JP2009293081A - Tool steel suitable to die for aluminum working and die for aluminum working - Google Patents
Tool steel suitable to die for aluminum working and die for aluminum working Download PDFInfo
- Publication number
- JP2009293081A JP2009293081A JP2008147695A JP2008147695A JP2009293081A JP 2009293081 A JP2009293081 A JP 2009293081A JP 2008147695 A JP2008147695 A JP 2008147695A JP 2008147695 A JP2008147695 A JP 2008147695A JP 2009293081 A JP2009293081 A JP 2009293081A
- Authority
- JP
- Japan
- Prior art keywords
- die
- aluminum
- steel
- hardness
- toughness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 35
- 229910001315 Tool steel Inorganic materials 0.000 title claims abstract description 9
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 30
- 239000010959 steel Substances 0.000 claims abstract description 30
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- 238000001816 cooling Methods 0.000 claims abstract description 7
- 238000005242 forging Methods 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 238000005096 rolling process Methods 0.000 claims abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 238000012545 processing Methods 0.000 claims description 7
- 238000005255 carburizing Methods 0.000 abstract description 21
- 150000001247 metal acetylides Chemical class 0.000 abstract description 13
- 230000003628 erosive effect Effects 0.000 abstract description 10
- 229910052804 chromium Inorganic materials 0.000 abstract description 6
- 239000013078 crystal Substances 0.000 abstract description 6
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 4
- 238000001556 precipitation Methods 0.000 abstract description 4
- 238000012360 testing method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005121 nitriding Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000004512 die casting Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- -1 TiCN Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910010037 TiAlN Inorganic materials 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、浸炭を施すことで耐摩耗性、耐アルミ溶損性に優れる工具鋼およびアルミ加工用金型に関するものである。 The present invention relates to a tool steel and an aluminum machining die which are excellent in wear resistance and aluminum corrosion resistance by carburizing.
近年、自動車、トラック、車両などの軽量化への取り組みから、ダイキャストやアルミ押出し加工において、高Si系高強度アルミ合金の使用が増加したり、大型部品が増加している。さらには、生産性向上の観点から、サイクルタイムの短縮など、金型の使用環境は過酷になる一方であり、金型寿命の改善が大きな課題となっている。 In recent years, due to efforts to reduce the weight of automobiles, trucks, vehicles, etc., the use of high-Si high-strength aluminum alloys has increased in die-casting and aluminum extrusion, and large parts have increased. Furthermore, from the viewpoint of improving productivity, the usage environment of molds is becoming severe, such as shortening of cycle time, and improvement of mold life is a major issue.
アルミダイキャストの射抜きピンやアルミ押出しダイスにおいては、アルミ合金との接触によって、激しい焼付きや摩耗が生じて早期に金型寿命に至るケースが多い。これらの金型寿命の向上を目的に現状はアルミ合金との直接接触を避けて溶損を抑える目的で、表面処理として窒化(ガス軟窒化、塩浴軟窒化、プラズマ窒化、浸硫窒化など)やPVDコーティング(TiN、TiAlN、TiCN、CrNなど)が、また金型鋼としては汎用鋼であるJIS SKD61の成分を改良した開発鋼が検討されてきた。 In aluminum die cast punch pins and aluminum extrusion dies, contact with an aluminum alloy often results in severe seizure and wear, leading to early die life. Nitrogen (gas soft nitriding, salt bath soft nitriding, plasma nitriding, plasma nitriding, nitrosulphurizing, etc.) is used as a surface treatment for the purpose of improving the service life of these molds. Developed steel with improved PVD coating (TiN, TiAlN, TiCN, CrN, etc.) and improved component of JIS SKD61, which is a general-purpose steel, has been studied.
また、アルミ押出しダイスでは、加熱、加圧されて押出されたアルミビレットの接触により、ダイス形状部では摩耗や焼付けが発生して寿命に至るが、潤滑と耐摩耗性を改善する目的で、窒化が実施され、使用に応じて手直し、再窒化を実施して使用されることが多い。しかし、窒化では硬化層の厚さが約50〜200μmと薄いため、充分な耐摩耗性の改善が期待できないことと、表面硬さは1000HVを超え、基材との硬さのギャップが大きくなり、早期割れや剥離が発生するなどの問題点がある。さらに、PVDコーティングは約1〜5μmのTiN、TiCNやCrNなどが一般的であるが、膜表面のピンホールやドロップレットからの局部的なアルミ合金の焼付き、溶損が発生するため、充分な効果が得られていない。 In addition, in aluminum extrusion dies, contact with the aluminum billet extruded by heating and pressurization causes wear and seizure in the die-shaped part, leading to life, but nitriding for the purpose of improving lubrication and wear resistance. In many cases, it is reworked according to use and renitrided. However, in nitriding, since the thickness of the hardened layer is as thin as about 50 to 200 μm, a sufficient improvement in wear resistance cannot be expected, the surface hardness exceeds 1000 HV, and the hardness gap with the base material increases. There are problems such as early cracking and peeling. In addition, PVD coating is generally about 1-5 μm TiN, TiCN, CrN, etc., but local aluminum alloy seizure and melting damage from pinholes and droplets on the film surface are sufficient. The effect is not acquired.
上述したような状況下において、例えば特開2003−119544号公報(特許文献1)に開示されているような、浸炭用ダイカスト金型用鋼およびダイカスト金型ならびにダイカスト金型の製造方法が提案されている。また、特開平8−144039号公報(特許文献2)に開示されているような、溶湯Alや溶融Znに対する耐溶損性に優れた鋳造用金型または溶接溶湯部材が提案されている。また、特開2007−56368号公報(特許文献3)に開示されているような、第1窒化処理工程と第2窒化処理工程との繰返しガス軟窒化鋼が提案されている。 Under the circumstances as described above, for example, a steel for die-casting die for carburization and a die-casting die and a manufacturing method of the die-casting die as disclosed in Japanese Patent Application Laid-Open No. 2003-119544 (Patent Document 1) have been proposed. ing. Moreover, a casting mold or a welded molten member having excellent resistance to erosion with respect to molten Al or molten Zn as disclosed in Japanese Patent Laid-Open No. 8-144039 (Patent Document 2) has been proposed. Further, a repeated gas soft nitriding steel of a first nitriding treatment step and a second nitriding treatment step as disclosed in JP 2007-56368 A (Patent Document 3) has been proposed.
また、特開平10−158780号公報(特許文献4)に開示されているような、プラズマ浸炭を施して冷間加工用の工具を製造するための鋼とその鋼から製造した工具が提案されている。また、特開平11−50190号公報(特許文献5)に開示されている、冷間、温間、熱間にて使用される鍛造金型、摺動部材など過酷な条件下に適用し得る浸炭部材として広範囲の用途としての鋼が提案されている。また、特開昭57−134554号公報(特許文献6)に開示されている、真空浸炭を施す冷間加工用金型の製造方法が提案されている。 In addition, steel for manufacturing a tool for cold working by plasma carburizing and a tool manufactured from the steel as disclosed in Japanese Patent Laid-Open No. 10-158780 (Patent Document 4) have been proposed. Yes. Further, carburization disclosed in JP-A-11-50190 (Patent Document 5) that can be applied under severe conditions such as a forging die and a sliding member used cold, warm and hot. Steel for a wide range of uses has been proposed as a member. In addition, a method for manufacturing a cold working die for vacuum carburization, which is disclosed in Japanese Patent Application Laid-Open No. 57-134554 (Patent Document 6), has been proposed.
さらに、特開昭57−164977号公報(特許文献7)に開示されている、焼きなまし状態ではすぐれた機械加工性を有し、浸炭処理後はすぐれた耐摩耗性を有する表面硬化鋼が提案されている。
上述したような、特許文献1の浸炭用ダイカスト金型用鋼にあっては、C含有量が低く内部硬さ、強度が不十分で、かつダイカストのダイス金型用で靱性重視のため浸炭深さが浅く耐摩耗性、アルミ溶損性の改善が不十分である。また、特許文献2のAl,Znの耐溶損性に優れた鋳造用金型にあっては、Mnが非常に高く、製造性、切削加工性が悪く、さらに、母層がオーステナイトとなるため、硬さが低下し、強度が不十分である。 In the steel for die-casting die for carburizing of Patent Document 1 as described above, the C content is low, the internal hardness and strength are insufficient, and the die-casting die die is used for die-casting die so as to emphasize toughness. The wear resistance and aluminum meltability are not improved sufficiently. In addition, in the casting mold having excellent resistance to melting of Al and Zn in Patent Document 2, Mn is very high, the productivity and the machinability are poor, and the mother layer is austenite. Hardness decreases and strength is insufficient.
また、特許文献3の繰返しガス軟窒化鋼にあっては、化合物層生成により一定の改善効果を得ているが、しかし、鋼材成分の検討はなされていないし、化合物層の剥離の問題や、硬化層が浅く耐摩耗性の改善が不十分である。また、特許文献4の浸炭用冷間工具鋼にあっては、Crを低減し、Vを大幅に高めて、浸炭時にVC、V(CN)を多量析出させて耐摩耗性と硬さを得ている。しかし、Crが低過ぎて、耐摩耗性の改善が不十分である。特許文献5の冷間、温間、熱間金型から摺動部材などの広範囲の用途としての鋼にあっては、浸炭硬化層の深さについて検討されておらず、靱性改善が不十分である。 Further, in the repeated gas soft nitrided steel of Patent Document 3, a certain improvement effect is obtained by the formation of the compound layer, but the steel material component has not been studied, the problem of peeling of the compound layer, and hardening The layer is shallow and the wear resistance is not sufficiently improved. Moreover, in the cold tool steel for carburizing of Patent Document 4, Cr is reduced, V is significantly increased, and a large amount of VC and V (CN) are precipitated during carburizing to obtain wear resistance and hardness. ing. However, Cr is too low, and the improvement of wear resistance is insufficient. In steel as a wide range of applications such as cold, warm, hot molds and sliding members of Patent Document 5, the depth of the carburized hardened layer has not been studied, and the toughness improvement is insufficient. is there.
また、C含有量(実施例)が低く内部硬さ、強度が不十分である。また、特許文献6の真空浸炭を施す冷間加工用金型鋼にあっては、Cr含有量が高く、靱性改善が不十分である。さらに、特許文献7の冷間加工用金型や刃物鋼にあっては、Mo、Vなどの任意添加であり、技術思想が異なり、また、C、Crの添加量が高く(実施例)、衝撃値の改善が不十分である等それぞれに問題がある。 Further, the C content (Example) is low, and the internal hardness and strength are insufficient. Moreover, in the die steel for cold work which performs the vacuum carburizing of patent document 6, Cr content is high and toughness improvement is inadequate. Furthermore, in the cold working mold and blade steel of Patent Document 7, it is optional addition of Mo, V, etc., the technical idea is different, and the addition amount of C, Cr is high (Example), Each of them has problems such as insufficient improvement of impact value.
上述のような問題を解消するために、発明者らは、アルミ加工用金型において耐摩耗性と耐アルミ溶損性を向上させるために鋭意開発を進めた結果、浸炭処理によって深い硬化層を得るという着想に至った。そこで、浸炭による結晶粒の粗大化や粒界炭化物の析出を抑えて靱性が大幅に改善されることを見出し、鋼材成分、製造条件および硬化層の硬さ勾配を制御することとした。 In order to solve the above-mentioned problems, the inventors have made extensive developments in order to improve wear resistance and aluminum erosion resistance in aluminum processing molds. I came up with the idea of getting. Therefore, it was found that the toughness was greatly improved by suppressing the coarsening of crystal grains and precipitation of grain boundary carbides due to carburization, and the steel material components, production conditions, and hardness gradient of the hardened layer were controlled.
すなわち、Cr量の低減により浸炭中の粒界炭化物の析出を抑制し、Si量の低減により浸炭中のC拡散を促進し、Mo,V量の増加によって浸炭層の微細析出炭化物を増加させ耐摩耗性、軟化抵抗を高めると共に、Al合金の拡散を抑制し、溶損性を向上させた。また、製造条件、Mo,V析出炭化物による浸炭中の結晶粒粗大化抑制により靱性を確保したアルミ加工用金型に適した工具鋼およびアルミ加工用金型の製造方法を提供する。 That is, the precipitation of grain boundary carbides during carburization is suppressed by reducing the Cr content, the C diffusion during carburization is promoted by reducing the Si content, and the amount of finely precipitated carbide in the carburized layer is increased by increasing the Mo and V content. While improving the wear resistance and softening resistance, the diffusion of the Al alloy was suppressed and the meltability was improved. Moreover, the manufacturing conditions and the manufacturing method of the tool steel suitable for the aluminum processing metal mold | die which ensured toughness by suppressing the coarsening of the crystal grain during the carburization by Mo, V precipitation carbide | carbonized_material, and the aluminum processing metal mold | die are provided.
その発明の要旨とするところは、
(1)質量%で、C:0.31〜0.60%、Si:0.1〜0.6%、Mn:0.3〜1.0%、Ni:0.05〜0.6%、Cr:3.0〜5.0%未満、MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.8〜4.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.5〜1.5%、残部Feおよび不可避的不純物よりなる鋼を、鍛造および圧延における終止温度900〜1150℃、冷却速度0.05℃/sec以上としたことを特徴とするアルミ加工用金型に適した工具鋼。
The gist of the invention is that
(1) By mass%, C: 0.31 to 0.60%, Si: 0.1 to 0.6%, Mn: 0.3 to 1.0%, Ni: 0.05 to 0.6% , Cr: 3.0 to less than 5.0%, any one or two of Mo or W is equivalent to Mo (Mo + 1 / 2W): 0.8 to 4.0%, any one of V or Nb Alternatively, two kinds of V equivalent (V + 1 / 2Nb): 0.5 to 1.5%, a steel composed of the balance Fe and unavoidable impurities, an end temperature of forging and rolling of 900 to 1150 ° C., a cooling rate of 0.05 ° C. / Tool steel suitable for molds for machining aluminum, characterized by a sec or longer.
(2)前記(1)に記載の鋼よりなり、表面に浸炭硬化層を有することを特徴とするアルミ加工用金型。
(3)浸炭硬化層の硬さと深さとの関係が、0.03<(△HV/D)≦0.15となることを特徴とする前記(2)に記載のアルミ加工用金型にある。
ただし、△HV=(表面硬さ)−(内部硬さ)、D=(浸炭硬化層深さ)
ここで、内部硬さは硬化層以外の内部で任意に5点測定した平均値、硬化層深さは表面部から硬さを測定した際に、硬さ±30HVが5点以上連続した時の最も表面に近い点の表面からの距離を示す。
(2) A mold for aluminum processing which is made of the steel described in (1) and has a carburized hardened layer on the surface.
(3) The relationship between the hardness and depth of the carburized hardened layer is 0.03 <(ΔHV / D) ≦ 0.15. .
However, ΔHV = (surface hardness) − (internal hardness), D = (depth of carburized hardened layer)
Here, the internal hardness is an average value measured arbitrarily at 5 points inside the cured layer, and the cured layer depth is measured when the hardness ± 30 HV is continuous for 5 points or more when the hardness is measured from the surface portion. Indicates the distance from the surface of the point closest to the surface.
以上述べたように、本発明による真空浸炭により表面処理と焼入れが併せて実施でき、工期短縮、かつ省エネルギーを図ることができ、また、ダイカストピンや押出しダイスにおいて、溶損、摩耗、割れ、折損を抑えて寿命延長を図ることが可能となる極めて優れた効果を奏するものである。 As described above, surface treatment and quenching can be performed together by vacuum carburizing according to the present invention, the work period can be shortened, and energy can be saved. Also, in die casting pins and extrusion dies, melting, wear, cracking, breakage This provides an extremely excellent effect that makes it possible to extend the life while suppressing the above.
以下、本発明に係る成分組成の限定理由について説明する。
C:0.31〜0.60%
Cは、焼入焼戻しにより、十分なマトリックス硬さを与えるとともに、Cr、Mo、V、Nbなどと結合して炭化物を形成し、硬さおよび強度に必要な元素である。しかし、0.31%未満では、その効果が十分に得られず、また、0.60%を超えると靱性、熱間加工性を低下させることから、その範囲を0.31〜0.60%とした。好ましくは0.35〜0.55%とする。
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.31 to 0.60%
C is an element necessary for hardness and strength by giving a sufficient matrix hardness by quenching and tempering and forming a carbide by combining with Cr, Mo, V, Nb and the like. However, if it is less than 0.31%, the effect is not sufficiently obtained, and if it exceeds 0.60%, the toughness and hot workability are lowered, so the range is 0.31 to 0.60%. It was. Preferably it is 0.35 to 0.55%.
Si:0.1〜0.6%
Siは、製鋼時の脱酸剤として必要な元素である。しかし、0.1%未満では、その効果が十分に得られず、また0.6%を超えると靱性を低下させ、浸炭でC拡散を阻害することから、その範囲を0.1〜0.6%とした。好ましくは0.2〜0.5%未満とする。Mn:0.3〜1.0%
Mnは、脱酸剤、および焼入性を与える元素である。しかし、0.3%未満ではその効果が十分でなく、1.0%を超えると被削性を低下させることから、その範囲を0.3〜1.0%とした。
Si: 0.1-0.6%
Si is an element necessary as a deoxidizer during steelmaking. However, if it is less than 0.1%, the effect cannot be sufficiently obtained, and if it exceeds 0.6%, the toughness is lowered and C diffusion is inhibited by carburization. 6%. Preferably it is 0.2 to less than 0.5%. Mn: 0.3 to 1.0%
Mn is a deoxidizer and an element imparting hardenability. However, if it is less than 0.3%, the effect is not sufficient, and if it exceeds 1.0%, the machinability is lowered, so the range was made 0.3 to 1.0%.
Ni:0.05〜0.6%
Niは、焼入性および靱性の向上に役立つ元素である。しかし、0.05%未満ではその効果が十分でなく、また、0.6%を超えると被削性を低下させることから、その範囲を0.05〜0.6%とした。
Ni: 0.05-0.6%
Ni is an element useful for improving hardenability and toughness. However, if it is less than 0.05%, the effect is not sufficient, and if it exceeds 0.6%, the machinability is lowered, so the range was made 0.05 to 0.6%.
Cr:3.0〜5.0%未満
Crは、硬さ、焼入れ性に必要な元素である。特に浸炭時に炭化物を析出させ耐摩耗性、耐溶損性を向上させる。しかし、3.0%未満ではその効果が十分でなく、また、5.0%以上であると凝固時に粗大炭化物が生成しやすくなるとともに、浸炭時に粒界炭化物を析出、成長しやすくなり、靱性を低下させる。したがって、その範囲を3.0〜5.0%未満とした。好ましくは3.6〜4.6%とする。
Cr: 3.0 to less than 5.0% Cr is an element necessary for hardness and hardenability. In particular, carbides are deposited during carburizing to improve wear resistance and erosion resistance. However, if it is less than 3.0%, the effect is not sufficient, and if it is 5.0% or more, coarse carbides are likely to be generated during solidification, and grain boundary carbides are likely to precipitate and grow during carburization, and toughness Reduce. Therefore, the range was made 3.0 to less than 5.0%. Preferably, the content is 3.6 to 4.6%.
Mo+1/2W:0.8〜4.0%
MoおよびWは、単独または複合で添加することができ、焼戻し時に微細な炭化物を析出して軟化抵抗性、硬さおよび高温強度を増加させる元素である。また、浸炭時に微細炭化物を析出させ耐摩耗性、耐溶損性を向上させ、微細炭化物が浸炭中の結晶粒粗大化を抑制し靱性を確保する効果を有するものである。しかし、0.8%未満ではその効果が十分でなく、また、4.0%を超えると焼戻し時に析出する微細炭化物が多くなり、靱性、熱間加工性を低下させるため、その範囲を0.8〜4.0%とした。好ましくは2.0〜3.6%とする。
Mo + 1 / 2W: 0.8-4.0%
Mo and W can be added alone or in combination, and are elements that precipitate fine carbides during tempering to increase softening resistance, hardness, and high-temperature strength. In addition, fine carbides are precipitated during carburizing to improve wear resistance and erosion resistance, and the fine carbides have an effect of suppressing crystal grain coarsening during carburizing and ensuring toughness. However, if the content is less than 0.8%, the effect is not sufficient. If the content exceeds 4.0%, fine carbides precipitate during tempering, and the toughness and hot workability are deteriorated. It was 8 to 4.0%. Preferably it is set to 2.0 to 3.6%.
V+1/2Nb:0.5〜1.5%
VおよびNbは、単独または複合で添加することができ、焼入れ加熱時基地に固溶し、焼戻し時微細な凝集しにくい炭化物を析出し、高い温度域における軟化抵抗を大とし、大きな高温強度を与えると共に結晶粒の粗大化を抑制し靱性を確保する効果を有するものである。しかし、0.5%未満ではその効果が十分でなく、また、1.5%を超えると靱性、熱間加工性を低下させるため、その範囲を0.5〜1.5%とした。
V + 1 / 2Nb: 0.5-1.5%
V and Nb can be added singly or in combination, and dissolve in the base during quenching heating, precipitate fine carbides that are difficult to agglomerate during tempering, increase softening resistance in a high temperature range, and provide high high-temperature strength. And has the effect of suppressing the coarsening of crystal grains and ensuring toughness. However, if it is less than 0.5%, the effect is not sufficient, and if it exceeds 1.5%, the toughness and hot workability are lowered, so the range was made 0.5 to 1.5%.
鍛造および圧延における終止温度900〜1150℃
鍛造および圧延における終止温度900〜1150℃とした理由は、熱間加工性の確保に必要な条件であり、900℃未満ではその効果が十分でなく、また、1150℃を超える温度では、結晶粒が大きくなり靱性を低下させる。また、浸炭時の粒界炭化物が粗大化する。したがって、その範囲を900〜1150℃とした。好ましくは1000〜1100℃とする。
Final temperature in forging and rolling 900-1150 ° C
The reason why the end temperature in forging and rolling is 900 to 1150 ° C. is a condition necessary for ensuring hot workability, and the effect is not sufficient when the temperature is lower than 900 ° C., and the crystal grain is higher than 1150 ° C. Increases and decreases toughness. Moreover, the grain boundary carbides during carburizing become coarse. Therefore, the range was made 900-1150 degreeC. Preferably it is 1000-1100 degreeC.
冷却速度0.05℃/sec以上
一定温度以上の冷却速度で、基地組織はマルテンサイトおよび微細ベイナイトとなり靱性が向上する。しかし、緩冷却により粒界に炭化物が析出し、靱性を低下させる。したがって、0.05℃/sec以上とする。好ましくは0.1℃/sec以上とする。
With a cooling rate of 0.05 ° C./sec or higher and a constant temperature or higher, the matrix structure becomes martensite and fine bainite, and the toughness is improved. However, slow cooling causes carbides to precipitate at the grain boundaries, reducing toughness. Therefore, it is set to 0.05 ° C./sec or more. Preferably, it is 0.1 ° C./sec or more.
浸炭硬化層の硬さと深さとの関係が、0.03<(△HV/D)≦0.15
浸炭硬化層の硬さと深さとの関係は、浸炭を適用することで500〜4000μmの深い硬化層を得ることで耐摩耗性と耐久性を得ることができるが、その際に靱性低下を抑えるために、耐摩耗性、耐久性と靱性とのバランスを得るために、鋼材成分、製造条件および硬化層の硬さ勾配を規制する必要があり、その硬化層の硬さ勾配を定めたものが上記関係である。0.03以下では靱性が劣り、両者の最適なバランスが得られない。また、0.15を超えても靱性が劣り、両者の最適なバランスが得られない。したがって、両者のバランスを得るためには、0.03を超え0.15以下とする。
The relationship between the hardness and depth of the carburized hardened layer is 0.03 <(ΔHV / D) ≦ 0.15.
The relationship between the hardness and depth of the carburized hardened layer is that, by applying carburizing, it is possible to obtain wear resistance and durability by obtaining a hardened layer having a depth of 500 to 4000 μm. In addition, in order to obtain a balance between wear resistance, durability and toughness, it is necessary to regulate the steel material composition, manufacturing conditions, and hardness gradient of the hardened layer, and the one that defines the hardness gradient of the hardened layer is the above It is a relationship. If it is 0.03 or less, the toughness is inferior and the optimum balance between the two cannot be obtained. Moreover, even if it exceeds 0.15, toughness is inferior, and an optimal balance between the two cannot be obtained. Therefore, in order to obtain a balance between the two, it is more than 0.03 and not more than 0.15.
図1は、本発明鋼と比較鋼との表面から深さ方向での顕微鏡写真による組織状態を示す図である。図1(a)は本発明に係る鋼の顕微鏡写真による組織状態であり、図1(b)は従来鋼の顕微鏡写真による組織状態である。この図に示すように、本発明鋼は鋼表面の浸炭層は微細析出炭化物であるに対し、比較鋼の浸炭層は粗大析出炭化物であることが分かる。 FIG. 1 is a diagram showing a structure state of a micrograph in the depth direction from the surface of the steel of the present invention and a comparative steel. FIG. 1A is a structural state of a steel according to the present invention as a micrograph, and FIG. 1B is a structural state of a conventional steel as a micrograph. As shown in this figure, it can be seen that in the steel of the present invention, the carburized layer on the steel surface is finely precipitated carbide, whereas the carburized layer of the comparative steel is coarsely precipitated carbide.
以下、本発明について実施例によって具体的に説明する。
表1に示す各供試材を100kg真空誘導溶解炉で溶解後出鋼して造塊し、1150℃に加熱して鍛造(鍛造終止温度1020℃)後、0.05℃/secにて徐冷し、径32mm丸棒材を作製した後、焼なまし(800〜900℃の任意の温度で5時間保持した後徐冷)した試験片を加工し、浸炭および熱処理して評価に供した。その時の浸炭条件は、真空浸炭炉を用いて、真空浸炭を実施して、そのまま急冷することで焼入れを兼ねることとした。真空浸炭炉にて、10℃/minで昇温、900℃で30分間保持後、さらに、1000〜1150℃に昇温し、アセチレンガスなどの炭化水素系ガスを流して浸炭処理を行った。その後、窒素ガスを用いて急冷して、焼入れを実施した。さらに、550〜650℃の焼戻しを実施して内部硬さ(硬化層以外の内部で任意に5点測定した平均値)を400〜660HVとした。その結果を表2に示す。以下に測定、試験方法について説明する。
Hereinafter, the present invention will be specifically described with reference to examples.
Each test material shown in Table 1 was melted in a 100 kg vacuum induction melting furnace, then steeled and ingot, heated to 1150 ° C. and forged (forging end temperature 1020 ° C.), then gradually increased at 0.05 ° C./sec. After cooling and producing a round bar with a diameter of 32 mm, an annealed sample (held at 800 to 900 ° C. for 5 hours and then gradually cooled) was processed, carburized and heat-treated for evaluation. . The carburizing conditions at that time were that the vacuum carburizing furnace was used to carry out vacuum carburizing and quenching as it was for quenching. After raising the temperature at 10 ° C./min and holding at 900 ° C. for 30 minutes in a vacuum carburizing furnace, the temperature was further raised to 1000 to 1150 ° C., and a carburizing treatment was performed by flowing a hydrocarbon-based gas such as acetylene gas. Thereafter, quenching was performed by quenching with nitrogen gas. Furthermore, tempering at 550 to 650 ° C. was performed, and the internal hardness (average value arbitrarily measured at five points inside the cured layer) was set to 400 to 660 HV. The results are shown in Table 2. The measurement and test methods are described below.
表面硬さの測定としては、微小ビッカース硬度計を用いて、圧痕形状に表面のだれ等の影響をきたさない表面から深さ0.03mmの部位を測定した値を表面硬さとした。
硬化層深さの測定は、微小ビッカース硬度計を用いて、表面部から硬さを0.05mmの間隔で測定して、硬さ±30HVが5点以上連続した時の最も表面に近い点までの表面からの距離を硬化層深さとした。
The surface hardness was measured by using a micro Vickers hardness tester to measure the surface hardness 0.03 mm from the surface that does not affect the indentation shape such as surface sag.
Hardened layer depth is measured using a micro Vickers hardness tester, measuring the hardness from the surface at an interval of 0.05 mm, up to the point closest to the surface when the hardness ± 30 HV continues for 5 points or more. The distance from the surface was taken as the hardened layer depth.
シャルピー衝撃試験は、供試材中心部L方向から2mmUノッチ試験片(10mm×10mm×55mm)を作製し、浸炭熱処理後、試験を実施した。
また、アルミ溶損試験は、供試材の中心部の長手方向(L方向)から耐アルミ溶損試験片(径20mm×長さ100mm)を作製し、アルミ合金としてADC12(Al−11Si−2Cu)を720℃まで加熱した溶湯中に試験片を浸漬し、周速3.2m/minで2時間回転させたときの溶損量を測定した。溶損量(%)は、〔(試験前の試験片重量)−(試験後の試験片重量)〕/(試験前の試験片重量)×100より算出した。
In the Charpy impact test, a 2 mmU notch test piece (10 mm × 10 mm × 55 mm) was produced from the center L direction of the specimen, and the test was carried out after carburizing heat treatment.
In addition, the aluminum erosion test was performed by preparing an aluminum erosion test piece (diameter 20 mm × length 100 mm) from the longitudinal direction (L direction) of the center portion of the test material, and using ADC12 (Al-11Si-2Cu) as an aluminum alloy. ) Was immersed in a molten metal heated to 720 ° C., and the amount of melting loss was measured by rotating at a peripheral speed of 3.2 m / min for 2 hours. The amount of melting loss (%) was calculated from [(weight of test piece before test) − (weight of test piece after test)] / (weight of test piece before test) × 100.
大越式摩耗試験は、供試材の中心部のL方向から15mm×20mm×5mmの試験片を作製し、浸炭処理後、試験を実施した。試験条件は、相手材のリングにSCM420(表面硬さ86HRB)を用い、摩擦距離200mm、最終加重61.7N、摩擦速度2.38m/secとした。試験後の摩耗痕の幅を測定、比摩耗量を算出した。 In the Ogoshi abrasion test, a test piece of 15 mm × 20 mm × 5 mm was prepared from the L direction of the center portion of the specimen, and the test was carried out after carburizing treatment. The test conditions were as follows: SCM420 (surface hardness 86HRB) was used for the ring of the counterpart material, the friction distance was 200 mm, the final load was 61.7 N, and the friction speed was 2.38 m / sec. The width of the wear scar after the test was measured, and the specific wear amount was calculated.
表2に示す比較例No.14はC含有量が低く、Si含有量が高く、かつCr含有量が低く、また、V+1/2Nb含有量が高いために、△HV/Dが大きく、靱性が悪く、アルミ溶損量が高く、かつ耐摩耗性に劣る。比較例No.15はC含有量が低く、Mn,Ni,Cr含有量が高く、かつV+1/2Nb含有量が高いために、浸炭硬化層深さが浅く、△HV/Dが大きく、靱性が悪く、アルミ溶損量が高く、かつ耐摩耗性に劣る。 Comparative Example No. 2 shown in Table 2 No. 14 has a low C content, a high Si content, a low Cr content, and a high V + 1 / 2Nb content. Therefore, ΔHV / D is large, toughness is poor, and the aluminum loss is high. In addition, the wear resistance is inferior. Comparative Example No. No. 15 has low C content, high Mn, Ni, Cr content and high V + 1 / 2Nb content, so the carburized hardened layer depth is shallow, ΔHV / D is large, toughness is poor, aluminum Loss is high and wear resistance is poor.
比較例No.16はC,Si,Mn含有量が高く、Mo+1/2W含有量が高く、かつNiを含有せず、終止温度が高いために、浸炭硬化層深さがやや浅く、△HV/Dが大きく、靱性が悪く、アルミ溶損量が高く、かつ耐摩耗性に劣る。比較例No.17はSi,Mn含有量が低く、Cr含有量が高く、かつMo+1/2W含有量が低く、V+1/2Nb含有量が高く、しかも冷却速度が遅いために、内部硬さ、表面硬さが低く、△HV/Dが小さいが、Cr含有量が高いために、靱性が悪く、アルミ溶損量が高く、かつ耐摩耗性に劣る。 Comparative Example No. No. 16 has a high C, Si, Mn content, a high Mo + 1 / 2W content, no Ni content, and a high end temperature, so the carburized hardened layer depth is slightly shallow, and ΔHV / D is large. Poor toughness, high aluminum melt loss, and poor wear resistance. Comparative Example No. No. 17 has a low Si and Mn content, a high Cr content, a low Mo + 1 / 2W content, a high V + 1 / 2Nb content, and a low cooling rate, so the internal hardness and surface hardness are low. .DELTA.HV / D is small, but since the Cr content is high, the toughness is poor, the aluminum melt loss is high, and the wear resistance is poor.
比較例No.18はSi,Ni,Cr含有量が高いために、浸炭硬化層深さが浅く、△HV/Dが大きく、靱性が悪く、アルミ溶損量が高く、かつ耐摩耗性に劣る。比較例No.19は終止温度が高いために、浸炭硬化層深さが浅く、△HV/Dが大きく、靱性が悪く、アルミ溶損量が高い。比較例No.20は冷却速度が遅いために、△HV/Dが大きく、靱性が悪く、アルミ溶損量が高いことが分かる。
これに対して、本発明例であるNo.1〜13はいずれも本発明の要件を満たしていることから、いずれの性能にも優れていることが分かる。
Comparative Example No. No. 18 has a high Si, Ni, Cr content, so that the carburized hardened layer depth is shallow, ΔHV / D is large, the toughness is poor, the aluminum erosion amount is high, and the wear resistance is inferior. Comparative Example No. Since No. 19 has a high end temperature, the carburized hardened layer depth is shallow, ΔHV / D is large, toughness is poor, and the amount of aluminum erosion is high. Comparative Example No. 20 shows that ΔHV / D is large, toughness is poor, and the amount of aluminum erosion is high because the cooling rate is slow.
On the other hand, No. which is an example of the present invention. Since 1 to 13 satisfy the requirements of the present invention, it can be seen that they are excellent in any performance.
以上のように、従来の窒化(深さ50〜200μm)やPVDコーティング(厚さ1〜5μm)に変えて、浸炭を適用することで500〜4000μmの深い硬化層により耐摩耗性と耐久性を得ることができ、また、その際の靱性低下を抑えるために、鋼材成分、製造条件および硬化層の硬さ勾配を制御することで、溶損、摩耗、割れ、折損のない鋳型寿命を改善したアルミ加工用金型に適した工具鋼およびアルミ加工用金型の製造方法を提供するものである。 As described above, instead of conventional nitriding (depth 50 to 200 μm) and PVD coating (thickness 1 to 5 μm), carburization is applied to improve wear resistance and durability by a deep hardened layer of 500 to 4000 μm. In order to suppress the deterioration of toughness at that time, the mold life without melting, abrasion, cracking, and breakage was improved by controlling the steel composition, manufacturing conditions, and hardness gradient of the hardened layer. The present invention provides a tool steel suitable for an aluminum machining die and a method for producing an aluminum machining die.
Claims (3)
C:0.31〜0.60%、
Si:0.1〜0.6%、
Mn:0.3〜1.0%、
Ni:0.05〜0.6%、
Cr:3.0〜5.0%未満、
MoまたはWのいずれか1種または2種をMo当量(Mo+1/2W):0.8〜4.0%、VまたはNbのいずれか1種または2種をV当量(V+1/2Nb):0.5〜1.5%、残部Feおよび不可避的不純物よりなる鋼を、鍛造および圧延における終止温度900〜1150℃、冷却速度0.05℃/sec以上としたことを特徴とするアルミ加工用金型に適した工具鋼。 % By mass
C: 0.31 to 0.60%,
Si: 0.1 to 0.6%,
Mn: 0.3 to 1.0%
Ni: 0.05-0.6%,
Cr: 3.0 to less than 5.0%,
Any one or two of Mo or W is Mo equivalent (Mo + 1 / 2W): 0.8 to 4.0%, and one or two of V or Nb is V equivalent (V + 1 / 2Nb): 0 Aluminum for processing aluminum, characterized in that steel comprising 5 to 1.5%, balance Fe and inevitable impurities is set to a finish temperature of 900 to 1150 ° C. and a cooling rate of 0.05 ° C./sec or more in forging and rolling. Tool steel suitable for the mold.
ただし、△HV=(表面硬さ)−(内部硬さ)、D=(浸炭硬化層深さ) The mold for aluminum processing according to claim 2, wherein a relationship between hardness and depth of the carburized hardened layer is 0.03 <(ΔHV / D) ≦ 0.15.
However, ΔHV = (surface hardness) − (internal hardness), D = (depth of carburized hardened layer)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147695A JP5090257B2 (en) | 2008-06-05 | 2008-06-05 | Tool steel suitable for aluminum machining dies and aluminum machining dies |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147695A JP5090257B2 (en) | 2008-06-05 | 2008-06-05 | Tool steel suitable for aluminum machining dies and aluminum machining dies |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009293081A true JP2009293081A (en) | 2009-12-17 |
JP5090257B2 JP5090257B2 (en) | 2012-12-05 |
Family
ID=41541528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008147695A Expired - Fee Related JP5090257B2 (en) | 2008-06-05 | 2008-06-05 | Tool steel suitable for aluminum machining dies and aluminum machining dies |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5090257B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013532583A (en) * | 2010-08-05 | 2013-08-19 | 新東工業株式会社 | Shot peening method |
JP2017066452A (en) * | 2015-09-29 | 2017-04-06 | 大同特殊鋼株式会社 | Die for die casting |
US20180099330A1 (en) * | 2016-10-06 | 2018-04-12 | Exco Technologies Limited | Tool steel composition for component of die-casting apparatus or of extrusion press |
CN113604730A (en) * | 2021-07-05 | 2021-11-05 | 昆山东大特钢制品有限公司 | High-temperature-resistant and high-toughness hot-work die steel and production process thereof |
CN116970864A (en) * | 2023-07-14 | 2023-10-31 | 哈尔滨工业大学 | A kind of non-quenched and tempered hot work die steel and its preparation method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5629667A (en) * | 1979-08-16 | 1981-03-25 | Daido Steel Co Ltd | Preparation of metal mold |
JPS57134554A (en) * | 1981-02-16 | 1982-08-19 | Daido Steel Co Ltd | Manufacture of die |
JPH0559487A (en) * | 1991-09-03 | 1993-03-09 | Hitachi Metals Ltd | Hot tool steel |
JPH07207414A (en) * | 1994-01-18 | 1995-08-08 | Hitachi Metals Ltd | Steel for aluminum casting mold |
-
2008
- 2008-06-05 JP JP2008147695A patent/JP5090257B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5629667A (en) * | 1979-08-16 | 1981-03-25 | Daido Steel Co Ltd | Preparation of metal mold |
JPS57134554A (en) * | 1981-02-16 | 1982-08-19 | Daido Steel Co Ltd | Manufacture of die |
JPH0559487A (en) * | 1991-09-03 | 1993-03-09 | Hitachi Metals Ltd | Hot tool steel |
JPH07207414A (en) * | 1994-01-18 | 1995-08-08 | Hitachi Metals Ltd | Steel for aluminum casting mold |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013532583A (en) * | 2010-08-05 | 2013-08-19 | 新東工業株式会社 | Shot peening method |
JP2017066452A (en) * | 2015-09-29 | 2017-04-06 | 大同特殊鋼株式会社 | Die for die casting |
US20180099330A1 (en) * | 2016-10-06 | 2018-04-12 | Exco Technologies Limited | Tool steel composition for component of die-casting apparatus or of extrusion press |
WO2018064771A1 (en) * | 2016-10-06 | 2018-04-12 | Exco Technologies Limited | Tool steel composition for component of die-casting apparatus or of extrusion press |
JP2019534943A (en) * | 2016-10-06 | 2019-12-05 | エクスコ テクノロジーズ リミテッドExco Technologies Limited | Tool steel composition for components of die casting equipment or extrusion press |
JP7181861B2 (en) | 2016-10-06 | 2022-12-01 | エクスコ テクノロジーズ リミテッド | Tool steel composition for components of die casting equipment or extrusion presses |
US11819910B2 (en) | 2016-10-06 | 2023-11-21 | Exco Technologies Limited | Tool steel composition for component of die-casting apparatus or of extrusion press |
CN113604730A (en) * | 2021-07-05 | 2021-11-05 | 昆山东大特钢制品有限公司 | High-temperature-resistant and high-toughness hot-work die steel and production process thereof |
CN116970864A (en) * | 2023-07-14 | 2023-10-31 | 哈尔滨工业大学 | A kind of non-quenched and tempered hot work die steel and its preparation method |
Also Published As
Publication number | Publication date |
---|---|
JP5090257B2 (en) | 2012-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5650714B2 (en) | Nitritable steel piston ring, steel cylinder liner and casting method for manufacturing the same | |
JP6432070B2 (en) | Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same | |
JP5863785B2 (en) | Martensitic stainless steel sheet for bicycle disc brake rotor and method for manufacturing the same | |
JP2007197784A (en) | Alloy steel | |
JP2000144334A (en) | Steel for aluminum diecasting die excellent in erosion resistance | |
JP5093010B2 (en) | Hot working mold | |
JP5090257B2 (en) | Tool steel suitable for aluminum machining dies and aluminum machining dies | |
JP5695635B2 (en) | Nitritable piston ring | |
JP4860774B1 (en) | Cold work tool steel | |
JP3410303B2 (en) | Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same | |
TWI728358B (en) | Steel for die-casting die and die-casting die | |
JP5273952B2 (en) | Hot forging die and manufacturing method thereof | |
JP3228440B2 (en) | Hot working mold with excellent heat crack resistance | |
JP2001089826A (en) | Hot tool steel with excellent wear resistance | |
JP2001158937A (en) | Tool steel for hot working, method for manufacturing the same, and method for manufacturing tool for hot working | |
JP2001294974A (en) | Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method | |
JP2004019001A (en) | Tool steel for hot-working superior in erosion resistance, and die member | |
JP2002121643A (en) | Steel for diecasting die, method for producing diecasting die composed by using the same and diecasting die | |
CN115889488A (en) | Bimetal combination manufacturing method of self-lubricating extrusion die | |
JPH06145884A (en) | Die for hot working excellent in plastic flow resistance | |
JP7297808B2 (en) | Wire for oil ring | |
JP2004291079A (en) | Erosion resistant member for non-ferrous molten metal | |
JPH04308059A (en) | Tool steel for hot working | |
KR101759825B1 (en) | Preparing method of high-speed steel for wear resistance | |
JP2004315840A (en) | Cold working tool steel superior in machinability, and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120831 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120912 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5090257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |