JP2009297206A - Measuring system for noninvasively evaluating damaged state of human muscle - Google Patents
Measuring system for noninvasively evaluating damaged state of human muscle Download PDFInfo
- Publication number
- JP2009297206A JP2009297206A JP2008154150A JP2008154150A JP2009297206A JP 2009297206 A JP2009297206 A JP 2009297206A JP 2008154150 A JP2008154150 A JP 2008154150A JP 2008154150 A JP2008154150 A JP 2008154150A JP 2009297206 A JP2009297206 A JP 2009297206A
- Authority
- JP
- Japan
- Prior art keywords
- muscle
- state
- human
- damage
- muscles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000003205 muscle Anatomy 0.000 title claims abstract description 69
- 239000006185 dispersion Substances 0.000 claims abstract description 10
- 238000004458 analytical method Methods 0.000 claims abstract description 7
- 238000011084 recovery Methods 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 46
- 208000029549 Muscle injury Diseases 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 12
- 239000002033 PVDF binder Substances 0.000 claims description 6
- 230000000638 stimulation Effects 0.000 claims description 5
- 230000003387 muscular Effects 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 230000002123 temporal effect Effects 0.000 abstract 2
- 229920003002 synthetic resin Polymers 0.000 description 5
- 239000000057 synthetic resin Substances 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 206010017585 Gait spastic Diseases 0.000 description 1
- 206010049565 Muscle fatigue Diseases 0.000 description 1
- 208000011644 Neurologic Gait disease Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 210000001087 myotubule Anatomy 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011540 sensing material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
本発明は、非侵襲的な人の筋の損傷状態を評価する測定システムで、特に筋音の平均周波数および分散から筋の損傷状態を評価するシステムに関するものである。 The present invention relates to a measurement system for evaluating a non-invasive human muscle damage state, and more particularly to a system for evaluating a muscle damage state from an average frequency and dispersion of muscle sounds.
従来、非侵襲的な人の筋に対し直接電気刺激を用いない筋の状態の確認方法としては、超音波による測定方法がある。しかしながら、超音波による測定方法では、筋の動きや筋の厚さを測定するには有効であり、筋の損傷状態を確認することも不可能ではないが、医師や臨床検査技士といった免許を所持した熟練者による読影や、前記免許を所持した者のみでの機械の操作が出来ないという問題点があった。さらに、治療が目的のため、測定の際に診療報酬が発生するというコスト面の問題もある。 Conventionally, as a method for confirming the state of a muscle that does not directly apply electrical stimulation to a non-invasive human muscle, there is a measurement method using ultrasonic waves. However, the ultrasonic measurement method is effective for measuring muscle movement and muscle thickness, and it is not impossible to confirm the state of muscle damage, but it does have a license such as a doctor or clinical laboratory technician. There is a problem that interpretation by an expert who has been performed and operation of the machine by only a person having the license cannot be performed. In addition, there is a cost problem that medical fees are generated during measurement for the purpose of treatment.
また、筋肉の種類や疲労を判定する装置として、生体電気インピーダンスを測定し、筋肉量を算出し、更に筋音図をデータ解析して被験者の筋肉のタイプと疲労度とを評価するものがある(例えば、特許文献1参照)。しかしながら、この装置では、筋の損傷状態の判定が出来ないという問題点がある。 In addition, as a device for determining muscle type and fatigue, there is a device that measures bioelectrical impedance, calculates muscle mass, and further analyzes a phonogram to evaluate a subject's muscle type and fatigue level. (For example, refer to Patent Document 1). However, this device has a problem in that it is impossible to determine a muscle damage state.
更に、測定用マイクロホンによるリハビリを目的とした筋音図・筋電図の動作解析に関する研究があるが、筋肉の損傷や回復程度を測定することは出来ないという問題点があった(例えば、非特許文献1参照)。 Furthermore, there are studies on the analysis of EMG and EMG movements for the purpose of rehabilitation using a measurement microphone, but there is a problem that the degree of muscle damage and recovery cannot be measured (for example, Patent Document 1).
本発明の解決課題は、従来の筋肉の疲労の評価技術では、電気刺激を用いるものや生体組織を見るものが多く、これらが侵襲的なものであったために被験者の負担が大きく、また、超音波による測定方法では、超音波からの画像を読み取るにあたり熟練が必要とされていた。さらに、インピーダンスを用いた解析方法では、計器自体が大きくなり小型化が問題となっていた。 The problem to be solved by the present invention is that many conventional techniques for evaluating muscle fatigue use electrical stimulation or view living tissue, and these are invasive, which places a heavy burden on the subject. In the measurement method using sound waves, skill is required to read an image from ultrasonic waves. Furthermore, in the analysis method using impedance, the instrument itself becomes large and downsizing has been a problem.
そこで、本発明は、非侵襲で被験者の負担が少なく、データの解析に熟練度を必要とせず、かつ、測定装置を小型化した、非侵襲的な人の筋の状態を評価する測定システムを提供することである。また、熟練を必要としないことより、スポーツドクターが不在でも、トレーナーによる測定が可能である。 Therefore, the present invention provides a measurement system that evaluates the state of a non-invasive human muscle, which is non-invasive, has a low burden on the subject, does not require skill in data analysis, and has a small measurement device. Is to provide. In addition, since no skill is required, measurement by a trainer is possible even in the absence of a sports doctor.
本発明によれば、非侵襲的な人の筋の損傷状態を評価する測定システムにおいて、人の筋に負荷を加えた後、一定時間経過毎に、前記筋近傍の体の表面に取り付けた筋音センサーの測定値を周波数解析し、平均周波数および分散の経時変化をデータ化し、健常状態の平均周波数および分散の経時変化のデータと比較することで、前記筋の損傷程度と回復の度合いとを計測することを、特徴とする非侵襲的な人の筋の損傷状態を評価する測定システムを得ることが出来る。 According to the present invention, in a measurement system for evaluating a non-invasive human muscle damage state, a muscle attached to the surface of the body in the vicinity of the muscle after a certain time has elapsed after a load is applied to the human muscle. The frequency of sound sensor measurements is analyzed, the average frequency and variance over time are converted into data, and the average frequency and variance over time of the healthy state are compared with the data to determine the degree of muscle damage and the degree of recovery. It is possible to obtain a measurement system that evaluates the damage state of a non-invasive human muscle characterized by measuring.
また、本発明によれば、人の前記筋に対して電気刺激を必要としないことを、特徴とする非侵襲的な人の筋の損傷状態を評価する測定システムを得ることが出来る。 Further, according to the present invention, it is possible to obtain a measurement system for evaluating a non-invasive human muscle damage state characterized in that no electrical stimulation is required for the human muscle.
また、本発明によれば、前記筋音センサの受感材は、人の皮膚表面と密着性のあるPVDF(ポリフッ化ビニリデン)であることを、特徴とする非侵襲的な人の筋の損傷状態を評価する測定システムを得ることが出来る。 According to the present invention, the non-invasive human muscle damage is characterized in that the sensitive material of the muscle sound sensor is PVDF (polyvinylidene fluoride) having adhesion to the human skin surface. A measurement system for evaluating the state can be obtained.
また、本発明によれば、ノイズを防止するために、前記筋音センサーの受感材の周囲に導電性テープと樹脂とを取り付けることを、特徴とする非侵襲的な人の筋の損傷状態を評価する測定システムを得ることが出来る。 According to the present invention, in order to prevent noise, a non-invasive human muscle damage state characterized by attaching a conductive tape and a resin around the sensitive material of the muscle sound sensor. A measurement system can be obtained.
本発明によれば、非侵襲で被験者の負担が少なく、データの解析に熟練度を必要とせず、かつ、測定装置を小型化した、非侵襲的な人の筋の状態を評価する測定システムを提供することが可能になる。 According to the present invention, there is provided a measurement system that evaluates the state of a non-invasive human muscle, which is non-invasive, requires little test subject burden, does not require skill in data analysis, and has a small measurement device. It becomes possible to provide.
以下、図面に基づき、本発明の実施の形態について説明する。
図1は、本発明の実施の形態の非侵襲的な人の筋の状態を評価する測定システムの測定時の一例を示すモデル図である。また、図2および図3は、筋音センサ(MMG sensor)1の構造図である。筋音センサ1を、筋繊維の皮膚表面にテーピングによって取り付け、筋からの圧力波を受感材(PVDF film)2および受感材(Rubber)3に伝導させる。筋音センサ1の受感材2は、人の皮膚表面と密着性のあるPVDF(ポリフッ化ビニリデン)である。ノイズを防止するために、受感材2の周囲に導電性テープ(Conductive tape)6と合成樹脂(Acrylic plate)4および合成樹脂(Silicon rubber)5を取り付ける。これにより、非侵襲で被験者の負担が少なく、データの解析に熟練度を必要とせず、かつ、測定装置を小型化した、非侵襲的な人の筋の状態を評価する測定システムを提供することが可能となる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a model diagram illustrating an example at the time of measurement by a measurement system that evaluates the state of a non-invasive human muscle according to an embodiment of the present invention. 2 and 3 are structural diagrams of the muscle sound sensor (MMG sensor) 1. FIG. The
本発明の実施の形態の非侵襲的な人の筋の状態を評価する測定システムは、MMGの受感材2としては高分子圧電材料PVDF(ポリフッ化ビニリデン)を用い、筋音センサ1に極力ノイズが入らないように導電性テープ6、合成樹脂4、5にて、センサ先端部分を保護している。なお、筋のMMGの周波数領域が5〜100〔Hz〕であることは周知である。処理部(Filter & amp)7で、信号にハムノイズカットフィルタとローパスフィルタとを使用し、最終的な周波数解析および分散を求める際の精度の向上を図り、さらにフィルタリング後、センサからの出力は非常に小さいため、増幅器により信号を増幅させることによって計測を可能にしている。増幅した信号をオシロスコープで取得し、モニタリングを行いながらも、その一方でその波形データをPCに転送、記録、解析する。
The measurement system for evaluating the state of a non-invasive human muscle according to an embodiment of the present invention uses a polymer piezoelectric material PVDF (polyvinylidene fluoride) as the
本発明の実施の形態の非侵襲的な人の筋の状態を評価する測定システムでは、筋音センサ1に取り付けた受感材2、3を通して筋音図(以降「MMG」と記す)測定を行い、平均周波数および分散を求め、平均周波数および分散から筋収縮頻度の増減と速筋の参加率の増加とを把握する。平均周波数および分散から遅筋および速筋の参加状態を把握し、筋損傷または筋損傷の回復状態の様子を、筋損傷のない健常の筋の状態と照らし合わせる。これにより、筋の状態を確認することができる。
In the measurement system for evaluating the state of the muscles of a non-invasive human according to the embodiment of the present invention, the measurement of the phonogram (hereinafter referred to as “MMG”) is performed through the
本発明の実施の形態の非侵襲的な人の筋の状態を評価する測定システムでは、筋音センサ1をシンプルで小型化することにより、ポータビリティ性に優れている。また、筋音センサ1から得た測定値の解析方法は容易であり、測定者の熟練度や、医師や臨床検査技士の免許を必要としない。
In the measurement system that evaluates the state of the muscles of a non-invasive human according to the embodiment of the present invention, the
図1に示すように、筋損傷を受けた被測定者に対し、椅座位において肘間接を90度に屈曲させ、被測定者の手に重量負荷を保持させる。重量負荷として、予め筋力計を用いて測定した最大筋力から被測定者の軽量加重と重量加重とを算出し、それぞれの重量負荷に対して目安となる測定時間を設定し、筋活動の状態の測定を行っていく。図4は、健常時の筋音(MMG)の平均周波数MPFの測定結果であり、図5は、健常時の筋音(MMG)の分散の測定結果である。 As shown in FIG. 1, the elbow indirect is bent at 90 degrees in the chair sitting position with respect to the measurement subject who has suffered muscle damage, and the weight load is held in the measurement subject's hand. As the weight load, calculate the light weight weight and weight weight of the person to be measured from the maximum muscle strength measured in advance using a muscle force meter, set a measurement time as a guide for each weight load, and check the state of muscle activity We will continue to measure. FIG. 4 shows the measurement result of the average frequency MPF of the normal muscle sound (MMG), and FIG. 5 shows the measurement result of the dispersion of the normal muscle sound (MMG).
筋損傷を受けていない被測定者に対し、実施例1と同様の測定を行い、筋活動の状態の比較を行った。図6は、筋損傷時の筋音(MMG)の平均周波数MPFの測定結果であり、図7は、筋損傷時の筋音(MMG)の分散の測定結果である。 The same measurement as in Example 1 was performed on the measurement subject who had not suffered muscle damage, and the state of muscle activity was compared. FIG. 6 shows the measurement result of the average frequency MPF of the muscle sound (MMG) at the time of muscle damage, and FIG. 7 shows the measurement result of the dispersion of the muscle sound (MMG) at the time of muscle damage.
本発明による非侵襲的な人の筋の損傷状態を評価する測定システムは、健康や保健、およびスポーツ選手等の筋肉トレーニングを必要とする現場において、従来の装置よりも小型でポータビリティに優れ、コスト面が向上し、利用が容易であることから、日常での使用が可能である。 The measurement system for assessing the state of muscle damage of a non-invasive human according to the present invention is smaller, more portable and less costly than a conventional device in the field where muscle training is required for health, health, and athletes. Since the surface is improved and it is easy to use, it can be used on a daily basis.
1 筋音センサ
2 受感材(PVDF film)
3 受感材(Rubber)
4 合成樹脂(Acrylic plate)
5 合成樹脂(Silicon rubber)
6 導電性テープ(Conductive tape)
7 処理部(Filter & amp)
1
3 Sensitive material (Rubber)
4 Synthetic resin (Acrylic plate)
5 Synthetic resin (Silicon rubber)
6 Conductive tape
7 Processing section (Filter & amp)
Claims (4)
人の筋に負荷を加えた後、一定時間経過毎に、前記筋近傍の体の表面に取り付けた筋音センサーの測定値を周波数解析し、平均周波数および分散の経時変化をデータ化し、健常状態の平均周波数および分散の経時変化のデータと比較することで、前記筋の損傷程度と回復の度合いとを計測することを、
特徴とする非侵襲的な人の筋の損傷状態を評価する測定システム。 In a measurement system for assessing the state of non-invasive human muscle damage,
After applying a load to human muscles, frequency analysis of the measured values of muscle sound sensors attached to the surface of the body near the muscles after a certain period of time, and data on changes over time in the average frequency and variance, normal condition Measuring the degree of damage and recovery of the muscle by comparing the average frequency and dispersion data over time of
A measuring system that evaluates the muscular damage state of a non-invasive human being.
4. A non-invasive human muscle damage according to claim 1, 2 or 3, wherein conductive tape and resin are attached around the sensitive material of the muscle sound sensor in order to prevent noise. A measuring system that evaluates the condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008154150A JP2009297206A (en) | 2008-06-12 | 2008-06-12 | Measuring system for noninvasively evaluating damaged state of human muscle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008154150A JP2009297206A (en) | 2008-06-12 | 2008-06-12 | Measuring system for noninvasively evaluating damaged state of human muscle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009297206A true JP2009297206A (en) | 2009-12-24 |
Family
ID=41544739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008154150A Pending JP2009297206A (en) | 2008-06-12 | 2008-06-12 | Measuring system for noninvasively evaluating damaged state of human muscle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009297206A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021075368A1 (en) * | 2019-10-16 | 2021-04-22 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060812A (en) * | 1998-08-18 | 2000-02-29 | Hiroshi Matsumoto | Device and method for diagnosing coronary artery lesion |
JP2004141223A (en) * | 2002-10-22 | 2004-05-20 | Tanita Corp | Muscle measuring device |
JP2004167056A (en) * | 2002-11-21 | 2004-06-17 | Yaskawa Electric Corp | Gait training apparatus |
JP2006340820A (en) * | 2005-06-08 | 2006-12-21 | Institute Of National Colleges Of Technology Japan | Body motion sensing sensor, and body motion monitoring system using it |
-
2008
- 2008-06-12 JP JP2008154150A patent/JP2009297206A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000060812A (en) * | 1998-08-18 | 2000-02-29 | Hiroshi Matsumoto | Device and method for diagnosing coronary artery lesion |
JP2004141223A (en) * | 2002-10-22 | 2004-05-20 | Tanita Corp | Muscle measuring device |
JP2004167056A (en) * | 2002-11-21 | 2004-06-17 | Yaskawa Electric Corp | Gait training apparatus |
JP2006340820A (en) * | 2005-06-08 | 2006-12-21 | Institute Of National Colleges Of Technology Japan | Body motion sensing sensor, and body motion monitoring system using it |
Non-Patent Citations (1)
Title |
---|
JPN6012055908; 土見大介 他: '筋活動状態測定用小型筋音センサの開発' 日本機械学会2006年度年次大会講演論文集 Vol. 5, 20060915, p585 - p586, 社団法人 日本機械学会 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2021075368A1 (en) * | 2019-10-16 | 2021-04-22 | ||
WO2021075368A1 (en) * | 2019-10-16 | 2021-04-22 | 国立大学法人東京工業大学 | Diagnosis apparatus |
JP7576846B2 (en) | 2019-10-16 | 2024-11-01 | 国立大学法人東京科学大学 | Diagnostic Equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5948325B2 (en) | Method and apparatus for non-invasive and selective measurement of biomechanical, contractile and viscoelastic properties of skeletal muscle surfaces | |
Yoshitake et al. | Muscle shear modulus measured with ultrasound shear‐wave elastography across a wide range of contraction intensity | |
US10293152B2 (en) | Devices, systems, and methods for automated optimization of energy delivery | |
Tous-Fajardo et al. | Inter-rater reliability of muscle contractile property measurements using non-invasive tensiomyography | |
Nordez et al. | Characterization of muscle belly elastic properties during passive stretching using transient elastography | |
Islam et al. | Mechanomyography sensor development, related signal processing, and applications: a systematic review | |
Woodward et al. | Segmenting mechanomyography measures of muscle activity phases using inertial data | |
KR20180018581A (en) | Wearable technologies for joint health assessment | |
Uwamahoro et al. | Assessment of muscle activity using electrical stimulation and mechanomyography: a systematic review | |
Krueger et al. | Advances and perspectives of mechanomyography | |
Alvarez et al. | Towards soft wearable strain sensors for muscle activity monitoring | |
Nordez et al. | Assessment of muscle hardness changes induced by a submaximal fatiguing isometric contraction | |
Yeh et al. | Quantifying spasticity with limited swinging cycles using pendulum test based on phase amplitude coupling | |
Kinugasa et al. | Development of consumer-friendly surface electromyography system for muscle fatigue detection | |
Naeem et al. | Mechanomyography-based muscle fatigue detection during electrically elicited cycling in patients with spinal cord injury | |
Teague et al. | Novel approaches to measure acoustic emissions as biomarkers for joint health assessment | |
KR20070122012A (en) | Diagnosis system and method through biometric information recognition and analysis | |
Beck et al. | Comparison of a piezoelectric contact sensor and an accelerometer for examining mechanomyographic amplitude and mean power frequency versus torque relationships during isokinetic and isometric muscle actions of the biceps brachii | |
Majdi et al. | Toward a wearable monitor of local muscle fatigue during electrical muscle stimulation using tissue Doppler imaging | |
Ng et al. | Mechanomyography sensors for detection of muscle activities and fatigue during Fes-evoked contraction | |
Sun et al. | Muscle fatigue assessment using one-channel single-element ultrasound transducer | |
US20210228107A1 (en) | Systems and methods for characterization of joints | |
JP2009297206A (en) | Measuring system for noninvasively evaluating damaged state of human muscle | |
Uchiyama et al. | Muscle stiffness estimation using a system identification technique applied to evoked mechanomyogram during cycling exercise | |
Hendrix et al. | A mechanomyographic frequency-based fatigue threshold test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110425 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121019 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121030 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130312 |