[go: up one dir, main page]

JP2010009840A - Battery pack and battery system equipped with it - Google Patents

Battery pack and battery system equipped with it Download PDF

Info

Publication number
JP2010009840A
JP2010009840A JP2008165978A JP2008165978A JP2010009840A JP 2010009840 A JP2010009840 A JP 2010009840A JP 2008165978 A JP2008165978 A JP 2008165978A JP 2008165978 A JP2008165978 A JP 2008165978A JP 2010009840 A JP2010009840 A JP 2010009840A
Authority
JP
Japan
Prior art keywords
storage battery
battery
storage
capacity
batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165978A
Other languages
Japanese (ja)
Inventor
Naoyoshi Shibuya
直慶 渋谷
Hideji Asano
秀二 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008165978A priority Critical patent/JP2010009840A/en
Publication of JP2010009840A publication Critical patent/JP2010009840A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

【課題】組電池を構成する蓄電池数が増加した場合でも、蓄電池間の容量ばらつきが抑制され、容量の低い蓄電池の過充電または過放電(逆充電)による性能劣化が確実に抑制される高信頼性の組電池を提供する。
【解決手段】本発明の組電池は、蓄電池Aの複数個が直列に接続された蓄電池群A、および蓄電池群Aと直列に接続された、蓄電池Aよりも低容量である蓄電池Bの1個からなり、蓄電池Aは蓄電池Bよりも充電電気量が大きい状態に設定されている。
【選択図】図1
[PROBLEMS] To achieve high reliability in which variation in capacity between storage batteries is suppressed even when the number of storage batteries constituting an assembled battery increases, and performance deterioration due to overcharge or overdischarge (reverse charging) of storage batteries with low capacity is reliably suppressed. Providing sex assembled battery.
A battery pack according to the present invention includes a storage battery group A in which a plurality of storage batteries A are connected in series, and one storage battery B connected in series with the storage battery group A and having a lower capacity than the storage battery A. The storage battery A is set to a state in which the amount of charged electricity is larger than that of the storage battery B.
[Selection] Figure 1

Description

本発明は、直列に接続された個々の蓄電池の性能が確実に発揮される高信頼性の組電池、およびそれを備えた電池システムに関する。   The present invention relates to a highly reliable assembled battery in which the performance of individual storage batteries connected in series is reliably exhibited, and a battery system including the battery pack.

従来から、各種電子機器の電源として、ニッケルカドミウム電池およびニッケル水素電池のようなアルカリ蓄電池、鉛蓄電池、ならびにリチウム蓄電池が広く用いられている。これらの蓄電池は、通常、これらの電池の複数個を直列・並列に接続した組電池として用いられている。組電池を搭載した機器での動作時間は、組電池の放電終止電圧の設定により決定される。   Conventionally, alkaline power storage batteries such as nickel cadmium batteries and nickel metal hydride batteries, lead storage batteries, and lithium storage batteries have been widely used as power sources for various electronic devices. These storage batteries are usually used as assembled batteries in which a plurality of these batteries are connected in series and in parallel. The operation time in the device equipped with the assembled battery is determined by setting the discharge end voltage of the assembled battery.

機器においてこの放電終止電圧が設定されていない場合、またはその設定値が不適切な場合、組電池は低い電圧まで放電されることになる。組電池を構成する蓄電池間の容量にばらつきがあると、組電池の過放電時に容量が小さい蓄電池は強制的に放電され転極する可能性がある。このような過放電による転極が繰り返されると、容量が小さい蓄電池の性能が著しく劣化し、それに伴い組電池の性能が劣化する。具体的には、機器動作時間が短くなる、または使用回数が少なくなることにより、組電池の信頼性が低下する。このような組電池の信頼性低下は、組電池を構成する蓄電池の数が多いほど顕著になる。   If the discharge end voltage is not set in the device, or if the set value is inappropriate, the assembled battery is discharged to a low voltage. If there is a variation in the capacity between the storage batteries constituting the assembled battery, the storage battery having a small capacity may be forcibly discharged and reversed when the assembled battery is overdischarged. When the reversal by such overdischarge is repeated, the performance of the storage battery having a small capacity is remarkably deteriorated, and accordingly, the performance of the assembled battery is deteriorated. Specifically, the reliability of the assembled battery is lowered by shortening the device operation time or reducing the number of times of use. Such a decrease in reliability of the assembled battery becomes more significant as the number of storage batteries constituting the assembled battery increases.

一方、組電池の充電においても、組電池を構成する蓄電池間の容量にばらつきがある場合、充電制御方法によっては、容量が小さい蓄電池が過充電される場合がある。過充電が繰り返されると、容量が小さい蓄電池の性能が著しく劣化し、組電池の性能が著しく劣化する。このような過放電および過充電は、リチウム蓄電池の場合、安全性の面でも問題となる。   On the other hand, in the charging of the assembled battery, if there is variation in the capacity between the storage batteries constituting the assembled battery, the storage battery having a small capacity may be overcharged depending on the charging control method. When overcharge is repeated, the performance of the storage battery having a small capacity is remarkably deteriorated, and the performance of the assembled battery is remarkably deteriorated. Such overdischarge and overcharge are problematic in terms of safety in the case of a lithium storage battery.

上記のような過放電および過充電による組電池の性能劣化を回避するため、各蓄電池が適正な放電終止電圧および充電深度を維持できるように配慮する必要がある。組電池の充放電を適正に制御するためには、複雑な回路およびアルゴリズムが必要であり、機器価格が上昇する。このような充放電を制御する機能を備えていない機器も多数存在する。
例えば、複数の蓄電池を接続した組電池において低容量の蓄電池に充電制御用センサーまたは安全素子を配置して充電電気量を規制し、各蓄電池の充電電気量を低容量の蓄電池に揃えて過放電による転極(逆充電)を回避することが提案されている。(例えば、特許文献1を参照)
特許第3397854号明細書
In order to avoid performance deterioration of the assembled battery due to overdischarge and overcharge as described above, it is necessary to consider that each storage battery can maintain an appropriate discharge end voltage and charge depth. In order to properly control the charging / discharging of the assembled battery, complicated circuits and algorithms are required, and the price of the equipment increases. There are many devices that do not have a function of controlling such charge / discharge.
For example, in an assembled battery in which multiple storage batteries are connected, a charge control sensor or safety element is placed on a low-capacity storage battery to regulate the amount of charge, and the amount of charge in each storage battery is aligned with that of the low-capacity storage battery. It has been proposed to avoid reversal (reverse charging) due to. (For example, see Patent Document 1)
Japanese Patent No. 3397854

しかしながら、組電池を構成する蓄電池数が増加すると、組電池内において温度ばらつきが大きくなる。低容量の蓄電池に充電制御用センサー類を配置した組電池では、組電池内の温度ばらつきによる充電性能ばらつきを規制するのは困難である。また、充放電の繰り返しに伴い、蓄電池間に容量変動を生じるため、充電のみで組電池の各蓄電池の容量を揃えることは困難となる。このように、特許文献1記載の方法では、過放電による転極を確実に回避することは困難である。   However, when the number of storage batteries constituting the assembled battery increases, temperature variation in the assembled battery increases. In an assembled battery in which charging control sensors are arranged in a low-capacity storage battery, it is difficult to regulate charging performance variation due to temperature variation in the assembled battery. Moreover, since capacity | capacitance fluctuation | variation arises between storage batteries with the repetition of charging / discharging, it becomes difficult to arrange the capacity | capacitance of each storage battery of an assembled battery only by charge. Thus, with the method described in Patent Document 1, it is difficult to reliably avoid inversion by overdischarge.

そこで、本発明は、上記従来の問題を解決するため、組電池を構成する蓄電池数が増加した場合でも、蓄電池間の容量ばらつきが抑制され、容量の小さい蓄電池の過充電または過放電(逆充電)による性能劣化が確実に抑制される高信頼性の組電池およびそれを備えた電池システムを提供することを目的とする。   Therefore, in order to solve the above-described conventional problems, the present invention suppresses capacity variation between storage batteries even when the number of storage batteries constituting the assembled battery increases, and overcharges or overdischarges (reverse charging) of storage batteries with a small capacity. It is an object of the present invention to provide a highly reliable assembled battery in which the performance deterioration due to (2) is surely suppressed and a battery system including the same.

本発明の組電池は、蓄電池Aの複数個が直列に接続された蓄電池群A、および前記蓄電池群Aと直列に接続された、前記蓄電池Aよりも低容量である蓄電池Bの1個からなり、前記蓄電池Aは前記蓄電池Bよりも充電電気量が大きい状態に設定されていることを特徴とする。
前記蓄電池Bに基づく充放電制御により、前記蓄電池群AはSOC10〜100%に制御されているのが好ましい。
The assembled battery of the present invention comprises a storage battery group A in which a plurality of storage batteries A are connected in series, and a storage battery B that is connected in series with the storage battery group A and has a lower capacity than the storage battery A. The storage battery A is set to have a larger amount of charge electricity than the storage battery B.
The storage battery group A is preferably controlled to SOC 10 to 100% by charge / discharge control based on the storage battery B.

また、本発明は、上記の組電池と、前記蓄電池Bの電圧および温度に基づいて前記組電池の充放電を制御する充放電制御部と、を備えることを特徴とする電池システムに関する。
前記充放電制御部により、前記蓄電池群AはSOC10〜100%に制御されているのが好ましい。
The present invention also relates to a battery system comprising: the above assembled battery; and a charge / discharge control unit that controls charging / discharging of the assembled battery based on the voltage and temperature of the storage battery B.
It is preferable that the storage battery group A is controlled to SOC 10 to 100% by the charge / discharge control unit.

本発明によれば、組電池を構成する蓄電池数が多い場合でも、容量の低い蓄電池の過充電および過放電(逆充電)を確実に抑制することが可能な組電池を提供することができる。これにより、蓄電池の性能劣化を抑制することができ、組電池の充放電サイクル特性および信頼性が向上する。また、上記組電池を用いることにより、制御部の回路およびアルゴリズムを簡素化でき、安価な電池システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even when there are many storage batteries which comprise an assembled battery, the assembled battery which can suppress reliably overcharge and overdischarge (reverse charge) of a storage battery with a low capacity | capacitance can be provided. Thereby, the performance deterioration of a storage battery can be suppressed and the charging / discharging cycle characteristic and reliability of an assembled battery improve. Further, by using the assembled battery, the circuit and algorithm of the control unit can be simplified, and an inexpensive battery system can be provided.

本発明は、蓄電池を直列に接続した組電池に関する。蓄電池Aの複数個が直列に接続された蓄電池群A、および蓄電池群Aと直接に接続された、蓄電池A(蓄電池群A)よりも低容量の蓄電池(蓄電池B)の1個からなり、初期状態において蓄電池A(蓄電池群A)は蓄電池Bよりも充電電気量が大きい状態に設定されている組電池を構成する点に特徴を有する。これにより、組電池を構成する蓄電池の数が多い場合でも、蓄電池間の容量ばらつきが抑制され、容量の低い蓄電池が過充電および過放電(逆充電)されないように充放電することが可能であり、組電池の充放電サイクル特性および信頼性が向上する。
蓄電池群AはSOC10〜100%に制御されるのが好ましい。なお、SOCとは、満充電時の充電電気量(100%)に対する充電された電気量の割合を示す。良好な放電特性が得られると同時に、優れた充放電サイクル寿命特性が得られる。より好ましくは、蓄電池群A(蓄電池A)はSOC20〜80%の範囲に制御されている。
The present invention relates to an assembled battery in which storage batteries are connected in series. A storage battery group A in which a plurality of storage batteries A are connected in series, and one storage battery (storage battery B) having a capacity lower than that of the storage battery A (storage battery group A) connected directly to the storage battery group A. In the state, the storage battery A (storage battery group A) is characterized in that it constitutes an assembled battery set in a state in which the amount of charged electricity is larger than that of the storage battery B. Thereby, even when the number of storage batteries constituting the assembled battery is large, it is possible to charge and discharge so that the capacity variation between the storage batteries is suppressed and the storage battery having a low capacity is not overcharged and overdischarged (reversely charged). The charge / discharge cycle characteristics and reliability of the assembled battery are improved.
The storage battery group A is preferably controlled to SOC 10 to 100%. In addition, SOC shows the ratio of the charged electric charge with respect to the charged electric charge (100%) at the time of full charge. Good discharge characteristics can be obtained, and at the same time, excellent charge / discharge cycle life characteristics can be obtained. More preferably, the storage battery group A (storage battery A) is controlled in the range of SOC 20 to 80%.

また、本発明は、上記組電池と、蓄電池Bの電圧および温度(以下、電圧等とする。)に基づいて組電池の充放電を制御する充放電制御部と、を備えた電池システムに関する。蓄電池Bの電圧等に基づいて組電池の充放電を制御することにより、充放電時の蓄電池群AのSOCを一定の範囲(例えば、SOC10〜100%)に制御することができる。このため、蓄電池群Aを構成するいずれの蓄電池Aも、過充電および過放電(逆充電)されない。また、蓄電池Bは直接制御されるため、上記と同様に性能劣化しない。したがって、組電池を構成する蓄電池AおよびBの性能劣化による組電池の性能劣化が抑制され、組電池の信頼性および充放電サイクル特性が向上する。   Moreover, this invention relates to the battery system provided with the said assembled battery and the charging / discharging control part which controls charging / discharging of an assembled battery based on the voltage and temperature (henceforth voltage) of the storage battery B. FIG. By controlling charging / discharging of the assembled battery based on the voltage of the storage battery B, the SOC of the storage battery group A at the time of charging / discharging can be controlled within a certain range (for example, SOC 10 to 100%). For this reason, none of the storage batteries A constituting the storage battery group A is overcharged or overdischarged (reverse charged). Further, since the storage battery B is directly controlled, the performance does not deteriorate as described above. Therefore, the performance deterioration of the assembled battery due to the performance deterioration of the storage batteries A and B constituting the assembled battery is suppressed, and the reliability and charge / discharge cycle characteristics of the assembled battery are improved.

また、本発明の電池システムでは、組電池を構成する蓄電池毎に監視する必要がなく、蓄電池Bの1個のみを監視して組電池の充放電を容易に制御できるため、充放電制御部(例えば、制御回路やアルゴリズム)を簡素化でき、安価でシンプルな電池システムを構成することができる。
充放電制御部により、蓄電池群AはSOC10〜100%に制御されているのが好ましい。組電池を最適の条件で作動させることができ、良好な放電特性が得られると同時に、優れた充放電サイクル寿命特性が得られる。より好ましくは、蓄電池群AのSOCは20〜80%の範囲に制御されている。
Moreover, in the battery system of this invention, since it is not necessary to monitor for every storage battery which comprises an assembled battery, since only one storage battery B can be monitored and charging / discharging of an assembled battery can be controlled easily, a charging / discharging control part ( For example, a control circuit and an algorithm) can be simplified, and an inexpensive and simple battery system can be configured.
It is preferable that the storage battery group A is controlled to SOC 10 to 100% by the charge / discharge control unit. The assembled battery can be operated under optimum conditions, and good discharge characteristics can be obtained, and at the same time, excellent charge / discharge cycle life characteristics can be obtained. More preferably, the SOC of the storage battery group A is controlled in the range of 20 to 80%.

蓄電池AおよびBには、例えば、ニッケル水素蓄電池等のアルカリ蓄電池、鉛蓄電池、リチウムイオン二次電池が挙げられる。
蓄電池AおよびBの容量は、活物質量を調整することにより制御することができる。例えば、蓄電池AおよびBにニッケル水素蓄電池を用いる場合、蓄電池Bでは、蓄電池Aよりも、正極活物質量(水酸化ニッケル充填量)を減らすことにより、蓄電池Aよりも低容量の蓄電池Bが得られる。
Examples of the storage batteries A and B include alkaline storage batteries such as nickel metal hydride storage batteries, lead storage batteries, and lithium ion secondary batteries.
The capacities of the storage batteries A and B can be controlled by adjusting the amount of the active material. For example, when nickel-metal hydride storage batteries are used for the storage batteries A and B, the storage battery B can obtain a storage battery B having a lower capacity than the storage battery A by reducing the amount of positive electrode active material (filling amount of nickel hydroxide). It is done.

蓄電池Bの容量は、蓄電池Aの容量よりも10〜50%低いのが好ましい。例えば、蓄電池Aの実際の容量に応じて、蓄電池Bの容量を決めればよい。蓄電池Aは、例えば、蓄電池Bよりも蓄電池AのSOC10〜20%だけ充電電気量が大きい。   The capacity of the storage battery B is preferably 10 to 50% lower than the capacity of the storage battery A. For example, the capacity of the storage battery B may be determined according to the actual capacity of the storage battery A. For example, the storage battery A has a larger amount of charge electricity than the storage battery B by the SOC 10 to 20% of the storage battery A.

組電池の充電方法としては、例えば、定電流充電、または定電流・定電圧充電が挙げられる。定電流充電の場合、例えば、蓄電池Bの温度(または温度変化)または電圧が所定値に到達するまで、組電池を定電流充電すればよい。定電流・定電圧充電の場合、例えば、上記と同様に定電流充電した後、蓄電池Bの電流が所定値に到達するまで、組電池を定電圧充電すればよい。
組電池の放電方法としては、例えば、蓄電池Bの電圧が所定値に到達するまで、定電流放電することが挙げられる。
充放電制御部は、蓄電池Bを監視(例えば、蓄電池Bの電圧、温度、または電流を監視)し、それに基づいて、組電池の充放電を制御する機能を有する。このように、充放電時に組電池における蓄電池Bのみを監視すればよく、蓄電池毎に監視する必要がないため、システムを簡素化できる。
Examples of the method for charging the assembled battery include constant current charging or constant current / constant voltage charging. In the case of constant current charging, for example, the assembled battery may be charged with constant current until the temperature (or temperature change) or voltage of the storage battery B reaches a predetermined value. In the case of constant current / constant voltage charging, for example, after charging with constant current in the same manner as described above, the assembled battery may be charged with constant voltage until the current of the storage battery B reaches a predetermined value.
As a method for discharging the assembled battery, for example, constant current discharge is performed until the voltage of the storage battery B reaches a predetermined value.
The charge / discharge control unit has a function of monitoring the storage battery B (for example, monitoring the voltage, temperature, or current of the storage battery B) and controlling charging / discharging of the assembled battery based on the monitoring. Thus, it is only necessary to monitor the storage battery B in the assembled battery at the time of charging and discharging, and it is not necessary to monitor every storage battery, so the system can be simplified.

以下、本発明の実施例を詳細に説明するが、本発明は、これらの実施例に限定されない。
《実施例1》
以下の手順により、図1に示す電池システムを構成した。図1は本発明の実施例1の電池システムの概略構成図である。
以下の蓄電池Aを複数個準備した。また、以下の蓄電池Bを1個準備した。
蓄電池A:公称容量3.0Ahのニッケル水素蓄電池(松下電器産業(株)製、HH R300SCP)
蓄電池B:公称容量2.6Ahのニッケル水素蓄電池(松下電器産業(株)製、HH R260SCP)
なお、蓄電池AおよびBの実際の電池容量を以下の手順で求めた。蓄電池Aおよび蓄電池Bを、25℃環境下にて0.1It(A)の定電流で16時間充電した後、1時間休止した。その後、0.2It(A)の定電流で電池電圧1.0Vに達するまで放電し、その時の放電容量を測定した。It(A)とは、公称容量(Ah)/1(h)(1CA)のことを意味する。例えば、0.1It(A)は、公称容量(Ah)/10(h)である。
Examples of the present invention will be described in detail below, but the present invention is not limited to these examples.
Example 1
The battery system shown in FIG. 1 was configured by the following procedure. FIG. 1 is a schematic configuration diagram of a battery system according to a first embodiment of the present invention.
A plurality of the following storage batteries A were prepared. Moreover, the following storage battery B was prepared.
Storage battery A: Nickel metal hydride storage battery with a nominal capacity of 3.0 Ah (manufactured by Matsushita Electric Industrial Co., Ltd., HH R300SCP)
Storage battery B: Nickel metal hydride storage battery with a nominal capacity of 2.6 Ah (manufactured by Matsushita Electric Industrial Co., Ltd., HH R260SCP)
In addition, the actual battery capacity of the storage batteries A and B was calculated | required in the following procedures. Storage battery A and storage battery B were charged for 16 hours at a constant current of 0.1 It (A) in a 25 ° C. environment, and then rested for 1 hour. Thereafter, the battery was discharged at a constant current of 0.2 It (A) until the battery voltage reached 1.0 V, and the discharge capacity at that time was measured. It (A) means nominal capacity (Ah) / 1 (h) (1CA). For example, 0.1 It (A) is nominal capacity (Ah) / 10 (h).

複数の蓄電池Aの中から放電容量の幅が50mAh以下となるように蓄電池Aを14個選別した。電池を選別後、SOC10%(充電容量300mAh)に達するまで0.1Itの定電流で充電した。SOC10%の蓄電池Aの14個を直列に接続して蓄電池群Aを作製した。さらに、蓄電池群Aを作動させるSOC領域を設定するため、放電状態の蓄電池Bの1個を蓄電池群Aに直列に接続した。このようにして、図1に示すような、蓄電池Aの14個(n=14)からなる蓄電池群A1および蓄電池B2の1個を直列に接続した組電池3を作製した。
組電池3の正極端子5および負極端子6を充放電評価装置(東洋システム(株)製、TOSCAT3000)に接続した。このとき、蓄電池Bに、蓄電池Bの温度を測定するための温度センサー(熱電対)を設置し、蓄電池Bの電圧を測定するための端子を接続した。上記の充放電評価装置は、温度センサーおよび端子で検知した電圧および温度を監視しながら組電池の充放電を制御する充放電制御部4を備える。このようにして、充放電制御部4および組電池1からなる電池システムを構成した。
Fourteen storage batteries A were selected from the plurality of storage batteries A so that the discharge capacity width was 50 mAh or less. After sorting the batteries, the batteries were charged with a constant current of 0.1 It until the SOC reached 10% (charging capacity 300 mAh). A storage battery group A was prepared by connecting 14 batteries 10% SOC A in series. Furthermore, in order to set the SOC region for operating the storage battery group A, one of the discharged storage batteries B was connected to the storage battery group A in series. In this manner, as shown in FIG. 1, an assembled battery 3 was produced in which one of the storage battery group A1 and the storage battery B2 composed of 14 storage batteries A (n = 14) were connected in series.
The positive electrode terminal 5 and the negative electrode terminal 6 of the assembled battery 3 were connected to a charge / discharge evaluation apparatus (TOSCAT 3000, manufactured by Toyo System Co., Ltd.). At this time, a temperature sensor (thermocouple) for measuring the temperature of the storage battery B was installed in the storage battery B, and a terminal for measuring the voltage of the storage battery B was connected. Said charging / discharging evaluation apparatus is provided with the charging / discharging control part 4 which controls charging / discharging of an assembled battery, monitoring the voltage and temperature which were detected with the temperature sensor and the terminal. Thus, the battery system which consists of the charging / discharging control part 4 and the assembled battery 1 was comprised.

[評価]
25℃環境下にて、以下の条件で組電池について充放電サイクル寿命試験を実施した。
充電:3Aの定電流で充電した。蓄電池Bの温度変化値により充電制御した。具体 的には、蓄電池Bにおいて1分間あたりの温度変化(上昇)率が0.8℃/ minに達した時点で充電を終了した。
休止:充電終了後、30分間休止した。
放電:蓄電池Bの閉路電圧が0.6Vに達するまで、10Aの定電流で組電池を放 電した。
休止:放電終了後、1時間休止した。
上記充放電を繰り返し、放電容量が初期の放電容量の90%以下となった時点を寿命とし、その時のサイクル数を調べた。
[Evaluation]
In a 25 ° C. environment, a charge / discharge cycle life test was conducted on the assembled battery under the following conditions.
Charging: The battery was charged with a constant current of 3A. Charge control was performed according to the temperature change value of the storage battery B. Specifically, charging was terminated when the rate of temperature change (increase) per minute in storage battery B reached 0.8 ° C./min.
Pause: Pause for 30 minutes after the end of charging.
Discharge: The battery pack was discharged at a constant current of 10 A until the closed circuit voltage of the storage battery B reached 0.6V.
Pause: Pause for 1 hour after the end of discharge.
The above charging / discharging was repeated, the time when the discharge capacity became 90% or less of the initial discharge capacity was regarded as the life, and the number of cycles at that time was examined.

《実施例2》
蓄電池Bに公称容量2.4Ahのニッケル水素蓄電池(松下電器産業(株)製、HHR240SCP)を用い、蓄電池群Aを構成するすべての蓄電池AのSOCを20%(600mAh)とした以外、実施例1と同様の方法により電池システムを構成した。
上記電池システムにて、実施例1と同様の条件で充放電サイクル試験を実施した。なお、充放電時の蓄電池群AのSOCは20〜100%であった。
Example 2
Example: A nickel-metal hydride storage battery having a nominal capacity of 2.4 Ah (manufactured by Matsushita Electric Industrial Co., Ltd., HHR240SCP) was used as the storage battery B, and the SOC of all the storage batteries A constituting the storage battery group A was 20% (600 mAh). The battery system was configured in the same manner as in 1.
A charge / discharge cycle test was conducted under the same conditions as in Example 1 using the battery system. In addition, SOC of the storage battery group A at the time of charging / discharging was 20 to 100%.

《比較例1》
容量3.0Ahの蓄電池Aの代わりに容量2.6Ahの蓄電池Bを用いて蓄電池群Aを構成した。すなわち、蓄電池Bのみで組電池を構成した。これ以外、実施例1と同様の方法により電池システムを構成した。なお、充放電時の蓄電池群AのSOCは0〜100%であった。
充電制御するための温度センサーを、組電池を構成する任意の蓄電池Bに設置した。上記以外、実施例1と同様の条件で充放電サイクル試験を実施した。
<< Comparative Example 1 >>
A storage battery group A was constructed using a storage battery B having a capacity of 2.6 Ah instead of the storage battery A having a capacity of 3.0 Ah. That is, the assembled battery was composed only of the storage battery B. Except for this, a battery system was configured in the same manner as in Example 1. In addition, SOC of the storage battery group A at the time of charging / discharging was 0 to 100%.
The temperature sensor for charge control was installed in the arbitrary storage battery B which comprises an assembled battery. Except for the above, a charge / discharge cycle test was performed under the same conditions as in Example 1.

《比較例2》
蓄電池群Aを構成するすべての蓄電池AのSOCを0%とした以外、実施例1と同様の方法により電池システムを構成した。上記以外、実施例1と同様の条件で充放電サイクル試験を実施した。なお、充放電時の蓄電池群AのSOCは0〜87%であった。
各組電池の構成を表1にまとめる。
<< Comparative Example 2 >>
A battery system was configured in the same manner as in Example 1 except that the SOC of all the storage batteries A constituting the storage battery group A was 0%. Except for the above, a charge / discharge cycle test was performed under the same conditions as in Example 1. In addition, SOC of the storage battery group A at the time of charging / discharging was 0 to 87%.
Table 1 summarizes the configuration of each assembled battery.

Figure 2010009840
Figure 2010009840

サイクル寿命試験結果を表2に示す。なお、表2中の寿命サイクル数の値は、比較例1の組電池の寿命サイクル数を100とした相対値である。   The cycle life test results are shown in Table 2. In addition, the value of the life cycle number in Table 2 is a relative value with the life cycle number of the assembled battery of Comparative Example 1 as 100.

Figure 2010009840
Figure 2010009840

本発明の実施例1および実施例2の組電池では、比較例1および比較例2の組電池に比べて、充放電サイクル寿命特性が大幅に向上した。
比較例1の組電池では、充放電サイクル初期において、蓄電池間の容量バランスが崩れ(容量ばらつきが大きくなり)、過放電に伴う転極により、蓄電池が劣化した。比較例2の組電池では、充放電サイクル初期において、蓄電池間の容量バランスの崩れは抑制されたが、充放電サイクルが進むに伴い、容量バランスが崩れ、過放電に伴う転極により、蓄電池が劣化した。
In the assembled batteries of Example 1 and Example 2 of the present invention, the charge / discharge cycle life characteristics were significantly improved as compared with the assembled batteries of Comparative Example 1 and Comparative Example 2.
In the assembled battery of Comparative Example 1, at the beginning of the charge / discharge cycle, the capacity balance between the storage batteries collapsed (capacity variation increased), and the storage batteries deteriorated due to the reversal due to overdischarge. In the assembled battery of Comparative Example 2, in the initial charge / discharge cycle, the capacity balance between the storage batteries was suppressed. However, as the charge / discharge cycle progressed, the capacity balance was lost, and the reversal due to overdischarge caused the storage battery to Deteriorated.

本発明の実施例1および2の組電池では、初期容量の90%となるまで蓄電池間の容量バランスの崩れは抑制され、充放電サイクル寿命特性が大幅に向上した。蓄電池Bの充放電制御により、蓄電池群AのSOCが10〜90%または20〜100%に制御され、過充電または過放電(逆充電)が抑制された。   In the assembled batteries of Examples 1 and 2 of the present invention, the collapse of the capacity balance between the storage batteries was suppressed until 90% of the initial capacity, and the charge / discharge cycle life characteristics were greatly improved. The SOC of the storage battery group A was controlled to 10 to 90% or 20 to 100% by charge / discharge control of the storage battery B, and overcharge or overdischarge (reverse charge) was suppressed.

上記実施例では、蓄電池Bの初期のSOCを0%としたが、蓄電池Bの初期のSOCはこれに限定されない。蓄電池Bの初期のSOCが蓄電池Aの初期のSOCよりも低ければ、上記と同様の効果が得られる。また、上記実施例では、蓄電池Aを14個用いたが、蓄電池Aの個数はこれに限定されない。
蓄電池Bの容量と蓄電池A(蓄電池群A)の容量を調整して、蓄電池群Aの作動領域をさらに狭くする(例えば、SOC20〜80%とする)ことにより、充放電可能な電気量は低下するが、組電池のサイクル寿命特性はさらに向上する。
In the above embodiment, the initial SOC of the storage battery B is 0%, but the initial SOC of the storage battery B is not limited to this. If the initial SOC of the storage battery B is lower than the initial SOC of the storage battery A, the same effect as described above can be obtained. Moreover, in the said Example, although 14 storage batteries A were used, the number of the storage batteries A is not limited to this.
By adjusting the capacity of the storage battery B and the capacity of the storage battery A (storage battery group A) to further narrow the operating range of the storage battery group A (for example, SOC 20 to 80%), the amount of electricity that can be charged and discharged decreases. However, the cycle life characteristics of the assembled battery are further improved.

本発明の組電池は、充放電サイクル特性に優れ、かつ高信頼性を有するため、高機能および高性能の電子機器の電源等に好適に用いられる。   Since the assembled battery of the present invention is excellent in charge / discharge cycle characteristics and has high reliability, it is suitably used as a power source for highly functional and high performance electronic devices.

本発明の実施例1の電池システムの概略構成図である。It is a schematic block diagram of the battery system of Example 1 of this invention.

符号の説明Explanation of symbols

1 蓄電池Aの複数個(n個)からなる蓄電池群A
2 蓄電池B
3 組電池
4 充放電制御部
5 正極端子
6 負極端子
1 Storage battery group A consisting of a plurality (n) of storage batteries A
2 Storage battery B
3 assembled battery 4 charge / discharge control unit 5 positive terminal 6 negative terminal

Claims (4)

蓄電池Aの複数個が直列に接続された蓄電池群A、および前記蓄電池群Aと直列に接続された、前記蓄電池Aよりも低容量である蓄電池Bの1個からなり、
前記蓄電池Aは前記蓄電池Bよりも充電電気量が大きい状態に設定されていることを特徴とする組電池。
A plurality of storage batteries A are composed of one storage battery group A connected in series, and one storage battery B connected in series with the storage battery group A and having a lower capacity than the storage battery A,
The storage battery A is set in a state in which the amount of charged electricity is larger than that of the storage battery B.
前記蓄電池Bに基づく充放電制御により、前記蓄電池群AはSOC10〜100%に制御されている請求項1記載の組電池。   The assembled battery according to claim 1, wherein the storage battery group A is controlled to SOC 10 to 100% by charge / discharge control based on the storage battery B. 請求項1記載の組電池と、前記蓄電池Bの電圧または温度に基づいて前記組電池の充放電を制御する充放電制御部と、を備えることを特徴とする電池システム。   A battery system comprising: the assembled battery according to claim 1; and a charge / discharge control unit that controls charging / discharging of the assembled battery based on a voltage or a temperature of the storage battery B. 前記充放電制御部により、前記蓄電池群AはSOC10〜100%に制御されている請求項3記載の電池システム。   The battery system according to claim 3, wherein the storage battery group A is controlled to SOC 10 to 100% by the charge / discharge control unit.
JP2008165978A 2008-06-25 2008-06-25 Battery pack and battery system equipped with it Pending JP2010009840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165978A JP2010009840A (en) 2008-06-25 2008-06-25 Battery pack and battery system equipped with it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165978A JP2010009840A (en) 2008-06-25 2008-06-25 Battery pack and battery system equipped with it

Publications (1)

Publication Number Publication Date
JP2010009840A true JP2010009840A (en) 2010-01-14

Family

ID=41590090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165978A Pending JP2010009840A (en) 2008-06-25 2008-06-25 Battery pack and battery system equipped with it

Country Status (1)

Country Link
JP (1) JP2010009840A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137313A1 (en) * 2011-04-06 2012-10-11 株式会社 日立製作所 Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system
WO2013008409A1 (en) * 2011-07-08 2013-01-17 Necエナジーデバイス株式会社 Method for manufacturing battery pack and battery pack
JP5299434B2 (en) * 2010-03-26 2013-09-25 トヨタ自動車株式会社 Manufacturing method of battery pack
CN109860739A (en) * 2019-02-19 2019-06-07 湖北鹏程新锐科技发展有限公司 A kind of non-equal compound formulation, system, storage medium and device for holding battery pack
WO2020049824A1 (en) 2018-09-07 2020-03-12 Fdk株式会社 Electricity storage device and charging method
EP3916946A1 (en) 2020-05-29 2021-12-01 Hitachi, Ltd. Power storage system control device, power storage system, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267078A (en) * 1991-02-20 1992-09-22 Hitachi Maxell Ltd Combined battery and charging method thereof
JPH0898417A (en) * 1994-09-27 1996-04-12 Yamaha Motor Co Ltd Charge/discharge control method for secondary battery
JP2006344611A (en) * 2001-11-22 2006-12-21 Hitachi Koki Co Ltd Battery pack
JP2007220658A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Packed battery, power supply system, and method of manufacturing packed battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267078A (en) * 1991-02-20 1992-09-22 Hitachi Maxell Ltd Combined battery and charging method thereof
JPH0898417A (en) * 1994-09-27 1996-04-12 Yamaha Motor Co Ltd Charge/discharge control method for secondary battery
JP2006344611A (en) * 2001-11-22 2006-12-21 Hitachi Koki Co Ltd Battery pack
JP2007220658A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Packed battery, power supply system, and method of manufacturing packed battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5299434B2 (en) * 2010-03-26 2013-09-25 トヨタ自動車株式会社 Manufacturing method of battery pack
WO2012137313A1 (en) * 2011-04-06 2012-10-11 株式会社 日立製作所 Unit cell selection method, unit cell selection system, unit cell selection program, cell module production method, and cell module production system
JPWO2012137313A1 (en) * 2011-04-06 2014-07-28 株式会社日立製作所 Single cell selection method, single cell selection system, single cell selection program, battery module manufacturing method, and battery module manufacturing system
WO2013008409A1 (en) * 2011-07-08 2013-01-17 Necエナジーデバイス株式会社 Method for manufacturing battery pack and battery pack
WO2020049824A1 (en) 2018-09-07 2020-03-12 Fdk株式会社 Electricity storage device and charging method
JP2020043653A (en) * 2018-09-07 2020-03-19 Fdk株式会社 Power storage device and charging method
CN112655131A (en) * 2018-09-07 2021-04-13 Fdk株式会社 Power storage device and charging method
CN112655131B (en) * 2018-09-07 2023-11-03 Fdk株式会社 Power storage device and charging method
CN109860739A (en) * 2019-02-19 2019-06-07 湖北鹏程新锐科技发展有限公司 A kind of non-equal compound formulation, system, storage medium and device for holding battery pack
CN109860739B (en) * 2019-02-19 2022-01-28 湖北鹏程新锐科技发展有限公司 Method, system, storage medium and device for assembling unequal-capacity battery pack
EP3916946A1 (en) 2020-05-29 2021-12-01 Hitachi, Ltd. Power storage system control device, power storage system, and program

Similar Documents

Publication Publication Date Title
KR102259415B1 (en) Battery management apparatus, battery management method, battery pack and electric vehicle
US7688075B2 (en) Lithium sulfur rechargeable battery fuel gauge systems and methods
US10873201B2 (en) Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
JP3897027B2 (en) Battery device and discharge control method for battery device
US20090184685A1 (en) Battery pack and method of charging the same
US9847663B2 (en) Secondary-battery charging system and method and battery pack
JP6494840B1 (en) Battery unit inspection apparatus, battery unit inspection method and program
US20140320089A1 (en) Smart charging algorithm of lithium ion battery
US20110025272A1 (en) Charging method, charging device, and battery pack
JP5415631B2 (en) Charge / discharge control method and power supply system for alkaline storage battery
JP2010009840A (en) Battery pack and battery system equipped with it
KR102592332B1 (en) Battery management system, battery pack and method for charging battery
CN110277595A (en) Secondary battery system and secondary battery control method
KR102564716B1 (en) Battery management system and method for protecting a battery from over-discharge
JP6187802B2 (en) Charger
JP7169917B2 (en) SECONDARY BATTERY CONTROL DEVICE AND SECONDARY BATTERY CONTROL METHOD
KR20170022778A (en) Charging method of battery and battery pack thereof
KR20230124620A (en) Methods, apparatus and systems comprising secondary electrochemical unit anomaly detection and/or overcharge protection based on inverse coulombic efficiency
JP2006092901A (en) Charge-discharge system
KR102695870B1 (en) Apparatus and method for diagnosing battery fault, and battery pack including the apparatus
KR101091387B1 (en) Battery protection device and method through full charge capacity comparison
KR101748643B1 (en) Method and Apparatus for filtering measurement data of secondary battery pack
JP4472415B2 (en) Non-aqueous electrolyte secondary battery charging method and charger
JPH08149709A (en) Rechargeable battery charger
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130411

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130801