[go: up one dir, main page]

JP2009301989A - Nonaqueous electrolyte and lithium ion secondary battery equipped therewith - Google Patents

Nonaqueous electrolyte and lithium ion secondary battery equipped therewith Download PDF

Info

Publication number
JP2009301989A
JP2009301989A JP2008157718A JP2008157718A JP2009301989A JP 2009301989 A JP2009301989 A JP 2009301989A JP 2008157718 A JP2008157718 A JP 2008157718A JP 2008157718 A JP2008157718 A JP 2008157718A JP 2009301989 A JP2009301989 A JP 2009301989A
Authority
JP
Japan
Prior art keywords
weight
ion secondary
lithium
positive electrode
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008157718A
Other languages
Japanese (ja)
Inventor
Osamu Hiruta
修 蛭田
Mamoru Mizutani
守 水谷
Yoshio Ukyo
良雄 右京
Shozo Kaneko
勝三 金子
Shigeo Iida
茂雄 飯田
Kanzo Torii
寛三 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Sanwa Yuka Industry Corp
Original Assignee
Toyota Central R&D Labs Inc
Sanwa Yuka Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc, Sanwa Yuka Industry Corp filed Critical Toyota Central R&D Labs Inc
Priority to JP2008157718A priority Critical patent/JP2009301989A/en
Publication of JP2009301989A publication Critical patent/JP2009301989A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

【課題】リチウムイオン二次電池において充放電の繰り返しにおけるサイクル特性をより向上する。
【解決手段】リチウムイオン二次電池10は、正極活物質12を有する正極と、負極活物質17を有する負極と、正極と負極との間に介在しリチウムイオンを伝導する非水電解液20と、を備えている。この非水電解液20は、リチウムを含む電解質塩と、リチウムビス(オキサラト)ボレートと、ジビニルテトラアルキルジシロキサン(アルキルの炭素数が1以上4以下)と、不飽和結合を有する炭素鎖を備えたカーボネート(炭素数が1以上4以下の炭素鎖が好ましい。例えばビニレンカーボネートなど)とを添加成分として含んでいる。リチウムビス(オキサラト)ボレートと、ジビニルテトラメチルジシロキサンと、不飽和結合を有する炭素鎖を備えたカーボネートとは、それぞれ0.05重量%以上10重量%以下であることが好ましい。
【選択図】図1
To improve cycle characteristics in repeated charge / discharge in a lithium ion secondary battery.
A lithium ion secondary battery includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte solution that is interposed between the positive electrode and the negative electrode to conduct lithium ions. It is equipped with. This nonaqueous electrolytic solution 20 includes an electrolyte salt containing lithium, lithium bis (oxalato) borate, divinyltetraalkyldisiloxane (alkyl having 1 to 4 carbon atoms), and a carbon chain having an unsaturated bond. And carbonate (preferably a carbon chain having 1 to 4 carbon atoms, such as vinylene carbonate) as an additional component. The amount of lithium bis (oxalato) borate, divinyltetramethyldisiloxane, and carbonate having a carbon chain having an unsaturated bond is preferably 0.05% by weight or more and 10% by weight or less.
[Selection] Figure 1

Description

本発明は、非水電解液及びそれを備えたリチウムイオン二次電池に関する。   The present invention relates to a non-aqueous electrolyte and a lithium ion secondary battery including the same.

従来、リチウムイオン二次電池に用いられる非水電解液としては、不飽和結合を有する珪素化合物を電解液に添加することにより、充放電の繰り返し時に電気容量や内部抵抗の変化率が小さく、かつ低温時の内部抵抗増加が小さく、高い電気容量を維持するというサイクル特性及び低温特性に優れたものが提案されている(例えば、特許文献1参照)。
特開2002−134169号公報
Conventionally, as a non-aqueous electrolyte used in a lithium ion secondary battery, by adding a silicon compound having an unsaturated bond to the electrolyte, the rate of change in electric capacity and internal resistance is small during repeated charging and discharging, and The thing which was excellent in the cycle characteristic and low temperature characteristic that an internal resistance increase at the time of low temperature is small and maintains a high electrical capacitance is proposed (for example, refer patent document 1).
JP 2002-134169 A

しかしながら、この特許文献1に記載された非水電解液では、珪素化合物を添加することにより、サイクル特性に優れるものとしているものの、まだ十分でなく、より高いサイクル特性を有するものが望まれていた。   However, the non-aqueous electrolyte described in Patent Document 1 has excellent cycle characteristics by adding a silicon compound, but it is not yet sufficient, and one having higher cycle characteristics has been desired. .

本発明は、このような課題に鑑みなされたものであり、充放電の繰り返しにおけるサイクル特性をより向上することができる非水電解液及びそれを備えたリチウムイオン二次電池を提供することを主目的とする。   The present invention has been made in view of such problems, and mainly provides a non-aqueous electrolyte that can further improve cycle characteristics in repeated charge and discharge, and a lithium ion secondary battery including the same. Objective.

上述した目的を達成するために鋭意研究したところ、本発明者らは、リチウムビス(オキサラト)ボレートと、ジビニルテトラアルキルジシロキサン(アルキルの炭素数が1以上4以下)とを含む添加成分に更に不飽和結合を有する炭素鎖を備えたカーボネートを加えたものとすると、充放電の繰り返しにおけるサイクル特性をより向上することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-mentioned object, the present inventors have further added an additive component containing lithium bis (oxalato) borate and divinyltetraalkyldisiloxane (the alkyl has 1 to 4 carbon atoms). Assuming that a carbonate having a carbon chain having an unsaturated bond is added, it has been found that the cycle characteristics in repeated charge and discharge can be further improved, and the present invention has been completed.

即ち、本発明の非水電解液は、
リチウムを含む電解質塩を含有しリチウムイオン二次電池に用いられる非水電解液であって、
リチウムビス(オキサラト)ボレートと、ジビニルテトラアルキルジシロキサン(アルキルの炭素数が1以上4以下)と、不飽和結合を有する炭素鎖を備えたカーボネートとを添加成分として含むものである。
That is, the non-aqueous electrolyte of the present invention is
A non-aqueous electrolyte containing an electrolyte salt containing lithium and used for a lithium ion secondary battery,
The additive component includes lithium bis (oxalato) borate, divinyltetraalkyldisiloxane (alkyl having 1 to 4 carbon atoms), and a carbonate having a carbon chain having an unsaturated bond.

また、本発明のリチウムイオン二次電池は、
正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導する上述した非水電解液と、
を備えたものである。
The lithium ion secondary battery of the present invention is
A positive electrode having a positive electrode active material;
A negative electrode having a negative electrode active material;
The non-aqueous electrolyte described above that is interposed between the positive electrode and the negative electrode and conducts lithium ions;
It is equipped with.

この非水電解液及びそれを備えたリチウムイオン二次電池では、充放電の繰り返しにおけるサイクル特性をより向上することができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、リチウムビス(オキサラト)ボレートは、初回の充電時に負極活物質表面に被膜を形成し、充放電に伴う負極活物質表面でのリチウムイオンの移動の失活を防ぎ、電池容量の低下を抑制することができるものと考えられる。また、ジビニルテトラアルキルジシロキサンは、Si−O結合を有しており正極活物質との親和性があると共に、不飽和結合を有することから自己重合しやすい化合物であり、充放電を繰り返すのに伴い、正極表面で重合反応することにより安定な被膜を形成していき、充放電サイクルに伴う正極/電解液界面での抵抗増加を抑制できるものと考えられる。また、不飽和結合を有する炭素鎖を備えたカーボネートは、初回充電時にリチウムビス(オキサラト)ボレートにより形成された被膜との親和性を有すると共に、不飽和結合を有しているため自己重合しやすい化合物であり、充放電を繰り返すに伴い負極表面で重合反応することにより安定な被膜を形成し、充放電サイクルに伴う正極/電解液界面での抵抗増加を更に抑制できるものと考えられる。そして、それぞれの化合物による効果が相乗的に発揮され、上述した効果を奏するものと推察される。ここで、「添加成分」とは、例えば非水電解液に占める割合が30重量%以下や20重量%以下など、非水電解液に占める割合が小さい成分をいうものとする。また、「サイクル特性」としては、例えば繰り返し充放電後の電池容量の低下抑制の程度を表わす充放電容量維持率や、繰り返し充放電後の電池抵抗の増加の程度を表わす電池抵抗増加率などが挙げられる。   In this non-aqueous electrolyte and a lithium ion secondary battery including the non-aqueous electrolyte, cycle characteristics in repeated charge / discharge can be further improved. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, lithium bis (oxalato) borate forms a film on the surface of the negative electrode active material during the initial charge, prevents the deactivation of lithium ion migration on the surface of the negative electrode active material during charge and discharge, and suppresses battery capacity reduction. It is thought that it can be done. In addition, divinyltetraalkyldisiloxane has a Si—O bond and has an affinity for the positive electrode active material, and since it has an unsaturated bond, it is a compound that is easily self-polymerized. Accordingly, it is considered that a stable coating is formed by polymerization reaction on the surface of the positive electrode, and an increase in resistance at the positive electrode / electrolyte interface accompanying the charge / discharge cycle can be suppressed. In addition, a carbonate having a carbon chain having an unsaturated bond has an affinity with a film formed of lithium bis (oxalato) borate at the time of initial charge, and is easily self-polymerized because it has an unsaturated bond. It is a compound, and it is considered that a stable film is formed by polymerization reaction on the negative electrode surface as charging and discharging are repeated, and the increase in resistance at the positive electrode / electrolyte interface accompanying charging / discharging cycles can be further suppressed. And it is guessed that the effect by each compound is exhibited synergistically and there exists the effect mentioned above. Here, the “additional component” refers to a component having a small proportion in the non-aqueous electrolyte, such as a proportion in the non-aqueous electrolyte of 30% by weight or less or 20% by weight or less. In addition, as “cycle characteristics”, for example, a charge / discharge capacity maintenance ratio indicating a degree of suppression of a decrease in battery capacity after repeated charge / discharge, a battery resistance increase rate indicating a degree of increase in battery resistance after repeated charge / discharge, and the like. Can be mentioned.

本発明のリチウムイオン二次電池は、正極活物質を有する正極と、負極活物質を有する負極と、正極と負極との間に介在しリチウムイオンを伝導する非水電解液と、を備えている。この非水電解液は、リチウムを含む電解質塩と、リチウムビス(オキサラト)ボレートと、ジビニルテトラアルキルジシロキサン(アルキルの炭素数が1以上4以下)と、不飽和結合を有する炭素鎖を備えたカーボネート(以下、不飽和炭素鎖カーボネートとも称する)と、を添加成分として含んでいる。   A lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, and a non-aqueous electrolyte that is interposed between the positive electrode and the negative electrode and conducts lithium ions. . The non-aqueous electrolyte solution includes an electrolyte salt containing lithium, lithium bis (oxalato) borate, divinyltetraalkyldisiloxane (alkyl having 1 to 4 carbon atoms), and a carbon chain having an unsaturated bond. Carbonate (hereinafter also referred to as unsaturated carbon chain carbonate) is included as an additive component.

本発明のリチウムイオン二次電池の正極は、例えば正極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の正極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、LixMnO2(0.5≦x≦1.5など、以下同じ)、LixMn24などのリチウムマンガン複合酸化物、LixCoO2などのリチウムコバルト複合酸化物、LixNiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物とリチウムの遷移金属リン酸化物が好ましい。導電材は、正極の電気伝導性を確保するためのものであり、例えば、天然黒鉛や人造黒鉛などの黒鉛、アセチレンブラックなどのカーボンブラック、ニードルコークスなどの無定形炭素などの1種又は2種以上を混合したものを用いることができる。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴムの水分散体等を用いることもできる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。集電体としては、アルミニウム、スレンレス鋼、ニッケルメッキ鋼などの箔を用いることができる。 The positive electrode of the lithium ion secondary battery of the present invention is prepared by mixing a positive electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like positive electrode material on the surface of the current collector. It may be formed by coating and drying, and compressing to increase the electrode density as necessary. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , FeS 2 , Li x MnO 2 (0.5 ≦ x ≦ 1.5, etc.), Li x Mn 2 O 4, etc. Lithium manganese composite oxide, lithium cobalt composite oxide such as Li x CoO 2 , lithium nickel composite oxide such as Li x NiO 2 , lithium vanadium composite oxide such as LiV 2 O 3 , transition such as V 2 O 5 A metal oxide or the like can be used. Of these, lithium transition metal composite oxides and lithium transition metal phosphates are preferred. The conductive material is for ensuring the electrical conductivity of the positive electrode. For example, one or two kinds of graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, and amorphous carbon such as needle coke are used. What mixed the above can be used. The binder plays a role of connecting the active material particles and the conductive material particles. For example, the binder is a fluorine-containing resin such as polytetrafluoroethylene, polyvinylidene fluoride, or fluororubber, or a thermoplastic resin such as polypropylene or polyethylene. Etc. can be used. In addition, an aqueous dispersion of a cellulose-based or styrene-butadiene rubber that is an aqueous binder can also be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. As the current collector, foil of aluminum, stainless steel, nickel plated steel, or the like can be used.

本発明のリチウムイオン二次電池の負極は、例えば負極活物質と導電材と結着材とを混合し、適当な溶剤を加えてペースト状の負極材としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質としては、リチウムイオンを吸蔵・放出可能な炭素質材料を用いることができる。この炭素質材料は、特に限定されるものではないが、黒鉛、石油系コークス、石炭系コークス、石油系ピッチの炭化物、石炭系ピッチの炭化物、フェノール樹脂,結晶セルロースなど樹脂の炭化物、及びこれらを一部炭化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維、PAN系炭素繊維などが挙げられる。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。また、導電材を用いないものとしてもよい。負極の集電体には、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼などの箔を用いることができる。   The negative electrode of the lithium ion secondary battery of the present invention is prepared by mixing a negative electrode active material, a conductive material, and a binder, and adding a suitable solvent to form a paste-like negative electrode material on the surface of the current collector. It may be formed by coating and drying, and compressing to increase the electrode density as necessary. As the negative electrode active material, a carbonaceous material capable of inserting and extracting lithium ions can be used. The carbonaceous material is not particularly limited, but graphite, petroleum-based coke, coal-based coke, petroleum-based pitch carbide, coal-based pitch carbide, phenolic resin, crystalline cellulose cellulose resin, and the like. Examples include carbonized carbon, furnace black, acetylene black, pitch-based carbon fiber, and PAN-based carbon fiber. In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. Further, a conductive material may not be used. For the current collector of the negative electrode, a foil such as copper, nickel, stainless steel, or nickel-plated steel can be used.

本発明のリチウムイオン二次電池は、負極と正極との間にセパレータを備えていてもよい。セパレータとしては、例えば高分子化合物の微多孔フィルムなど、2次電池の使用範囲に耐えうる材質であれば特に限定されずに用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシド、ポリプロピレンオキシドなどのポリエーテル類、カルボキシルメチルセルロースやヒドロキシプロピルセルロースなどのセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルムなどが挙げられる。また、これらは単独で用いてもよいし、複数のフィルムを重ね合わせた複層フィルムとして用いてもよい。また、これらのフィルムには、例えばイオンの伝導性を高める添加剤や強度・耐食性を高めるような種々の添加剤を添加してもよい。この微多孔フィルムのうち、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンなどが好ましく用いられる。このセパレータは、非水電解液が浸透してイオンが透過しやすいように、微多孔化を施すのが好ましい。この微多孔化の方法としては、上記高分子化合物と溶剤の溶液をミクロ相分離させながら製膜し、この溶剤を抽出除去して多孔化する「相分離法」、溶融した高分子化合物を高ドラフトで押し出し製膜したのち熱処理し結晶を一方向に配列させ更に延伸により結晶間に間隙を形成して多孔化を図る「延伸法」などが挙げられ、用いる材質等により適宜選択される。   The lithium ion secondary battery of the present invention may include a separator between the negative electrode and the positive electrode. The separator can be used without particular limitation as long as it is a material that can withstand the use range of the secondary battery, such as a microporous film of a polymer compound. For example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide, polypropylene oxide and other polyethers, carboxymethylcellulose And celluloses such as hydroxypropyl cellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, and films made of copolymers or mixtures thereof. These may be used alone or as a multilayer film in which a plurality of films are superposed. These films may contain, for example, an additive that enhances ion conductivity and various additives that enhance strength and corrosion resistance. Of these microporous films, polyethylene, polypropylene, polyvinylidene fluoride, polysulfone and the like are preferably used. This separator is preferably microporous so that the non-aqueous electrolyte can penetrate and ions can easily pass therethrough. This microporosification method includes the “phase separation method” in which a film of the above polymer compound and a solvent is formed while microphase separation is performed, and the solvent is extracted and removed to make it porous. There is a “stretching method” in which a film is formed by extrusion and then heat-treated to arrange crystals in one direction, and a gap is formed between the crystals by stretching to make it porous.

本発明のリチウムイオン二次電池の非水電解液は、リチウムビス(オキサラト)ボレートを添加成分として含んでいる。このリチウムビス(オキサラト)ボレートの含有量は、0.05重量%以上10重量%以下であることがより好ましく、0.2重量%以上5重量%以下であることが一層好ましい。この含有量が0.05重量%であれば、充放電を繰り返した際の電池容量の低下を抑制する効果を発揮することができ、10重量%以下では、リチウムビス(オキサラト)ボレートの含有量をより抑えることにより電極に生成する皮膜による抵抗の増加を抑制することができる。この含有量が0.2重量%以上5重量%以下ではより大きな上記効果を得ることができる。ここで、リチウムビス(オキサラト)ボレートの含有量は、有機溶媒とリチウムを含む電解質塩との混合溶液を100重量%とし、この100重量%に対する添加割合(重量%)の値をいうものとする。   The non-aqueous electrolyte of the lithium ion secondary battery of the present invention contains lithium bis (oxalato) borate as an additive component. The content of lithium bis (oxalato) borate is more preferably 0.05% by weight to 10% by weight, and still more preferably 0.2% by weight to 5% by weight. If this content is 0.05% by weight, the effect of suppressing a decrease in battery capacity upon repeated charge / discharge can be exhibited, and if it is 10% by weight or less, the content of lithium bis (oxalato) borate By suppressing the resistance, it is possible to suppress an increase in resistance due to the film formed on the electrode. When the content is 0.2 wt% or more and 5 wt% or less, the above effect can be obtained. Here, the content of lithium bis (oxalato) borate refers to a value of an addition ratio (wt%) with respect to 100 wt% of a mixed solution of an organic solvent and an electrolyte salt containing lithium. .

また、この非水電解液は、ジビニルテトラアルキルジシロキサン(アルキルの炭素数が1以上4以下)を添加成分として含んでいる。このジビニルテトラアルキルジシロキサンの含有量は、0.05重量%以上10重量%以下であることがより好ましく、0.2重量%以上5重量%以下であることが一層好ましい。この含有量が0.05重量%であれば、充放電を繰り返した際の電池抵抗の増加を抑制する効果を発揮することができ、10重量%以下では、ジビニルテトラアルキルジシロキサンの含有量をより抑えることにより電極に生成する皮膜による抵抗の増加を抑制することができる。この含有量が0.2重量%以上5重量%以下ではより大きな上記効果を得ることができる。このジビニルテトラアルキルジシロキサンとしては、アルキル基の炭素数がより小さい方が好ましく、ジビニルテトラメチルジシロキサンを好適に用いることができる。ここで、ジビニルテトラアルキルジシロキサンの含有量は、有機溶媒とリチウムを含む電解質塩との混合溶液を100重量%とし、この100重量%に対する添加割合(重量%)の値をいうものとする。   In addition, this nonaqueous electrolytic solution contains divinyltetraalkyldisiloxane (alkyl having 1 to 4 carbon atoms) as an additive component. The content of the divinyltetraalkyldisiloxane is more preferably 0.05% by weight or more and 10% by weight or less, and further preferably 0.2% by weight or more and 5% by weight or less. If this content is 0.05 wt%, the effect of suppressing an increase in battery resistance when charging and discharging is repeated can be exhibited, and if it is 10 wt% or less, the content of divinyltetraalkyldisiloxane is reduced. By suppressing it more, an increase in resistance due to the film formed on the electrode can be suppressed. When the content is 0.2 wt% or more and 5 wt% or less, the above effect can be obtained. The divinyltetraalkyldisiloxane preferably has a smaller alkyl group carbon number, and divinyltetramethyldisiloxane can be suitably used. Here, the content of divinyltetraalkyldisiloxane is 100% by weight of a mixed solution of an organic solvent and an electrolyte salt containing lithium, and is a value of an addition ratio (% by weight) with respect to 100% by weight.

また、この非水電解液は、不飽和炭素鎖カーボネートを添加成分として含んでいる。不飽和炭素鎖カーボネートとしては、炭素鎖が小さい方が好ましく、炭素数が1以上4以下であることがより好ましい。この不飽和炭素鎖カーボネートとしては、例えばビニレンカーボネートやビニルエチレンカーボネート、ビニルプロピレンカーボネートなどが挙げられ、このうちビニレンカーボネートが好適である。この不飽和炭素鎖カーボネートの含有量は、0.05重量%以上10重量%以下であることがより好ましく、0.2重量%以上5重量%以下であることが一層好ましい。この含有量が0.05重量%であれば、充放電を繰り返した際の電池容量の低下及び電池抵抗の増加を抑制する効果を発揮することができ、10重量%以下では、不飽和炭素鎖カーボネートの含有量をより抑えることによりこの不飽和炭素鎖カーボネートの添加により生じる初期の電池抵抗の増加を抑制することができる。この含有量が0.2重量%以上5重量%以下ではより大きな上記効果を得ることができる。ここで、不飽和炭素鎖カーボネートの含有量は、有機溶媒とリチウムを含む電解質塩との混合溶液を100重量%とし、この100重量%に対する添加割合(重量%)の値をいうものとする。   Moreover, this non-aqueous electrolyte contains an unsaturated carbon chain carbonate as an additive component. The unsaturated carbon chain carbonate preferably has a smaller carbon chain, and more preferably has 1 to 4 carbon atoms. Examples of the unsaturated carbon chain carbonate include vinylene carbonate, vinyl ethylene carbonate, and vinyl propylene carbonate. Among these, vinylene carbonate is preferable. The content of the unsaturated carbon chain carbonate is more preferably 0.05% by weight or more and 10% by weight or less, and further preferably 0.2% by weight or more and 5% by weight or less. If this content is 0.05% by weight, the effect of suppressing a decrease in battery capacity and an increase in battery resistance upon repeated charge / discharge can be exhibited, and if it is 10% by weight or less, an unsaturated carbon chain. By suppressing the carbonate content more, it is possible to suppress an initial increase in battery resistance caused by the addition of the unsaturated carbon chain carbonate. When the content is 0.2 wt% or more and 5 wt% or less, the above effect can be obtained. Here, the content of the unsaturated carbon chain carbonate refers to a value of an addition ratio (% by weight) with respect to 100% by weight of a mixed solution of an organic solvent and an electrolyte salt containing lithium.

このリチウムビス(オキサラト)ボレートとジビニルテトラアルキルジシロキサンと不飽和炭素鎖カーボネートとは、それぞれ上記添加範囲で用いることができるが、リチウムビス(オキサラト)ボレートとジビニルテトラアルキルジシロキサンと不飽和炭素鎖カーボネートとの全体量としては、30重量%以下であることが好ましく、20重量%以下であることがより好ましく、15重量%以下であることが更に好ましく、6重量%以下であることが一層好ましい。含有量と得られる効果の関係やコスト面から見て、それぞれ0.1重量%以上2.0重量%以下で添加することがより一層好ましい。   The lithium bis (oxalato) borate, divinyltetraalkyldisiloxane, and unsaturated carbon chain carbonate can be used within the above ranges, respectively, but lithium bis (oxalato) borate, divinyltetraalkyldisiloxane, and unsaturated carbon chain. The total amount of carbonate is preferably 30% by weight or less, more preferably 20% by weight or less, further preferably 15% by weight or less, and further preferably 6% by weight or less. . From the viewpoint of the relationship between the content and the effect to be obtained and the cost, it is more preferable to add at 0.1 wt% to 2.0 wt%.

本発明のリチウムイオン二次電池の非水電解液は、上述した添加成分が有機溶媒に溶解している。有機溶媒としては、カーボネート類、ラクトン類、エーテル類、スルホラン類及びジオキソラン類などを用いることができる。具体的には、カーボネート類としてエチレンカーボネートやプロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート類、ジメチルカーボネートやエチルメチルカーボネート、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネートなどや、ラクトン類としてγ−ブチルラクトン、γ−バレロラクトンなど、エーテル類としてジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなど、スルホラン類としてスルホラン、テトラメチルスルホランなど、ジオキソラン類として1,3−ジオキソランなどが挙げられる。このうち、環状カーボネート類と鎖状カーボネート類との組み合わせが好ましい。この組み合わせによると、充放電の繰り返しでの電池特性を表すサイクル特性が優れているばかりでなく、電解液の粘度、得られる電池の電気容量、電池出力などをバランスの取れたものとすることができる。なお、環状カーボネート類は、比誘電率が比較的高く、電解液の誘電率を高めていると考えられ、鎖状カーボネート類は、電解液の粘度を抑えていると考えられる。   In the non-aqueous electrolyte solution of the lithium ion secondary battery of the present invention, the above-described additive components are dissolved in an organic solvent. As the organic solvent, carbonates, lactones, ethers, sulfolanes, dioxolanes and the like can be used. Specifically, cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate as carbonates, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl-n-butyl carbonate, methyl-t-butyl carbonate, di-i- Sulfolanes such as chain carbonates such as propyl carbonate and t-butyl-i-propyl carbonate, lactones such as γ-butyllactone and γ-valerolactone, ethers such as dimethoxyethane, ethoxymethoxyethane, and diethoxyethane As sulfolane, tetramethylsulfolane and the like, and as dioxolane, 1,3-dioxolane and the like can be mentioned. Among these, the combination of cyclic carbonates and chain carbonates is preferable. According to this combination, not only the cycle characteristics representing the battery characteristics in repeated charge and discharge are excellent, but also the viscosity of the electrolyte, the electric capacity of the obtained battery, the battery output, etc. should be balanced. it can. The cyclic carbonates are considered to have a relatively high relative dielectric constant and increase the dielectric constant of the electrolytic solution, and the chain carbonates are considered to suppress the viscosity of the electrolytic solution.

本発明のリチウムイオン二次電池に含まれている電解質塩は、例えば、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiN(CF3SO22、LiC(CF3SO23、LiSbF6、LiSiF6、LiAlF4、LiSCN、LiClO4、LiCl、LiF、LiBr、LiI、LiAlCl4などが挙げられる。このうち、LiPF6、LiBF4、LiAsF6、LiClO4などの無機塩、及びLiCF3SO3、LiN(CF3SO22、LiC(CF3SO23などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この電解質塩は、非水電解液中の濃度が0.1mol/L以上3.0mol/L以下であることが好ましく、0.5mol/L以上2.0mol/L以下であることがより好ましい。電解質塩の濃度が0.1mol/L以上では、十分な電流密度を得ることができ、3.0mol/L以下では、電解液をより安定させることができる。また、この非水電解液には、リン系、ハロゲン系などの難燃剤を添加してもよい。この難燃剤は、具体的には、リン系として、例えば、トリメチルホスフェートやトリエチルホスフェートなどのリン酸エステル類、ポリリン酸メラミン塩やポリリン酸アンモニウム塩、ポリリン酸エチレンジアミン塩、ポリリン酸ヘキサメチレンジアミン塩、ポリリン酸ピペラジン塩などのポリリン酸類などを用いることができる。この難燃剤の含有量は、非水電解液を構成する全有機溶媒100重量部に対して5重量部以上100重量部以下が好ましく、10重量部以上50重量部以下がより好ましい。難燃剤の含有量が5重量部以上では、十分な難燃効果が得られ、100重量部以下では、電解液の抵抗上昇などをより抑制することができる。 Examples of the electrolyte salt included in the lithium ion secondary battery of the present invention include LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiC (CF 3 SO 2 ) 3. , LiSbF 6, LiSiF 6, LiAlF 4, LiSCN, LiClO 4, LiCl, LiF, LiBr, LiI, and the like LiAlCl 4. Among these, from the group consisting of inorganic salts such as LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , and organic salts such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3. It is preferable from the viewpoint of electrical characteristics to use a combination of one or two or more selected salts. This electrolyte salt preferably has a concentration in the non-aqueous electrolyte of 0.1 mol / L or more and 3.0 mol / L or less, and more preferably 0.5 mol / L or more and 2.0 mol / L or less. When the concentration of the electrolyte salt is 0.1 mol / L or more, a sufficient current density can be obtained, and when the concentration is 3.0 mol / L or less, the electrolytic solution can be made more stable. Moreover, you may add flame retardants, such as a phosphorus type and a halogen type, to this non-aqueous electrolyte. Specifically, this flame retardant is phosphorous, for example, phosphoric esters such as trimethyl phosphate and triethyl phosphate, melamine polyphosphate and ammonium polyphosphate, polyethylene phosphate ethylenediamine, polyphosphate hexamethylenediamine, Polyphosphoric acids such as polyphosphate piperazine salts can be used. The content of the flame retardant is preferably 5 parts by weight or more and 100 parts by weight or less, and more preferably 10 parts by weight or more and 50 parts by weight or less with respect to 100 parts by weight of the total organic solvent constituting the nonaqueous electrolytic solution. When the content of the flame retardant is 5 parts by weight or more, a sufficient flame retardant effect is obtained, and when the content is 100 parts by weight or less, an increase in resistance of the electrolytic solution can be further suppressed.

本発明のリチウムイオン二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、電気自動車等に用いる大型のものなどに適用してもよい。図1は、本発明のリチウムイオン二次電池10の一例を示す模式図である。このリチウムイオン二次電池10は、集電体11に正極活物質12を形成した正極シート13と、集電体14の表面に負極活物質17を形成した負極シート18と、正極シート13と負極シート18との間に設けられたセパレータ19と、正極シート13と負極シート18の間を満たす非水電解液20と、を備えたものである。このリチウムイオン二次電池10では、正極シート13と負極シート18との間にセパレータ19を挟み、これらを捲回して円筒ケース22に挿入し、正極シート13に接続された正極端子24と負極シートに接続された負極端子26とを配設して形成されている。この非水電解液20は、有機溶媒中に、リチウムを含む電解質塩と、0.05重量%以上10重量%以下のリチウムビス(オキサラト)ボレートと、0.05重量%以上10重量%以下のジビニルテトラメチルジシロキサンと、0.05重量%以上10重量%以下のビニレンカーボネートと、を添加成分として含有している。   The shape of the lithium ion secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. Moreover, you may apply to the large sized thing etc. which are used for an electric vehicle etc. FIG. 1 is a schematic view showing an example of a lithium ion secondary battery 10 of the present invention. The lithium ion secondary battery 10 includes a positive electrode sheet 13 in which a positive electrode active material 12 is formed on a current collector 11, a negative electrode sheet 18 in which a negative electrode active material 17 is formed on the surface of the current collector 14, a positive electrode sheet 13 and a negative electrode A separator 19 provided between the sheet 18 and a nonaqueous electrolytic solution 20 that fills between the positive electrode sheet 13 and the negative electrode sheet 18 are provided. In this lithium ion secondary battery 10, a separator 19 is sandwiched between a positive electrode sheet 13 and a negative electrode sheet 18, and these are wound and inserted into a cylindrical case 22, and a positive electrode terminal 24 and a negative electrode sheet connected to the positive electrode sheet 13. And a negative electrode terminal 26 connected to each other. This nonaqueous electrolytic solution 20 is an electrolyte salt containing lithium, 0.05 wt% or more and 10 wt% or less of lithium bis (oxalato) borate, and 0.05 wt% or more and 10 wt% or less of an organic solvent. Divinyltetramethyldisiloxane and 0.05% by weight or more and 10% by weight or less of vinylene carbonate are contained as additive components.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、リチウムイオン二次電池を具体的に作製した例を、実験例として説明する。   Below, the example which produced the lithium ion secondary battery concretely is demonstrated as an experiment example.

[リチウムイオン二次電池の作製]
正極活物質としてLiNiO2を85重量%、導電材としてアセチレンブラックを10重量%、結着材としてポリフッ化ビニリデンを5重量%混合し、分散剤としてN−メチル−2−ピロリドンを適量添加し、スラリー状の正極材とした。この正極材スラリーを20μm厚のアルミニウム箔集電体の両面に均一に塗布し、加熱乾燥して正極塗布シートを作製した。その後、この塗布シートをプレスし、所定サイズの矩形状に切り出し、電流取り出し用のリードタブ溶接部となる部分の正極材を剥ぎ取り、シート状の正極電極とした。負極活物質として炭素材料粉末を95重量%、結着材としてポリフッ化ビニリデンを5重量%混合し、正極と同様に負極スラリーを作製し、これを10μm厚の銅箔集電体の両面に均一に塗布し、加熱乾燥して負極塗布シートを作製した。その後、この塗布シートをプレスし、所定サイズの矩形状に切り出し、電流取り出し用のリードタブ溶接部となる部分の負極材を剥ぎ取り、シート状の負極電極とした。これらの正極電極と負極電極とを25μm厚の微多孔性ポリエチレン製フィルムからなるセパレータを挟んで捲回し、ロール状の電極体とし、このロール状の電極体を18650型円筒ケースに挿入し、ケース内に保持させた。このとき、正極及び負極のリードタブ溶接部に接続した集電リードをケースに設けられた正極端子及び負極端子にそれぞれを接合した。その後、後述する非水電解液をケース内に注入し、密閉して円筒型リチウムイオン二次電池とした(図1参照)。非水電解質の内容を変更することにより実験例1〜13のリチウムイオン二次電池とした。
[Production of lithium ion secondary battery]
85% by weight of LiNiO 2 as a positive electrode active material, 10% by weight of acetylene black as a conductive material, 5% by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersant is added, A slurry-like positive electrode material was obtained. This positive electrode material slurry was uniformly applied on both surfaces of a 20 μm thick aluminum foil current collector, and dried by heating to prepare a positive electrode coated sheet. Thereafter, the coated sheet was pressed, cut into a rectangular shape of a predetermined size, and the positive electrode material at a portion to be a lead tab weld for extracting current was peeled off to obtain a sheet-like positive electrode. A negative electrode active material was mixed with 95% by weight of carbon material powder and 5% by weight of polyvinylidene fluoride as a binder, and a negative electrode slurry was prepared in the same manner as the positive electrode. This was uniformly applied to both sides of a 10 μm thick copper foil current collector And dried by heating to prepare a negative electrode coated sheet. Thereafter, this coated sheet was pressed, cut into a rectangular shape of a predetermined size, and the negative electrode material in a portion to be a lead tab weld for extracting current was peeled off to obtain a sheet-like negative electrode. These positive electrode and negative electrode are wound around a separator made of a microporous polyethylene film having a thickness of 25 μm to form a roll-shaped electrode body, and this roll-shaped electrode body is inserted into a 18650-type cylindrical case. Kept inside. At this time, the current collecting leads connected to the lead tab welds of the positive electrode and the negative electrode were respectively joined to the positive electrode terminal and the negative electrode terminal provided in the case. Thereafter, a non-aqueous electrolyte described later was poured into the case and sealed to obtain a cylindrical lithium ion secondary battery (see FIG. 1). The lithium ion secondary batteries of Experimental Examples 1 to 13 were obtained by changing the content of the nonaqueous electrolyte.

[実験例1]
非水電解液として、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)を体積%で1:1:1となるように混合した混合溶媒に、LiPF6を1mol/Lの濃度で溶解したものを用いて作製したリチウムイオン二次電池を実験例1とした。
[Experiment 1]
As a non-aqueous electrolyte, LiPF 6 was mixed with 1 mol / L of a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) were mixed at a volume ratio of 1: 1: 1. A lithium ion secondary battery manufactured by using one dissolved at a concentration was set as Experimental Example 1.

[実験例2〜9]
上記実験例1で用いた非水電解液にビニレンカーボネートを1.0重量%加えたものを用いて作製したリチウムイオン二次電池を実験例2とした。また、実験例2で用いた非水電解液にリチウムビス(オキサラト)ボレートとジビニルテトラメチルジシロキサンとをそれぞれ0.05重量%,0.20重量%,1.0重量%,2.0重量%,5.0重量%,10.0重量%加えたものを用いて作製したリチウムイオン二次電池をそれぞれ実験例3〜8とした。また、実験例1で用いた非水電解液にリチウムビス(オキサラト)ボレートとジビニルテトラメチルジシロキサンとをそれぞれ1.0重量%加えたものを用いて作製したリチウムイオン二次電池を実験例9とした。
[Experimental Examples 2-9]
A lithium ion secondary battery produced using 1.0% by weight of vinylene carbonate added to the nonaqueous electrolytic solution used in Experimental Example 1 was designated as Experimental Example 2. Further, 0.05% by weight, 0.20% by weight, 1.0% by weight, and 2.0% by weight of lithium bis (oxalato) borate and divinyltetramethyldisiloxane were added to the non-aqueous electrolyte used in Experimental Example 2, respectively. Lithium ion secondary batteries produced using those added with 5.0%, 5.0% by weight, and 10.0% by weight were designated as Experimental Examples 3 to 8, respectively. In addition, a lithium ion secondary battery produced by using 1.0% by weight of lithium bis (oxalato) borate and divinyltetramethyldisiloxane added to the nonaqueous electrolytic solution used in Experimental Example 1 is shown in Experimental Example 9. It was.

[実験例10,11]
上記実験例1で用いた非水電解液にビニルエチレンカーボネートを1.0重量%加えたものを用いて作製したリチウムイオン二次電池を実験例10とした。また、実験例10で用いた非水電解液にリチウムビス(オキサラト)ボレートとジビニルテトラメチルジシロキサンとをそれぞれ1.0重量%加えたものを用いて作製したリチウムイオン二次電池を実験例11とした。
[Experimental Examples 10 and 11]
A lithium ion secondary battery produced by using 1.0% by weight of vinyl ethylene carbonate added to the nonaqueous electrolytic solution used in Experimental Example 1 was designated as Experimental Example 10. In addition, a lithium ion secondary battery manufactured by adding 1.0% by weight of lithium bis (oxalato) borate and divinyltetramethyldisiloxane to the nonaqueous electrolytic solution used in Experimental Example 10 was used in Experimental Example 11. It was.

[実験例12,13]
上記実験例1で用いた非水電解液にビニルプロピレンカーボネートを1.0重量%加えたものを用いて作製したリチウムイオン二次電池を実験例12とした。また、実験例12で用いた非水電解液にリチウムビス(オキサラト)ボレートとジビニルテトラメチルジシロキサンとをそれぞれ1.0重量%加えたものを用いて作製したリチウムイオン二次電池を実験例13とした。
[Experimental Examples 12 and 13]
A lithium ion secondary battery produced using 1.0% by weight of vinyl propylene carbonate added to the nonaqueous electrolytic solution used in Experimental Example 1 was designated as Experimental Example 12. Further, a lithium ion secondary battery produced by using 1.0% by weight of lithium bis (oxalato) borate and divinyltetramethyldisiloxane added to the nonaqueous electrolytic solution used in Experimental Example 12 was tested in Experimental Example 13. It was.

[初期放電容量]
作製した実験例1〜13のリチウムイオン二次電池を用い、0.2mA/cm2で4.1Vまで定電流充電したのち、0.2mA/cm2で3.0Vまで定電流放電を行った。続いて、0.2mA/cm2で4.1Vまで充電したのち、0.1mA/cm2で3.0Vまで定電流放電を行い、このときの放電容量を初期放電容量V0とした。なお、測定は20℃の雰囲気で行った。
[Initial discharge capacity]
The lithium ion secondary batteries of Examples 1 to 13 were prepared, after the constant-current charging at 0.2 mA / cm 2 up to 4.1 V, was constant current discharge to 3.0V at 0.2 mA / cm 2 . Then, after charging at 0.2 mA / cm 2 up to 4.1 V, a constant current discharge to 3.0V at 0.1 mA / cm 2, and the discharge capacity at this time as the initial discharge capacity V0. The measurement was performed in an atmosphere at 20 ° C.

[高温サイクル特性試験、放電容量維持率]
実験例1〜13のリチウムイオン二次電池を雰囲気温度60℃の恒温槽に入れ、放電電流2.0mA/cm2で4.1Vまでの定電流充電し、放電電流2.0mA/cm2で3.0Vまでの定電流放電を行う充放電を1サイクルとし、このサイクルを合計500サイクル行う高温サイクル特性試験を行った。この高温サイクル特性試験ののち、雰囲気温度20℃とし、0.2mA/cm2で4.1Vまで定電流充電したのち、0.2mA/cm2で3.0Vまで定電流放電を行った。続いて、0.2mA/cm2で4.1Vまで充電したのち、0.1mA/cm2で3.0Vまで定電流放電を行い、このときの放電容量をサイクル後放電容量Vcとした。このサイクル後放電容量Vcと初期放電容量V0とを用い、次式(1)により放電容量維持率Vk(%)を求めた。
放電容量維持率Vk(%)=Vc/V0×100 …式(1)
[High-temperature cycle characteristics test, discharge capacity maintenance rate]
Put a lithium ion secondary battery of the Experimental Examples 1 to 13 in a thermostat at ambient temperature 60 ° C., and a constant current charging to 4.1V at a discharge current 2.0 mA / cm 2, at a discharge current of 2.0 mA / cm 2 A high temperature cycle characteristic test was performed in which charging / discharging for performing a constant current discharge up to 3.0 V was defined as one cycle, and this cycle was performed for a total of 500 cycles. Thereafter the high-temperature cycle characteristics test, the atmospheric temperature 20 ° C., after which a constant current charged at 0.2 mA / cm 2 up to 4.1 V, was constant current discharge to 3.0V at 0.2 mA / cm 2. Then, after charging at 0.2 mA / cm 2 up to 4.1 V, a constant current discharge at 0.1 mA / cm 2 up to 3.0 V, and the discharge capacity at this time as a cycle after the discharge capacity Vc. Using the discharge capacity Vc after the cycle and the initial discharge capacity V0, the discharge capacity retention ratio Vk (%) was obtained by the following equation (1).
Discharge capacity retention rate Vk (%) = Vc / V0 × 100 (1)

[電池抵抗増加率]
実験例1〜13のリチウムイオン二次電池を用い、充放電のサイクルを繰り返した際の電池抵抗増加率Rinを求めた。電池抵抗は、20℃で、充電電流0.2mA/cm2で3.7Vまで定電流定電圧充電したのち、放電電流10mA/cm2で定電流放電を行い、10秒後の電圧を測定し、電圧降下により求めた。上記高温サイクル特性試験の前に測定した値を初期電池抵抗R0とし、上記高温サイクル特性試験の後に測定した値をサイクル後の電池抵抗Rcとした。このサイクル後の電池抵抗Rcと初期電池抵抗R0とを用い、次式(2)により電池抵抗増加率Rinを求めた。
電池抵抗増加率Rin(%)=(Rc−R0)/R0×100 …式(2)
[Battery resistance increase rate]
Using the lithium ion secondary batteries of Experimental Examples 1 to 13, the battery resistance increase rate Rin when the charge / discharge cycle was repeated was determined. The battery resistance was 20 ° C., constant current and constant voltage charge to 3.7 V at a charge current of 0.2 mA / cm 2 , then constant current discharge at a discharge current of 10 mA / cm 2 , and the voltage after 10 seconds was measured. Obtained by voltage drop. The value measured before the high temperature cycle characteristic test was defined as the initial battery resistance R0, and the value measured after the high temperature cycle characteristic test was defined as the battery resistance Rc after cycling. Using the battery resistance Rc and the initial battery resistance R0 after this cycle, the battery resistance increase rate Rin was obtained by the following equation (2).
Battery resistance increase rate Rin (%) = (Rc−R0) / R0 × 100 (2)

[測定結果]
実験例1〜9の測定結果を表1に示し、実験例10〜11の測定結果を表2に示し、実験例12〜13の測定結果を表3に示し、実験例2〜8のリチウムビス(オキサラト)ボレート及びジビニルテトラメチルジシロキサンの添加量に対する放電容量維持率及び電池抵抗増加率の関係を図2に示す。この結果、表1及び図2に示すように、ビニレンカーボネートを1.0重量%添加したときのリチウムビス(オキサラト)ボレート及びジビニルテトラメチルジシロキサンの添加量は、0.05重量%〜10重量%において、いずれの添加成分も添加しないもの(実験例1)やビニレンカーボネートのみを添加したもの(実験例2)に比して、より高いサイクル特性を示し、電池容量の低下及び電池抵抗の増加を抑えることができることが明らかになった。また、ビニレンカーボネートを1.0重量%添加したときのリチウムビス(オキサラト)ボレート及びジビニルテトラメチルジシロキサンの添加量が0.2重量%〜5重量%であるときには、ビニレンカーボネートを添加しないもの(実験例9)に比して、より高いサイクル特性を示し、電池容量の低下及び電池抵抗の増加を抑えることができることが明らかになった。また、ビニレンカーボネート以外にも、ビニルエチレンカーボネートやビニルプロピレンカーボネートなどをリチウムビス(オキサラト)ボレート及びジビニルテトラメチルジシロキサンと共に非水電解液に添加すると、より高いサイクル特性を示し、電池容量の低下及び電池抵抗の増加を抑えることができることが明らかになった。
[Measurement result]
The measurement results of Experimental Examples 1-9 are shown in Table 1, the measurement results of Experimental Examples 10-11 are shown in Table 2, the measurement results of Experimental Examples 12-13 are shown in Table 3, and the lithium bis in Experimental Examples 2-8 FIG. 2 shows the relationship between the discharge capacity retention rate and the battery resistance increase rate with respect to the addition amount of (oxalato) borate and divinyltetramethyldisiloxane. As a result, as shown in Table 1 and FIG. 2, the addition amount of lithium bis (oxalato) borate and divinyltetramethyldisiloxane when 1.0% by weight of vinylene carbonate was added was 0.05% by weight to 10% by weight. %, Higher cycle characteristics are exhibited, battery capacity is decreased and battery resistance is increased, compared to those in which none of the additive components are added (Experimental Example 1) or only vinylene carbonate is added (Experimental Example 2). It became clear that can be suppressed. Further, when 1.0% by weight of vinylene carbonate is added and when the addition amount of lithium bis (oxalato) borate and divinyltetramethyldisiloxane is 0.2% by weight to 5% by weight, no vinylene carbonate is added ( As compared with Experimental Example 9), it was revealed that higher cycle characteristics were exhibited, and a decrease in battery capacity and an increase in battery resistance could be suppressed. In addition to vinylene carbonate, when vinyl ethylene carbonate, vinyl propylene carbonate, etc. are added to the non-aqueous electrolyte together with lithium bis (oxalato) borate and divinyltetramethyldisiloxane, higher cycle characteristics are exhibited, battery capacity is reduced and It became clear that the increase in battery resistance can be suppressed.

Figure 2009301989
Figure 2009301989

Figure 2009301989
Figure 2009301989

Figure 2009301989
Figure 2009301989

本発明のリチウムイオン二次電池10の一例を示す模式図である。It is a schematic diagram which shows an example of the lithium ion secondary battery 10 of this invention. ビニレンカーボネートを1.0重量%添加したときのリチウムビス(オキサラト)ボレート及びジビニルテトラメチルジシロキサンの添加量に対する放電容量維持率及び電池抵抗増加率の関係図である。It is a related figure of the discharge capacity maintenance factor with respect to the addition amount of lithium bis (oxalato) borate and divinyltetramethyldisiloxane when a vinylene carbonate is added 1.0weight%, and a battery resistance increase rate.

符号の説明Explanation of symbols

10 リチウムイオン二次電池、11 集電体、12 正極活物質、13 正極シート、14 集電体、17 負極活物質、18 負極シート、19 セパレータ、20 非水電解液、22 円筒ケース、24 正極端子、26 負極端子。   DESCRIPTION OF SYMBOLS 10 Lithium ion secondary battery, 11 Current collector, 12 Positive electrode active material, 13 Positive electrode sheet, 14 Current collector, 17 Negative electrode active material, 18 Negative electrode sheet, 19 Separator, 20 Nonaqueous electrolyte, 22 Cylindrical case, 24 Positive electrode Terminal, 26 Negative terminal.

Claims (6)

リチウムを含む電解質塩を含有しリチウムイオン二次電池に用いられる非水電解液であって、
リチウムビス(オキサラト)ボレートと、ジビニルテトラアルキルジシロキサン(アルキルの炭素数が1以上4以下)と、不飽和結合を有する炭素鎖を備えたカーボネートとを添加成分として含む、非水電解液。
A non-aqueous electrolyte containing an electrolyte salt containing lithium and used for a lithium ion secondary battery,
A nonaqueous electrolytic solution comprising lithium bis (oxalato) borate, divinyltetraalkyldisiloxane (alkyl having 1 to 4 carbon atoms), and a carbonate having a carbon chain having an unsaturated bond as additive components.
前記不飽和結合を有する炭素鎖を備えたカーボネートは、炭素数が1以上4以下の前記炭素鎖を備えている、請求項1に記載の非水電解液。   The non-aqueous electrolyte according to claim 1, wherein the carbonate having a carbon chain having an unsaturated bond includes the carbon chain having 1 to 4 carbon atoms. 0.05重量%以上10重量%以下の前記不飽和結合を有する炭素鎖を備えたカーボネートを含む、請求項1又は2に記載の非水電解液。   The nonaqueous electrolytic solution according to claim 1, comprising a carbonate having a carbon chain having 0.05 to 10% by weight of the unsaturated bond. 0.05重量%以上10重量%以下のリチウムビス(オキサラト)ボレートを含む、請求項1〜3のいずれか1項に記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 3, comprising 0.05% by weight or more and 10% by weight or less of lithium bis (oxalato) borate. 0.05重量%以上10重量%以下のジビニルテトラアルキルジシロキサンを含む、請求項1〜4のいずれか1項に記載の非水電解液。   The nonaqueous electrolytic solution according to any one of claims 1 to 4, comprising 0.05% by weight or more and 10% by weight or less of divinyltetraalkyldisiloxane. 正極活物質を有する正極と、
負極活物質を有する負極と、
前記正極と前記負極との間に介在しリチウムイオンを伝導する請求項1〜5のいずれか1項に記載の非水電解液と、
を備えたリチウムイオン二次電池。
A positive electrode having a positive electrode active material;
A negative electrode having a negative electrode active material;
The nonaqueous electrolytic solution according to any one of claims 1 to 5, which is interposed between the positive electrode and the negative electrode and conducts lithium ions,
Lithium ion secondary battery equipped with.
JP2008157718A 2008-06-17 2008-06-17 Nonaqueous electrolyte and lithium ion secondary battery equipped therewith Pending JP2009301989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008157718A JP2009301989A (en) 2008-06-17 2008-06-17 Nonaqueous electrolyte and lithium ion secondary battery equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008157718A JP2009301989A (en) 2008-06-17 2008-06-17 Nonaqueous electrolyte and lithium ion secondary battery equipped therewith

Publications (1)

Publication Number Publication Date
JP2009301989A true JP2009301989A (en) 2009-12-24

Family

ID=41548668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008157718A Pending JP2009301989A (en) 2008-06-17 2008-06-17 Nonaqueous electrolyte and lithium ion secondary battery equipped therewith

Country Status (1)

Country Link
JP (1) JP2009301989A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238505A (en) * 2009-03-31 2010-10-21 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte solution
JP2012509565A (en) * 2008-11-20 2012-04-19 エルジー・ケム・リミテッド Lithium secondary battery with improved battery characteristics
CN102456885A (en) * 2010-10-27 2012-05-16 信越化学工业株式会社 Non-aqueous electrolyte secondary battery
WO2012161305A1 (en) * 2011-05-25 2012-11-29 新神戸電機株式会社 Nonaqueous electrolyte solution and lithium ion secondary battery using same
CN112510257A (en) * 2019-09-16 2021-03-16 浙江省化工研究院有限公司 Electrolyte additive, electrolyte containing additive and lithium ion battery
CN113782831A (en) * 2021-08-03 2021-12-10 华中科技大学 High-voltage-resistant lithium ion battery electrolyte and preparation method and application thereof
CN114335728A (en) * 2021-12-31 2022-04-12 天目湖先进储能技术研究院有限公司 Electrolyte for high-voltage cobalt acid lithium battery and lithium cobalt acid battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012509565A (en) * 2008-11-20 2012-04-19 エルジー・ケム・リミテッド Lithium secondary battery with improved battery characteristics
JP2010238505A (en) * 2009-03-31 2010-10-21 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte solution
CN102456885A (en) * 2010-10-27 2012-05-16 信越化学工业株式会社 Non-aqueous electrolyte secondary battery
JP2012094369A (en) * 2010-10-27 2012-05-17 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery
WO2012161305A1 (en) * 2011-05-25 2012-11-29 新神戸電機株式会社 Nonaqueous electrolyte solution and lithium ion secondary battery using same
CN112510257A (en) * 2019-09-16 2021-03-16 浙江省化工研究院有限公司 Electrolyte additive, electrolyte containing additive and lithium ion battery
CN113782831A (en) * 2021-08-03 2021-12-10 华中科技大学 High-voltage-resistant lithium ion battery electrolyte and preparation method and application thereof
CN114335728A (en) * 2021-12-31 2022-04-12 天目湖先进储能技术研究院有限公司 Electrolyte for high-voltage cobalt acid lithium battery and lithium cobalt acid battery
CN114335728B (en) * 2021-12-31 2023-06-02 天目湖先进储能技术研究院有限公司 Electrolyte for high-voltage lithium cobalt oxide battery and lithium cobalt oxide battery

Similar Documents

Publication Publication Date Title
CN106384808B (en) A kind of based lithium-ion battery positive plate and preparation method thereof, lithium ion battery
CN107004901B (en) Electrolyte for lithium secondary battery having improved low temperature performance and lithium secondary battery comprising the same
JP4093699B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP5179884B2 (en) Non-aqueous electrolyte and lithium ion secondary battery provided with the same
CN109904405B (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2009301989A (en) Nonaqueous electrolyte and lithium ion secondary battery equipped therewith
JP5487598B2 (en) Lithium secondary battery and method of using the same
JP2012216500A (en) Lithium secondary battery
JP5708597B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5614431B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5271751B2 (en) Lithium ion secondary battery
JP5782869B2 (en) Nonaqueous electrolyte secondary battery and current collector for nonaqueous electrolyte secondary battery
JP2011071017A (en) Lithium secondary battery
JP2024069434A (en) Polymer additives and their use in electrode materials and electrochemical cells - Patents.com
JP2014067490A (en) Nonaqueous electrolyte secondary battery
JP2017174647A (en) Electrode structure and lithium secondary battery
JP6739524B2 (en) Method for manufacturing electrode for lithium-ion secondary battery
JP5708598B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP5286870B2 (en) Lithium ion secondary battery manufacturing method and lithium ion secondary battery
JP2016009532A (en) Lithium ion battery
JP2012226963A (en) Lithium secondary battery
JP2009266644A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery having the same
WO2018173452A1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
JP2017021986A (en) Nonaqueous secondary battery
JP2016162626A (en) Non-aqueous electrolyte battery