JP2009291742A - Hydrogen permeation member and hydrogen generating reactor using the same - Google Patents
Hydrogen permeation member and hydrogen generating reactor using the same Download PDFInfo
- Publication number
- JP2009291742A JP2009291742A JP2008149623A JP2008149623A JP2009291742A JP 2009291742 A JP2009291742 A JP 2009291742A JP 2008149623 A JP2008149623 A JP 2008149623A JP 2008149623 A JP2008149623 A JP 2008149623A JP 2009291742 A JP2009291742 A JP 2009291742A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- metal layer
- hydrogen permeable
- permeable member
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 244
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 244
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 234
- 229910052751 metal Inorganic materials 0.000 claims abstract description 59
- 239000002184 metal Substances 0.000 claims abstract description 59
- 229920001721 polyimide Polymers 0.000 claims abstract description 37
- 239000007789 gas Substances 0.000 claims abstract description 24
- 239000009719 polyimide resin Substances 0.000 claims abstract description 21
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 18
- 230000035699 permeability Effects 0.000 claims abstract description 15
- 229910001252 Pd alloy Inorganic materials 0.000 claims abstract description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 10
- 239000010936 titanium Substances 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 description 22
- 239000000956 alloy Substances 0.000 description 22
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 20
- 239000012528 membrane Substances 0.000 description 17
- 239000004642 Polyimide Substances 0.000 description 16
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 239000010408 film Substances 0.000 description 11
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 239000000446 fuel Substances 0.000 description 7
- 239000012466 permeate Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910004337 Ti-Ni Inorganic materials 0.000 description 3
- 229910011209 Ti—Ni Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- NHCREQREVZBOCH-UHFFFAOYSA-N 1-methyl-1,2,3,4,4a,5,6,7,8,8a-decahydronaphthalene Chemical compound C1CCCC2C(C)CCCC21 NHCREQREVZBOCH-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
Abstract
【課題】良好な水素透過効率を有し、かつ充分な機械的強度を維持できる水素透過部材を低コストで得る。
【解決手段】この水素透過部材10においては、水素透過金属層11の表面に厚さが0.5μm以上のポリイミド樹脂層12が形成されている。この水素透過部材10は、図1における下側が高圧(水素分圧P1)で水素濃度が低い低純度ガス、上側が低圧(水素分圧P2)で水素濃度が高い高純度ガスとなるべく配置される。水素透過金属層11は、水素に対して透過性を有する、すなわち、高い水素透過係数を有する金属層である。上記の構造の水素透過部材10における水素透過金属層11においては、その水素透過係数φをPd合金と比べて大きくすることができる。この水素透過部材10においては、水素透過金属層11の脆化が発生しても、水素透過部材10全体の機械的強度は、厚いポリイミド樹脂層12によって保たれる。
【選択図】図1A hydrogen permeable member having good hydrogen permeation efficiency and capable of maintaining sufficient mechanical strength is obtained at low cost.
In this hydrogen permeable member, a polyimide resin layer having a thickness of 0.5 μm or more is formed on the surface of a hydrogen permeable metal layer. The hydrogen permeable member 10 is arranged so that the lower side in FIG. 1 is a low-purity gas having a high pressure (hydrogen partial pressure P 1 ) and a low hydrogen concentration, and the upper side is a high-purity gas having a low pressure (hydrogen partial pressure P 2 ) and a high hydrogen concentration. Is done. The hydrogen permeable metal layer 11 is a metal layer that is permeable to hydrogen, that is, has a high hydrogen permeability coefficient. In the hydrogen permeable metal layer 11 in the hydrogen permeable member 10 having the above structure, the hydrogen permeability coefficient φ can be made larger than that of the Pd alloy. In the hydrogen permeable member 10, even if the hydrogen permeable metal layer 11 becomes brittle, the mechanical strength of the entire hydrogen permeable member 10 is maintained by the thick polyimide resin layer 12.
[Selection] Figure 1
Description
本発明は、例えば天然ガスから純水素を精製する際に用いられる水素透過部材の構造に関する。また、この水素透過部材が用いられる水素生成反応器に関する。 The present invention relates to a structure of a hydrogen permeable member used when purifying pure hydrogen from natural gas, for example. The present invention also relates to a hydrogen generation reactor in which this hydrogen permeable member is used.
近年、燃料電池を初めとして、エネルギー源として水素ガスが用いられることが多くなった。このため、純水素ガスを製造、貯蔵する技術は重要となっている。 In recent years, hydrogen gas is often used as an energy source, including fuel cells. For this reason, technology for producing and storing pure hydrogen gas is important.
純水素ガスを製造、貯蔵する方法には各種があるが、例えば有機物燃料に水素を貯蔵させ、必要に応じて分解反応を行い水素を取り出す方法が知られている。一例として有機ハイドライドと呼ばれる化合物群の一種であるメチルシクロヘキサンによる水素生成反応を以下の式に示す。ここでは水素の生成と同時にトルエンが生成する。
水素中のトルエンは不純物であり、例えば燃料電池に用いられる高純度水素ガスとしては除去されていることが好ましい。また上記反応は化学平衡の制約を受けるため、投入したメチルシクロヘキサンから100%近い効率で水素ガスを得ることは困難である。 Toluene in hydrogen is an impurity, and is preferably removed, for example, as high-purity hydrogen gas used in fuel cells. In addition, since the above reaction is restricted by chemical equilibrium, it is difficult to obtain hydrogen gas with an efficiency close to 100% from the charged methylcyclohexane.
このため、上記2点の問題を解決する手法として、水素生成反応の場で水素精製を行うことで高純度水素ガスを得、さらに化学平衡を移動させることによって反応の高効率化を達成させる水素生成反応器が用いられている。図3にもっとも単純な水素生成反応器の模式図を示した。この水素生成反応器50においては、高温の反応炉51内にメチルシクロヘキサンと触媒とが導入され、前記の反応が生ずる。ここで、反応炉51内には水素透過膜で形成された精製部52が設置されており、精製部52内の圧力はその外部(反応炉51内)よりも低く設定される。精製部52は水素透過膜で形成され、水素透過膜は、反応炉51内に存在するガスのうち、メチルシクロヘキサン、トルエンは透過させず、H2のみを透過させる性質をもつ。従って、水素ガスのみが選択的に水素透過膜を透過して精製部52内に入り、外部に取り出される。 For this reason, as a technique for solving the above two problems, hydrogen purification is performed in the hydrogen generation reaction field to obtain high purity hydrogen gas, and further, the chemical equilibrium is moved to achieve high reaction efficiency. A production reactor is used. FIG. 3 shows a schematic diagram of the simplest hydrogen generation reactor. In this hydrogen generation reactor 50, methylcyclohexane and a catalyst are introduced into a high temperature reaction furnace 51, and the above reaction occurs. Here, a purification unit 52 formed of a hydrogen permeable membrane is installed in the reaction furnace 51, and the pressure in the purification unit 52 is set lower than that outside (inside the reaction furnace 51). The purification unit 52 is formed of a hydrogen permeable membrane, and the hydrogen permeable membrane has the property of not allowing permeation of methylcyclohexane and toluene out of the gas present in the reaction furnace 51 but permeating only H 2 . Accordingly, only hydrogen gas selectively permeates the hydrogen permeable membrane, enters the purification unit 52, and is taken out to the outside.
一般に合金で形成される水素透過膜中を水素が透過する原理は、図4に模式的に示す通りである。すなわち、高圧(水素分圧P1)側の水素透過膜60表面に吸着された水素分子(H2)71は水素透過膜60の触媒作用によって解離し、単体の水素原子(H)72の形態となる。この水素原子72はこの合金中を水素イオン(H+)73となって透過して、低圧(水素分圧P2)側の表面に達する。ここで再び電子を授受して水素原子72の形態となり、表面で再結合して再び水素分子(H2)71となって低圧側に開放される。特にこの触媒作用は水素分子71に強く働き、他の不純物分子(メチルシクロヘキサン等)には働かない。 The principle of hydrogen permeating through a hydrogen permeable membrane generally formed of an alloy is as schematically shown in FIG. That is, the hydrogen molecules (H 2 ) 71 adsorbed on the surface of the hydrogen permeable membrane 60 on the high pressure (hydrogen partial pressure P1) side are dissociated by the catalytic action of the hydrogen permeable membrane 60, and the form of a single hydrogen atom (H) 72 is obtained. Become. The hydrogen atoms 72 pass through the alloy as hydrogen ions (H + ) 73 and reach the surface on the low pressure (hydrogen partial pressure P 2 ) side. Here, electrons are transferred again and again to form a hydrogen atom 72, recombined on the surface, and again become hydrogen molecules (H 2 ) 71 and released to the low pressure side. In particular, this catalytic action acts strongly on the hydrogen molecule 71 and does not act on other impurity molecules (such as methylcyclohexane).
従って、この場合の水素透過速度Jは以下の式で与えられる。
ここで、D、K、Lはそれぞれ水素透過膜中の水素拡散係数、水素固溶係数、膜厚である。P1は高圧側(水素純度が低い低純度ガス)の水素分圧であり、P2は低圧側(水素純度が高い高純度ガス)の水素分圧である。ここで、D・Kは水素透過係数φと定義される。従って、水素透過速度を大きくするためには、水素透過係数φが大きく、P1とP2の差(圧力差)が大きく、かつ膜厚Lが小さいことが必要である。 Here, D, K, and L are the hydrogen diffusion coefficient, hydrogen solid solution coefficient, and film thickness in the hydrogen permeable membrane, respectively. P 1 is the hydrogen partial pressure on the high pressure side (low purity gas with low hydrogen purity), and P 2 is the hydrogen partial pressure on the low pressure side (high purity gas with high hydrogen purity). Here, D · K is defined as a hydrogen permeation coefficient φ. Therefore, in order to increase the hydrogen permeation rate, it is necessary that the hydrogen permeation coefficient φ is large, the difference (pressure difference) between P 1 and P 2 is large, and the film thickness L is small.
従って、水素透過膜には、水素透過係数φが大きいことに加えて、薄い場合でもこの圧力差に耐えうる機械的強度が要求される。ところが、一般には水素を吸着した金属は脆くなる(脆化する)ことが知られている。従って、単に機械的強度が高いだけでなく、この脆化の度合いが小さいことも要求される。 Therefore, in addition to a large hydrogen permeability coefficient φ, the hydrogen permeable membrane is required to have a mechanical strength that can withstand this pressure difference even when it is thin. However, it is generally known that a metal that has adsorbed hydrogen becomes brittle. Therefore, it is required that not only the mechanical strength is high but also the degree of embrittlement is small.
こうした要求に応える材料として例えばパラジウム(Pd)系合金が知られており、これを用いた水素透過膜が実用化されている。従って、Pd系合金を水素透過膜として用いた水素生成反応器が、特許文献1を初めとして多数知られている。 For example, a palladium (Pd) -based alloy is known as a material that meets these requirements, and a hydrogen permeable membrane using this alloy has been put into practical use. Accordingly, many hydrogen generation reactors using a Pd-based alloy as a hydrogen permeable membrane are known, including Patent Document 1.
しかしながら、Pdは希少金属の一種であり、極めて高価である。従って,Pdが含まれない合金を代わりに用いることが望まれている。しかしながら、Pdよりも大きな水素透過係数を有するPd系合金以外の材料は多数存在するものの、いずれも水素吸収による脆化、特に有機ハイドライドのような低温で水素生成反応が行われる場合の脆化が顕著であり、実用に耐える水素透過膜を得ることは困難であった。 However, Pd is a kind of rare metal and is extremely expensive. Therefore, it is desirable to use an alloy containing no Pd instead. However, although there are many materials other than Pd-based alloys having a hydrogen permeability coefficient larger than Pd, all of them are embrittled due to hydrogen absorption, particularly when hydrogen generation reaction is performed at a low temperature such as organic hydride. It was remarkable and it was difficult to obtain a hydrogen permeable membrane that could withstand practical use.
従って、良好な水素透過効率を有し、かつ充分な機械的強度を維持できる水素透過膜を低コストで得ることは困難であった。 Therefore, it has been difficult to obtain a hydrogen permeable membrane having good hydrogen permeation efficiency and maintaining sufficient mechanical strength at low cost.
本発明は、斯かる問題点に鑑みてなされたものであり、上記問題点を解決する発明を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide an invention that solves the above problems.
本発明者らは上記水素透過膜とポリイミド樹脂層とを積層した構造とすることで上記課題を解決できることを見出した。 The present inventors have found that the above problem can be solved by forming a structure in which the hydrogen permeable membrane and the polyimide resin layer are laminated.
本発明の水素透過部材は水素分子に対して透過性を有する水素透過金属層と、厚さ0.5μm以上のポリイミド樹脂層との積層構造からなることを特徴とする。 The hydrogen-permeable member of the present invention is characterized by comprising a laminated structure of a hydrogen-permeable metal layer that is permeable to hydrogen molecules and a polyimide resin layer having a thickness of 0.5 μm or more.
本発明の水素透過金属層は、水素透過能を有する相と、耐水素脆化性を有する相とを有する2相合金からなるものが好ましい。 The hydrogen permeable metal layer of the present invention is preferably composed of a two-phase alloy having a phase having hydrogen permeability and a phase having hydrogen embrittlement resistance.
本発明の水素透過部材に用いられる前記水素透過金属層にはニオブ(Nb)、チタン(Ti)、ニッケル(Ni)の合金が用いられることを特徴とする。この合金はその水素透過能がPdに匹敵し、また耐水素脆性に優れることから好適である。 The hydrogen permeable metal layer used in the hydrogen permeable member of the present invention is characterized in that an alloy of niobium (Nb), titanium (Ti), or nickel (Ni) is used. This alloy is suitable because its hydrogen permeability is comparable to that of Pd and has excellent hydrogen embrittlement resistance.
また本発明の水素透過部材に用いられる前記水素透過金属相の表面に水素分子の解離、再結合を促進する触媒層としてPd、またはPd合金層が形成されていることを特徴とする。 Moreover, Pd or a Pd alloy layer is formed as a catalyst layer for promoting dissociation and recombination of hydrogen molecules on the surface of the hydrogen permeable metal phase used in the hydrogen permeable member of the present invention.
本発明の水素生成反応器は高水素分圧であり水素純度が低い低純度ガスと、低水素分圧であり水素純度が高い高純度ガスとの間に水素透過部材を配することを特徴とする。 The hydrogen generation reactor of the present invention is characterized in that a hydrogen permeable member is disposed between a low purity gas having a high hydrogen partial pressure and low hydrogen purity and a high purity gas having a low hydrogen partial pressure and high hydrogen purity. To do.
本発明の水素生成反応器に用いられる前記低純度ガスの温度は100〜350℃の間であることを特徴とする。 The temperature of the low purity gas used in the hydrogen generation reactor of the present invention is between 100 and 350 ° C.
本発明の水素生成反応器においては前記低純度ガスと前記高純度ガスとの水素分圧差が1.0MPa以下であることを特徴とする。 In the hydrogen production reactor of the present invention, a hydrogen partial pressure difference between the low purity gas and the high purity gas is 1.0 MPa or less.
本発明の水素生成反応器は本発明の水素透過部材を積層した構造を有することを特徴とする。 The hydrogen generation reactor according to the present invention has a structure in which the hydrogen-permeable members according to the present invention are laminated.
本発明は以上のように構成されているので、良好な水素透過効率を有し、かつ低温においても充分な機械的強度を維持できる水素透過部材を低コストで得ることができる。この水素透過部材を用いて高性能の水素生成反応器を低コストで得ることができる。 Since the present invention is configured as described above, a hydrogen permeable member having good hydrogen permeation efficiency and capable of maintaining sufficient mechanical strength even at low temperatures can be obtained at low cost. Using this hydrogen permeable member, a high-performance hydrogen production reactor can be obtained at low cost.
以下に、本発明を実施するための最良の形態について説明する。 The best mode for carrying out the present invention will be described below.
図1は、本発明の実施の形態となる水素透過部材10の断面図である。この水素透過部材10においては、水素透過金属層11の表面にポリイミド樹脂層12が形成されている。この水素透過部材10は、図1における下側が高圧(水素分圧P1)で水素濃度が低い低純度ガス、上側が低圧(水素分圧P2)で水素濃度が高い高純度ガスとなるべく配置される。従って、図1においては、矢印の方向に水素が透過する。 FIG. 1 is a cross-sectional view of a hydrogen permeable member 10 according to an embodiment of the present invention. In the hydrogen permeable member 10, a polyimide resin layer 12 is formed on the surface of the hydrogen permeable metal layer 11. The hydrogen permeable member 10 is arranged so that the lower side in FIG. 1 is a low-purity gas having a high pressure (hydrogen partial pressure P 1 ) and a low hydrogen concentration, and the upper side is a high-purity gas having a low pressure (hydrogen partial pressure P 2 ) and a high hydrogen concentration. Is done. Therefore, in FIG. 1, hydrogen permeates in the direction of the arrow.
水素透過金属層11は、水素に対して透過性を有する、すなわち、高い水素透過係数を有する金属層である。図2に、各種の金属の水素透過係数の圧力依存性について示す。この結果より、水素透過金属層11は、Pdよりも高い水素透過係数を有する材料として、ニオブ(Nb)、バナジウム(V)、タンタル(Ta)、ジルコニウム(Zr)等を主成分とする合金で構成されることが好ましい。また、特開2006−274297号公報に記載されているように、例えばNbにTiとNiを添加した合金とし、水素吸収時の脆化を低減させた合金を使用することもできる。この合金は特に機械的強度も充分であり、薄い膜厚で使用することが容易であるため、好ましく用いられる。この水素透過合金として好適なNb-Ti-Ni系合金は、(a) Nbを70原子%以上含有する初晶相と、(b) Ni及びTiを合計で60原子%以上含有する相と、初晶以外のNbを多く含有する相が混在する共晶相とを有する二相合金である。Nb-Ti-Ni系合金は、Nb100-x-yTixNiy(ただし原子%で、10≦x≦60、10≦y≦50)により表される組成であれば、この二相合金を持つ水素透過金属層になる。 The hydrogen permeable metal layer 11 is a metal layer that is permeable to hydrogen, that is, has a high hydrogen permeability coefficient. FIG. 2 shows the pressure dependence of the hydrogen permeability coefficient of various metals. From this result, the hydrogen permeable metal layer 11 is an alloy mainly composed of niobium (Nb), vanadium (V), tantalum (Ta), zirconium (Zr) or the like as a material having a hydrogen permeability coefficient higher than that of Pd. Preferably, it is configured. Further, as described in JP-A-2006-274297, for example, an alloy in which Ti and Ni are added to Nb and an alloy in which embrittlement during hydrogen absorption is reduced can be used. This alloy is preferably used because it has sufficient mechanical strength and is easy to use with a thin film thickness. The Nb-Ti-Ni alloy suitable as the hydrogen permeable alloy includes (a) a primary crystal phase containing 70 atomic% or more of Nb, and (b) a phase containing 60 atomic% or more of Ni and Ti in total. It is a two-phase alloy having a eutectic phase in which a phase containing a large amount of Nb other than the primary crystal is mixed. An Nb-Ti-Ni alloy has this two-phase alloy as long as the composition is expressed by Nb 100-xy Ti x Ni y (in atomic percent, 10 ≦ x ≦ 60, 10 ≦ y ≦ 50). It becomes a hydrogen permeable metal layer.
ポリイミド樹脂層12は、ポリイミド、すなわち、イミド結合を含む高分子からなる層である。このポリイミド層は高分子で構成されるため、分子量の小さな水素分子は容易にこれを透過する。従って、補強部材として厚いポリイミド樹脂層を用いても、水素透過率は充分確保できる。ポリイミド樹脂層12の厚さが0.5μm未満の場合、機械的強度を維持する効果が不十分である。一方、ポリイミド樹脂層の厚さが300μm超になっても機械的強度を維持する効果はあまり変化せず、材料コストが増大するため好ましくない。このため、好ましくはその厚さを0.5〜300μm、さらに好ましくは1〜200μmとする。 The polyimide resin layer 12 is a layer made of polyimide, that is, a polymer containing an imide bond. Since this polyimide layer is composed of a polymer, hydrogen molecules having a small molecular weight easily pass through it. Therefore, even if a thick polyimide resin layer is used as the reinforcing member, sufficient hydrogen permeability can be secured. When the thickness of the polyimide resin layer 12 is less than 0.5 μm, the effect of maintaining the mechanical strength is insufficient. On the other hand, even if the thickness of the polyimide resin layer exceeds 300 μm, the effect of maintaining the mechanical strength does not change so much, which is not preferable because the material cost increases. For this reason, the thickness is preferably 0.5 to 300 μm, more preferably 1 to 200 μm.
また、前記水素分離金属層11はその厚さを0.1μm以上1mm以下とすることが好ましい。水素分離金属層は厚さに反比例して水素分離速度が低下するため、厚さが1mm超では十分な水素分離速度を得ることができない。一方0.1μm未満の厚さでは膜の作製時にピンホールが生じやすくなるため、結果として高純度な水素を得ることが難しくなるという問題がある。好ましい厚さは、0.3μm以上500μm以下であり、さらに好ましくは1μm以上300μm以下である。 The hydrogen separation metal layer 11 preferably has a thickness of 0.1 μm or more and 1 mm or less. Since the hydrogen separation metal layer has a hydrogen separation rate that is inversely proportional to the thickness, if the thickness exceeds 1 mm, a sufficient hydrogen separation rate cannot be obtained. On the other hand, if the thickness is less than 0.1 μm, pinholes are likely to occur during the production of the film, resulting in a problem that it is difficult to obtain high-purity hydrogen. The preferred thickness is 0.3 μm or more and 500 μm or less, and more preferably 1 μm or more and 300 μm or less.
この膜厚の範囲のポリイミド樹脂層12は、例えば水素透過金属層11に対してスピンコート(回転塗布)法を行うことによって形成することができる。例えば、ポリアミド酸溶液を前記の水素透過金属層11上に滴下して回転塗布した後に、熱処理を行うことによって、所望の一様な厚さのポリイミド樹脂層12を形成することができる。 The polyimide resin layer 12 in this film thickness range can be formed, for example, by performing spin coating (rotary coating) on the hydrogen permeable metal layer 11. For example, the polyimide resin layer 12 having a desired uniform thickness can be formed by performing a heat treatment after the polyamic acid solution is dropped onto the hydrogen permeable metal layer 11 and spin-coated.
この水素透過部材10は、図3の構造の水素生成反応器50における精製部52を構成する材料として用いられる。すなわち、この水素透過部材10は高圧側の低純度ガスと低圧側の低純度ガスとの間に配されて使用される。その際、その温度(特に高圧側の低純度ガスの温度)は、前記の式1〜3の反応が効率的に生ずる温度範囲として、100〜350℃の間が好ましい。また、水素透過部材10の両側の水素分圧差(P1−P2)は、水素ガス取り扱いの際の安全性の見地から、1.0MPa以下とすることが好ましい。 The hydrogen permeable member 10 is used as a material constituting the purification unit 52 in the hydrogen generation reactor 50 having the structure of FIG. That is, the hydrogen permeable member 10 is used by being disposed between the high-pressure side low-purity gas and the low-pressure side low-purity gas. At that time, the temperature (particularly the temperature of the low-purity gas on the high pressure side) is preferably between 100 and 350 ° C. as the temperature range in which the reactions of the above formulas 1 to 3 occur efficiently. Further, the hydrogen partial pressure difference (P 1 −P 2 ) on both sides of the hydrogen permeable member 10 is preferably 1.0 MPa or less from the viewpoint of safety when handling hydrogen gas.
上記の構造の水素透過部材10における水素透過金属層11においては、その水素透過係数φをPd合金と比べて大きくすることができる。しかしながら、水素がこの中に吸着された場合、機械的に脆い金属水素化物が形成される。すなわち、脆化が発生し、その機械的強度が低下する。前記の環境下で、この脆化の度合いは、前記の通り、Pd合金よりも大きい。 In the hydrogen permeable metal layer 11 in the hydrogen permeable member 10 having the above structure, the hydrogen permeability coefficient φ can be made larger than that of the Pd alloy. However, when hydrogen is adsorbed in this, a mechanically brittle metal hydride is formed. That is, embrittlement occurs and the mechanical strength decreases. Under the circumstances, the degree of embrittlement is greater than that of the Pd alloy as described above.
しかしながら、ポリイミド樹脂層12が充分に厚い場合には、その機械的強度は充分となる。また、ポリイミドは金属とは異なるため、水素を吸収した場合でも脆化は生じない。更に、ポリイミドは350℃付近でも分解しないことが知られている。従って、式1の反応下においても、充分な機械的強度は保たれる。 However, when the polyimide resin layer 12 is sufficiently thick, its mechanical strength is sufficient. In addition, since polyimide is different from metal, embrittlement does not occur even when hydrogen is absorbed. Furthermore, it is known that polyimide does not decompose even at around 350 ° C. Therefore, sufficient mechanical strength is maintained even under the reaction of Formula 1.
従って、この水素透過部材10においては、水素透過金属層11の脆化が発生しても、水素透過部材10全体の機械的強度は、厚いポリイミド樹脂層12によって保たれる。従って、水素透過部材10の両側の圧力差が大きくとも、破壊されることはない。 Therefore, in the hydrogen permeable member 10, even if the hydrogen permeable metal layer 11 is embrittled, the mechanical strength of the entire hydrogen permeable member 10 is maintained by the thick polyimide resin layer 12. Therefore, even if the pressure difference between the both sides of the hydrogen permeable member 10 is large, it is not destroyed.
一方、ポリイミド中を水素分子が透過するのは、大きさの小さな分子が高分子間を透過しやすいためである。従って、H2以外にも、式1の反応において水素と同時に精製されるトルエンや原料ガスであるメチルシクロヘキサンも、その透過率はH2よりは低いものの、ポリイミド中を透過する。 On the other hand, hydrogen molecules permeate through the polyimide because small molecules are likely to penetrate between polymers. Accordingly, in addition to H 2 , toluene that is purified simultaneously with hydrogen in the reaction of Formula 1 and methylcyclohexane, which is a raw material gas, pass through the polyimide, although the transmittance thereof is lower than that of H 2 .
これに対して、水素透過金属層11においては、図4に示したように、その表面にH2が吸着された後に、表面の金属との触媒作用によってこれが解離する。この解離した水素(H)が水素イオンとなって水素透過金属層11中を透過し、反対側の表面に達する。反対側の表面において、原子化した水素は再び結合し、水素分子(H2)となって開放される。この触媒反応は水素分子に対して選択的に働く。従って、水素透過金属層11においては、トルエン、メチルシクロヘキサンは透過しにくく、H2の選択透過性が特に高い。すなわち、水素透過金属層11は水素分子に対する高い選択性を有する。 On the other hand, in the hydrogen permeable metal layer 11, as shown in FIG. 4, after H 2 is adsorbed on its surface, it is dissociated by catalytic action with the metal on the surface. This dissociated hydrogen (H) becomes hydrogen ions and permeates through the hydrogen permeable metal layer 11 and reaches the opposite surface. On the opposite surface, the atomized hydrogen is recombined and released as hydrogen molecules (H 2 ). This catalytic reaction works selectively with respect to hydrogen molecules. Therefore, in the hydrogen permeable metal layer 11, toluene and methylcyclohexane hardly permeate, and the selective permeability of H 2 is particularly high. That is, the hydrogen permeable metal layer 11 has high selectivity for hydrogen molecules.
従って、ポリイミド樹脂層12と水素透過金属層11とが積層されたこの水素透過部材10においては、水素透過金属層11によって水素分子に対する高い選択透過性が保たれる。 Therefore, in this hydrogen permeable member 10 in which the polyimide resin layer 12 and the hydrogen permeable metal layer 11 are laminated, the hydrogen permeable metal layer 11 maintains high selective permeability to hydrogen molecules.
この際、希少金属であるPdが使用されないため、この水素透過金属層11を低コストで製造することができる。 At this time, since the rare metal Pd is not used, the hydrogen permeable metal layer 11 can be manufactured at a low cost.
従って、この水素透過部材10は、良好な水素透過効率を有し、充分な機械的強度を維持でき、かつこれを低コストで得ることができる。 Therefore, the hydrogen permeable member 10 has good hydrogen permeation efficiency, can maintain sufficient mechanical strength, and can be obtained at low cost.
なお、図1の構造においては、水素透過金属層の高圧側の片面にポリイミド樹脂層が形成されているが、これに限られるものではなく、水素透過金属層の両面にポリイミド樹脂層を形成することもできる。この場合、この水素透過部材の機械的強度をより高くすることができる。更に、これらを多数層積層することも可能である。また、ポリイミド樹脂層は低圧側の片面にのみ形成することもできる。 In the structure of FIG. 1, the polyimide resin layer is formed on one side of the hydrogen permeable metal layer on the high pressure side, but the present invention is not limited to this, and the polyimide resin layer is formed on both sides of the hydrogen permeable metal layer. You can also In this case, the mechanical strength of the hydrogen permeable member can be further increased. Furthermore, it is also possible to laminate many layers of these. Also, the polyimide resin layer can be formed only on one side of the low pressure side.
またポリイミド樹脂層は水素透過金属層の全面に形成することもでき、また水素透過金属相の中心部のみ形成し端部は水素透過金属層を露出させたままにすることもできる。前者の場合、水素生成反応器に組みこむ際は水素生成反応器のフレームで水素透過部材を挟み込むことでポリイミド樹脂層がシール材として働き、良好な気密性を得ることができる。後者の場合、水素透過部材の端部に水素透過金属層が露出しているため、水素生成反応器のフレームが金属製の場合、溶接を行うことで良好な気密性を得ることができる。 Further, the polyimide resin layer can be formed on the entire surface of the hydrogen permeable metal layer, or only the central portion of the hydrogen permeable metal phase can be formed and the hydrogen permeable metal layer can be left exposed. In the former case, when incorporating the hydrogen generation reactor into the hydrogen generation reactor, the polyimide resin layer functions as a sealing material by sandwiching the hydrogen permeable member between the frames of the hydrogen generation reactor, and good airtightness can be obtained. In the latter case, since the hydrogen permeable metal layer is exposed at the end of the hydrogen permeable member, when the frame of the hydrogen generation reactor is made of metal, good airtightness can be obtained by performing welding.
また、前記の通り、水素透過金属層中を水素が透過する際には、その表面で水素分子を解離・再結合させる触媒反応が生じる。この触媒反応を特に発生させやすい金属層を水素透過金属層の最表面にのみ形成してもよい。この金属層としては、PdまたはPd合金層が好ましい。Pdは前記の通り、希少金属であり高価であるが、この構造の場合には、最表面に例えば10〜500nm程度の薄層を形成するだけで充分であるため、その使用量を少なくすることができ、その製造コストが大きく上昇することはない。このPd層が厚い場合には高コストとなることに加えて、図2の結果より、水素透過効率が悪くなる。なお、このPdまたはPd合金層も、水素透過金属層の両面に形成することが好ましいが、一方の面にのみ形成してもよい。 Further, as described above, when hydrogen permeates through the hydrogen-permeable metal layer, a catalytic reaction that causes dissociation and recombination of hydrogen molecules occurs on the surface. A metal layer that easily generates this catalytic reaction may be formed only on the outermost surface of the hydrogen permeable metal layer. The metal layer is preferably a Pd or Pd alloy layer. As described above, Pd is a rare metal and expensive. However, in this structure, it is sufficient to form a thin layer of, for example, about 10 to 500 nm on the outermost surface. And the manufacturing cost will not increase significantly. When this Pd layer is thick, in addition to the high cost, the hydrogen permeation efficiency becomes worse than the result of FIG. The Pd or Pd alloy layer is also preferably formed on both sides of the hydrogen permeable metal layer, but may be formed only on one side.
反応に用いる有機物燃料は水素を含有し、かつ100〜350℃の温度範囲で水素生成反応を行うことの出来る物質であれば特に制限されるものではない。例えばメタノール、エタノール、プロパノール、ブタノールといったアルコール類やメチルシクロヘキサン、デカリン、メチルデカリンといった有機ハイドライドなどの有機化合物を用いることが出来る。 The organic fuel used for the reaction is not particularly limited as long as it contains hydrogen and can perform a hydrogen generation reaction in a temperature range of 100 to 350 ° C. For example, alcohols such as methanol, ethanol, propanol, and butanol, and organic compounds such as organic hydride such as methylcyclohexane, decalin, and methyldecalin can be used.
上記の水素透過部材は低コストで製造でき、良好な水素透過効率と機械的強度を有するので、これを用いた水素生成反応器も、高性能で低コストとなる。 Since the hydrogen permeable member can be manufactured at low cost and has good hydrogen permeation efficiency and mechanical strength, a hydrogen generation reactor using the hydrogen permeable member also has high performance and low cost.
以下、本発明を実施例によって説明するが、これら実施例により本発明が限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these Examples.
(実施例1〜7、比較例1〜2)
まず、Nb、Ti、Ni原料を組成式でNb100−x−yTixNiy合金組成がx=y=30(原子%)となるように秤量した。原料を真空アーク溶解炉に入れ、雰囲気を真空引きした。このときの気圧は6.7×10−4〜6.7×10−3Pa(5×10−6〜5×10−5Torr)である。さらに雰囲気にArを導入し、その後ゲッター剤のTiを溶解して雰囲気中の不純物ガスを除いた。次いでこれらの各合金試料を溶解し、合金鋳塊とした。この各鋳塊を合金組成が均一になるよう試料を反転させて溶解する操作を5回行いNb−Ti−Ni系水素透過合金鋳塊を得た。得られた鋳塊をワイヤー放電加工機を用いて厚さ1mmにスライスした。さらに表面を研磨紙で磨いた後、冷間圧延を行い、厚さが10〜900μmの水素透過合金を得た。この水素透過合金にAr中、1100℃、96時間の熱処理を加えた。
また、最後に試料表面を鏡面研磨し、スパッタリングによってPd薄膜を100nm形成し、水素透過金属層とした。得られた水素透過金属層にポリイミド溶液を試料によって厚さを変えて塗布し、乾燥させ、300℃、1hの熱処理を行い、目的のポリイミド層を形成した。製造した水素透過部材の最終的な水素透過金属層の厚さと形成したポリイミド層の厚さを表1に記した。
(Examples 1-7, Comparative Examples 1-2)
First, Nb, Ti, and Ni raw materials were weighed so that the Nb 100-xy Ti x Ni y alloy composition was x = y = 30 (atomic%) in the composition formula. The raw material was put into a vacuum arc melting furnace and the atmosphere was evacuated. The atmospheric pressure at this time is 6.7 × 10 −4 to 6.7 × 10 −3 Pa (5 × 10 −6 to 5 × 10 −5 Torr). Further, Ar was introduced into the atmosphere, and then the getter agent Ti was dissolved to remove the impurity gas in the atmosphere. Next, each of these alloy samples was melted to form an alloy ingot. The operation of reversing the sample so as to make the alloy composition uniform for each ingot was melted five times to obtain an Nb—Ti—Ni-based hydrogen permeable alloy ingot. The obtained ingot was sliced to a thickness of 1 mm using a wire electric discharge machine. Further, after polishing the surface with abrasive paper, cold rolling was performed to obtain a hydrogen permeable alloy having a thickness of 10 to 900 μm. This hydrogen permeable alloy was subjected to heat treatment in Ar at 1100 ° C. for 96 hours.
Finally, the sample surface was mirror-polished and a Pd thin film was formed to 100 nm by sputtering to form a hydrogen permeable metal layer. A polyimide solution was applied to the obtained hydrogen permeable metal layer with varying thickness depending on the sample, dried, and subjected to heat treatment at 300 ° C. for 1 h to form a target polyimide layer. Table 1 shows the final thickness of the hydrogen-permeable metal layer of the manufactured hydrogen-permeable member and the thickness of the formed polyimide layer.
(参考例1、2)
市販のPd膜(厚さ100μm)を用い、膜の表面に前記と同様の方法にてポリイミド層を厚さ10μm形成した。ポリイミド層を形成したPd膜を参考例1、ポリイミド層を形成しなかったPd膜を参考例2とした。
(Reference Examples 1 and 2)
A commercially available Pd film (thickness: 100 μm) was used, and a polyimide layer having a thickness of 10 μm was formed on the surface of the film by the same method as described above. A Pd film having a polyimide layer formed thereon was designated as Reference Example 1, and a Pd film having no polyimide layer formed thereon was designated as Reference Example 2.
作製した水素透過部材の評価方法を記す。作製した水素透過部材を図3に示す水素生成反応器に固定した。ここで用いた触媒は市販のPt触媒粉末である。水素生成反応器に図5に示すような評価装置の構成で配管を接続した。水素生成反応器を350℃に加熱し、反応炉51の圧力が0.3MPaとなるように燃料としてメチルシクロヘキサンを流入させて水素生成反応を行った。このときの精製部52の圧力は0.1MPaであった。水素透過部材を通って得られた水素の量を計測し、流入させたメチルシクロヘキサンの量から得られる理論発生水素量と実際に得られた水素量から水素回収率を計算した。各試料の水素回収率を表1に示す。 The evaluation method of the produced hydrogen permeable member will be described. The produced hydrogen permeable member was fixed to the hydrogen generation reactor shown in FIG. The catalyst used here is a commercially available Pt catalyst powder. Piping was connected to the hydrogen generation reactor with the configuration of an evaluation apparatus as shown in FIG. The hydrogen generation reactor was heated to 350 ° C. and methylcyclohexane was introduced as a fuel so that the pressure in the reaction furnace 51 became 0.3 MPa to perform a hydrogen generation reaction. The pressure of the refinement | purification part 52 at this time was 0.1 MPa. The amount of hydrogen obtained through the hydrogen permeable member was measured, and the hydrogen recovery rate was calculated from the theoretically generated hydrogen amount obtained from the amount of methylcyclohexane introduced and the actually obtained hydrogen amount. Table 1 shows the hydrogen recovery rate of each sample.
表1の結果から、水素透過層の厚さが同一であればポリイミド層の厚さが変化しても水素回収率にほとんど差はないことがわかる。これはポリイミド層が水素透過を阻害する要因とはなっていないことを意味している。 From the results in Table 1, it can be seen that if the thickness of the hydrogen permeable layer is the same, there is almost no difference in the hydrogen recovery rate even if the thickness of the polyimide layer changes. This means that the polyimide layer is not a factor that impedes hydrogen permeation.
続いて水素透過部材の耐水素脆性を評価した。作製した水素透過部材を図3に示す水素生成反応器に固定した。ここで用いた触媒は市販のPt触媒粉末である。水素生成反応器に図5に示す配管を接続した。水素生成反応器を100℃または350℃に加熱し、反応炉51の圧力が0.2、0.5、0.9MPaとなるように燃料としてメチルシクロヘキサンを流入させて水素生成反応を行った。このときの精製部52の圧力はいずれも0.1MPaであった。膜破壊までに要した時間を測定し、その結果を表2に示した。 Subsequently, the hydrogen embrittlement resistance of the hydrogen permeable member was evaluated. The produced hydrogen permeable member was fixed to the hydrogen generation reactor shown in FIG. The catalyst used here is a commercially available Pt catalyst powder. The piping shown in FIG. 5 was connected to the hydrogen generation reactor. The hydrogen generation reactor was heated to 100 ° C. or 350 ° C. and methylcyclohexane was introduced as a fuel so that the pressure in the reaction furnace 51 was 0.2, 0.5, and 0.9 MPa, and a hydrogen generation reaction was performed. The pressure of the refinement | purification part 52 at this time was all 0.1 MPa. The time required to break the film was measured, and the results are shown in Table 2.
表2の結果よりポリイミド層の厚さが増加するにつれて、150℃、350℃のいずれの条件においても膜破壊が生じるまでの時間が大幅に延びることがわかる。特に150℃での結果から本発明が低温での水素脆化抑制に非常に効果的であることがわかる。また水素分離金属膜層の厚さが増加するにつれて膜破壊が生じるまでにかかる時間が延びるが、ポリイミド層の厚さを増加させた方が低温での水素脆化を抑制するにはより効果的である。 From the results in Table 2, it can be seen that as the thickness of the polyimide layer increases, the time until film breakage significantly increases at both 150 ° C. and 350 ° C. In particular, the results at 150 ° C. show that the present invention is very effective in suppressing hydrogen embrittlement at low temperatures. Also, as the thickness of the hydrogen separation metal membrane layer increases, the time it takes for the membrane to break down increases. However, increasing the thickness of the polyimide layer is more effective in suppressing hydrogen embrittlement at low temperatures. It is.
実施例1の水素透過部材を用い、これを積層した水素生成反応器を作製した。まず市販のPd触媒粉をエタノールに分散させた後、この分散液にSUS316製金属多孔体を含浸させ、乾燥後400℃×1hの熱処理を行って触媒を担持させた金属多孔体91を作製した。この触媒を担持させた金属多孔体91と実施例1の水素透過部材を図6に示すように積層し、水素生成反応器を作製した。 Using the hydrogen permeable member of Example 1, a hydrogen production reactor in which the hydrogen permeable member was laminated was produced. First, a commercially available Pd catalyst powder was dispersed in ethanol, and the dispersion was impregnated with a metal porous body made of SUS316. After drying, a heat treatment was performed at 400 ° C. for 1 hour to prepare a metal porous body 91 supporting the catalyst. . The metal porous body 91 supporting the catalyst and the hydrogen permeable member of Example 1 were laminated as shown in FIG. 6 to produce a hydrogen generation reactor.
10 水素透過部材
11 水素透過金属層
12 ポリイミド樹脂層
50 水素生成反応器
51 反応炉
52 精製部
53 触媒
60 水素透過膜
71 水素分子
72 水素原子
73 水素イオン
74 不純物分子
81 燃料供給ポンプ
82 水素生成反応器
83 マスフローメーター
84 四方バルブ
85 ガスクロマトグラフ
91 金属多孔体
92 ガス流路
DESCRIPTION OF SYMBOLS 10 Hydrogen permeable member 11 Hydrogen permeable metal layer 12 Polyimide resin layer 50 Hydrogen generation reactor 51 Reactor 52 Purification unit 53 Catalyst 60 Hydrogen permeable membrane 71 Hydrogen molecule 72 Hydrogen atom 73 Hydrogen ion 74 Impurity molecule 81 Fuel supply pump 82 Hydrogen generation reaction Device 83 Mass flow meter 84 Four-way valve 85 Gas chromatograph 91 Metal porous body 92 Gas flow path
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008149623A JP2009291742A (en) | 2008-06-06 | 2008-06-06 | Hydrogen permeation member and hydrogen generating reactor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008149623A JP2009291742A (en) | 2008-06-06 | 2008-06-06 | Hydrogen permeation member and hydrogen generating reactor using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009291742A true JP2009291742A (en) | 2009-12-17 |
Family
ID=41540426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008149623A Pending JP2009291742A (en) | 2008-06-06 | 2008-06-06 | Hydrogen permeation member and hydrogen generating reactor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009291742A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043552A (en) * | 2015-08-25 | 2017-03-02 | 株式会社東芝 | Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier |
WO2017098930A1 (en) * | 2015-12-11 | 2017-06-15 | 日東電工株式会社 | Hydrogen discharge membrane |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS588510A (en) * | 1981-07-09 | 1983-01-18 | Toyobo Co Ltd | Composite membrane for separating gas |
JP2004188359A (en) * | 2002-12-13 | 2004-07-08 | Honda Motor Co Ltd | Method for producing hydrogen separation member |
JP2004275986A (en) * | 2003-03-19 | 2004-10-07 | National Institute Of Advanced Industrial & Technology | Gas separation membrane and method for producing the same |
JP2004305911A (en) * | 2003-04-07 | 2004-11-04 | Seiko Epson Corp | Method of forming thin film membrane |
JP2006274297A (en) * | 2005-03-28 | 2006-10-12 | Hitachi Metals Ltd | Double phase alloy for hydrogen separation and purification |
JP2008081385A (en) * | 2006-09-29 | 2008-04-10 | Petroleum Energy Center | Method for producing hydrogen and reaction tube for it |
-
2008
- 2008-06-06 JP JP2008149623A patent/JP2009291742A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS588510A (en) * | 1981-07-09 | 1983-01-18 | Toyobo Co Ltd | Composite membrane for separating gas |
JP2004188359A (en) * | 2002-12-13 | 2004-07-08 | Honda Motor Co Ltd | Method for producing hydrogen separation member |
JP2004275986A (en) * | 2003-03-19 | 2004-10-07 | National Institute Of Advanced Industrial & Technology | Gas separation membrane and method for producing the same |
JP2004305911A (en) * | 2003-04-07 | 2004-11-04 | Seiko Epson Corp | Method of forming thin film membrane |
JP2006274297A (en) * | 2005-03-28 | 2006-10-12 | Hitachi Metals Ltd | Double phase alloy for hydrogen separation and purification |
JP2008081385A (en) * | 2006-09-29 | 2008-04-10 | Petroleum Energy Center | Method for producing hydrogen and reaction tube for it |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017043552A (en) * | 2015-08-25 | 2017-03-02 | 株式会社東芝 | Manufacturing method of hydrogen carrier and manufacturing system of hydrogen carrier |
WO2017098930A1 (en) * | 2015-12-11 | 2017-06-15 | 日東電工株式会社 | Hydrogen discharge membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5998022B2 (en) | Separation membrane, hydrogen separation membrane provided with the same, and hydrogen separation apparatus provided with the hydrogen separation membrane | |
US8900345B2 (en) | Separation membrane, hydrogen separation membrane including the separation membrane, and device including the hydrogen separation membrane | |
CN100420624C (en) | Multiphase alloy for hydrogen separation and purification and method for producing same, metal film for hydrogen separation and purification and method for producing same | |
US9073007B2 (en) | Separation membrane, hydrogen separation membrane including the separation membrane, and hydrogen purifier including the hydrogen separation membrane | |
JP5185035B2 (en) | Pd-Cu alloy with excellent hydrogen permeation performance | |
KR101493473B1 (en) | Vanadium-based hydrogen permeation alloy used for a membrane, method for manufacturing the same and method for using the membrane | |
JP6867829B2 (en) | Hydrogen discharge membrane | |
US7708809B2 (en) | Hydrogen permeable membrane | |
JP6011538B2 (en) | Hydrogen separator and method for operating the same | |
JP4742269B2 (en) | Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy | |
JP3749952B1 (en) | Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane | |
JP2009291742A (en) | Hydrogen permeation member and hydrogen generating reactor using the same | |
US9073013B2 (en) | Separation membrane, hydrogen separation membrane including separation membrane, and device including hydrogen separation membrane | |
JP2006000722A (en) | Hydrogen-permeable alloy membrane and its manufacturing method | |
JP4953337B2 (en) | Double phase alloy for hydrogen separation and purification | |
KR102012010B1 (en) | Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane | |
JP2006265638A (en) | Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane | |
CN100471547C (en) | hydrogen permeable membrane | |
KR20130106307A (en) | Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane | |
JP2007254786A (en) | Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane | |
이채현 | Improvement of hydrogen permeability with inert gas exposure in metallic membranes | |
JP2008194629A (en) | Hydrogen-permeable alloy membrane | |
KR101904212B1 (en) | Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane | |
CN115652160A (en) | Vanadium alloy membrane material for separating and purifying ammonia decomposition hydrogen and preparation method thereof | |
JP2016187787A (en) | Hydrogen separation membrane and ammonia production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20121106 |