JP2010002772A - パターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラム - Google Patents
パターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラム Download PDFInfo
- Publication number
- JP2010002772A JP2010002772A JP2008162508A JP2008162508A JP2010002772A JP 2010002772 A JP2010002772 A JP 2010002772A JP 2008162508 A JP2008162508 A JP 2008162508A JP 2008162508 A JP2008162508 A JP 2008162508A JP 2010002772 A JP2010002772 A JP 2010002772A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- pattern
- mask pattern
- simulation
- illumination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000007689 inspection Methods 0.000 title claims abstract description 29
- 230000003287 optical effect Effects 0.000 title claims description 50
- 238000004088 simulation Methods 0.000 claims abstract description 173
- 238000005286 illumination Methods 0.000 claims abstract description 156
- 238000001459 lithography Methods 0.000 claims abstract description 121
- 238000012795 verification Methods 0.000 claims description 22
- 230000001678 irradiating effect Effects 0.000 abstract description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 39
- 238000004364 calculation method Methods 0.000 description 21
- 239000004065 semiconductor Substances 0.000 description 14
- 238000013461 design Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000007726 management method Methods 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000012937 correction Methods 0.000 description 5
- 231100000105 margin of exposure Toxicity 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000000284 extract Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001900 extreme ultraviolet lithography Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/68—Preparation processes not covered by groups G03F1/20 - G03F1/50
- G03F1/82—Auxiliary processes, e.g. cleaning or inspecting
- G03F1/84—Inspecting
- G03F1/86—Inspecting by charged particle beam [CPB]
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
Abstract
【課題】マスクパターンのパターン寸法を精度良く検査することができるパターン検証・検査方法を得ること。
【解決手段】フォトマスクに形成されたマスクパターンのパターン寸法を検査するパターン検証・検査方法において、検査対象となるマスクパターンのフォトマスク面内の位置である検査対象位置と、露光装置によってフォトマスクに照射される露光光のフォトマスク面内での照明条件の分布と、に基づいて、検査対象位置での照明条件を導出する照明条件導出ステップと、検査対象位置での照明条件とマスクパターンのパターン輪郭とに基づいて、検査対象位置毎にマスクパターンのリソグラフィシミュレーションを行なうシミュレーションステップと、リソグラフィシミュレーションの結果に基づいて、パターン寸法の検査を行なう検証・検査ステップと、を含む。
【選択図】 図1
【解決手段】フォトマスクに形成されたマスクパターンのパターン寸法を検査するパターン検証・検査方法において、検査対象となるマスクパターンのフォトマスク面内の位置である検査対象位置と、露光装置によってフォトマスクに照射される露光光のフォトマスク面内での照明条件の分布と、に基づいて、検査対象位置での照明条件を導出する照明条件導出ステップと、検査対象位置での照明条件とマスクパターンのパターン輪郭とに基づいて、検査対象位置毎にマスクパターンのリソグラフィシミュレーションを行なうシミュレーションステップと、リソグラフィシミュレーションの結果に基づいて、パターン寸法の検査を行なう検証・検査ステップと、を含む。
【選択図】 図1
Description
本発明は、マスクパターンのパターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラムに関するものである。
近年、半導体製造プロセスでは、フォトリソグラフィ工程での課題が顕著になりつつある。これは半導体デバイスの微細化が進むにつれて、フォトリソグラフィ工程での微細化に対する要求が高まっているからである。半導体デバイスの設計ルールは45nmまで微細化されており、制御しなければならないパターン寸法精度は3nm以下となっている。さらに、マスクパターンは光近接効果補正(OPC:Optical Proximity Correction)が行われているので、マスクパターンは極めて複雑な形状になっている。そのため、従来のような単なるパターン線幅の測定や穴径の測定のような1次元の寸法均一性検査では不十分となり、2次元の寸法管理が求められている。
2次元の寸法管理方法として、例えばSEM(Scanning Electron Microscope)によってマスクパターンの画像を取得し、取得した画像に基づいてマスクパターンの寸法管理を行なう方法がある。この方法では、取得したマスクパターンの画像からマスクパターンのパターン輪郭を抽出してリソグラフィシミュレーション(転写性評価)を行い、所望のリソグラフィ裕度が得られるか否かを判定することによってマスクパターンが所望の寸法に仕上がっているか否かを検査している。このSEMを用いた寸法管理方法のメリットは、マスクパターンの仕上り具合を、マスクパターンがウェハに露光された状態(実際に使用する条件に極めて近い状態)で判断できることであり、不必要に厳しい管理や逆に甘い管理になる事が無く、必要十分な管理ができる点である(例えば、非特許文献1参照)。
しかしながら、上記従来の技術では、昨今の厳しいマスクパターンの寸法管理では寸法管理の精度が不十分となっている。それは、ウェハ露光装置の照明の不均一性がウェハ露光の際に与えるレジスト寸法の影響を無視していたからである。例えば、透過型のマスクに露光光を照射する場合、マスクを照明する露光光の形状(照明形状)は、マスク面内の何れの位置においても同一であるべきである。ところが、実際には、たとえば輪帯照明の場合、マスクの中心付近では略真円に近い輪帯の照明形状であるのに対し、マスクの周辺部に近づくにしたがって照明形状が楕円形状に歪んでいる。そのため、理想の照明形状でリソグラフィシミュレーションを行なった場合の結果(パターン寸法)と、実際にマスクパターンをウェハに露光した場合のパターン寸法と、が合わなくなる場合が生じるようになった。
また、反射型のマスクを用いるEUVリソグラフィにおいても、透過型のマスクを用いるリソグラフィと同様の問題があった。EUVリソグラフィの場合、マスク上に入射するEUV光の入射方向がマスクの位置によって異なっている。ところが、上記従来の技術では、リソグラフィシミュレーションに用いる光学パラメータとして、マスク面内で同じ光学パラメータを用いていた。このように、マスクの面内でEUV光の入射方向(照明形状)が異なるにも関わらず、SEM画像を取得したマスク面内での位置を無視していたのでリソグラフィシミュレーションに誤差が生じるという問題があった。このため、透過型のマスクや反射型のマスクに対してマスクパターンのパターン寸法を精度良く検査できていなかった。
なお、フォトマスクに形成されたマスクパターンの検査のみならず、マスクパターンの設計の場面において光近接効果補正等のマスクデータプロセスを施す際にも、照明形状の不均一性の影響を考慮していなかった。このため、マスクパターン(データ)を用いてリソグラフィシミュレーションを実施した際に正確な光学像強度分布が得られず、適切なマスクパターンの検証及び設計ができていなかった。
M. Kariya et al., "Reticle SEM Specfications Required for Lithography Simulation", Proceedings of SPIE Vol.5853 550-555, 2005
本発明は上記状況を鑑みてなされたもので、マスクパターンのパターンを精度良く検査することができるパターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラムを得ることを目的とする。
本願発明の一態様によれば、マスクパターンを検証又は検査するパターン検証・検査方法において、検証又は検査対象となるマスクパターンのフォトマスク面内の位置である検証又は検査対象位置と、露光装置によって前記マスクパターンに照射される露光光のフォトマスク面内での照明条件の分布に関する照明条件情報と、に基づいて、前記検証又は検査対象位置での照明条件を導出する照明条件導出ステップと、前記検査対象位置での前記照明条件と前記マスクパターンとに基づいて、前記マスクパターンのリソグラフィシミュレーションを行なうシミュレーションステップと、前記リソグラフィシミュレーションの結果に基づいて、前記パターンの検証又は検査を行なう検証・検査ステップと、を含むことを特徴とするパターン検証・検査方法が提供される。
また、本願発明の一態様によれば、マスクパターンをウェハ上に露光した場合に前記ウェハへ照射される露光光の光学像強度分布をリソグラフィシミュレーションにより取得する光学像強度分布取得方法において、露光装置によって前記フォトマスクに照射される露光光のフォトマスク面内での照明条件の分布に関する照明条件情報を用いて、前記マスクパターンの光学像強度分布をリソグラフィシミュレーションする光学像強度分布取得ステップと、を含むことを特徴とする光学像強度分布取得方法が提供される。
また、本願発明の一態様によれば、マスクパターンをウェハ上に露光した場合に前記ウェハへ照射される露光光の光学像強度分布をリソグラフィシミュレーションにより取得する光学像強度分布取得プログラムにおいて、露光装置によって前記フォトマスクに照射される露光光のフォトマスク面内での照明条件の分布に関する照明条件情報を用いて、前記マスクパターンの光学像強度分布をリソグラフィシミュレーションする光学像強度分布取得ステップと、をコンピュータに実行させることを特徴とする光学像強度分布取得プログラムが提供される。
この発明によれば、マスクパターンのパターン寸法を精度良く検査することが可能になるという効果を奏する。
また、本発明によれば、マスクパターンの光学像強度分布を正確にリソグラフィシミュレーションすることが可能になるという効果を奏する。
以下に、本発明に係るパターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
(第1の実施の形態)
まず、第1の実施の形態に係るマスクパターン評価の概念について説明する。図1は、第1の実施の形態に係るマスクパターン評価の概念を説明するための説明図である。マスク30は、半導体装置製造工程の露光処理に用いる透過型のフォトマスクである。SEM40は、マスク30のマスクパターンを撮像する装置であり、露光装置20は、マスク30を用いてウェハ(図示せず)への露光を行なうスキャンタイプの透過型ウェハ露光装置である。本実施の形態の露光装置20は、例えば波長が193nmのArFエキシマレーザー光によってウェハへの露光を行なう。
まず、第1の実施の形態に係るマスクパターン評価の概念について説明する。図1は、第1の実施の形態に係るマスクパターン評価の概念を説明するための説明図である。マスク30は、半導体装置製造工程の露光処理に用いる透過型のフォトマスクである。SEM40は、マスク30のマスクパターンを撮像する装置であり、露光装置20は、マスク30を用いてウェハ(図示せず)への露光を行なうスキャンタイプの透過型ウェハ露光装置である。本実施の形態の露光装置20は、例えば波長が193nmのArFエキシマレーザー光によってウェハへの露光を行なう。
シミュレーション装置(リソグラフィシミュレータ)10は、マスク30を用いたリソグラフィ工程により、ウェハ上に形成される光学像強度分布の算出、さらには光学像強度分布に基づきウェハ上に形成されるパターンの形状を求める装置である。ここでのリソグラフィシミュレーションは、マスク30を用いてウェハに露光処理を行った場合に、ウェハ上に形成されるレジストパターンの形状や寸法を求めるものである。リソグラフィシミュレーションを行う際には、露光処理に必要となる露光条件(露光量や焦点深度)などがシミュレーションのパラメータとして入力され、この結果得られるレジストパターンの形状や寸法に基づいて、露光マージン(露光量の余裕度や焦点深度の余裕度)などが判断される。
SEM40は、マスク30のマスクパターンを撮像することによってマスクパターンのSEM画像(パターン画像)を取得する(1)。このとき、SEM40は、SEM画像を取得したマスク30上の位置(位置情報)と、SEM画像と、を対応付けておく(2)。さらに、SEM40は、SEM画像からマスクパターンの輪郭データ(輪郭情報)を抽出する(3)。SEM40は、位置情報と輪郭データとを対応付けておく。位置情報と輪郭データとが対応付けされた情報は、マスクパターン情報52としてシミュレーション装置10に送られる。
露光装置20は、マスク30を照明する露光光のマスク面内での形状分布(各位置の照明形状分布)を照明形状分布情報(照明条件情報)51として取得する(4)。露光装置20によって取得された照明形状分布情報51は、シミュレーション装置10に送られる。
シミュレーション装置10は、照明形状分布情報51と、マスクパターン情報52と、を用いて、リソグラフィシミュレーションを行なう(5)。これにより、本実施の形態のシミュレーション装置10は、露光装置20がマスク30へ照射する露光光の照明形状に基づいてリソグラフィシミュレーションを行なう。露光装置20がマスク30へ照射する露光光の照明形状は、マスク30の面内で不均一性を有しておりマスク30面内の位置(座標)毎に異なっている。このため、シミュレーション装置10は、リソグラフィシミュレーションを行なうマスクパターンの位置毎の照明形状に基づいて、リソグラフィシミュレーションを行なう。
さらに、シミュレーション装置10は、リソグラフィシミュレーションのシミュレーション結果に基づいて、所望のリソグラフィ裕度が得られるか否かを検査する。これにより、シミュレーション装置10は、マスク30のマスクパターンが所望の寸法に仕上がっているか否かを判定する(6)。
図2は、本発明の第1の実施の形態に係るシミュレーション装置のハードウェア構成を示す図である。シミュレーション装置10は、マスク30のマスクパターンを検証・検査するコンピュータ(パターン検証・検査装置)などであり、CPU(Central Processing Unit)1、ROM(Read Only Memory)2、RAM(Random Access Memory)3、表示部4、入力部5を有している。シミュレーション装置10では、これらのCPU1、ROM2、RAM3、表示部4、入力部5がバスラインを介して接続されている。
シミュレーションプログラム7やマスクパターン検査プログラム(マスクパターン検証・検査プログラム)8は、ROM2内に格納されており、バスラインを介してRAM3へロードされる。シミュレーションプログラム7は、マスク30を用いてウェハ上にパターンを形成する場合の露光処理に関する余裕度などをシミュレーションするコンピュータプログラムである。露光処理に関する余裕度は、例えば露光量の余裕度や焦点深度の余裕度であり、最適露光量と最適焦点位置で露光した際に形成されるウェハ上のレジストパターン寸法に基づいて定義される。なお、露光処理に関する余裕度は、所望のレジストパターン寸法を得ることができる露光量の範囲や焦点深度の範囲に基づいて定義してもよい。マスクパターン検査プログラム8は、シミュレーションプログラム7によるリソグラフィシミュレーションのシミュレーション結果に基づいて、マスク30のマスクパターンが所望の寸法に仕上がっているか否かを検査するコンピュータプログラムである。
表示部4は、液晶モニタなどの表示装置であり、CPU1からの指示に基づいて、種々の情報を表示する。表示部4は、例えば、照明形状分布情報51、マスク30のマスクデータ、SEM画像、位置情報、輪郭データ、マスクパターン情報52、リソシミュレーションのシミュレーション結果、マスクパターンの検証・検査結果(例えば寸法検査結果)などを表示する。
入力部5は、マウスやキーボードを備えて構成され、使用者から外部入力される指示情報(リソグラフィシミュレーションに必要な指示情報など)を入力する。入力部5へ入力された指示情報は、CPU1へ送られる。また、照明形状分布情報51、マスクパターン情報52なども入力部5から入力され、CPU1などに送られる。
CPU1はRAM3内にロードされたシミュレーションプログラム7やマスクパターン検査プログラム8を実行する。具体的には、シミュレーション装置10では、使用者による入力部5からの指示入力に従って、CPU1がROM2内からシミュレーションプログラム7やマスクパターン検査プログラム8を読み出してRAM3内のプログラム格納領域に展開して各種処理を実行する。CPU1は、この各種処理に際して生じる各種データをRAM3内に形成されるデータ格納領域に一時的に記憶させておく。
図3は、第1の実施の形態に係るシミュレーション装置の機能ブロック図である。シミュレーション装置10は、照明形状分布情報入力部11、位置情報入力部12、輪郭データ入力部13、照明形状算出部14、リソグラフィシミュレーション実行部15、マスクパターン寸法判定部16、制御部19を有している。
照明形状分布情報入力部11は、露光装置20が検出した照明形状分布情報51を入力して、照明形状算出部14へ送る。位置情報入力部12は、SEM30が取得したマスクパターン情報52の位置情報を入力して照明形状算出部14に送る。シミュレーション装置10は、リソグラフィマージンの少ない箇所(以下、ホットスポットという)に対してリソグラフィシミュレーションを行なう。このため、位置情報入力部12へは、検査対象となるホットスポットの位置情報(検査対象位置)が入力される。
輪郭データ入力部13は、SEM30が取得したマスクパターン情報52の輪郭データを入力してリソグラフィシミュレーション実行部15に送る。SEM30が取得する輪郭データは、ホットスポットのSEM画像から抽出する輪郭データであり、位置情報入力部12に入力される位置情報に対応している。
照明形状算出部14は、照明形状分布情報入力部11からの照明形状分布情報51と、位置情報入力部12からの位置情報と、に基づいて、位置情報(ホットスポット)に対応する照明形状を算出する。照明形状算出部14は、算出した照明形状をリソグラフィシミュレーション実行部15に送る。
リソグラフィシミュレーション実行部15は、照明形状算出部14からの照明形状と、輪郭データ入力部13からの輪郭データと、に基づいて、リソグラフィシミュレーションを実行する。リソグラフィシミュレーション実行部15に送られてくる照明形状と輪郭データは、ホットスポットの照明形状と輪郭データである。したがって、リソグラフィシミュレーション実行部15は、ホットスポットのリソグラフィシミュレーションを実行する。リソグラフィシミュレーション実行部15は、シミュレーションプログラム7を用いてリソグラフィシミュレーションを実行する。リソグラフィシミュレーション実行部15は、シミュレーション結果をマスクパターン寸法判定部16に送る。
マスクパターン寸法判定部16は、リソグラフィシミュレーション実行部15からのシミュレーション結果に基づいて、マスク30のマスクパターンが所望の寸法に仕上がっているか否かを判定する。マスクパターン寸法判定部16は、マスクパターン検査プログラム8を用いてマスクパターンの寸法判定を行なう。
制御部19は、照明形状分布情報入力部11、位置情報入力部12、輪郭データ入力部13、照明形状算出部14、リソグラフィシミュレーション実行部15、マスクパターン寸法判定部16を制御する。
本実施の形態のシミュレーション装置10で実行されるシミュレーションプログラム7やマスクパターン検査プログラム8は、前述の各部(照明形状分布情報入力部11、位置情報入力部12、輪郭データ入力部13、照明形状算出部14、リソグラフィシミュレーション実行部15、マスクパターン寸法判定部16、制御部19)を含むモジュール構成となっており、上記各部が主記憶装置上にロードされ、照明形状分布情報入力部11、位置情報入力部12、輪郭データ入力部13、照明形状算出部14、リソグラフィシミュレーション実行部15、マスクパターン寸法判定部16、制御部19が主記憶装置上に生成されるようになっている。
なお、ここではシミュレーション装置10が、照明形状分布情報入力部11、位置情報入力部12、照明形状算出部14を有している場合について説明したが、シミュレーション装置10はこれらの構成要素を有していなくてもよい。この場合、シミュレーション装置10とは異なる他の演算処理装置に、照明形状分布情報入力部11、位置情報入力部12、照明形状算出部14を備えさせておく。そして、演算処理装置によって位置情報に対応する照明形状を算出する。シミュレーション装置10は、演算処理装置が算出した照明形状と、輪郭データとに基づいてリソグラフィシミュレーションを実行する。
つぎに、第1の実施の形態に係るシミュレーション装置10の動作手順を説明する。図4は、第1の実施の形態に係るシミュレーション装置の動作手順を示すフローチャートである。
本実施の形態のリソグラフィシミュレーションで用いるマスク30は、ArFハーフトーン(HT)マスクなどの透過型のマスクである。マスクパターン内から、予めホットスポット(SEM画像の取得位置)を選択しておく(ステップS110)。
ホットスポットは、設計データに光近接効果補正(OPC)を行った後のマスクデータから、チップ全面のリソグラフィシミュレーションによってリソグラフィマージンの少ない箇所(位置)を特定したものである。ホットスポットは、1〜複数箇所抽出しておく。
まず、マスク30をSEM40にセットし、SEM40によってホットスポットのSEM画像を取得する(ステップS120)。つぎに、SEM40は、所定の輪郭抽出ソフトウェア(SEM画像のパターン輪郭を抽出するプログラム)によってSEM画像からパターン輪郭の輪郭データを抽出する(ステップS130)。SEM40が取得した輪郭データは、シミュレーション装置10の輪郭データ入力部13に入力される。輪郭データ入力部13は、輪郭データをリソグラフィシミュレーション実行部15に送る。
図5は、SEM画像と輪郭データを説明するための図である。図5の(a)は、SEM画像の一例を示しており、図5の(b)はSEM画像から抽出したマスクパターンの輪郭データの一例を示している。
つぎに、マスク30をセットする露光装置20の照明形状分布情報51を取得する。照明形状分布情報51は、例えば露光装置20が備える照明形状測定ツールを用いて測定される。
図6は、透過型マスク面内の照明形状分布を説明するための図である。図6では、露光位置に対応する照明形状を、露光領域の中心部を基準として模式的に示している。マスク30は、例えば33mm×26mmの露光領域31を有している。露光領域31(マスク30)の中心部に位置する照明形状22Aは、略真円の輪帯形状である。露光領域31の中心から4隅方向に向かうに従って照明形状はマスク30の対角線方向に伸びた楕円形状になる。これにより、露光領域31の4隅部に位置する各照明形状22B〜22Eでは、長径と短径の比で照明形状22Aと約1%の差が生じている。
照明形状22B〜22Eは、露光装置20がマスク30に露光光を照射する際に用いる照明光源形状(照明装置)の種類によって異なる。図7は、露光装置が用いる照明光源形状の種類を説明するための図である。図7の(a)は、輪帯照明を用いた場合の照明光源形状11Aであり、(b)は4つ目照明(四極照明)を用いた場合の照明光源形状11Bであり、(c)はダイポール照明(二極照明)を用いた場合の照明光源形状11Cである。
半導体装置を作製する際には、各半導体装置製造工程に適した照明光源形状が選択される。すなわち、露光装置20が用いる照明光源形状の種類は、半導体装置製造工程のレイヤ毎に使い分けられる。そして、照明光源形状が異なると照明形状も異なる。したがって、照明形状測定ツールでは、照明形状分布情報51を照明光源形状毎(レイヤ毎)に取得しておく。
つぎに、照明形状分布情報51をシミュレーション装置10の照明形状分布情報入力部11に入力し(ステップS140)、SEM画像を取得した位置情報(位置座標)を位置情報入力部12に入力する。位置情報入力部12は、位置情報を照明形状算出部14に送り、照明形状分布情報入力部11は照明形状分布情報51を照明形状算出部14に送る。
照明形状算出部14は、位置情報と照明形状分布情報51と、に基づいて、SEM画像を取得した位置での照明形状を導出する。SEM画像を取得した位置での照明形状は、SEM画像の取得位置に対応するマスク上のパターン位置に入射する照明形状である(ステップS150)。照明形状算出部14は、求めた照明形状をリソグラフィシミュレーション実行部15に送る。
リソグラフィシミュレーション実行部15は、照明形状算出部14からの照明形状と、輪郭データ入力部13からの輪郭データと、に基づいて、リソグラフィシミュレーションを実行する。これにより、リソグラフィシミュレーション実行部15は、ウェハ露光に用いられる光学条件にてマスク30のリソグラフィシミュレーションを行なう(ステップS160)。リソグラフィシミュレーション実行部15は、シミュレーション結果をマスクパターン寸法判定部16に送る。
マスクパターン寸法判定部16は、シミュレーション結果に基づいて、マスク30のマスクパターンが所望の寸法に仕上がっているか否かを判定する(ステップS170)。換言すると、本実施の形態では、照明の不均一性に関する情報を用いてリソグラフィシミュレーションを行なうとともに、このシミュレーション結果に基づいて所望の露光余裕度が得られるか否か(所定の露光マージンを有しているか否か)を判断している。この後、マスクパターン寸法判定部16によって合格判定されたマスク30、露光装置20を用いて半導体装置(半導体デバイス)が作製される。
図8は、マスクパターンと露光マージンとの関係を説明するための図である。図8の上段に示すグラフは、縦軸がウェハ上の光強度であり、横軸がウェハ上の位置である。図8の下段には、マスク30のマスクパターンとして遮光体(吸収体)25を示している。上段に示すグラフでの横軸(位置)は、遮光体25のa2−b2方向の位置に対応している。
上段に示すグラフでは、遮光体25の位置に応じて光強度が波状に変動している。例えば、遮光体25は、露光光を透過させないので、遮光体25の位置に対応するウェハ上の位置には、低い光強度の露光光が照射される。一方、マスク30のうち遮光体25が配置される以外の領域は、露光光を透過させるので、遮光体25以外の位置に対応するウェハ上の位置には、高い光強度の露光光が照射される。
例えばポジ型レジストの場合にウェハを現像すると、スライスレベル未満の光強度で露光された位置のパターンがレジストパターンとして残り、スライスレベル以上の光強度で露光された位置のパターンが除去される。これにより、マスク30のマスクパターン(遮光体25)に応じたレジストパターンがウェハ上に形成される。
マスク30の中心部には、略真円の輪帯形状を有した照明形状22Aの露光光が照射される。このときの、光強度分布は例えば分布i1のように大きな露光マージンを有している。一方、マスク30の端部には、楕円形状を有した照明形状22B〜22Dの露光光が照射される。このときの、光強度分布は例えば分布i2のように小さな露光マージンしか有していない。
すなわち、図8に示す光強度分布は、露光量が変動した場合、その変動に対応するように分布形状を保ったまま図8上を上下に移動するが、分布i2は、分布i1に比較して、露光量が変動した場合に、スライスレベルとの接点となる位置(図8横軸)の変動が大きくなることがわかる。ここで、スライスレベルとの接点となる位置は、転写されるパターンの輪郭位置を表す。従って、分布i2は、分布i1に比較して、露光量の変動に対する転写パターンの変動が大きく、露光量マージンが低いと判断される。
このように、マスク30の中心部と端部とで、照明形状が異なるので露光マージンも異なる。本実施の形態では、このような照明形状の不均一性に関する情報を用いてリソグラフィシミュレーションを行なっているので、所望の露光余裕度が得られるか否かを正確に判断できる。
つぎに、第1の実施の形態に係るリソグラフィシミュレーションの具体的な処理例について説明する。まず、通常のフォトマスク製造プロセスにより作製したArFハーフトーンマスクをマスク30として用意した。ArFハーフトーンマスク上には、例えば45nmデザインルールのメモリーデバイスを作製する際に用いるマスクパターンを形成しておいた。
そして、このArFハーフトーンマスクのマスクパターン内から、ホットスポットを64箇所抽出した。この後、ArFハーフトーンマスクをNGR社製高精細SEM(NGR4000)にセットし、ホットスポットのSEM画像を取得した。NGR4000は8000×8000画素という高精細画像を取得することが可能な装置であり、1画素はマスク上2nmという高分解能である。すなわち、取得したSEM画像の視野は16um角ということになり、リソグラフィシミュレーションを行うには十分な大きさである。
つぎに、取得したSEM画像から例えばNGR社製輪郭抽出ソフトにてパターンの輪郭を抽出し輪郭データを取得した。ついで、マスク30をセットする露光装置20の照明形状分布情報51を準備した。
つぎに、SEM画像を取得した位置情報と照明形状分布情報51とからSEM画像を取得した場所の照明形状を求め、求めた照明形状と輪郭データをリソグラフィシミュレーション実行部15に入力させた。リソグラフィシミュレーション実行部15は、照明形状と輪郭データを用いて、マスク30のリソグラフィシミュレーションを行った。
このリソグラフィシミュレーションの結果、ウェハ上で所望のパターン寸法を得るために必要な露光量の余裕度は8%であり、焦点深度(焦点位置のずれが許容される焦点範囲)の余裕度は0.21umであることが判明した。準備したArFハーフトーンマスクに必要な露光量の余裕度は10%であり、焦点深度の余裕度は0.2umである。したがって、今回のこのArFハーフトーンマスクのホットスポットの場所は、露光量の余裕度でスペック未達となり不合格品である。
従来のリソグラフィシミュレーションと本実施の形態のリソグラフィシミュレーションとの比較のために、照明形状を本実施の形態と同じにして従来のリソグラフィシミュレーションを実行した場合について説明する。従来のリソグラフィシミュレーションを実行した場合、算出される露光量の余裕度が11%となり焦点深度が0.23umとなったので、マスク30は合格品という判定結果となった。
そこで、準備したArFハーフトーンマスクを用いて実際にウェハ上にレジストパターンを形成した。露光装置20にはニコン社製液浸露光装置を用い、NAは0.92であった。また、露光装置20には偏光照明を採用した。その結果、所望の寸法を得ることができた露光量の余裕度(範囲)は8%であり、焦点深度の余裕度は0.22umであった。このように、照明形状の不均一性を考慮することによって、正確なリソグラフィシミュレーションを行なうことが可能となり、マスクの合否判定の精度を向上させることができる。また、本実施の形態によって合否判定されたマスク30を用いて作製した半導体デバイスは、従来のリソグラフィシミュレーションによってパターンの寸法判定を行なったマスクを用いて作製した半導体デバイスと比較して格段に歩留まりが向上することが確認できた。
なお、本実施の形態は、上述の実施の形態に限るものではない。例えば、パターンの輪郭データにマスクパターンの側壁角に関する情報(側壁角の寸法や角度など)を付加してもよい。また、マスクパターンの形状(SEM画像)を3次元SEMから求めてもよい。また、マスク30はArFハーフトーンマスクに限らず他の透過型マスクであってもよい。
また、本実施の形態では、リソグラフィシミュレーションのシミュレーション結果に基づいて、マスク30のパターン寸法の判定を行なう場合について説明したが、マスク30の作成の前段階において、ウェハ上に形成すべき設計パターンからマスクパターンデータを生成する過程において、本実施形態に係るリソグラフィシミュレーションを利用することもできる。この場合、シミュレーション装置10は、マスク30の設計データであるマスクパターン(マスクパターンデータ)と照明形状分布情報51とを用いて、リソグラフィシミュレーションを行なう。そして、リソグラフィシミュレーションの結果とウェハ上に形成すべき設計パターンとの比較検証を行う。検証の結果、それらの差が許容範囲を超えている場合、マスクパターンデータを補正する(例えば、OPCである)。
リソグラフィシミュレーションの結果とウェハ上に形成すべき設計パターンとの差が許容範囲に収まるまで、上記検証工程と補正工程を繰り返し、これらの差が許容範囲に収まった場合は、そのときのマスクパターンデータをマスク30の設計データと規定する。
これにより、マスク30には既に露光装置の照明形状の不均一性を考慮したマスクパターンが形成されているため、マスク30を用いたリソグラフィにより、ウェハ上に所望寸法のパターンを形成することが可能となる。なお、上記の例では、リソグラフィシミュレーションの結果とウェハ上に形成すべき設計パターンとの差によって検証しているが、リソグラフィシミュレーションの結果が所定のプロセス裕度を有するか否かを検証の基準としてもよい。
光学像強度分布は、マスク30に形成されたマスクパターンをウェハ上に露光した場合にウェハへ照射される露光光の光強度のウェハ面内分布である。この場合、シミュレーション装置10は、光学像強度分布取得プログラムを用いて、ウェハへ照射される露光光の光学像強度分布を算出する。上述のように、シミュレーション装置10は、光学像強度分布に所定の閾値(スライスレベル)を設定することによって、ウェハへ転写されるパターンを算出してもよい。
また、本実施形態のシミュレーション装置で実行されるシミュレーションプログラム7やマスクパターン検査プログラム8は、ROM等に予め組み込んで提供してもよい。また、シミュレーションプログラム7やマスクパターン検査プログラム8は、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。
さらに、シミュレーションプログラム7やマスクパターン検査プログラム8を、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。また、シミュレーションプログラム7やマスクパターン検査プログラム8をインターネット等のネットワーク経由で提供または配布するように構成しても良い。
また、本実施の形態では、現像後のレジストパターンをリソグラフィシミュレーションする場合について説明したが、エッチング後のパターンをシミュレーションしてもよい。また、本実施の形態では、輪郭データを取得した後(ステップS130の処理の後)に、照明形状分布情報51を照明形状分布情報入力部11に入力する(ステップS140)場合について説明したが、照明形状分布情報51は輪郭データを取得する前に照明形状分布情報入力部11に入力してもよい。その他、シミュレーション装置10によるリソグラフィシミュレーションやマスク30の合否判定は、本実施の形態の要旨を逸脱しない範囲で種々変形して実施することができる。
このように、シミュレーション装置10は、照明の不均一性に関する情報を用いてリソグラフィシミュレーションを行なっているので、従来問題となっていた照明の不均一性の影響を取り込んだリソグラフィシミュレーションを実行できる。これにより、リソグラフィシミュレーション結果とウェハへの露光結果を一致させることが可能となり、マスクパターンの寸法を正確に合否判定できる。また、マスクパターンの光学像強度分布を正確にリソグラフィシミュレーションすることが可能になる。したがって、合格判定されたマスクを用いてウェハの露光処理を行なうことによって、半導体装置を製造する際の歩留まりが向上する。このように第1の実施の形態によれば、マスクパターンのパターン寸法や光学像強度分布を精度良く検査することが可能となる。
(第2の実施の形態)
つぎに、図9〜図12を用いてこの発明の第2の実施の形態について説明する。第2の実施の形態では、EUVマスク(EUV露光用マスク)のリソグラフィシミュレーションを行なう。なお、第2の実施の形態に係るシミュレーション装置10は、図2および図3で説明した第1の実施の形態に係るシミュレーション装置10と同様の構成、機能を有しているのでここではその説明を省略する。
つぎに、図9〜図12を用いてこの発明の第2の実施の形態について説明する。第2の実施の形態では、EUVマスク(EUV露光用マスク)のリソグラフィシミュレーションを行なう。なお、第2の実施の形態に係るシミュレーション装置10は、図2および図3で説明した第1の実施の形態に係るシミュレーション装置10と同様の構成、機能を有しているのでここではその説明を省略する。
本実施の形態のマスク30は、EUVマスクなどの反射型のマスクである。マスク30は、MoとSiとが積層された多層膜からなるEUV光反射膜上にTaを主成分とするEUV光吸収体(遮光体25)によってマスクパターンが形成されている。
また、本実施の形態の露光装置20は、スキャンタイプの反射型ウェハ露光装置である。露光装置20は、例えば波長が13nmのEUV光によってウェハへの露光を行なう。露光装置20は、マスク30にEUV光を入射させるとともに、マスク30からの反射光を用いて露光を行う。このとき、マスク30上に入射するEUV光の入射方向がマスク30の面内位置(座標)によって異なる。このため、SEM画像を取得したマスク面内位置を無視してリソグラフィシミュレーションを行なうとリソグラフィシミュレーションに誤差が生じるという問題があった。そこで、本実施の形態では、SEM画像を取得したマスク面内位置でのEUV光の入射方向を用いてリソグラフィシミュレーションを行なう。
第2の実施の形態に係るシミュレーション装置10の動作手順を説明する。図9は、第2の実施の形態に係るシミュレーション装置の動作手順を示すフローチャートである。なお、図4に示した第1の実施の形態に係るシミュレーション装置10と同様の動作を行なう処理についてはその説明を省略する。
まず、マスク30のマスクパターン内から、予めホットスポットを選択しておく(ステップS210)。マスク30をSEM40にセットし、SEM40によってホットスポットのSEM画像を取得する(ステップS220)。つぎに、SEM40は、SEM画像からパターン輪郭の輪郭データを抽出する(ステップS230)。SEM40が取得した輪郭データは、シミュレーション装置10の輪郭データ入力部13に入力される。輪郭データ入力部13は、輪郭データをリソグラフィシミュレーション実行部15に送る。
つぎに、マスク30をセットする露光装置20の照明形状分布情報51を取得する。ここでの照明形状分布情報51は、露光装置20が照射する露光光の出射方向に関する情報や露光領域の形状などに関する情報であり、マスク面内のホットスポットにおけるEUV光の入射方向を算出するために用いられる。EUV光の入射方向が、第1の実施の形態で説明した照明形状に対応しており、このEUV光の入射方向が変化することによってウェハ上に形成されるレジストパターンが変化する。
つぎに、照明形状分布情報51をシミュレーション装置10の照明形状分布情報入力部11に入力し、SEM画像を取得した位置情報を位置情報入力部12に入力する。位置情報入力部12は、位置情報を照明形状算出部14に送り、照明形状分布情報入力部11は照明形状分布情報51を照明形状算出部14に送る。
照明形状算出部14は、位置情報と照明形状分布情報51と、に基づいて、SEM画像を取得した位置でのEUV光の入射方向を算出する(ステップS240)。SEM画像を取得した位置でのEUV光の入射方向(照明条件)は、SEM画像の取得位置に対応するマスク上のパターン位置に照射される露光光の入射方向である。照明形状算出部14は、求めた入射方向をリソグラフィシミュレーション実行部15に送る。
図10は、反射型マスク面内のEUV光の照射方向を説明するための図であり、マスク30を上面側から見た場合を示している。図10では、マスク30に6つのチップC1〜C6が配置され、円弧状のEUV光照射領域60がマスク30上をスキャンすることによって、ウェハの露光を行なう場合を示している。ここでは、マスク30上のスキャン方向をY軸方向とし、スキャン方向と垂直なマスク面内の方向をX軸方向とし、XY平面に垂直な鉛直方向をZ軸方向としている。
EUV光照射領域60は、帯状の領域がマスク30の面内で円弧を描くよう曲げられた幅dの円弧領域(扇形領域から中心部を除外した領域)である。EUV光照射領域60のスキャン幅(X軸方向の寸法)は、チップC1のX軸方向の寸法とチップC2のX軸方向の寸法との合計値よりも大きな寸法を有している。
EUV光照射領域60のX軸方向の中心部(チップC1とチップC2の境界)では、EUV光(露光光)61がスキャン方向と同じ方向でマスク30に入射する。EUV光照射領域60では、X軸方向の中心部からX軸方向の端部に向かうに従って、マスク30に入射するEUV光61がスキャン方向(Y軸方向)からずれる。すなわち、マスク30へのEUV光61は、図10に示すように入射方向がEUV光照射領域60の円弧に沿って変化しているので、中心付近のパターンはスキャン方向に対して平行にEUV光61が入射してくる。一方、EUV光照射領域60の端部に位置するパターンへのEUV光61の入射方向はスキャン方向と平行ではなく、少しマスク30の中心方向に向けて入射してくる。
図11は、EUV光の入射方向がレジストパターンの寸法に与える影響を説明するための図である。図11の上側には、マスク30の断面図を示し、図11の下側にはウェハに形成されるレジストパターン26の上面図を示している。なお、図11のY軸方向がスキャン方向である。マスク30の断面図に示すように、EUV光61のマスク30の上面方向からの入射角はZ軸方向から約6度で一定である。
EUV光61が傾き0度でマスク30に入射する場合、遮光体25のパターンと略同じ形状のパターン(EUV光)26がウェハ上に縮小投影される。ところが、EUV光61の入射角はYZ平面内でZ軸と6度の角度をなしているので、遮光体25のパターンとは異なる形状のパターンがウェハ上に縮小投影される。これは、マスク30のうち、遮光体25以外の領域であってもEUV光61をウェハ側に反射できない領域(以下、反射不能領域という)があるからである。反射不能領域は、遮光体25の底面をY軸方向(プラス方向とマイナス方向)へ延設した領域(Y軸方向の寸法がl1)であり、EUV光61の入射角度や遮光体25の高さ寸法によって決定される。
すなわち、マスク30に照射されるEUV光61のうち、マスク30の上面(遮光体25以外)で反射されるものの、遮光体25の側面(XZ平面)で吸収されて遮光体25の上部側まで到達しないEUV光61がある。このようなEUV光61を発生させる反射不能領域が、プラスY方向に発生する反射不能領域である。
また、マスク30に照射されるEUV光61のうち、EUV光61が斜め方向からマスク30に入射することが原因で、マスク30の反射面まで到達しないEUV光61がある。このEUV光61は、マスク30に対して鉛直方向から入射していればマスク30に到達するものの、マスク30に対して斜め方向から入射することによって遮光体25の上面で吸収される。このようなEUV光61を発生させる反射不能領域が、マイナスY方向に発生する反射不能領域である。
これにより、マスク30のうち、遮光体25の底面部分と、EUV光61の入射角に応じた反射不能領域と、からはEUV光61が反射されない。遮光体25の底面部分はY軸方向の寸法がL1の範囲であり、プラスY側およびマイナスY側の反射不能領域はそれぞれY軸方向の寸法がl1である。
EUV光61がマスク30に対して鉛直方向から入射する場合には、Y軸方向の寸法がL2となるレジストパターン26がウェハ上に形成される。このレジストパターン26は、遮光体25のパターン形状と同じ形状を有しており、4倍の縮小投影の場合、L2=4×L1である。
また、本実施の形態では、EUV光61がマスク30に対して斜め方向から入射するので、反射不能領域に応じたレジストパターン27がウェハ上に形成される。レジストパターン27は、Y軸方向の寸法がl2である。レジストパターン27は、反射不能領域と同じ形状を有している。反射不能領域は、プラスY側とマイナスY側の両方に発生するので、4倍の縮小投影の場合、l2=2×4×l1である。
これにより、ウェハ上には遮光体25の形状および反射不能領域の形状に対応するレジストパターン26,27が形成される。このレジストパターン26,27は、Y軸方向の寸法がL2+l2となる。
図12は、露光領域内の位置とレジストパターン寸法との関係を説明するための図である。図10で説明したように、マスク30には、XY平面内で種々の入射角を有したEUV光61が照射される。そして、図11で説明したように、露光領域31上にはEUV光61の入射角度に応じた反射不能領域が発生する。
このため、露光領域31の中心部P1と、露光領域31の周辺部P2とでは、反射不能領域の形状や寸法が異なる。露光領域31の中心部P1には、XY平面内でY軸と平行なEUV光61が照射されるので、反射不能領域はY軸方向に発生する。一方、露光領域31の周辺部P2には、XY平面内でY軸から所定の角度を有したEUV光61が照射されるので、反射不能領域はY軸方向とX軸方向の両方に発生する。
周辺部P2に照射されるEUV光61のY軸方向の成分は、中心部P1に照射されるEUV光61のY軸方向の成分よりも小さい。したがって、中心部P1の反射不能領域によって形成されるレジストパターン27AのY軸方向の寸法l3は、周辺部P2の反射不能領域によって形成されるレジストパターン27BのY軸方向の寸法l4よりも大きくなる。
また、周辺部P2に照射されるEUV光61にはX軸方向の成分がある。一方、中心部P1に照射されるEUV光61にはX軸方向の成分がない。したがって、中心部P1の反射不能領域によっては、X軸方向へのレジストパターン27Aは形成されない。一方、周辺部P2の反射不能領域によって形成されるレジストパターン26Bは、X軸方向に所定の寸法l5を有している。
このように、マスク30の中心部P1と周辺部P2とで、EUV光61の入射角度が異なるのでウェハ上に形成されるレジストパターンも異なる。したがって、マスク30の中心部P1と周辺部P2とで露光マージンも異なる。
リソグラフィシミュレーション実行部15に照明条件であるEUV光61の入射角度と輪郭データとが入力されると、リソグラフィシミュレーション実行部15は、照明条件と輪郭データとに基づいて、リソグラフィシミュレーションを実行する。これにより、リソグラフィシミュレーション実行部15は、ウェハ露光に用いられる光学条件にてマスク30のリソグラフィシミュレーションを行なう(ステップS250)。リソグラフィシミュレーション実行部15は、シミュレーション結果をマスクパターン寸法判定部16に送る。
マスクパターン寸法判定部16は、シミュレーション結果に基づいて、マスク30のマスクパターンが所望の寸法に仕上がっているか否かを判定する(ステップS260)。換言すると、本実施の形態では、照明の不均一性(EUV光61の入射角のマスク面内分布)に関する情報を用いてリソグラフィシミュレーションを行なうとともに、このシミュレーション結果に基づいて所望の露光余裕度が得られるか否か(所定の露光マージンを有しているか否か)を判断している。このように、本実施の形態では、EUV光61の入射角度の不均一性に関する情報を用いてリソグラフィシミュレーションを行なっているので、所望の露光余裕度が得られるか否かを正確に判断できる。この後、マスクパターン寸法判定部16によって合格判定されたマスク30、露光装置20を用いて半導体装置が作製される。
つぎに、第2の実施の形態に係るリソグラフィシミュレーションの具体的な処理例について説明する。まず、通常のEUVマスク製造プロセスにより製作したEUVマスクをマスク30として用意した。EUVマスク上に形成したパターンは32nmデザインルールのメモリーデバイスであり、予めリソグラフィマージンが少ない箇所をホットスポットとして抽出してある。今回は64箇所のホットスポットを抽出した。
用意したEUVマスクをトプコン社製高精細SEM(NGR4000)にセットし、ホットスポットのSEM画像を取得した。つぎに、取得したSEM画像のマスク面内の位置から、この位置におけるEUV光の入射方向を算出した。
EUV光のEUVマスクへの入射角は約6度で一定である。EUV光のXY平面内での入射方向は、EUV光照射領域(露光エリア)60の円弧に沿って変化している。このため、EUV光照射領域60の中心付近のパターンへはスキャン方向に対して平行にEUV光が入射してくる。一方、EUV光照射領域60の周辺部付近のパターンへはスキャン方向に対して平行ではなく、マスク中心方向に所定の角度だけ傾いてEUV光が入射してくる。今回取得したSEM画像の位置はスキャン中心から30mmほどずれた位置にあるため、入射方向を算出すると3.13度傾いていることが分かった。
つぎに、取得したSEM画像からマスクパターンの輪郭データを抽出した。そして、この輪郭データとEUV光の入射方向の情報とをシミュレーション装置10に入力した。リソグラフィシミュレーション実行部15は、作製したEUVマスクがウェハ露光に用いられる光学条件にてリソグラフィシミュレーションを行った。
このリソグラフィシミュレーションの結果、ウェハ上で所望のパターン寸法を得るために必要な露光量の余裕度は8%であり、焦点深度の余裕度は0.21umであることが判明した。準備したEUVマスクに必要な露光量の余裕度は10%であり、焦点深度の余裕度は0.2umである。したがって、今回のこのEUVマスクのこのホットスポットの場所は、露光量の余裕度でスペック未達となり不合格品である。
従来のリソグラフィシミュレーションと本実施の形態のリソグラフィシミュレーションとの比較のために、EUV光の入射方向を本実施の形態と同じにして従来のリソグラフィシミュレーションを実行した場合について説明する。従来のリソグラフィシミュレーションを実行した場合、得られる露光量の余裕度は11%となり焦点深度が0.23umとなったので、EUVマスクは合格品であるという判定結果になった。
そこで、準備したEUVマスクを用いて実際にウェハ上にレジストパターンを形成した。露光装置にはニコン社製EUV露光装置を用いた。その結果、所望の寸法を得ることができた露光量の範囲は8%であり、焦点深度の範囲は0.22umであった。このように、マスク面内のEUV光の入射方向を考慮することにより、正確なリソグラフィシミュレーションが可能となりマスクの合否判定の精度を向上させることができる。これにより、EUVマスクのマスクパターンの検証・検査精度が向上し、EUVマスク製造の歩留まりが向上するとともに、EUVマスクを用いた半導体製造の歩留まりが格段に向上することが確認できた。
なお、本実施の形態においてEUVマスク上に生成するパターンは、EUV光61の入射方向に関する情報(入射方向の面内分布)を用いて生成しておいてもよい。また、本実施の形態では、リソグラフィシミュレーションのシミュレーション結果に基づいて、マスク30のパターン寸法の判定を行なう場合について説明したが、シミュレーション結果を用いてマスク30の設計データにOPCを行なってもよい。また、本実施の形態でも、第1の実施の形態と同様に、リソグラフィシミュレーションによって、ウェハへ照射される露光光の光学像強度分布を算出してもよい。
また、本実施の形態は、上述の実施の形態に限るものではない。例えば、SEM画像から抽出する輪郭データは3次元SEM画像からの等高線データであってもよい。その他、シミュレーション装置10によるリソグラフィシミュレーションやマスク30の合否判定は、本実施の形態の要旨を逸脱しない範囲で種々変形して実施することが出来る。
このように第2の実施の形態によれば、シミュレーション装置10は、照明の不均一性に関する情報を用いてリソグラフィシミュレーションを行なっているので、リソグラフィシミュレーション結果とウェハへの露光結果を一致させることが可能となり、マスクパターンの寸法を正確に合否判定できる。また、マスクパターンの光学像強度分布を正確にリソグラフィシミュレーションすることが可能になる。したがって、マスクパターンのパターン寸法や光学像強度分布を精度良く検査することが可能となる。
7 シミュレーションプログラム、8 マスクパターン検査プログラム、10 シミュレーション装置、12 位置情報入力部、14 照明形状算出部、15 リソグラフィシミュレーション実行部、16 マスクパターン寸法判定部、22A〜22E 照明形状、30 マスク、61 EUV光
Claims (5)
- マスクパターンを検証又は検査するパターン検証・検査方法において、
検証又は検査対象となるマスクパターンのフォトマスク面内の位置である検証又は検査対象位置と、露光装置によって前記マスクパターンに照射される露光光のフォトマスク面内での照明条件の分布に関する照明条件情報と、に基づいて、前記検証又は検査対象位置での照明条件を導出する照明条件導出ステップと、
前記検査対象位置での前記照明条件と前記マスクパターンとに基づいて、前記マスクパターンのリソグラフィシミュレーションを行なうシミュレーションステップと、
前記リソグラフィシミュレーションの結果に基づいて、前記パターンの検証又は検査を行なう検証・検査ステップと、
を含むことを特徴とするパターン検証・検査方法。 - 前記照明条件情報は、前記マスクパターンに照射されて透過する露光光の照明形状に関する情報であることを特徴とする請求項1に記載のパターン寸法検証・検査方法。
- 前記照明条件情報は、前記マスクパターンに照射されて反射する露光光の入射方向に関する情報であることを特徴とする請求項1に記載のパターン寸法検証・検査方法。
- マスクパターンをウェハ上に露光した場合に前記ウェハへ照射される露光光の光学像強度分布をリソグラフィシミュレーションにより取得する光学像強度分布取得方法において、
露光装置によって前記フォトマスクに照射される露光光のフォトマスク面内での照明条件の分布に関する照明条件情報を用いて、前記マスクパターンの光学像強度分布をリソグラフィシミュレーションする光学像強度分布取得ステップと、
を含むことを特徴とする光学像強度分布取得方法。 - マスクパターンをウェハ上に露光した場合に前記ウェハへ照射される露光光の光学像強度分布をリソグラフィシミュレーションにより取得する光学像強度分布取得プログラムにおいて、
露光装置によって前記フォトマスクに照射される露光光のフォトマスク面内での照明条件の分布に関する照明条件情報を用いて、前記マスクパターンの光学像強度分布をリソグラフィシミュレーションする光学像強度分布取得ステップと、
をコンピュータに実行させることを特徴とする光学像強度分布取得プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008162508A JP2010002772A (ja) | 2008-06-20 | 2008-06-20 | パターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラム |
US12/487,554 US8219942B2 (en) | 2008-06-20 | 2009-06-18 | Pattern verification-test method, optical image intensity distribution acquisition method, and computer program |
US13/491,639 US8407629B2 (en) | 2008-06-20 | 2012-06-08 | Pattern verification-test method, optical image intensity distribution acquisition method, and computer program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008162508A JP2010002772A (ja) | 2008-06-20 | 2008-06-20 | パターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010002772A true JP2010002772A (ja) | 2010-01-07 |
Family
ID=41431615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008162508A Pending JP2010002772A (ja) | 2008-06-20 | 2008-06-20 | パターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラム |
Country Status (2)
Country | Link |
---|---|
US (2) | US8219942B2 (ja) |
JP (1) | JP2010002772A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011176046A (ja) * | 2010-02-23 | 2011-09-08 | Fujitsu Semiconductor Ltd | 露光方法及び半導体装置の製造方法 |
JP2012014058A (ja) * | 2010-07-02 | 2012-01-19 | Toppan Printing Co Ltd | フォトマスクの評価システム及びその方法 |
JP2013532307A (ja) * | 2010-06-03 | 2013-08-15 | カール ツァイス エスエムエス ゲーエムベーハー | フォトリソグラフィマスクの性能を判断する方法 |
JP2016507786A (ja) * | 2013-02-22 | 2016-03-10 | エーエスエムエル ネザーランズ ビー.ブイ. | 三次元パターニングデバイス用リソグラフィモデル |
JP2017538155A (ja) * | 2014-12-17 | 2017-12-21 | エーエスエムエル ネザーランズ ビー.ブイ. | パターニングデバイストポグラフィ誘起位相を使用するための方法及び装置 |
US10606165B2 (en) | 2018-02-08 | 2020-03-31 | Toshiba Memory Corporation | Mask pattern verification method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010206177A (ja) | 2009-02-06 | 2010-09-16 | Toshiba Corp | 露光用マスク及びその製造方法並びに半導体装置の製造方法 |
KR101096979B1 (ko) * | 2010-05-07 | 2011-12-20 | 주식회사 하이닉스반도체 | 반도체 소자의 패턴 균일도 조절 방법 |
JP5221611B2 (ja) * | 2010-09-13 | 2013-06-26 | 株式会社東芝 | ドーズデータ生成装置、露光システム、ドーズデータ生成方法および半導体装置の製造方法 |
CN105573047B (zh) * | 2014-10-10 | 2019-11-05 | 中芯国际集成电路制造(上海)有限公司 | 一种侦测掩膜图形保真度的系统及方法 |
JP7294806B2 (ja) * | 2015-03-23 | 2023-06-20 | テックインサイツ インコーポレイテッド | イメージング装置における歪み補正に関する方法、システム及び装置 |
US9983148B2 (en) * | 2015-05-28 | 2018-05-29 | Kla-Tencor Corporation | System and method for production line monitoring |
JP2023116048A (ja) * | 2022-02-09 | 2023-08-22 | キオクシア株式会社 | 計測装置および計測方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04100038A (ja) | 1990-08-20 | 1992-04-02 | Konica Corp | ハロゲン化銀カラー写真感光材料 |
JP3281241B2 (ja) * | 1994-12-27 | 2002-05-13 | 株式会社東芝 | レジストの吸収光量分布評価方法及びシステム |
US6522386B1 (en) * | 1997-07-24 | 2003-02-18 | Nikon Corporation | Exposure apparatus having projection optical system with aberration correction element |
TW473823B (en) * | 1999-11-18 | 2002-01-21 | Nippon Kogaku Kk | Exposure method as well as exposure apparatus, and method for manufacturing device |
JP4266082B2 (ja) * | 2001-04-26 | 2009-05-20 | 株式会社東芝 | 露光用マスクパターンの検査方法 |
TW554411B (en) * | 2001-08-23 | 2003-09-21 | Nikon Corp | Exposure apparatus |
JP4100038B2 (ja) | 2002-05-10 | 2008-06-11 | ソニー株式会社 | 露光方法および露光装置 |
AU2003236819A1 (en) * | 2002-07-12 | 2004-02-02 | Luka Optoscope Aps | Method and apparatus for optically measuring the topography of nearly planar periodic structures |
US7266480B2 (en) * | 2002-10-01 | 2007-09-04 | The Regents Of The University Of California | Rapid scattering simulation of objects in imaging using edge domain decomposition |
EP2837969B1 (en) * | 2003-09-29 | 2016-04-20 | Nikon Corporation | Exposure apparatus, exposure method, and method for producing device |
JP4247104B2 (ja) * | 2003-12-18 | 2009-04-02 | 株式会社東芝 | パターン検証方法、パターン検証システム |
US7313781B2 (en) * | 2004-05-28 | 2007-12-25 | Kabushiki Kaisha Toshiba | Image data correction method, lithography simulation method, image data correction system, program, mask and method of manufacturing a semiconductor device |
JP4769025B2 (ja) * | 2005-06-15 | 2011-09-07 | 株式会社日立ハイテクノロジーズ | 走査型電子顕微鏡用撮像レシピ作成装置及びその方法並びに半導体パターンの形状評価装置 |
US7488933B2 (en) * | 2005-08-05 | 2009-02-10 | Brion Technologies, Inc. | Method for lithography model calibration |
US7713889B2 (en) * | 2005-11-16 | 2010-05-11 | Nikon Corporation | Substrate processing method, photomask manufacturing method, photomask, and device manufacturing method |
JP2007273560A (ja) * | 2006-03-30 | 2007-10-18 | Toshiba Corp | 光強度分布シミュレーション方法 |
JP4675854B2 (ja) * | 2006-07-25 | 2011-04-27 | 株式会社東芝 | パターン評価方法と評価装置及びパターン評価プログラム |
US8521481B2 (en) * | 2006-08-30 | 2013-08-27 | Asml Masktools B.V. | Method, program product and apparatus for modeling resist development of a lithography process |
JP5271491B2 (ja) * | 2006-10-26 | 2013-08-21 | 株式会社日立ハイテクノロジーズ | 電子線応用装置および試料検査方法 |
JP5224687B2 (ja) * | 2006-12-22 | 2013-07-03 | キヤノン株式会社 | 露光条件算出プログラム及び露光条件算出方法 |
JP4328811B2 (ja) * | 2007-02-27 | 2009-09-09 | キヤノン株式会社 | レジストパターン形状予測方法、プログラム及びコンピュータ |
JP4856047B2 (ja) * | 2007-11-12 | 2012-01-18 | 株式会社東芝 | マスクパターン寸法検査方法およびマスクパターン寸法検査装置 |
-
2008
- 2008-06-20 JP JP2008162508A patent/JP2010002772A/ja active Pending
-
2009
- 2009-06-18 US US12/487,554 patent/US8219942B2/en active Active
-
2012
- 2012-06-08 US US13/491,639 patent/US8407629B2/en active Active
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011176046A (ja) * | 2010-02-23 | 2011-09-08 | Fujitsu Semiconductor Ltd | 露光方法及び半導体装置の製造方法 |
JP2013532307A (ja) * | 2010-06-03 | 2013-08-15 | カール ツァイス エスエムエス ゲーエムベーハー | フォトリソグラフィマスクの性能を判断する方法 |
US9431212B2 (en) | 2010-06-03 | 2016-08-30 | Carl Zeiss Sms Gmbh | Method for determining the performance of a photolithographic mask |
JP2012014058A (ja) * | 2010-07-02 | 2012-01-19 | Toppan Printing Co Ltd | フォトマスクの評価システム及びその方法 |
JP2016507786A (ja) * | 2013-02-22 | 2016-03-10 | エーエスエムエル ネザーランズ ビー.ブイ. | 三次元パターニングデバイス用リソグラフィモデル |
US10359704B2 (en) | 2013-02-22 | 2019-07-23 | Asml Netherlands B.V. | Lithography model for three-dimensional patterning device |
JP2017538155A (ja) * | 2014-12-17 | 2017-12-21 | エーエスエムエル ネザーランズ ビー.ブイ. | パターニングデバイストポグラフィ誘起位相を使用するための方法及び装置 |
US10606165B2 (en) | 2018-02-08 | 2020-03-31 | Toshiba Memory Corporation | Mask pattern verification method |
Also Published As
Publication number | Publication date |
---|---|
US20090317732A1 (en) | 2009-12-24 |
US20120250011A1 (en) | 2012-10-04 |
US8219942B2 (en) | 2012-07-10 |
US8407629B2 (en) | 2013-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010002772A (ja) | パターン検証・検査方法、光学像強度分布取得方法および光学像強度分布取得プログラム | |
KR102068649B1 (ko) | 패턴 검사 장치, 패턴 위치 계측 장치, 공간상 계측 시스템, 공간상 계측 방법, 패턴 위치 보수 장치, 패턴 위치 보수 방법, 공간상 데이터 처리 장치, 공간상 데이터 처리 방법, 패턴의 노광 장치, 패턴의 노광 방법, 마스크의 제조 방법 및 마스크의 제조 시스템 | |
KR102441582B1 (ko) | Mpc 검증 방법 및 그 검증 방법을 포함한 마스크 제조방법 | |
JP5289343B2 (ja) | 露光量決定方法、半導体装置の製造方法、露光量決定プログラムおよび露光量決定装置 | |
KR100832660B1 (ko) | 포토마스크의 평가 방법, 평가 장치, 및 반도체 장치의제조 방법 | |
JP5235719B2 (ja) | パターン測定装置 | |
JP2022001965A (ja) | リソグラフィプロセスおよびリソグラフィ装置、ならびに検査プロセスおよび検査装置 | |
KR102491578B1 (ko) | Opc 방법 및 그 opc 방법을 이용한 마스크 제조방법 | |
US20180275521A1 (en) | Method and apparatus for pattern correction and verification | |
US20150362834A1 (en) | Exposure methods using e-beams and methods of manufacturing masks and semiconductor devices therefrom | |
US20070128525A1 (en) | Sub-resolution assist features for photolithography with trim ends | |
JP4856047B2 (ja) | マスクパターン寸法検査方法およびマスクパターン寸法検査装置 | |
TWI444787B (zh) | 記錄產生遮罩資料之程式的記錄媒體、製造遮罩之方法、及曝光方法 | |
JP2005309140A (ja) | フォトマスク製造方法、フォトマスク欠陥修正箇所判定方法、及びフォトマスク欠陥修正箇所判定装置 | |
JP6858732B2 (ja) | Opc方法、及びそのopc方法を利用したマスク製造方法 | |
JP2006330287A (ja) | マスク製造システム、マスクデータ作成方法、及び半導体装置の製造方法 | |
KR102693518B1 (ko) | Opc 방법, 및 그 opc 방법을 이용한 마스크 제조방법 | |
JP2016194482A (ja) | 検査方法および検査装置 | |
JP4860294B2 (ja) | 電子顕微鏡 | |
KR20080078608A (ko) | 자외선 리소그래피 시스템들 및 방법들 | |
JP2010186166A (ja) | 原版データを生成する方法およびプログラム、ならびに、原版製作方法 | |
US20230132893A1 (en) | Mask layout correction methods based on machine learning, and mask manufacturing methods including the correction methods | |
US7930654B2 (en) | System and method of correcting errors in SEM-measurements | |
JP2008242112A (ja) | マスクパターン評価装置及びフォトマスクの製造方法 | |
JP5045445B2 (ja) | マスクパターン補正方法、マスクパターン補正プログラム、マスクパターン補正装置、露光条件設定方法、露光条件設定プログラム、露光条件設定装置、半導体装置製造方法、半導体装置製造プログラムおよび半導体装置製造装置 |