構成する各スラグ粒子同士が固結しておらず、指で軽く触れる程度の外力でばらばらとなる凝集体であった。
Table 2 shows the test results obtained by sealing the prepared specimen and curing it in a thermostatic chamber at a temperature of 20 ° C.
The specimen prepared according to the present invention was an agglomerate that was not consolidated with each other in any curing period and was separated by an external force that was lightly touched with a finger.
Claims (4)
(A)粒径25mm以下の高炉徐冷スラグをエージング処理して、そのエージング処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグに含有される遊離CaO含有率を、質量%で0.45%以下に管理すること。
(B)前記のエージング処理をしたスラグを、炭酸を含有しpHが3.5〜5.4に調整された自由水に浸漬する炭酸化処理によって、その炭酸化処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグの炭酸化率を15%以上に管理すること。
ここで、炭酸化率は、(炭酸化処理前のスラグ遊離CaO質量濃度―炭酸化処理後のスラグ遊離CaO質量濃度−炭酸化処理後のスラグ遊離Ca(OH)2質量濃度×0.76)/(炭酸化処理前のスラグ遊離CaO質量濃度)×100である。 A method for producing a civil engineering material which is produced by aging a blast furnace slow-cooled slag having a particle size of 25 mm or less and then performing a carbonation treatment, wherein the aging treatment and the carbonation treatment are performed as follows. A method for producing civil engineering materials.
(A) Aging treatment of blast furnace slow-cooled slag with a particle size of 25 mm or less, 1 kg of sample slag with a particle size of 0 to 25 mm after the aging treatment was randomly collected, and the whole was coarsely crushed and shrunk to a particle size of 5 mm or less 200 g taken from the sample slag having a particle size of 5 mm or less is crushed and reduced to a particle size of 1 mm or less, and 50 g taken from the sample slag having a particle size of 1 mm or less is crushed to a particle size of 0.25 mm or less. The free CaO content contained in the collected 50 g of sample slag should be controlled to 0.45% or less by mass%.
(B) By the carbonation process which immerses the slag which carried out the said aging process in the free water which contained carbonic acid and was adjusted to pH 3.5-5.4, the particle size 0-25 mm after the carbonation process 1 kg of the sample slag was randomly collected and the whole was coarsely crushed and reduced to a particle size of 5 mm or less, and 200 g collected from the sample slag having a particle size of 5 mm or less was pulverized and reduced to a particle size of 1 mm or less. The carbonation rate of 50 g of sample slag collected by pulverizing 50 g of sample slag having a particle diameter of 1 mm or less to a particle size of 0.25 mm or less should be controlled to 15% or more.
Here, the carbonation rate is (slag free CaO mass concentration before carbonation treatment−slag free CaO mass concentration after carbonation treatment−slag free Ca (OH) 2 mass concentration after carbonation treatment × 0.76) / (Slag free CaO mass concentration before carbonation treatment) × 100.
粒径25mm以下の転炉スラグをエージング処理し、その後さらに炭酸化処理を行って製造する土木用材の製造方法であって、そのエージング処理と炭酸化処理をそれぞれ次のように行う方法により製造した土木用材を質量%で70%以下配合することを特徴とする土木用材の製造方法製造方法。
(C)粒径25mm以下の転炉スラグをエージング処理して、そのエージング処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグに含有される遊離CaO含有率を、質量%で4.5%以下に管理すること。
(D)前記のエージング処理をしたスラグを、炭酸を含有しpHが3.5〜5.4に調整された自由水に浸漬する炭酸化処理によって、その炭酸化処理後の粒径0〜25mmのサンプルスラグをランダムに1kg採取してその全部を粒径5mm以下に粗粉砕・縮分し、当該粒径5mm以下のサンプルスラグから採取した200gを粒径1mm以下に粉砕・縮分し、当該粒径1mm以下のサンプルスラグから採取した50gを粒径0.25mm以下に粉砕して回収した50gのサンプルスラグの炭酸化率を15%以上に管理すること。
ここで、炭酸化率は、(炭酸化処理前のスラグ遊離CaO質量濃度―炭酸化処理後のスラグ遊離CaO質量濃度−炭酸化処理後のスラグ遊離Ca(OH)2質量濃度×0.76)/(炭酸化処理前のスラグ遊離CaO質量濃度)×100である。 Production of civil engineering materials produced by aging treatment of converter slag having a mass percentage of 100 to 30% and a particle size of 25 mm or less, followed by further carbonation treatment. A method for producing a civil engineering material, comprising blending 70% or less by mass of a civil engineering material produced by a method in which the aging treatment and carbonation treatment are respectively performed as follows.
(C) Aging of converter slag having a particle size of 25 mm or less, 1 kg of sample slag having a particle size of 0 to 25 mm after the aging treatment was randomly collected, and the whole was coarsely crushed and reduced to a particle size of 5 mm or less Then, 200 g collected from the sample slag having a particle size of 5 mm or less is crushed and reduced to a particle size of 1 mm or less, and 50 g collected from the sample slag having a particle size of 1 mm or less is crushed to a particle size of 0.25 mm or less and recovered. The content of free CaO contained in 50 g of sample slag thus obtained should be controlled to 4.5% or less by mass%.
(D) By the carbonation treatment in which the slag subjected to the aging treatment is immersed in free water containing carbonic acid and having a pH adjusted to 3.5 to 5.4, the particle size after the carbonation treatment is 0 to 25 mm. 1 kg of the sample slag was randomly sampled and coarsely crushed and reduced to a particle size of 5 mm or less. 200 g sampled from the sample slag having a particle size of 5 mm or less was crushed and reduced to a particle size of 1 mm or less. The carbonation rate of 50 g of sample slag collected by pulverizing 50 g of sample slag having a particle diameter of 1 mm or less to a particle size of 0.25 mm or less should be controlled to 15% or more.
Here, the carbonation rate is (slag free CaO mass concentration before carbonation treatment−slag free CaO mass concentration after carbonation treatment−slag free Ca (OH) 2 mass concentration after carbonation treatment × 0.76) / (Slag free CaO mass concentration before carbonation treatment) × 100.
The civil engineering material obtained by the carbonation treatment has a uniaxial compressive strength of 0.7 N / mm 2 or less based on JIS A 5015, and is obtained by eluting the civil engineering material based on JIS A 0058-1. The method for producing a civil engineering material according to claim 2 or 3, wherein the pH of said material is 8.0 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008174701A JP5126524B2 (en) | 2008-07-03 | 2008-07-03 | Manufacturing method for civil engineering materials using steel slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008174701A JP5126524B2 (en) | 2008-07-03 | 2008-07-03 | Manufacturing method for civil engineering materials using steel slag |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010013315A true JP2010013315A (en) | 2010-01-21 |
JP5126524B2 JP5126524B2 (en) | 2013-01-23 |
Family
ID=41699794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008174701A Active JP5126524B2 (en) | 2008-07-03 | 2008-07-03 | Manufacturing method for civil engineering materials using steel slag |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5126524B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014237559A (en) * | 2013-06-06 | 2014-12-18 | 電気化学工業株式会社 | Aggregate and manufacturing method thereof |
JP2019007202A (en) * | 2017-06-23 | 2019-01-17 | Jfeミネラル株式会社 | Subbase material and its construction method |
JP2021054678A (en) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | Geopolymer composition, manufacturing method thereof, and repair method for concrete structure |
CN112777995A (en) * | 2021-01-11 | 2021-05-11 | 中国建筑第五工程局有限公司 | Undisturbed shield muck non-fired product and preparation method thereof |
GB2596529A (en) * | 2020-06-29 | 2022-01-05 | Montanuniversitat Leoben | A method for separating a non-hydraulic phase from a hydraulic phase in a recyclable industry product |
WO2022264797A1 (en) * | 2021-06-14 | 2022-12-22 | Jfeスチール株式会社 | Method for estimating carbonation rate of steelmaking slag and method for carbonation treatment of steelmaking slag |
WO2024070961A1 (en) * | 2022-09-26 | 2024-04-04 | 株式会社トクヤマ | Geopolymer composition manufacturing method and geopolymer cured body manufacturing method |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62123046A (en) * | 1985-11-22 | 1987-06-04 | 株式会社神戸製鋼所 | Manufacture of hydraulic road bed material |
JPS62223044A (en) * | 1986-03-25 | 1987-10-01 | 住友金属工業株式会社 | Treatment of blast furnace slow-cooled slag |
JPH0762346A (en) * | 1993-08-27 | 1995-03-07 | Sumitomo Metal Ind Ltd | Manufacturing method of slag roadbed material |
JPH1095644A (en) * | 1996-09-17 | 1998-04-14 | Junzo Toyoda | Prevention of solidification of blast furnace granulated slug and solidification preventing system |
JP2003293345A (en) * | 2002-03-29 | 2003-10-15 | Nippon Steel Corp | Earthwork material using steel slag and its use |
JP2003327456A (en) * | 2002-05-14 | 2003-11-19 | Kokan Kogyo Kk | Method of treating granulated blastfurnace slag |
JP2003335558A (en) * | 2002-05-21 | 2003-11-25 | Kokan Kogyo Kk | Method for treating blast furnace granulated slag |
JP2004238234A (en) * | 2003-02-04 | 2004-08-26 | Jfe Steel Kk | Air-granulated slag, method for producing the same, method for treating the same, and fine aggregate for concrete |
JP2005047789A (en) * | 2003-07-14 | 2005-02-24 | Nippon Steel Corp | Method for stabilizing steelmaking slag and stabilized steelmaking slag |
JP2007247172A (en) * | 2006-03-14 | 2007-09-27 | Jfe Steel Kk | Roadbed material and its manufacturing method |
JP2007284268A (en) * | 2006-04-13 | 2007-11-01 | Nippon Steel Corp | Granulation method of powdered slag and granulated slag |
JP2009057257A (en) * | 2007-09-03 | 2009-03-19 | Nippon Steel Corp | Carbonated slag and carbonation method of slag |
-
2008
- 2008-07-03 JP JP2008174701A patent/JP5126524B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62123046A (en) * | 1985-11-22 | 1987-06-04 | 株式会社神戸製鋼所 | Manufacture of hydraulic road bed material |
JPS62223044A (en) * | 1986-03-25 | 1987-10-01 | 住友金属工業株式会社 | Treatment of blast furnace slow-cooled slag |
JPH0762346A (en) * | 1993-08-27 | 1995-03-07 | Sumitomo Metal Ind Ltd | Manufacturing method of slag roadbed material |
JPH1095644A (en) * | 1996-09-17 | 1998-04-14 | Junzo Toyoda | Prevention of solidification of blast furnace granulated slug and solidification preventing system |
JP2003293345A (en) * | 2002-03-29 | 2003-10-15 | Nippon Steel Corp | Earthwork material using steel slag and its use |
JP2003327456A (en) * | 2002-05-14 | 2003-11-19 | Kokan Kogyo Kk | Method of treating granulated blastfurnace slag |
JP2003335558A (en) * | 2002-05-21 | 2003-11-25 | Kokan Kogyo Kk | Method for treating blast furnace granulated slag |
JP2004238234A (en) * | 2003-02-04 | 2004-08-26 | Jfe Steel Kk | Air-granulated slag, method for producing the same, method for treating the same, and fine aggregate for concrete |
JP2005047789A (en) * | 2003-07-14 | 2005-02-24 | Nippon Steel Corp | Method for stabilizing steelmaking slag and stabilized steelmaking slag |
JP2007247172A (en) * | 2006-03-14 | 2007-09-27 | Jfe Steel Kk | Roadbed material and its manufacturing method |
JP2007284268A (en) * | 2006-04-13 | 2007-11-01 | Nippon Steel Corp | Granulation method of powdered slag and granulated slag |
JP2009057257A (en) * | 2007-09-03 | 2009-03-19 | Nippon Steel Corp | Carbonated slag and carbonation method of slag |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014237559A (en) * | 2013-06-06 | 2014-12-18 | 電気化学工業株式会社 | Aggregate and manufacturing method thereof |
JP2019007202A (en) * | 2017-06-23 | 2019-01-17 | Jfeミネラル株式会社 | Subbase material and its construction method |
JP2021054678A (en) * | 2019-09-30 | 2021-04-08 | 積水化学工業株式会社 | Geopolymer composition, manufacturing method thereof, and repair method for concrete structure |
JP7389603B2 (en) | 2019-09-30 | 2023-11-30 | 積水化学工業株式会社 | Geopolymer composition and method for producing the same, and method for repairing concrete structures |
GB2596529A (en) * | 2020-06-29 | 2022-01-05 | Montanuniversitat Leoben | A method for separating a non-hydraulic phase from a hydraulic phase in a recyclable industry product |
CN112777995A (en) * | 2021-01-11 | 2021-05-11 | 中国建筑第五工程局有限公司 | Undisturbed shield muck non-fired product and preparation method thereof |
CN112777995B (en) * | 2021-01-11 | 2023-07-25 | 中国建筑第五工程局有限公司 | Undisturbed shield slag soil baking-free product and preparation method thereof |
WO2022264797A1 (en) * | 2021-06-14 | 2022-12-22 | Jfeスチール株式会社 | Method for estimating carbonation rate of steelmaking slag and method for carbonation treatment of steelmaking slag |
WO2024070961A1 (en) * | 2022-09-26 | 2024-04-04 | 株式会社トクヤマ | Geopolymer composition manufacturing method and geopolymer cured body manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP5126524B2 (en) | 2013-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5126524B2 (en) | Manufacturing method for civil engineering materials using steel slag | |
Ince et al. | Utilisation of waste marble dust for improved durability and cost efficiency of pozzolanic concrete | |
Lu et al. | Properties investigation of recycled aggregates and concrete modified by accelerated carbonation through increased temperature | |
Xiang et al. | Usage of biowashing to remove impurities and heavy metals in raw phosphogypsum and calcined phosphogypsum for cement paste preparation | |
Lim et al. | Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess | |
CN105316001B (en) | A kind of red mud granular soil renovation agent and preparation method thereof | |
KR101719832B1 (en) | Expansive admixture and method for producing same | |
Zhang et al. | Effects of slag-based cementitious material on the mechanical behavior and heavy metal immobilization of mine tailings based cemented paste backfill | |
JP3828897B2 (en) | Method for stabilizing steelmaking slag and stabilized steelmaking slag | |
Elkhebu et al. | Alkaline activation of clayey soil using potassium hydroxide & fly ash | |
Ramadoss et al. | Alternative approach for traditional slaking and grinding of air lime mortar for restoration of heritage structures: natural polymer | |
Hu et al. | Chloride transport and thermoactivated modification of sustainable cement-based materials with high-content waste concrete powder | |
JP6142760B2 (en) | Strength prediction method for modified soil | |
Lyu et al. | The production of artificial aggregates with flue gas desulfurization ash: Development of a novel carbonation route | |
JP2003212617A (en) | Hydraulic material composition for carbonated cured product and method for producing carbonated cured product using the same | |
JP2009028639A (en) | Sludge treatment method | |
Kadhim et al. | Using geopolymers materials for remediation of lead-contaminated soil | |
Ayininuola et al. | Bone ash influence on soil consolidation | |
Ji et al. | Effect of ester modified triethanolamine on the grinding quality of cement: Insight from fractal and multifractal analysis | |
JP2008285380A (en) | Cement admixture and cement composition | |
JP6195460B2 (en) | Method for producing anti-bleeding agent for concrete and method for producing cement composition containing the anti-bleeding agent for concrete | |
Yi et al. | Potential of desulfurized gypsum as a sulfate alternative in preparing solid waste-based limestone calcined clay cement (LC3) and its effects on early properties | |
Tuleun et al. | Laboratory evaluation of the performance of calcium carbide waste (hydrate lime) in concrete | |
Huat et al. | Effect of cement-sodium silicate grout and kaolinite on undrained shear strength of reinforced peat | |
JP2013028518A (en) | Artificial stone made of expansion-controlled iron and steel slag hydration-solidified body, and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120321 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121011 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121016 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5126524 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151109 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |