[go: up one dir, main page]

JP2009293433A - Degradation diagnostic device and degradation diagnostic method for air-fuel ratio detecting means - Google Patents

Degradation diagnostic device and degradation diagnostic method for air-fuel ratio detecting means Download PDF

Info

Publication number
JP2009293433A
JP2009293433A JP2008145868A JP2008145868A JP2009293433A JP 2009293433 A JP2009293433 A JP 2009293433A JP 2008145868 A JP2008145868 A JP 2008145868A JP 2008145868 A JP2008145868 A JP 2008145868A JP 2009293433 A JP2009293433 A JP 2009293433A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
sequential identification
deterioration
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008145868A
Other languages
Japanese (ja)
Other versions
JP5083044B2 (en
Inventor
Rie Takatsudo
理恵 高津戸
Hiroshi Kato
浩志 加藤
Tamiichi Kimura
民一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008145868A priority Critical patent/JP5083044B2/en
Publication of JP2009293433A publication Critical patent/JP2009293433A/en
Application granted granted Critical
Publication of JP5083044B2 publication Critical patent/JP5083044B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make a degradation diagnosis of an air-fuel ratio sensor without an erroneous diagnosis even when an operating state changes. <P>SOLUTION: This degradation diagnostic device comprises: an air-fuel ratio detecting means 12; an air-fuel ratio feedback control means 14; a target air-fuel ratio setting means 14 periodically and repeatedly changing an air-fuel ratio in a rich direction and a lean direction; an identification means 14 performing sequential identification operation of response characteristic models of the air-fuel ratio detecting means 12; an operating state determining means 14 determining whether the operating state in sequential identification operation is a steady state or a nonsteady state; and a degradation determining means 14 determining the degradation of the air-fuel ratio detecting means 12 based on the response characteristics. The identification means 14 performs first sequential identification operation for inputting an estimated air-fuel ratio computed based on the fuel injection quantity, to the model, and second sequential identification operation for inputting a target air-fuel ratio to the model. The degradation determining means 14 determines degradation based on the result of the first sequential identification operation in the case of the steady state and based on the result of the second sequential identification operation in the case of the nonsteady state. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気空燃比を検出するセンサの劣化診断に関する。   The present invention relates to a deterioration diagnosis of a sensor that detects an exhaust air-fuel ratio of an internal combustion engine.

内燃機関の排気エミッション低減のために、排気の空燃比に応じて燃料噴射量を決定する制御が知られている。   In order to reduce exhaust emission of an internal combustion engine, a control for determining a fuel injection amount in accordance with an air-fuel ratio of exhaust gas is known.

この排気の空燃比を検出するセンサ(空燃比センサ)の劣化診断方法として、特許文献1には、燃料噴射量を周期的に増減させて空燃比を強制的に変化させた際の、空燃比センサの出力の軌跡長または面積に基づいて劣化を検出する方法が開示されている。
特開2005−30358号公報
As a method of diagnosing deterioration of a sensor (air-fuel ratio sensor) for detecting the air-fuel ratio of exhaust gas, Patent Document 1 discloses an air-fuel ratio when the air-fuel ratio is forcibly changed by periodically increasing or decreasing the fuel injection amount. A method of detecting deterioration based on the locus length or area of the sensor output is disclosed.
JP 2005-30358 A

しかしながら、特許文献1に開示されている方法では、診断中に運転状態が変化しなければ劣化診断を正確に行えるが、診断中に運転状態が徐々に変化するような場合には、診断のための空燃比の変化以外に、燃料噴射弁等の特性ズレを補正するための燃料噴射量補正が行われてしまうため、思い通りの空燃比に制御することが困難となり、誤診断をするおそれがある。すなわち、劣化診断を行うことができるのは、定常運転状態に限られてしまうという問題があった。   However, in the method disclosed in Patent Document 1, the deterioration diagnosis can be performed accurately if the operating state does not change during the diagnosis, but if the operating state gradually changes during the diagnosis, the diagnosis is performed. In addition to the change in the air-fuel ratio, since the fuel injection amount correction for correcting the characteristic deviation of the fuel injection valve or the like is performed, it becomes difficult to control to the desired air-fuel ratio, and there is a risk of misdiagnosis. . That is, there is a problem that deterioration diagnosis can be performed only in a steady operation state.

そこで、本発明では、劣化診断の頻度を低下させることなく、かつ、機関運転状態が変化する場合の誤診断を防止することを目的とする。   Therefore, an object of the present invention is to prevent misdiagnosis when the engine operating state changes without reducing the frequency of deterioration diagnosis.

本発明の空燃比検出手段の劣化診断装置は、内燃機関の排気の空燃比を検出する空燃比検出手段と、空燃比検出手段の検出値に基づいて燃料噴射量を変更することにより空燃比のフィードバック制御を行うフィードバック制御手段と、劣化診断用に空燃比をリッチ方向及びリーン方向に周期的に繰り返し変化させる目標空燃比設定手段と、空燃比の変化に対する空燃比検出手段の応答特性モデルを逐次同定演算する同定手段と、逐次同定演算中に運転状態が変化しない定常状態であったか、運転状態が変化した非定常状態であったかを判定する運転状態判定手段と、応答特性に基づいて空燃比検出手段の劣化を判定する劣化判定手段と、を備え、同定手段は、フィードバック制御中の燃料噴射量に基づいて算出した推定空燃比をモデルに入力する第一の逐次同定演算と、目標空燃比設定手段が設定した目標空燃比をモデルに入力する第二の逐次同定演算とを行い、劣化判定手段は、定常状態であった場合には第一の逐次同定演算の結果に基づいて、非定常状態であった場合は第二の逐次同定演算の結果に基づいて劣化判定を行う。   The deterioration diagnosis apparatus for air-fuel ratio detection means of the present invention includes an air-fuel ratio detection means for detecting the air-fuel ratio of exhaust gas from an internal combustion engine, and the fuel injection amount based on the detection value of the air-fuel ratio detection means, thereby changing the air-fuel ratio. The feedback control means for performing feedback control, the target air-fuel ratio setting means for periodically changing the air-fuel ratio in the rich direction and the lean direction for deterioration diagnosis, and the response characteristic model of the air-fuel ratio detection means for the change of the air-fuel ratio are sequentially An identification unit for performing identification calculation, an operation state determination unit for determining whether the operation state is a steady state during sequential identification calculation or an unsteady state in which the operation state is changed, and an air-fuel ratio detection unit based on response characteristics Deterioration determining means for determining deterioration of the fuel, and the identifying means inputs the estimated air-fuel ratio calculated based on the fuel injection amount during feedback control to the model The first sequential identification calculation and the second sequential identification calculation that inputs the target air-fuel ratio set by the target air-fuel ratio setting means to the model. Based on the result of the sequential identification calculation, the deterioration determination is performed based on the result of the second sequential identification calculation in the non-steady state.

本発明によれば、劣化診断中に運転状態が変化した場合には、目標空燃比を入力とする第二の逐次同定演算の結果に基づいて劣化判定を行うので、運転状態が変化した場合の誤診断を防止しつつ、劣化診断の頻度の低下を防止することができる。   According to the present invention, when the operating state changes during the deterioration diagnosis, the deterioration determination is performed based on the result of the second sequential identification calculation using the target air-fuel ratio as an input. It is possible to prevent a decrease in the frequency of deterioration diagnosis while preventing erroneous diagnosis.

以下本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本実施形態を適用する内燃機関システムの概略図である。1はエンジン、2は吸気通路、3は排気通路、4は吸気バルブ、5は排気バルブ、12は空燃比検出手段としての空燃比センサ、14はフィードバック制御手段、目標空燃比設定手段、同定手段、運転状態判定手段及び劣化判定手段としてのコントロールユニットである。エンジン本体1にはシリンダ6を設け、シリンダ6内にはピストン10を摺動可能に配置する。また、シリンダ6の天井面にはシリンダ6内の混合気に火花点火をする点火栓11を設ける。   FIG. 1 is a schematic diagram of an internal combustion engine system to which the present embodiment is applied. 1 is an engine, 2 is an intake passage, 3 is an exhaust passage, 4 is an intake valve, 5 is an exhaust valve, 12 is an air-fuel ratio sensor as air-fuel ratio detection means, 14 is feedback control means, target air-fuel ratio setting means, identification means A control unit serving as an operating state determination unit and a deterioration determination unit. A cylinder 6 is provided in the engine body 1, and a piston 10 is slidably disposed in the cylinder 6. Further, a spark plug 11 is provided on the ceiling surface of the cylinder 6 for spark ignition of the air-fuel mixture in the cylinder 6.

吸気通路2はシリンダ6に開口し、この開口部を吸気バルブ4により開閉する。同様に排気通路3はシリンダ6に開口し、この開口部を排気バルブ5により開閉する。   The intake passage 2 opens into the cylinder 6, and this opening is opened and closed by the intake valve 4. Similarly, the exhaust passage 3 opens into the cylinder 6, and this opening is opened and closed by the exhaust valve 5.

吸気通路2には、吸気流の上流側から順に、吸入空気量を測定するエアフローメータ9、シリンダ6に流入する空気量を調整するスロットルバルブ8、吸気通路4内に向けて燃料を噴射する燃料噴射弁7を設ける。   In the intake passage 2, an air flow meter 9 that measures the intake air amount, a throttle valve 8 that adjusts the amount of air flowing into the cylinder 6, and a fuel that injects fuel into the intake passage 4 in order from the upstream side of the intake flow. An injection valve 7 is provided.

排気通路3には、排気を浄化するための排気浄化触媒13を介装し、排気浄化触媒13の上流側には空燃比センサ12を設ける。排気浄化触媒13としては、三元触媒や吸蔵還元型NOx触媒等を用いることができる。   An exhaust gas purification catalyst 13 for purifying exhaust gas is interposed in the exhaust passage 3, and an air-fuel ratio sensor 12 is provided upstream of the exhaust gas purification catalyst 13. As the exhaust purification catalyst 13, a three-way catalyst, an occlusion reduction type NOx catalyst, or the like can be used.

空燃比センサ12は排気中の酸素濃度を検出するセンサであり、センサ電圧をコントロールユニット14に出力する。コントロールユニット14はこのセンサ電圧に基づいて空燃比を算出する。また、空燃比センサ12はセンサ素子を加熱するためのヒータをそれぞれ備えており、冷間始動時等にも早期にセンサを活性状態にすることで排気性能の悪化を抑制する。   The air-fuel ratio sensor 12 is a sensor that detects the oxygen concentration in the exhaust gas, and outputs a sensor voltage to the control unit 14. The control unit 14 calculates the air / fuel ratio based on this sensor voltage. The air-fuel ratio sensor 12 includes a heater for heating the sensor element, and suppresses deterioration of exhaust performance by activating the sensor at an early stage even during cold start.

コントロールユニット14は、エアフローメータ9、空燃比センサ12、エンジン回転数センサ15、アクセル開度センサ16、車速センサ17、その他図示しないセンサ類の検出値に基づいて、スロットルバルブ8の開度制御、燃料噴射量制御、点火時期制御、減速時の燃料カット制御、アイドルストップ制御、空燃比フィードバック制御等を行う。   The control unit 14 controls the opening degree of the throttle valve 8 based on the detected values of the air flow meter 9, the air-fuel ratio sensor 12, the engine speed sensor 15, the accelerator opening degree sensor 16, the vehicle speed sensor 17, and other sensors (not shown). Fuel injection amount control, ignition timing control, fuel cut control during deceleration, idle stop control, air-fuel ratio feedback control, and the like are performed.

上記の空燃比フィードバック制御は、排気の空燃比がストイキな状態を維持するために、空燃比センサ12の検出値に基づいて燃料噴射量の増減を行う制御である。コントロールユニット14は、エアフローメータ9の検出値等に基づいて、空燃比がストイキとなるように燃料噴射量を設定するが、例えば燃料噴射弁7の製造誤差や経年劣化等により、実際に噴射する燃料量とコントロールユニット14が設定した燃料噴射量とが乖離が生じる場合もある。そこで、実際の排気の空燃比を検出し、これを燃料噴射量制御にフィードバックすることにより排気の空燃比をストイキに保持する。   The air-fuel ratio feedback control is a control for increasing or decreasing the fuel injection amount based on the detection value of the air-fuel ratio sensor 12 in order to maintain the exhaust air-fuel ratio in a stoichiometric state. The control unit 14 sets the fuel injection amount so that the air-fuel ratio becomes stoichiometric based on the detection value of the air flow meter 9, etc., but actually injects due to, for example, manufacturing errors or aging deterioration of the fuel injection valve 7 There may be a difference between the fuel amount and the fuel injection amount set by the control unit 14. Therefore, the actual air-fuel ratio of the exhaust gas is detected, and this is fed back to the fuel injection amount control to keep the air-fuel ratio of the exhaust gas stoichiometrically.

ところで、空燃比センサ12は、経年劣化等により燃料噴射量の増減に対する応答性が悪化する。図2は空燃比を周期的に変化させた場合の、正常な空燃比センサ12及び劣化した空燃比センサ12の検出値と、燃料補正係数の変化を示した図である。ここで、燃料補正係数は、目標空燃比に基づいて算出される基本燃料噴射量を、空燃比センサ12の検出値に基づいて補正するための係数である。図中の矩形波は目標空燃比を示し、曲線は、実線が正常な場合、破線が劣化した場合について示したものである。   By the way, the air-fuel ratio sensor 12 deteriorates its responsiveness to increase / decrease in the fuel injection amount due to aging degradation or the like. FIG. 2 is a diagram showing changes in the detected values of the normal air-fuel ratio sensor 12 and the deteriorated air-fuel ratio sensor 12 and the fuel correction coefficient when the air-fuel ratio is periodically changed. Here, the fuel correction coefficient is a coefficient for correcting the basic fuel injection amount calculated based on the target air-fuel ratio based on the detection value of the air-fuel ratio sensor 12. The rectangular wave in the figure indicates the target air-fuel ratio, and the curve indicates the case where the solid line is normal and the broken line is degraded.

目標空燃比がリッチ側又はリーン側に振れると、空燃比センサ12の検出値もリッチ側又はリーン側に振れる。そして、燃料補正係数も空燃比センサ12の検出値の変化に応じて変化する。このとき、空燃比センサ12が正常であれば、目標空燃比が切り換わってから、検出値がリッチ又はリーン方法への変化を開始するまでの遅れ時間はほとんどない。しかし、劣化している場合には、この遅れ時間が長くなり、目標空燃比の変化が繰り返されると、いずれこの変化に追従できなくなる。また、燃料補正係数については、目標空燃比が変化すると基本燃料噴射量も変化するため、空燃比センサ12の劣化による遅れ時間の増大はない。しかし、検出値が目標空燃比から大きくずれているため、燃料補正係数は正常な場合に比べて大きく補正するような値になってしまう。   When the target air-fuel ratio swings to the rich side or lean side, the detection value of the air-fuel ratio sensor 12 also swings to the rich side or lean side. The fuel correction coefficient also changes according to the change in the detection value of the air-fuel ratio sensor 12. At this time, if the air-fuel ratio sensor 12 is normal, there is almost no delay time from when the target air-fuel ratio is switched until the detected value starts changing to the rich or lean method. However, if the target air-fuel ratio has deteriorated, this delay time becomes long, and if the target air-fuel ratio is changed repeatedly, it will not be possible to follow this change. As for the fuel correction coefficient, since the basic fuel injection amount changes when the target air-fuel ratio changes, the delay time does not increase due to the deterioration of the air-fuel ratio sensor 12. However, since the detected value is greatly deviated from the target air-fuel ratio, the fuel correction coefficient becomes a value that is largely corrected as compared with the normal case.

このように、空燃比センサ12が劣化すると、精度のよい空燃比フィードバック制御を行うことが難しくなり、結果として排気性能の悪化を招くこととなる。   Thus, when the air-fuel ratio sensor 12 deteriorates, it becomes difficult to perform accurate air-fuel ratio feedback control, and as a result, exhaust performance deteriorates.

そこで、以下に説明する制御を実行することにより、空燃比センサ12の劣化診断を行うこととする。   Therefore, the deterioration diagnosis of the air-fuel ratio sensor 12 is performed by executing the control described below.

図3は空燃比センサ12の劣化診断の制御ロジックを示すフローチャートである。   FIG. 3 is a flowchart showing the control logic for the deterioration diagnosis of the air-fuel ratio sensor 12.

ステップS101では、診断許可条件が成立しているか否かを判定する。例えば、次のi)〜iii)の条件が成立しているときに、診断許可条件が成立していると判定する。i)エンジン始動後所定時間が経過しているか否かを判定する。これは、始動時燃料増量や壁流の影響による誤診断を防止するためである。ii)空燃比センサ12が活性化しているかを判定する。これは、空燃比センサ12が不活性の状態で診断が行われることによる誤診断を防止するためである。なお、この判定は冷却水温に基づいて行う。iii)排気浄化触媒13が活性化しているかを判定する。これは、排気浄化触媒13が不活性の状態では、一般に、HC排出量低減や早期活性化のために空燃比をストイキよりもリーン側に維持する等の制御を行っており、目標空燃比を周期的に変化させるとかえって排気性能を悪化させるおそれがあるためである。この判定は、冷却水温や空燃比センサ12の出力に基づいて行うことができる。   In step S101, it is determined whether a diagnosis permission condition is satisfied. For example, it is determined that the diagnosis permission condition is satisfied when the following conditions i) to iii) are satisfied. i) It is determined whether or not a predetermined time has elapsed since the engine was started. This is to prevent misdiagnosis due to the influence of fuel increase at start-up and wall flow. ii) It is determined whether the air-fuel ratio sensor 12 is activated. This is to prevent erroneous diagnosis due to the diagnosis being performed while the air-fuel ratio sensor 12 is inactive. This determination is made based on the cooling water temperature. iii) It is determined whether the exhaust purification catalyst 13 is activated. In general, when the exhaust purification catalyst 13 is in an inactive state, control is performed such as maintaining the air-fuel ratio leaner than the stoichiometric system in order to reduce the HC emission amount or to activate it early. This is because the exhaust performance may be deteriorated if it is periodically changed. This determination can be made based on the coolant temperature or the output of the air-fuel ratio sensor 12.

診断許可条件が成立しているときはステップS102に進み、成立していないときはそのまま処理を終了する。   If the diagnosis permission condition is satisfied, the process proceeds to step S102. If the diagnosis permission condition is not satisfied, the process is terminated.

ステップS102では、診断用の目標空燃比を設定する。すなわち、図2に示したように、リッチ方向への変化とリーン方向への変化が周期的に繰り返すような目標空燃比を設定する。   In step S102, a target air-fuel ratio for diagnosis is set. That is, as shown in FIG. 2, the target air-fuel ratio is set such that the change in the rich direction and the change in the lean direction repeat periodically.

ステップS103、S104では、空燃比センサ12の出力特性についての同定を行う。ここでは、入力値を推定空燃比、出力値を空燃比センサ12の検出値に基づく実空燃比とするカルマンフィルタによる逐次同定演算を行うこととする。   In steps S103 and S104, the output characteristics of the air-fuel ratio sensor 12 are identified. Here, it is assumed that sequential identification calculation is performed by a Kalman filter in which an input value is an estimated air-fuel ratio and an output value is an actual air-fuel ratio based on a detection value of the air-fuel ratio sensor 12.

ステップS103では、燃料噴射指令値とエアフローメータ9の検出値とから算出した推定空燃比を入力値とした演算(第一の逐次同定演算:以下、逐次同定演算(a)という)を行う。一方、ステップS104では、目標空燃比を入力値とした演算(第二の逐次同定演算:逐次同定演算(b)という)を行う。なお、ステップS103、S104の演算は、いずれが先でもよく、また、両者を並行して行ってもよい。   In step S103, a calculation (first sequential identification calculation: hereinafter referred to as sequential identification calculation (a)) is performed using the estimated air-fuel ratio calculated from the fuel injection command value and the detected value of the air flow meter 9 as an input value. On the other hand, in step S104, a calculation using the target air-fuel ratio as an input value (second sequential identification calculation: sequential identification calculation (b)) is performed. Note that either of the calculations in steps S103 and S104 may be performed first, or both may be performed in parallel.

ステップS105では、診断中の運転状態が定常状態であったか否かを判定する。例えば、300ms前の吸入空気量と現在の吸入空気量とを比較し、両者の差が予め設定した閾値Aより小さければ、定常状態であったと判定し、大きければ非定常状態であったと判定する。定常状態の場合はステップS106で定常状態フラグをセットしてステップS107に進み、非定常状態の場合はそのまま処理を終了する。   In step S105, it is determined whether or not the operating state being diagnosed is a steady state. For example, the intake air amount before 300 ms is compared with the current intake air amount, and if the difference between the two is smaller than a preset threshold A, it is determined that the steady state is established, and if it is greater, it is determined that the unsteady state is established. . In the case of the steady state, the steady state flag is set in step S106 and the process proceeds to step S107. In the case of the non-steady state, the process is ended as it is.

ステップS107では、診断終了条件が成立したか否かを、例えば、診断開始から予め設定した所定期間が経過したか否かで行う。この所定期間は、同定演算を行うのに十分な時間を設定する。   In step S107, whether or not the diagnosis end condition is satisfied is determined based on, for example, whether or not a predetermined period of time has elapsed since the start of diagnosis. The predetermined period is set to a time sufficient for performing the identification calculation.

ステップS108では、定常判定フラグがセットされているか否か(定常判定フラグ=1か否か)を判定する。セットされている場合はステップS109に進み、セットされていない場合はステップS110に進む。   In step S108, it is determined whether or not the steady state determination flag is set (whether or not the steady state determination flag = 1). If it is set, the process proceeds to step S109. If it is not set, the process proceeds to step S110.

ステップS109では、診断パラメータとして、逐次同定演算(a)の結果を選択し、ステップS110では、同様に逐次同定演算(b)のを選択する。   In step S109, the result of the sequential identification calculation (a) is selected as a diagnostic parameter, and in step S110, the sequential identification calculation (b) is selected in the same manner.

すなわち、診断中に運転状態が変化しなければ、エアフローメータ9で検出した実際の吸入空気量に基づく推定空燃比を入力値とする演算結果を用いて診断を行い、診断中に運転状態が変化した場合には、目標空燃比を入力値とする同定演算結果を用いる。   That is, if the operating state does not change during the diagnosis, the diagnosis is performed using the calculation result using the estimated air-fuel ratio based on the actual intake air amount detected by the air flow meter 9 as an input value, and the operating state changes during the diagnosis. In this case, an identification calculation result using the target air-fuel ratio as an input value is used.

運転状態が変化すると、診断のための空燃比変化に応じた燃料噴射量の変化以外にも燃料噴射量補正がかかってしまい、このような場合には、同定演算における入力値と出力値(空燃比センサ12の出力)との相関関係がずれてしまうため、同定演算が正しく行われなくなる。その結果、空燃比センサ12が正常であっても劣化していると誤診断してしまう恐れがあるので、燃料噴射指令値に基づく推定空燃比を入力値とする同定演算を用いた診断を行うことはできない。   When the operating state changes, the fuel injection amount correction is applied in addition to the change in the fuel injection amount in accordance with the air-fuel ratio change for diagnosis. In such a case, the input value and output value (empty value) in the identification calculation are applied. Since the correlation with the output of the fuel ratio sensor 12 is deviated, the identification calculation is not performed correctly. As a result, even if the air-fuel ratio sensor 12 is normal, there is a possibility that it may be erroneously diagnosed that the air-fuel ratio sensor 12 has deteriorated. It is not possible.

そこで、上記制御のように、目標空燃比を入力値とする同定演算も行っておき、運転状態が変化した場合にはこの演算結果を用いて診断を行うこととする。これにより、診断頻度の低下を回避することができる。   Therefore, as in the above control, an identification calculation using the target air-fuel ratio as an input value is also performed, and when the operating state changes, a diagnosis is performed using this calculation result. Thereby, the fall of the diagnosis frequency can be avoided.

ステップS111では、ステップS109またはステップS110で選択した診断パラメータに基づいて劣化判定を行う。具体的には、逐次同定演算の結果得られたゲイン−周波数特性を用いて、特定周波数におけるゲインが低下しているか否かを判定する。   In step S111, deterioration determination is performed based on the diagnostic parameter selected in step S109 or step S110. Specifically, it is determined whether or not the gain at a specific frequency has decreased using the gain-frequency characteristics obtained as a result of the sequential identification calculation.

図4は逐次同定演算の結果得られるボード線図の一例を示す図であり、実線Aは実験等を通して予め作成しておいた空燃比センサ12が正常な場合の特性を示しており、B、C及びDは逐次同定演算結果を示している。特定の周波数(図4では3Hz)において、Dのように正常な場合とほぼ重なる、または正常な場合より大きいか、BやCのように小さいかを判定する。   FIG. 4 is a diagram illustrating an example of a Bode diagram obtained as a result of the sequential identification calculation. A solid line A indicates characteristics when the air-fuel ratio sensor 12 prepared in advance through experiments or the like is normal, and B, C and D indicate sequential identification calculation results. At a specific frequency (3 Hz in FIG. 4), it is determined whether it overlaps with a normal case like D, or is larger than a normal case, or smaller like B or C.

なお、ゲインの低下量に許容範囲を設け、正常なゲインからの低下量が所定範囲内を正常領域としてもよい。   It should be noted that an allowable range may be provided for the amount of gain decrease, and the amount of decrease from the normal gain may be within a predetermined range as a normal region.

正常な場合とほぼ重なる又は正常な場合より大きければ、ステップS112に進み正常であると判定し、小さければステップS113に進み、劣化していると判定する。   If it is almost overlapped with the normal case or larger than the normal case, the process proceeds to step S112, where it is determined to be normal, and if it is smaller, the process proceeds to step S113, where it is determined to be deteriorated.

以上により本実施形態では、次のような効果を得ることができる。   As described above, in the present embodiment, the following effects can be obtained.

(1)エンジン1の排気の空燃比を検出する空燃比センサ12と、空燃比センサ12の検出値に基づいて燃料噴射量を変更することにより空燃比のフィードバック制御を行うフィードバック制御手段、劣化診断用に空燃比をリッチ方向及びリーン方向に周期的に繰り返し変化させる目標空燃比設定手段、空燃比の変化に対する空燃比センサ12の応答特性モデルを逐次同定演算する同定手段、逐次同定演算中に運転状態が変化しない定常状態であったか、運転状態が変化する非定常状態であったかを判定する運転状態判定手段、及び応答特性に基づいて空燃比センサ12の劣化を判定する劣化判定手段としてのコントロールユニット14、を備え、フィードバック制御中の燃料噴射量に基づいて算出した推定空燃比をモデルに入力する第一の逐次同定演算と、目標空燃比設定手段が設定した目標空燃比をモデルに入力する第二の逐次同定演算とを行い、定常状態であった場合には第一の逐次同定演算の結果に基づいて、非定常状態であった場合は第二の逐次同定演算の結果に基づいて劣化判定を行うので、非定常状態であっても誤診断することなく空燃比センサ12の劣化診断を行うことが可能となる。これにより、劣化診断の頻度の低下を防止することができる。   (1) An air-fuel ratio sensor 12 that detects the air-fuel ratio of the exhaust gas from the engine 1, feedback control means that performs feedback control of the air-fuel ratio by changing the fuel injection amount based on the detected value of the air-fuel ratio sensor 12, and deterioration diagnosis Target air-fuel ratio setting means for periodically changing the air-fuel ratio in a rich direction and a lean direction, identification means for sequentially identifying and calculating the response characteristic model of the air-fuel ratio sensor 12 with respect to changes in the air-fuel ratio, and operating during the sequential identification calculation A control unit 14 as an operation state determination unit that determines whether the state is a steady state in which the state does not change or an unsteady state in which the operation state changes, and a deterioration determination unit that determines deterioration of the air-fuel ratio sensor 12 based on response characteristics. The first air-fuel ratio calculated based on the fuel injection amount during feedback control is input to the model. The next identification calculation and the second sequential identification calculation that inputs the target air-fuel ratio set by the target air-fuel ratio setting means to the model are performed. Based on the result of the first sequential identification calculation in a steady state In the case of the unsteady state, the deterioration determination is performed based on the result of the second sequential identification calculation. Therefore, the deterioration diagnosis of the air-fuel ratio sensor 12 can be performed without making a false diagnosis even in the unsteady state. It becomes. Thereby, the fall of the frequency of deterioration diagnosis can be prevented.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

本実施形態を適用するシステムの構成図である。It is a block diagram of the system to which this embodiment is applied. 空燃比の変化に対する空燃比センサ検出値及び燃料補正係数の変化を示す図である。It is a figure which shows the change of the air fuel ratio sensor detected value with respect to the change of an air fuel ratio, and a fuel correction coefficient. 劣化診断の制御ロジックを示すフローチャートである。It is a flowchart which shows the control logic of a deterioration diagnosis. 逐次同定演算の結果得られるボード線図である。It is a Bode diagram obtained as a result of sequential identification calculation.

符号の説明Explanation of symbols

1 エンジン
2 吸気通路
3 排気通路
4 吸気バルブ
5 排気バルブ
6 シリンダ
7 燃料噴射弁
8 スロットルバルブ
9 エアフローメータ
10 ピストン
11 点火栓
12 空燃比センサ
13 排気浄化触媒
14 コントロールユニット
15 エンジン回転数センサ
16 アクセル開度センサ
17 車速センサ
DESCRIPTION OF SYMBOLS 1 Engine 2 Intake passage 3 Exhaust passage 4 Intake valve 5 Exhaust valve 6 Cylinder 7 Fuel injection valve 8 Throttle valve 9 Air flow meter 10 Piston 11 Spark plug 12 Air-fuel ratio sensor 13 Exhaust purification catalyst 14 Control unit 15 Engine speed sensor 16 Accelerator opening Degree sensor 17 Vehicle speed sensor

Claims (3)

内燃機関の排気の空燃比を検出する空燃比検出手段と、
前記空燃比検出手段の検出値に基づいて燃料噴射量を変更することにより空燃比のフィードバック制御を行うフィードバック制御手段と、
劣化診断用に空燃比をリッチ方向及びリーン方向に周期的に繰り返し変化させる目標空燃比設定手段と、
空燃比の変化に対する前記空燃比検出手段の応答特性モデルを逐次同定演算する同定手段と、
前記逐次同定演算中に運転状態が変化しない定常状態であったか、運転状態が変化した非定常状態であったかを判定する運転状態判定手段と、
前記応答特性に基づいて前記空燃比検出手段の劣化を判定する劣化判定手段と、
を備え、
前記同定手段は、前記フィードバック制御中の燃料噴射量に基づいて算出した推定空燃比をモデルに入力する第一の逐次同定演算と、前記目標空燃比設定手段が設定した目標空燃比をモデルに入力する第二の逐次同定演算とを行い、
劣化判定手段は、定常状態であった場合には前記第一の逐次同定演算の結果に基づいて、非定常状態であった場合は前記第二の逐次同定演算の結果に基づいて劣化判定を行うことを特徴とする空燃比検出手段の劣化診断装置。
Air-fuel ratio detection means for detecting the air-fuel ratio of the exhaust gas of the internal combustion engine;
Feedback control means for performing feedback control of the air-fuel ratio by changing the fuel injection amount based on the detection value of the air-fuel ratio detection means;
Target air-fuel ratio setting means for periodically and repeatedly changing the air-fuel ratio in the rich direction and the lean direction for deterioration diagnosis;
An identification unit for sequentially identifying and calculating a response characteristic model of the air-fuel ratio detection unit with respect to a change in the air-fuel ratio;
An operation state determination means for determining whether the operation state is a steady state that does not change during the sequential identification calculation or whether the operation state is an unsteady state;
Deterioration determining means for determining deterioration of the air-fuel ratio detecting means based on the response characteristics;
With
The identification means inputs a first sequential identification calculation that inputs an estimated air-fuel ratio calculated based on the fuel injection amount during the feedback control to the model, and a target air-fuel ratio set by the target air-fuel ratio setting means And a second sequential identification operation
The deterioration determination means performs deterioration determination based on the result of the first sequential identification calculation when in a steady state, and based on the result of the second sequential identification calculation when in a non-steady state. A deterioration diagnosis apparatus for air-fuel ratio detection means.
前記劣化判定手段は、同定された応答特性モデルのゲインと正常な場合の応答特性のゲインとの特定周波数における差が、所定の閾値より大きい場合に劣化していると判定することを特徴とする請求項1に記載の空燃比検出手段の劣化診断装置。   The deterioration determining means determines that the deterioration is caused when a difference in a specific frequency between the gain of the identified response characteristic model and the gain of the response characteristic in a normal case is larger than a predetermined threshold. The deterioration diagnosis apparatus for air-fuel ratio detection means according to claim 1. 目標空燃比をリッチ方向及びリーン方向に周期的に繰り返し変化させ、
前記目標空燃比の周期的な変化に伴うフィードバック制御中の燃料噴射量に基づいて算出した推定空燃比をモデルに入力する第一の逐次同定演算と、前記目標空燃比をモデルに入力する第二の逐次同定演算とを行い、
前記逐次同定演算中に運転状態が変化しない定常状態であったか、運転状態が変化した非定常状態であったかを判定し、
定常状態であった場合には前記第一の逐次同定演算の結果に基づいて、非定常状態であった場合は前記第二の逐次同定演算の結果に基づいて劣化判定を行うことを特徴とする空燃比検出手段の劣化診断方法。
The target air-fuel ratio is periodically and repeatedly changed in the rich direction and the lean direction,
A first sequential identification operation for inputting an estimated air-fuel ratio calculated based on a fuel injection amount during feedback control accompanying a periodic change of the target air-fuel ratio to the model, and a second sequential input for inputting the target air-fuel ratio to the model The sequential identification calculation of
It was determined whether the operation state was a steady state that did not change during the sequential identification calculation or whether the operation state was an unsteady state,
The deterioration determination is performed based on the result of the first sequential identification calculation when in a steady state, and based on the result of the second sequential identification calculation when in a non-steady state. A deterioration diagnosis method for air-fuel ratio detection means.
JP2008145868A 2008-06-03 2008-06-03 Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means Expired - Fee Related JP5083044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145868A JP5083044B2 (en) 2008-06-03 2008-06-03 Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145868A JP5083044B2 (en) 2008-06-03 2008-06-03 Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means

Publications (2)

Publication Number Publication Date
JP2009293433A true JP2009293433A (en) 2009-12-17
JP5083044B2 JP5083044B2 (en) 2012-11-28

Family

ID=41541838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145868A Expired - Fee Related JP5083044B2 (en) 2008-06-03 2008-06-03 Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means

Country Status (1)

Country Link
JP (1) JP5083044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612466A (en) * 2021-08-13 2021-11-05 杭州晶锐仪器仪表有限公司 Filtering method and system based on flow state switching and flowmeter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354345A (en) * 1989-07-24 1991-03-08 Hitachi Ltd Abnormality detecting method for air-fuel ratio control device
JPH10169493A (en) * 1996-12-11 1998-06-23 Unisia Jecs Corp Abnormal diagnostic device for wide area air-fuel ratio sensor
JP2004183517A (en) * 2002-11-29 2004-07-02 Toyota Motor Corp Air-fuel ratio sensor abnormality detection device
JP2005194891A (en) * 2003-12-26 2005-07-21 Hitachi Ltd Engine control device
JP2005240618A (en) * 2004-02-25 2005-09-08 Hitachi Ltd Engine control device
JP2006291726A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Air-fuel ratio estimation device for internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354345A (en) * 1989-07-24 1991-03-08 Hitachi Ltd Abnormality detecting method for air-fuel ratio control device
JPH10169493A (en) * 1996-12-11 1998-06-23 Unisia Jecs Corp Abnormal diagnostic device for wide area air-fuel ratio sensor
JP2004183517A (en) * 2002-11-29 2004-07-02 Toyota Motor Corp Air-fuel ratio sensor abnormality detection device
JP2005194891A (en) * 2003-12-26 2005-07-21 Hitachi Ltd Engine control device
JP2005240618A (en) * 2004-02-25 2005-09-08 Hitachi Ltd Engine control device
JP2006291726A (en) * 2005-04-06 2006-10-26 Honda Motor Co Ltd Air-fuel ratio estimation device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612466A (en) * 2021-08-13 2021-11-05 杭州晶锐仪器仪表有限公司 Filtering method and system based on flow state switching and flowmeter

Also Published As

Publication number Publication date
JP5083044B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US9752523B2 (en) Air-fuel ratio control apparatus for internal combustion engine
EP2151554A1 (en) Deterioration determination device and method for exhaust emission reduction device
JP2003254129A (en) Device for controlling exhaust gas
JP2008248769A (en) Air fuel ratio control device for internal combustion engine
US8362405B2 (en) Heater controller of exhaust gas sensor
CN101432517B (en) Air-fuel ratio control system for internal combustion engine and control method of the same
JP5083044B2 (en) Deterioration diagnosis apparatus and deterioration diagnosis method for air-fuel ratio detection means
JP2004060563A (en) Fuel injection amount control device for internal combustion engine
JP2000310140A (en) Air-fuel ratio control device for internal combustion engine
JP4269593B2 (en) Secondary air supply control device for internal combustion engine
JP4305268B2 (en) Secondary air supply system for internal combustion engine and fuel injection amount control device using the same
JP2006037924A (en) Control unit of vehicle
JP2020045814A (en) Fuel injection control device for internal combustion engine
JP2005106065A (en) Device for detecting deterioration of exhaust gas purifying catalyst
JP4148122B2 (en) Air-fuel ratio control device for internal combustion engine
JP2004197693A (en) Air/fuel ratio control system of internal combustion engine
JP5077047B2 (en) Control device for internal combustion engine
JP2003247452A (en) Abnormality diagnosis system on exhaust gas sensor
JP2010084671A (en) Air-fuel ratio control device of internal combustion engine
JP2006009624A (en) Air-fuel ratio control device of engine
JP2005256832A (en) Secondary air supply system for internal combustion engine, and fuel injection amount control device using the same
JP2008261254A (en) Control device of internal combustion engine
JP4462419B2 (en) Engine exhaust system abnormality detection device
JP4345462B2 (en) Air-fuel ratio control device for internal combustion engine
JP2009270482A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5083044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees