[go: up one dir, main page]

JP2009287172A - Method for constructing base-isolated building by inverted construction method - Google Patents

Method for constructing base-isolated building by inverted construction method Download PDF

Info

Publication number
JP2009287172A
JP2009287172A JP2008137529A JP2008137529A JP2009287172A JP 2009287172 A JP2009287172 A JP 2009287172A JP 2008137529 A JP2008137529 A JP 2008137529A JP 2008137529 A JP2008137529 A JP 2008137529A JP 2009287172 A JP2009287172 A JP 2009287172A
Authority
JP
Japan
Prior art keywords
seismic isolation
base
isolation layer
isolated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008137529A
Other languages
Japanese (ja)
Inventor
Eisaku Kawai
栄作 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2008137529A priority Critical patent/JP2009287172A/en
Publication of JP2009287172A publication Critical patent/JP2009287172A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Foundations (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for constructing a base-isolated building by an inverted construction method, which dispenses with a jack for temporary support, despite the adoption of construction procedures of installation of a base-isolating device after the erection of a temporary steel column, and which enables the operation of installing the base-isolating device to be performed in a wide space with an opened upper section. <P>SOLUTION: When the base-isolated building, wherein a base-isolated layer is formed underground, is constructed by the inverted construction method, the temporary steel column 3 for directly transferring a load of an upper building frame, constructed above the base-isolated layer A, to a pile 2 is erected in a position not to interfere with the base-isolating device 4 which is installed in the base-isolated layer; the base-isolating device is installed on the top surface of a lower building frame 7a positioned directly below the base-isolated layer; subsequently, the upper building frame 7b, which is positioned directly above the base-isolated layer, is constructed while being supported on the temporary steel column; and after that, the temporary steel column is cut off in a part of the base-isolated layer, so that the upper skeleton constructed above the base-isolated layer is supported by the base-isolating device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、地下に免震層が形成された免震建物を逆打ち工法によって構築する方法に関する。   The present invention relates to a method for constructing a base-isolated building in which a base-isolated layer is formed in the basement by a backlash method.

地下に免震層が形成された免震建物を逆打ち工法によって構築する方法は、特許文献1〜5等によって既に知られている。逆打ち工法の特長は、山留め支保工の働きを兼ねる一階床の鉛直荷重を構真柱に支持させて地盤の掘削を進め、地下部分の躯体構築と並行して地上部分の躯体工事を進められることにある。しかし、地下に免震層が形成された免震建物においては、積層ゴム等の免震装置が、柱頭、中間、柱脚、柱脚直下の基礎梁など、地下階柱の軸芯上に設置されるので、逆打ち工法を採用した場合、免震層上部の躯体の荷重を杭に伝達する構真柱(これは本設の地下階柱として利用されるのが普通である。)の位置と免震装置の位置が干渉することになる。   A method for constructing a base-isolated building in which a base-isolated layer is formed in the basement by a back-strike method is already known from Patent Documents 1 to 5 and the like. The advantage of the back-striking method is that the vertical load of the first floor, which also serves as a support structure for mountain retaining works, is supported by the construction pillar, and the ground is excavated. It is to be done. However, in base-isolated buildings with base-isolated layers, seismic isolation devices such as laminated rubber are installed on the axis of the basement column, such as the column head, middle, column base, and foundation beam directly below the column base. Therefore, when adopting the reverse driving method, the position of the structural column that transmits the load of the upper frame of the seismic isolation layer to the pile (this is usually used as the basement column of the main building). And the position of the seismic isolation device will interfere.

そのため、特許文献1、2に記載の従来技術では、構真柱で支持しながら免震層を挟んで位置する上部躯体と下部躯体を構築した後、免震層を貫通する構真柱の両側方にジャッキを設置し、構真柱を免震層の部分で切除して、上部躯体の荷重をジャッキで仮受けした状態で、切除した構真柱の位置に免震装置を設置し、しかる後、ジャッキを除去して、上部躯体を免震装置で支えるといった施工手順が採られている。   Therefore, in the prior art described in Patent Documents 1 and 2, after constructing the upper and lower housings that are located on both sides of the seismic isolation layer while being supported by the structural pillars, both sides of the structural pillar that penetrates the seismic isolation layer Install a seismic isolation device at the position of the excised construction column, with the jack removed from the seismic isolation layer, and the load on the upper housing was provisionally received by the jack. Later, construction procedures were taken, such as removing the jack and supporting the upper housing with a seismic isolation device.

しかし、この方法では、建物の規模にもよるが、1柱あたり、数千トンもの荷重をジャッキで仮受けしなければならない。また、架構全体で見れば偏荷重が発生するため、ジャッキの圧力・変位管理、躯体の応力・変位管理において高精度が要求され、施工が困難であった。しかも、上部躯体の荷重をジャッキで仮受けした状態で、免震装置を設置するためには、免震層の上下に存在する上部躯体と下部躯体の隙間に横方向から免震装置を挿入する必要があり、上部躯体によって上方が制限された狭小なスペースでの煩わしい設置作業が必要とされた。   However, with this method, depending on the size of the building, a load of several thousand tons per pillar must be temporarily received with a jack. In addition, since an unbalanced load is generated in the entire frame, high accuracy is required for jack pressure / displacement management and housing stress / displacement management, making construction difficult. Moreover, in order to install the seismic isolation device with the load of the upper housing temporarily received by the jack, the seismic isolation device is inserted from the side into the gap between the upper and lower housings located above and below the seismic isolation layer. There is a need for cumbersome installation work in a narrow space whose upper part is restricted by the upper housing.

この点、特許文献3、4に記載の方法では、予め、構真柱の一部に免震装置を組み込んでおき、この構真柱を支持杭の頭部まで挿入し、構真柱に支持させながら地下部分の躯体を構築するので、仮受け用のジャッキが不要であり、あとから上部躯体と下部躯体の隙間に免震装置を挿入して設置するといった狭小なスペースでの煩わしい設置作業も不要である。   In this respect, in the methods described in Patent Documents 3 and 4, a seismic isolation device is incorporated in advance in a part of the structural pillar, and the structural pillar is inserted to the head of the support pile and supported by the structural pillar. Since the underground part of the housing is constructed, there is no need for a temporary jack, and troublesome installation work in a small space such as installing a seismic isolation device in the gap between the upper and lower housings later It is unnecessary.

しかし、この方法では、免震装置の性能確保に対する信頼度に問題がある。即ち、逆打ち工法は、一般に、山留め壁の構築後、地盤に孔壁安定液を注入しつつ杭孔を掘削し、杭孔に鉄筋かごを挿入し、スライム処理後、トレミー管で水中コンクリートを打設して、場所打ち杭を築造し、杭コンクリートが未だ固まらない間に構真柱を杭頭部まで挿入し、杭コンクリートの硬化後、構真柱の周囲を土砂で埋め戻し、しかる後、地盤の一次掘削、一階床の構築、二次掘削、地下階床の構築といった手順で行われる。   However, with this method, there is a problem in the reliability of securing the performance of the seismic isolation device. In other words, in the reverse driving method, in general, after the construction of the retaining wall, the pile hole is excavated while injecting the hole wall stabilizing liquid into the ground, the rebar cage is inserted into the pile hole, and after the slime treatment, the underwater concrete is put through the tremy pipe. After placing the cast-in-place piles, the concrete pillars are inserted into the pile heads while the pile concrete has not yet solidified, and after the pile concrete has hardened, the surroundings of the concrete pillars are backfilled with earth and sand. , Primary excavation of the ground, construction of the first floor, secondary excavation, construction of the underground floor.

そのため、構真柱の一部に予め免震装置が組み込まれていると、免震装置を孔壁安定液や埋め戻し土砂から絶縁されるようにシート等で養生したとしても、免震装置の組み込まれた構真柱を孔壁安定液の存在下で杭孔に挿入し、周囲を土砂で埋め戻した後は、実際に地盤を掘削して免震装置を露出させるまで、免震装置がどのような状態になっているか不明であり、孔壁安定液や埋め戻し土砂の浸入・付着による免震装置への悪影響の可能性を否定できない。また、地下部分及び地上部分の躯体工事中、免震装置には常に荷重が作用
しているので、工事中の偏荷重によって免震装置に想定外の変形が生じる可能性がある。
Therefore, if a seismic isolation device is built in a part of the structural pillar in advance, even if the seismic isolation device is cured with a sheet or the like so as to be insulated from the hole wall stabilizing liquid or backfill earth and sand, After inserting the built-in column into the pile hole in the presence of the hole wall stabilizing liquid and backfilling the surrounding area with earth and sand, the seismic isolation device will continue until the ground is actually excavated to expose the seismic isolation device. It is unknown what state it is in, and the possibility of adverse effects on the seismic isolation device due to infiltration and adhesion of hole wall stabilizer and backfilling earth cannot be denied. In addition, since loads are always applied to the seismic isolation device during the construction of the underground part and the ground part, unexpected deformation may occur in the seismic isolation apparatus due to the uneven load during construction.

従って、免震装置の性能確保の信頼度が低く、実際に施工する場合、特許文献4に記載のように、一階床の直下に免震層を形成して、構真柱に組み込まれた免震装置を地表近くに設置する必要があると思われる。   Therefore, the reliability of the seismic isolation device performance is low, and when actually constructed, as described in Patent Document 4, a seismic isolation layer was formed directly under the first floor and incorporated into the structural pillar. It seems necessary to install seismic isolation devices near the surface.

特許文献5に記載の方法では、構真柱の一部(免震装置を介装すべき位置)に免震装置が収納可能な中空の管状部を形成しておき、この構真柱を支持杭の頭部まで挿入し、構真柱に支持させながら地下部分の躯体を構築した後、管状部の側面に取り付けられていた蓋を外して、管状部の内部に免震装置を挿入・設置し、しかる後、免震装置周囲の管状部を切除して、上部躯体を免震装置で支えるので、施工途中において、免震装置を孔壁安定液や埋め戻し土砂に接触させないで澄む。   In the method described in Patent Document 5, a hollow tubular portion that can accommodate the seismic isolation device is formed in a part of the structural pillar (a position where the seismic isolation device should be interposed), and the structural pillar is supported. After inserting the head of the pile and constructing the underground part of the frame while supporting it to the stem column, remove the lid attached to the side of the tubular part, and insert and install the seismic isolation device inside the tubular part However, after that, the tubular part around the seismic isolation device is excised and the upper housing is supported by the seismic isolation device, so that the seismic isolation device is cleared without contacting the hole wall stabilizing liquid or backfilling soil during the construction.

しかし、この方法では、管状部の内部に管状部側面の開口から免震装置を挿入して設置することになるので、上下と四周が制限された狭小なスペース内で免震装置の設置作業を行うことになり、設置作業が面倒である。しかも、管状部の内径、開口の大きさ等によって免震装置の大きさが制限されることになり、免震装置として、積層ゴムに比して外形寸法の大きい滑り支承を採用することは実際上不可能である。また、管状部とその上下に連なる鉄骨とにわたる応力伝達が明解ではなく、管状部の座屈防止に多くの補強部材が必要であり、これらの補強部材が管状部に挿入可能な免震装置の大きさの制約となる。   However, in this method, since the seismic isolation device is inserted into the inside of the tubular portion from the opening on the side of the tubular portion, the seismic isolation device is installed in a narrow space where the top and bottom and the four sides are limited. The installation work is troublesome. In addition, the size of the seismic isolation device is limited by the inner diameter of the tubular portion, the size of the opening, etc., and it is actually adopted as the seismic isolation device that a sliding bearing having a larger outer dimension than the laminated rubber is adopted. It is impossible. In addition, the stress transmission between the tubular portion and the steel frame connected to the upper and lower sides of the tubular portion is not clear, and many reinforcing members are necessary for preventing the buckling of the tubular portion, and the seismic isolation device is capable of inserting these reinforcing members into the tubular portion. This is a size constraint.

特開平10−18322号公報Japanese Patent Laid-Open No. 10-18322 特開2001−173269号公報JP 2001-173269 A 特開平11−30053号公報Japanese Patent Laid-Open No. 11-30053 特開2000−291031号公報JP 2000-291031 A 特開平10−280446号公報Japanese Patent Laid-Open No. 10-280446

本発明は、上記の点に留意して成されたものであって、その目的とするところは、地下に免震層が形成された免震建物を逆打ち工法によって構築するにあたり、構真柱の一部に予め免震装置を組み込んでおくのではなく、構真柱の建て込み後、免震装置を設置する施工手順を採用しているにもかかわらず、仮受け用のジャッキが不要であると共に、上方が開放された広いスペースでの免震装置設置作業が可能となる構築方法を提供することにある。   The present invention has been made in consideration of the above points, and the purpose of the present invention is to construct a seismic pillar in the construction of a base-isolated building having a base-isolated layer formed underground by a reverse striking method. Rather than incorporating a seismic isolation device in advance, a jack for temporary support is not required, even though the construction procedure for installing the seismic isolation device is adopted after the construction of the structural pillar. It is another object of the present invention to provide a construction method that enables seismic isolation device installation work in a wide space open upward.

上記の目的を達成するために本発明が講じた技術的手段は、次の通りである。即ち、請求項1に記載の発明による逆打ち工法による免震建物の構築方法は、地下に免震層が形成された免震建物を逆打ち工法で構築するにあたり、免震層より上方に構築される上部躯体の荷重を杭に直接伝達させる構真柱を免震層に設置される免震装置と干渉しない位置に建て込み、免震層に免震装置を設置した後、構真柱を免震層の部分で切除して、免震層より上方に構築される上部躯体を免震装置で支えることを特徴としている。   The technical means taken by the present invention in order to achieve the above object are as follows. That is, the construction method of the base-isolated building by the reverse striking method according to the first aspect of the invention is constructed above the base-isolated layer in constructing the base-isolated building having the base-isolated layer formed by the reverse striking method. After installing the seismic isolation device in the seismic isolation layer, install the structural column that directly transmits the load of the upper frame to the pile to the position where it does not interfere with the seismic isolation device installed in the seismic isolation layer. The seismic isolation layer is excised and the upper frame constructed above the seismic isolation layer is supported by the seismic isolation device.

請求項1に記載の発明において、免震層に免震装置を設置するにあたっては、免震層の上下に相対向して位置する上部躯体と下部躯体を構築した後、免震装置を免震層に横方向から挿入して設置するといった施工手順を採用することも可能であるが、請求項2に記載の発明のように、免震層の直下に位置する下部躯体の上面に免震装置を設置した後、構真柱に支持させながら免震層の直上に位置する上部躯体を構築し、しかる後、構真柱を免震層の部分で切除して、免震層より上方に構築される上部躯体を免震装置で支えるようにす
ることが後述する理由により好ましい。
In the invention according to claim 1, in installing the seismic isolation device in the seismic isolation layer, after the upper and lower housings located opposite to each other above and below the seismic isolation layer are constructed, the seismic isolation device is seismically isolated. Although it is possible to adopt a construction procedure in which a layer is inserted and installed in the lateral direction, as in the invention according to claim 2, the seismic isolation device is provided on the upper surface of the lower casing located immediately below the seismic isolation layer. After the installation, the upper frame located immediately above the seismic isolation layer is constructed while being supported by the structural column, and then the structural column is excised at the seismic isolation layer and constructed above the seismic isolation layer. It is preferable to support the upper casing to be supported by the seismic isolation device for the reason described later.

請求項3に記載の発明は、請求項1又は2に記載の逆打ち工法による免震建物の構築方法であって、構真柱が地下階柱の周囲に複数本配置され、構真柱の下端部が1本の杭の杭頭部に埋設されることを特徴としている。   Invention of Claim 3 is the construction method of the seismic isolation building by the reverse driving method of Claim 1 or 2, Comprising: A plurality of construction pillars are arrange | positioned around an underground floor pillar, The lower end is embedded in a pile head of one pile.

請求項4に記載の発明は、請求項3に記載の逆打ち工法による免震建物の構築方法であって、構真柱が、免震層より上方の部分を直線状とし、免震層より下方の部分を内側に屈曲させた形状に形成されていることを特徴としている。   Invention of Claim 4 is the construction method of the seismic isolation building by the reverse driving method of Claim 3, Comprising: A structure pillar makes the part above a base isolation layer into a linear form, and is from a base isolation layer. It is characterized by being formed in a shape in which a lower part is bent inward.

請求項5に記載の発明は、請求項3に記載の逆打ち工法による免震建物の構築方法であって、構真柱が、免震層より上方の部分を複数本の直線状部材とし、免震層より下方の部分を内側に屈曲させて1本に結合した形状に形成されていることを特徴としている。   Invention of Claim 5 is the construction method of the base isolation building by the reverse driving method of Claim 3, Comprising: A structure pillar makes the part above a base isolation layer into a plurality of linear members, It is characterized in that it is formed in a shape in which the portion below the seismic isolation layer is bent inward and combined into one.

請求項6に記載の発明は、請求項1又は2に記載の逆打ち工法による免震建物の構築方法であって、構真柱が1本の直線状部材の下端側を免震層より上方において外側に屈曲させて二又に分岐した形状とされ、分岐した二又部分の下端部が1本の杭の杭頭部に埋設されることを特徴としている。   Invention of Claim 6 is the construction method of the seismic isolation building by the reverse driving method of Claim 1 or 2, Comprising: The bottom of the straight member with a single structural pillar is above the base isolation layer In this case, the bifurcated bifurcated portion is bent outward and the lower end of the bifurcated portion is embedded in the pile head of one pile.

請求項1に記載の発明によれば、構真柱の一部に予め免震装置を組み込んでおくのではなく、構真柱の建て込み後、免震装置を設置する施工手順を採用しているにもかかわらず、構真柱を免震装置と干渉しない位置に建て込み、免震層に免震装置を設置した後、構真柱を免震層の部分で切除して、上部躯体を免震装置で支えるようにしたので、仮受け用のジャッキが不要である。   According to the first aspect of the present invention, the construction procedure for installing the seismic isolation device after the construction of the structural pillar is adopted instead of incorporating the seismic isolation device in advance in a part of the structural pillar. However, after installing the seismic isolation column in the seismic isolation layer, install the seismic isolation column in the seismic isolation layer, install the seismic isolation column in the seismic isolation layer, and remove the upper frame. Since it is supported by a seismic isolation device, there is no need for a temporary jack.

請求項2に記載の発明によれば、免震層に免震装置を設置するにあたり、免震層の直下に位置する下部躯体の上面に免震装置を設置した後、構真柱に支持させながら免震層の直上に位置する上部躯体を構築するので、免震層に対する免震装置の設置作業を、上方が上部躯体によって制限されていない広いスペースで行うことになり、免震装置の設置作業が容易であるという効果がある。   According to the second aspect of the present invention, in installing the seismic isolation device in the seismic isolation layer, the seismic isolation device is installed on the upper surface of the lower housing located directly under the seismic isolation layer, and then supported by the structural pillar. However, since the upper frame located directly above the seismic isolation layer is constructed, the seismic isolation device installation work for the seismic isolation layer will be performed in a wide space that is not restricted by the upper frame. There is an effect that the work is easy.

請求項3に記載の発明によれば、構真柱を地下階柱の周囲に複数本配置するにもかかわらず、下端部を1本の杭の杭頭部に埋設するので、杭の本数が少なくて済み、経済的である。   According to the invention described in claim 3, since the lower end portion is embedded in the pile head of one pile regardless of arranging a plurality of structural pillars around the underground floor pillar, the number of piles is Less cost and economy.

請求項4に記載の発明によれば、構真柱が、免震層より上方の部分を直線状とし、免震層より下方の部分を内側に屈曲させた形状に形成されているので、杭径を大きくしたり、杭頭部を拡大しなくても、下端部を1本の杭の杭頭部に埋設することが可能であり、経済的である。   According to the invention described in claim 4, since the structural pillar is formed in a shape in which a portion above the seismic isolation layer is linear and a portion below the seismic isolation layer is bent inward, the pile Even if the diameter is not increased or the pile head is not enlarged, the lower end can be embedded in the pile head of one pile, which is economical.

請求項5に記載の発明によれば、構真柱が、免震層より上方の部分を複数本の直線状部材とし、免震層より下方の部分を内側に屈曲させて1本に結合した形状に形成されているので、杭径を大きくしたり、杭頭部を拡大しなくても、下端部を1本の杭の杭頭部に埋設することが可能であり、経済的である。しかも、免震層より上方の部分を複数本の直線状部材として、地下階柱の周囲に複数本配置するようにしているにもかかわらず下端部が1本に結合しているので、杭頭部に対する挿入を一度に行え、構真柱の建て込みを短時間に行える。   According to the invention described in claim 5, the structural pillar is joined to one by bending a portion above the seismic isolation layer into a plurality of linear members and bending a portion below the seismic isolation layer inward. Since it is formed in a shape, the lower end can be embedded in the pile head of one pile without increasing the pile diameter or expanding the pile head, which is economical. Moreover, since the lower part is combined into one even though the part above the seismic isolation layer is arranged as a plurality of linear members and arranged around the basement column, the pile head Insertion into the part can be done at once, and the construction of the structural pillar can be done in a short time.

請求項6に記載の発明によれば、構真柱が1本の直線状部材の下端側を免震層より上方
において外側に屈曲させて二又に分岐した形状とされ、分岐した二又部分の下端部が1本の杭の杭頭部に埋設されるので、請求項1又は2に記載の発明の効果に加え、構真柱のうち、免震層より上方の構真柱を本設の地下階柱として利用することができ、経済的であるという効果がある。
According to the sixth aspect of the present invention, the bifurcated bifurcated portion has a bifurcated portion in which the stem column is bifurcated by bending the lower end side of one linear member outward above the seismic isolation layer. In addition to the effect of the invention according to claim 1 or 2, among the construction pillars, the construction pillars above the seismic isolation layer are permanently installed. It can be used as an underground floor pillar and is economical.

以下、本発明に係る逆打ち工法による免震建物の構築方法の実施形態を図面に基づいて説明する。先ず、図1に示すように、山留め壁1を構築した後、地盤の所定位置を掘削して、杭頭拡大した場所打ち杭2を構築し、杭コンクリートが未だ固まらない間に、1本の場所打ち杭2あたり2本の構真柱3を後述する免震層Aに設置される免震装置4と干渉しない位置(図12を参照)に、換言すれば、本設の地下階柱の周囲に、地下階柱から水平方向に離れて位置するように建て込み、杭コンクリートがある程度硬化した後、構真柱3の周囲を土砂5で埋め戻す。場所打ち杭2の杭頭部を拡大してあるため、2本の構真柱3を免震装置4と干渉しない位置に配置しても、図1に示すように、2本の構真柱3の下端部を1本の場所打ち杭2の杭頭部に埋設することができる。   Hereinafter, an embodiment of a method for constructing a base-isolated building by a reverse driving method according to the present invention will be described with reference to the drawings. First, as shown in FIG. 1, after constructing the retaining wall 1, excavating a predetermined position of the ground, constructing a cast-in-place pile 2 in which the pile head is enlarged, and while the pile concrete is not yet solidified, In other words, to the position where the two structural pillars 3 per cast-in-place pile 2 do not interfere with the seismic isolation device 4 installed in the seismic isolation layer A described later (see FIG. 12), After the pile concrete is hardened to some extent, it is backfilled with earth and sand 5 after the pile concrete is hardened to some extent. Since the pile head of the cast-in-place pile 2 is enlarged, even if the two structural pillars 3 are arranged at positions where they do not interfere with the seismic isolation device 4, as shown in FIG. 3 can be embedded in the pile head of one cast-in-place pile 2.

しかる後、一般的な逆打ち工法の施工手順に従い、地盤の一次掘削を行い、図2に示すように、構真柱3に支持させながら一階床Fを構築した後、図3に示すように、二次掘削、地下階床Bを構築する。6は上階から下階へと打ち継がれて行く本設の地下階柱であり、鉄骨鉄筋コンクリート造である。 After that, following the construction procedure of a general reverse driving method, primary excavation of the ground is performed, and as shown in FIG. to, secondary drilling, to build the underground floor B 1. 6 is a permanent underground floor pillar that is handed down from the upper floor to the lower floor, and is a steel-framed reinforced concrete structure.

そして、最終掘削底まで掘削したら、図4、図7に示すように、免震層Aの直下に位置する下部躯体7aとしての耐圧盤8と山留め壁1に沿った地下外壁9を構築し、前記下部躯体(耐圧盤8)7aの上面に免震装置4を地下階柱6の軸芯と同芯状に取り付ける。免震層Aに対するこの免震装置4の設置作業は、図7に仮想線で示すように、免震層Aの直上に位置する上部躯体(これは、免震層Aより上方に構築される上部躯体の一部であり、最下階床Bと本設の地下階柱6の柱脚等で構成される。)7bが構築される前に行われる。図7に示す3aは必要に応じて構真柱3に設けられるシャーコネクタである。 And if it excavates to the last excavation bottom, as shown in Drawing 4 and Drawing 7, it constructs pressure-resistant panel 8 as lower frame 7a located directly under seismic isolation layer A, and underground outer wall 9 along mountain retaining wall 1, The seismic isolation device 4 is attached to the upper surface of the lower housing (pressure platen 8) 7a so as to be concentric with the axis of the basement column 6. The installation work of the seismic isolation device 4 with respect to the seismic isolation layer A is performed as shown in FIG. 7 by an upper frame located directly above the seismic isolation layer A (this is constructed above the seismic isolation layer A). It is part of the upper skeleton, composed of pedestal like underground Kaibashira 6 of this setting the lowermost floor B 2.) 7b is made before it is built. Reference numeral 3a shown in FIG. 7 is a shear connector provided on the construction pillar 3 as necessary.

次に、図8に示すように、構真柱3に支持させながら免震層Aの直上に位置する上部躯体7bを構築して、免震装置4の上端側を上部躯体7bに連結し、図5、図9に示すように、地下階柱6の柱脚をその上方の柱部分と一体化させる。   Next, as shown in FIG. 8, an upper housing 7b located immediately above the seismic isolation layer A is supported while being supported by the structural pillar 3, and the upper end side of the seismic isolation device 4 is connected to the upper housing 7b. As shown in FIGS. 5 and 9, the column base of the basement column 6 is integrated with the column portion above it.

しかる後、図10に示すように、構真柱3を免震層Aの部分で切除して、免震層Aより上方に構築される上部躯体を免震装置4で支えると共に、図11に示すように、免震層Aより上方の構真柱部分を切除して、図6に示すように、地下に免震層Aを有する免震建物を構築する。尚、地下階柱6の内装仕上げの如何によっては、免震層Aより上方の構真柱部分を残置させても構わない。   After that, as shown in FIG. 10, the structural pillar 3 is cut off at the part of the seismic isolation layer A, and the upper housing constructed above the seismic isolation layer A is supported by the seismic isolation device 4, and FIG. As shown in the figure, the true pillar portion above the seismic isolation layer A is cut out, and as shown in FIG. 6, a base-isolated building having the base isolation layer A in the basement is constructed. Depending on the interior finish of the underground floor pillar 6, the construction pillar part above the seismic isolation layer A may be left.

上記の構成によれば、構真柱3の一部に予め免震装置4を組み込んでおくのではなく、構真柱3の建て込み後、免震装置4を設置する施工手順を採用しているにもかかわらず、仮受け用のジャッキが不要であると共に、上方が開放された広いスペースでの免震装置設置作業が可能である。   According to the above configuration, the seismic isolation device 4 is not built in a part of the structural pillar 3 in advance, but the construction procedure for installing the seismic isolation device 4 after the construction of the structural pillar 3 is adopted. In spite of this, it is not necessary to have a temporary jack, and the seismic isolation device can be installed in a wide space with the top open.

即ち、構真柱3を免震装置4と干渉しない位置に建て込み、免震層A直下の下部躯体7aに免震装置4を設置した後、構真柱3を免震層Aの部分で切除して、免震層Aより上方に構築される上部躯体を免震装置4で支えるので、仮受け用のジャッキが不要である。   That is, after the structural column 3 is installed at a position where it does not interfere with the seismic isolation device 4 and the seismic isolation device 4 is installed in the lower casing 7a immediately below the seismic isolation layer A, the structural column 3 is installed at the seismic isolation layer A portion. Since the upper frame constructed above the seismic isolation layer A is supported by the seismic isolation device 4, a jack for provisional reception is unnecessary.

殊に、下部躯体7aの上面に免震装置4を設置した後、構真柱3に支持させながら免震層Aの直上に位置する上部躯体7bを構築するので、免震装置4の設置作業を、上方が上
部躯体7bによって制限されていない広いスペースで行うことになり、免震装置4の設置作業が容易である。
In particular, after the seismic isolation device 4 is installed on the upper surface of the lower housing 7a, the upper housing 7b positioned immediately above the seismic isolation layer A is constructed while being supported by the structural pillar 3, so that the seismic isolation device 4 is installed. Is performed in a wide space where the upper part is not limited by the upper housing 7b, and the installation work of the seismic isolation device 4 is easy.

図13は、本発明の他の実施形態を示す。この実施形態は、2本の構真柱3間に梁鉄骨10を架設して、真柱3を補強すると共に、2本の構真柱3を一体物として取り扱うように構成した点に特徴がある。梁鉄骨10は階高の中程に設けられており、地下階柱の構築前に切除される。その他の構成、作用は、図1〜図12の実施形態と同じであるため、説明を省略する。   FIG. 13 shows another embodiment of the present invention. This embodiment is characterized in that a beam steel frame 10 is installed between two structural pillars 3 to reinforce the true pillars 3 and to handle the two structural pillars 3 as a single unit. is there. The beam steel frame 10 is provided in the middle of the floor height and is excised before the construction of the basement column. Other configurations and operations are the same as those of the embodiment of FIGS.

図14、図15は、本発明の他の実施形態を示す。この実施形態は、免震層Aより上方の部分を直線状とし、免震層Aより下方の部分を内側に屈曲させた形状の構真柱3を4本地下階柱6の周囲に等間隔に配置した点に特徴がある。   14 and 15 show another embodiment of the present invention. In this embodiment, the upper part of the seismic isolation layer A is linear, and the erected column 3 having a shape in which the lower part of the seismic isolation layer A is bent inward is equally spaced around the four underground floor pillars 6. There is a feature in the point arranged in.

この構成によれば、構真柱3の免震層Aより下方の部分が内側に屈曲しているので、場所打ち杭2の杭頭部を拡大したり、杭径を太くしなくても、4本の構真柱3の下端部を1本の場所打ち杭2の杭頭部に埋設することができる。   According to this structure, since the part below the seismic isolation layer A of the structural pillar 3 is bent inward, it is not necessary to enlarge the pile head of the cast-in-place pile 2 or increase the pile diameter. The lower ends of the four structural pillars 3 can be embedded in the pile head of one cast-in-place pile 2.

尚、図示の例では、4本の構真柱3の直線状部分を環状に配置した梁鉄骨10で連結して、構真柱3を補強すると共に、4本の構真柱3を一体化して、場所打ち杭2の杭頭部への挿入を一度に行えるように構成してあるが、梁鉄骨10を省略し、4本の独立した構真柱3として実施してもよい。また、梁鉄骨10で連結して4本の構真柱3を一体化する場合、図示のように、梁鉄骨10を環状に配置することにより、梁鉄骨10が地下階柱6の構築や免震装置4の設置作業の障害物になることを防止できる。その他の構成、作用は、図1〜図12の実施形態と同じであるため、説明を省略する。   In the example shown in the figure, the straight portions of the four structural pillars 3 are connected by a beam steel frame 10 arranged in an annular shape to reinforce the structural pillar 3 and integrate the four structural pillars 3 together. The cast-in-place pile 2 can be inserted into the pile head at one time. However, the beam steel frame 10 may be omitted, and four independent structural pillars 3 may be implemented. In addition, when the four structural pillars 3 are integrated by connecting with the beam steel frame 10, the beam steel frame 10 is arranged in an annular shape as shown in the figure, so that the beam steel frame 10 can be used for the construction of the underground floor column 6 or the exemption. It is possible to prevent the seismic device 4 from becoming an obstacle to the installation work. Other configurations and operations are the same as those of the embodiment of FIGS.

図16は、本発明の他の実施形態を示す。この実施形態は、構真柱3が、免震層Aより上方の部分を2本の直線状部材とし、免震層Aより下方の部分を内側に屈曲させて1本に結合した形状に形成されている点に特徴がある。   FIG. 16 shows another embodiment of the present invention. In this embodiment, the structural pillar 3 is formed in a shape in which a portion above the seismic isolation layer A is formed as two linear members and a portion below the seismic isolation layer A is bent inward to be combined into one. It is characterized in that it is.

この構成によれば、杭径を大きくしたり、杭頭部を拡大しなくても、下端部を1本の杭の杭頭部に埋設することが可能であり、経済的である。しかも、免震層Aより上方の部分を2本の直線状部材として、地下階柱6の周囲に2本配置するようにしているにもかかわらず下端部が1本に結合しているので、杭頭部に対する挿入を一度に行え、構真柱3の建て込みを短時間に行える。   According to this configuration, the lower end can be embedded in the pile head of one pile without increasing the pile diameter or expanding the pile head, which is economical. Moreover, since the upper part of the seismic isolation layer A is two linear members and the two lower ends are combined around the basement column 6, the lower end part is connected to one. The pile head can be inserted at a time, and the construction pillar 3 can be built in a short time.

尚、図16に仮想線で示すように、適当な高さ位置において、免震層Aより上方の直線状部材に梁鉄骨10を架設して、構真柱3を補強し、一階床Fの構築後、梁鉄骨10を切除するようにしてもよい。   In addition, as shown by a virtual line in FIG. 16, the beam steel frame 10 is installed on a linear member above the seismic isolation layer A at an appropriate height position to reinforce the frame column 3, and the first floor F After construction, the beam steel frame 10 may be excised.

図17〜図20は、本発明の他の実施形態を示す。この実施形態は、構真柱3が1本の直線状部材3Aの下端側を免震層Aより上方において外側に屈曲させて二又に分岐した形状とされ、分岐した二又部分3B、3Bの下端部が1本の場所打ち杭2の杭頭部に埋設される点に特徴がある。   17 to 20 show another embodiment of the present invention. In this embodiment, the structure pillar 3 is formed into a bifurcated shape by bending the lower end side of one linear member 3A outwardly above the seismic isolation layer A, and bifurcated bifurcated portions 3B, 3B. Is characterized in that the lower end of is embedded in the pile head of one cast-in-place pile 2.

より詳しく説明すると、図18に示すように、逆打ち工法によって地下階床B1を構築し、免震層Aの直下に位置する下部躯体7aとしての耐圧盤8を構築した後、前記下部躯体(耐圧盤8)7aの上面に免震装置4を地下階柱6の軸芯と同芯状に設置する。この免震装置4の設置作業は、図18に仮想線で示すように、免震層Aの直上に位置する上部躯体(これは、免震層Aより上方に構築される上部躯体の一部であり、最下階床B2と本設の地下階柱6の柱脚等で構成される)7bが構築される前に行われるので、上方が上部躯
体7bによって制限されておらず、免震装置4の設置作業が容易である。
More specifically, as shown in FIG. 18, the basement floor B <b> 1 is constructed by the reverse driving method, and after the construction of the pressure platen 8 as the lower housing 7 a located immediately below the seismic isolation layer A, the lower housing ( The seismic isolation device 4 is installed concentrically with the axis of the basement column 6 on the upper surface of the pressure platen 8) 7a. As shown in phantom lines in FIG. 18, the seismic isolation device 4 is installed in an upper casing located directly above the seismic isolation layer A (this is a part of the upper casing constructed above the seismic isolation layer A). It is performed before the construction of the lower floor B2 and the base of the underground basement column 6), so that the upper part is not restricted by the upper housing 7b and is seismically isolated. The installation work of the device 4 is easy.

次に、図19に示すように、構真柱3に支持させながら免震層Aの直上に位置する上部躯体7bを構築し、地下階柱6の柱脚をその上方の柱部分と一体化させる。   Next, as shown in FIG. 19, an upper frame 7b is constructed which is positioned directly above the seismic isolation layer A while being supported by the structural pillar 3, and the column base of the basement column 6 is integrated with the column portion above it. Let

しかる後、図20に示すように、構真柱3を免震層Aの部分で切除して、免震層Aより上方に構築される上部躯体を免震装置4で支え、図17で示したような地下に免震層Aが形成された免震建物を構築するのである。   After that, as shown in FIG. 20, the structural pillar 3 is cut off at the part of the seismic isolation layer A, and the upper housing constructed above the seismic isolation layer A is supported by the seismic isolation device 4 and shown in FIG. A base-isolated building in which the base isolation layer A is formed in the basement is constructed.

上記の構成によれば、構真柱3が1本の直線状部材3Aの下端側を免震層Aより上方において外側に屈曲させて二又に分岐した形状とされ、分岐した二又部分3B、3Bの下端部が1本の場所打ち杭2の杭頭部に埋設されるので、構真柱3のうち、免震層Aより上方の構真柱を本設の地下階柱6として利用することができ、経済的である。その他の構成、作用は、図1〜図12の実施形態と同じであるため、説明を省略する。   According to the above configuration, the construction pillar 3 has a bifurcated shape by bending the lower end side of one linear member 3A outwardly above the seismic isolation layer A, and bifurcated into a bifurcated portion 3B. Since the lower end of 3B is embedded in the pile head of one cast-in-place pile 2, the built-up column above the seismic isolation layer A of the built-up column 3 is used as the main basement column 6. Can be economical. Other configurations and operations are the same as those of the embodiment of FIGS.

尚、上述した各実施形態においては、免震層Aを最下階床B2と耐圧盤8との間に形成したが、地下階柱6の柱頭、中間、柱脚の何れかに形成してもよい。また、免震装置4として、積層ゴムを図示したが、滑り支承など、積層ゴムよりも外形寸法の大きい他の形式の免震装置4を用いて実施してもよい。場所打ち杭2に代え、RC連壁杭、ソイルセメント杭を用いてもよい。杭は1本の柱に1本配置されている場合に限られず、フーチングを介して構真柱の荷重を伝達できる杭であれば実施可能であり、複数本のPHC杭などの既製杭であってもよい。さらに、請求項1,2において、免震建物は、杭基礎に限らず、直接基礎としてもよい。その際は、構真柱は仮設の短杭(仮設構真台柱)に支持させることになる。   In each of the above-described embodiments, the seismic isolation layer A is formed between the lowest floor B2 and the pressure platen 8, but it is formed on any of the head of the basement column 6, the middle, or the column base. Also good. Moreover, although laminated rubber was illustrated as the seismic isolation device 4, you may implement using another type of seismic isolation device 4 with a larger external dimension than laminated rubber, such as a sliding bearing. Instead of the cast-in-place pile 2, an RC continuous wall pile or a soil cement pile may be used. The pile is not limited to the case where one pile is arranged on one pillar, but can be implemented as long as the pile can transmit the load of the true pillar through the footing, and can be an off-the-shelf pile such as multiple PHC piles. May be. Furthermore, in Claims 1 and 2, the seismic isolation building is not limited to the pile foundation but may be a direct foundation. In that case, the structural column is supported by a temporary short pile (temporary structural column).

本発明の実施形態を例示し、山留め壁及び構真柱を構築した概略縦断面図である。It is the schematic longitudinal cross-sectional view which illustrated the embodiment of this invention and constructed | assembled the retaining wall and the construction pillar. 一階床を構築した概略縦断面図である。It is the schematic longitudinal cross-sectional view which constructed | assembled the 1st floor. 地下階床B1を構築した概略縦断面図である。It is the schematic longitudinal cross-sectional view which constructed | assembled the underground floor B1. 免震装置を設置した概略縦断面図である。It is the schematic longitudinal cross-sectional view which installed the seismic isolation apparatus. 免震層上部の上部躯体を構築した概略縦断面図である。It is the schematic longitudinal cross-sectional view which constructed | assembled the upper frame of the seismic isolation layer upper part. 構築した免震建物の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the constructed seismic isolation building. 免震装置を設置した要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which installed the seismic isolation apparatus. 免震層上部の上部躯体を構築した要部の縦断面図である。It is the longitudinal cross-sectional view of the principal part which constructed the upper frame of the seismic isolation layer upper part. 上部躯体に設けられた地下階柱の柱脚を上方の柱部分と一体化させた要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which integrated the column base of the underground floor column provided in the upper housing with the upper column part. 構真柱を免震層の部分で切除した要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which excised the structure pillar in the part of the seismic isolation layer. 構築した免震建物の要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part of the constructed seismic isolation building. 構真柱と免震装置の位置関係を示す要部の平面図である。It is a top view of the principal part which shows the positional relationship of a structural pillar and a seismic isolation apparatus. 本発明の他の実施形態を示す要部の平面図である。It is a top view of the principal part which shows other embodiment of this invention. 本発明の他の実施形態を示す要部の平面図である。It is a top view of the principal part which shows other embodiment of this invention. 本発明の他の実施形態を示す要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which shows other embodiment of this invention. 本発明の他の実施形態を示す要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which shows other embodiment of this invention. 本発明の他の実施形態を示す構築した免震建物の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the constructed seismic isolation building which shows other embodiment of this invention. 免震装置を設置した要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which installed the seismic isolation apparatus. 免震層上部の上部躯体を構築し且つ地下階柱の柱脚を上方の柱部分と一体化させた要部の縦断面図である。It is the longitudinal cross-sectional view of the principal part which constructed | assembled the upper frame of the seismic isolation layer upper part, and integrated the column base of the basement column with the upper column part. 構真柱を免震層の部分で切除した要部の縦断面図である。It is a longitudinal cross-sectional view of the principal part which excised the structure pillar in the part of the seismic isolation layer.

符号の説明Explanation of symbols

A 免震層
地下階床
最下階床
F 一階床
1 山留め壁
2 場所打ち杭
3 構真柱
3A 1本の直線状部材
3B 二又部分
3a シャーコネクタ
4 免震装置
5 土砂
6 地下階柱
7a 下部躯体
7b 上部躯体
8 耐圧盤
9 地下外壁
10 梁鉄骨
A Seismic isolation layer B 1 Basement floor B 2 Bottom floor F 1st floor 1 Mountain retaining wall 2 Cast-in-place pile 3 Construction pillar 3A One linear member 3B Two-pronged part 3a Shear connector 4 Seismic isolation device 5 Earth and sand 6 Basement floor pillar 7a Lower housing 7b Upper housing 8 Pressure-resistant panel 9 Underground wall 10 Beam steel

Claims (6)

地下に免震層が形成された免震建物を逆打ち工法で構築するにあたり、免震層より上方に構築される上部躯体の荷重を杭に直接伝達させる構真柱を免震層に設置される免震装置と干渉しない位置に建て込み、免震層に免震装置を設置した後、構真柱を免震層の部分で切除して、免震層より上方に構築される上部躯体を免震装置で支えることを特徴とする逆打ち工法による免震建物の構築方法。   When constructing a base-isolated building with a base-isolated layer in the basement by the back-strike method, a structural column that directly transmits the load of the upper frame constructed above the base-isolated layer to the pile is installed in the base-isolated layer. After installing the seismic isolation device in the seismic isolation layer, excise the structural column at the seismic isolation layer and remove the upper frame constructed above the seismic isolation layer. A method of constructing a base-isolated building by the backlash method, which is supported by a base-isolated device. 免震層の直下に位置する下部躯体の上面に免震装置を設置した後、構真柱に支持させながら免震層の直上に位置する上部躯体を構築し、しかる後、構真柱を免震層の部分で切除して、免震層より上方に構築される上部躯体を免震装置で支えることを特徴とする請求項1に記載の逆打ち工法による免震建物の構築方法。   After installing the seismic isolation device on the upper surface of the lower frame located directly below the seismic isolation layer, construct the upper frame located directly above the seismic isolation layer while supporting the structural column, and then exempt the structural column. 2. The method for constructing a base-isolated building by a backlash construction method according to claim 1, wherein the seismic layer is excised and the upper frame constructed above the base-isolated layer is supported by a base-isolating device. 構真柱が地下階柱の周囲に複数本配置され、構真柱の下端部が1本の杭の杭頭部に埋設されることを特徴とする請求項1又は2に記載の逆打ち工法による免震建物の構築方法。   3. The reverse driving method according to claim 1, wherein a plurality of structural pillars are arranged around the underground floor pillar, and a lower end portion of the structural pillar is embedded in a pile head of one pile. How to build a base-isolated building. 構真柱が、免震層より上方の部分を直線状とし、免震層より下方の部分を内側に屈曲させた形状に形成されていることを特徴とする請求項3に記載の逆打ち工法による免震建物の構築方法。   4. The reverse driving method according to claim 3, wherein the structural column is formed in a shape in which a portion above the base isolation layer is linear and a portion below the base isolation layer is bent inward. How to build a base-isolated building. 構真柱が、免震層より上方の部分を複数本の直線状部材とし、免震層より下方の部分を内側に屈曲させて1本に結合した形状に形成されていることを特徴とする請求項3に記載の逆打ち工法による免震建物の構築方法。   The true column is formed in a shape in which a portion above the seismic isolation layer is formed as a plurality of linear members, and a portion below the seismic isolation layer is bent inward to be combined into one. The construction method of the seismic isolation building by the reverse driving method of Claim 3. 構真柱が1本の直線状部材の下端側を免震層より上方において外側に屈曲させて二又に分岐した形状とされ、分岐した二又部分の下端部が1本の杭の杭頭部に埋設されることを特徴とする請求項1又は2に記載の逆打ち工法による免震建物の構築方法。   The straight pillar has a bifurcated shape with the lower end of one linear member bent outwardly above the seismic isolation layer, and the lower end of the bifurcated portion is a pile head of one pile. The method for constructing a base-isolated building by the reverse driving method according to claim 1, wherein the building is embedded in a part.
JP2008137529A 2008-05-27 2008-05-27 Method for constructing base-isolated building by inverted construction method Pending JP2009287172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137529A JP2009287172A (en) 2008-05-27 2008-05-27 Method for constructing base-isolated building by inverted construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008137529A JP2009287172A (en) 2008-05-27 2008-05-27 Method for constructing base-isolated building by inverted construction method

Publications (1)

Publication Number Publication Date
JP2009287172A true JP2009287172A (en) 2009-12-10

Family

ID=41456656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137529A Pending JP2009287172A (en) 2008-05-27 2008-05-27 Method for constructing base-isolated building by inverted construction method

Country Status (1)

Country Link
JP (1) JP2009287172A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012415A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and cast-in-place round pile together
JP2011012416A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and wall pile together
JP2015010328A (en) * 2013-06-26 2015-01-19 株式会社竹中工務店 Installation method for underground column
CN111411792A (en) * 2020-01-21 2020-07-14 武大巨成结构股份有限公司 Newly-built foundation upper and lower column connecting structure and method for expanding underground space
JP2022110258A (en) * 2021-01-18 2022-07-29 大成建設株式会社 Column base structure of steel pipe column

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012415A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and cast-in-place round pile together
JP2011012416A (en) * 2009-06-30 2011-01-20 Ohbayashi Corp Structure and method for joining steel frame and wall pile together
JP2015010328A (en) * 2013-06-26 2015-01-19 株式会社竹中工務店 Installation method for underground column
CN111411792A (en) * 2020-01-21 2020-07-14 武大巨成结构股份有限公司 Newly-built foundation upper and lower column connecting structure and method for expanding underground space
JP2022110258A (en) * 2021-01-18 2022-07-29 大成建設株式会社 Column base structure of steel pipe column
JP7449880B2 (en) 2021-01-18 2024-03-14 大成建設株式会社 Steel pipe column base structure

Similar Documents

Publication Publication Date Title
JP4647544B2 (en) Underpass construction method and underpass
JP2009287172A (en) Method for constructing base-isolated building by inverted construction method
JP2009007745A (en) Axial force transmission structure of construction column and foundation pile and construction method of construction column
KR20190022132A (en) Top-down method using precast-concrete colum
JP4558145B2 (en) Seismic isolation method for existing buildings
KR101296857B1 (en) Underground structure having slab beam with enhanced bearing power against earth pressure and construction methods of the same
JP2000352296A (en) Method o constructing passage just under underground structure
JP2009121114A (en) Construction bearing structure, method of constructing underground construction, and method of replacing bearing of foundation load
JP2006328716A (en) Underpinning structure and method for existing structure, and method for constructing new structure near existing structure
JP2010126900A (en) Construction method for mounting base-isolating device
JP5215030B2 (en) Structure
JP4958044B2 (en) Installation structure and installation method for shield tunnel approach
JP4407716B2 (en) Construction method of earth retaining wall
JP5169638B2 (en) Construction method of underground structure
KR20050113450A (en) Downward reinforced-concrete underground structure using temporary assistant columns
JP2007162266A (en) Two-step earth retaining wall and its construction method
JP5375549B2 (en) How to construct a retaining wall
JP2010059622A (en) Underground structure and method for constructing the same
JP4833089B2 (en) Water stop device for underground penetrating body and construction method of underground penetrating body using the same
JP2008303587A (en) Top-down construction method for base-isolated building
JP2017197910A (en) Method for constructing retaining wall structure and retaining wall structure
JP2009102804A (en) Earth retaining construction method
KR20210098162A (en) Under ground structure using column steel pipe wall and construction method thereof
JP4867732B2 (en) Soil cement column wall and core material embedded in the soil cement column wall
JP5439918B2 (en) Pier foundation structure and construction method