JP2009274935A - Method for heating glass, method for manufacturing crystallized glass using the same and method for sealing optical component - Google Patents
Method for heating glass, method for manufacturing crystallized glass using the same and method for sealing optical component Download PDFInfo
- Publication number
- JP2009274935A JP2009274935A JP2008129501A JP2008129501A JP2009274935A JP 2009274935 A JP2009274935 A JP 2009274935A JP 2008129501 A JP2008129501 A JP 2008129501A JP 2008129501 A JP2008129501 A JP 2008129501A JP 2009274935 A JP2009274935 A JP 2009274935A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- heating
- optical component
- infrared lamp
- heating method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000010438 heat treatment Methods 0.000 title claims abstract description 33
- 230000003287 optical effect Effects 0.000 title claims description 14
- 238000007789 sealing Methods 0.000 title claims description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000013078 crystal Substances 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims description 10
- 229910052736 halogen Inorganic materials 0.000 claims description 9
- 150000002367 halogens Chemical class 0.000 claims description 9
- 229910001428 transition metal ion Inorganic materials 0.000 claims description 9
- -1 niobium ion Chemical class 0.000 claims description 7
- 239000005394 sealing glass Substances 0.000 claims description 6
- 229910010707 LiFePO 4 Inorganic materials 0.000 claims description 5
- 229910012425 Li3Fe2 (PO4)3 Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- 229910001456 vanadium ion Inorganic materials 0.000 claims description 3
- LCKIEQZJEYYRIY-UHFFFAOYSA-N Titanium ion Chemical compound [Ti+4] LCKIEQZJEYYRIY-UHFFFAOYSA-N 0.000 claims 1
- GBNDTYKAOXLLID-UHFFFAOYSA-N zirconium(4+) ion Chemical compound [Zr+4] GBNDTYKAOXLLID-UHFFFAOYSA-N 0.000 claims 1
- 230000008033 biological extinction Effects 0.000 abstract description 3
- 238000002425 crystallisation Methods 0.000 description 6
- 230000008025 crystallization Effects 0.000 description 6
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000002233 thin-film X-ray diffraction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- 239000007774 positive electrode material Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
【課題】ガラスに対して、短時間で効率よく、かつ大面積領域に加熱処理を行うことが可能であり、それにより、例えば結晶性ガラス中に結晶を容易に大面積領域に析出させることが可能なガラスの加熱方法を提供する。
【解決手段】500〜2500nmのいずれかの波長における吸光係数が1.0cm−1以上であるガラスに、近赤外線ランプを用いて波長500〜2500nmの範囲に発光ピークを有する光を照射することを特徴とするガラスの加熱方法。
【選択図】図1It is possible to perform heat treatment on a glass in a large area with high efficiency in a short time, whereby crystals can be easily precipitated in a large area, for example, in crystalline glass. A possible glass heating method is provided.
A glass having an extinction coefficient of 1.0 cm −1 or more at any wavelength of 500 to 2500 nm is irradiated with light having an emission peak in a wavelength range of 500 to 2500 nm using a near infrared lamp. The heating method of the glass characterized.
[Selection] Figure 1
Description
本発明は、ガラスの加熱方法、さらには、当該ガラスの加熱方法を用いた結晶化ガラスの製造方法および光部品の封着方法に関する。より詳細には、本発明は、特にイオン伝導性材料に好適な結晶化ガラスの製造方法および光部品用封着ガラスを用いた光部品の封着方法等に好適なガラスの加熱方法に関する。 The present invention relates to a method for heating glass, and further to a method for producing crystallized glass and a method for sealing optical components using the glass heating method. More particularly, the present invention relates to a glass heating method suitable for a method for producing crystallized glass particularly suitable for an ion conductive material and a method for sealing an optical component using a sealing glass for optical components.
従来、ガラスを結晶化させたり、封着用途等でガラスを軟化させたりするためには、電気炉等を用いてガラス試料を全体的に加熱する方法が一般的に行われている。しかしながら、この方法では、昇降温に時間がかかる、炉壁等の断熱構造物におけるエネルギーロスが大きい、装置が大きくなる等の問題があった。 Conventionally, in order to crystallize glass or soften glass for sealing or the like, a method of generally heating a glass sample using an electric furnace or the like is generally performed. However, this method has problems that it takes time to raise and lower the temperature, the energy loss in the heat insulating structure such as the furnace wall is large, and the apparatus becomes large.
そこで、ガラス表面にレーザー光を照射することで、ガラスを直接加熱する方法が提案されている。この方法では、レーザー光によりガラスに対して局所的に高エネルギーを与えることができるため、必要部分を集中的に加熱し、ガラスの結晶化等を行うことが可能である(例えば、特許文献1参照)。
レーザー光はスポット径が小さく(例えば、5mm未満)、特許文献1に記載のように、ガラス中に線状あるいは面状のイオン導波路を設けるには適しているものの、ガラスを全体的に加熱するには長時間を要する。また、レーザー光は発信器内で誘導放出により増幅された後、出射されるため、印加する電力に対する光の変換効率が低い。したがって、比較的大面積領域でガラスを加熱し、結晶化させたり軟化させたりするには、レーザー光は不向きである。 Although the laser beam has a small spot diameter (for example, less than 5 mm) and is suitable for providing a linear or planar ion waveguide in glass as described in Patent Document 1, the glass is heated as a whole. It takes a long time to complete. Further, since the laser light is amplified by stimulated emission in the transmitter and then emitted, the light conversion efficiency with respect to the applied power is low. Therefore, laser light is not suitable for heating and crystallizing or softening glass in a relatively large area.
そこで、本発明は、ガラスに対して、短時間で効率よく、かつ大面積領域に加熱処理を行うことが可能であり、それにより、例えば結晶性ガラス中に結晶を容易に大面積領域に析出させることが可能なガラスの加熱方法を提供することを目的とする。 Therefore, the present invention can perform heat treatment on glass in a short time, efficiently and in a large area region, so that, for example, crystals are easily precipitated in a large area region in crystalline glass. An object of the present invention is to provide a glass heating method that can be heated.
本発明者等は、以上のような状況に鑑み鋭意検討した結果、レーザー光の代わりにハロゲンランプ等の近赤外線ランプを用いて結晶性ガラスの表面を加熱することにより、前記課題を解消できることを見出し、本発明として提案するものである。 As a result of intensive studies in view of the above situation, the present inventors have found that the above problem can be solved by heating the surface of the crystalline glass using a near infrared lamp such as a halogen lamp instead of a laser beam. It is a headline and is proposed as the present invention.
すなわち、本発明のガラスの加熱方法は、500〜2500nmのいずれかの波長における吸光係数が1.0cm−1以上であるガラスに、近赤外線ランプを用いて波長500〜2500nmの範囲に発光ピークを有する光を照射することを特徴とする。なお、「吸光係数」は、板状のガラス試料について分光光度計を用いて吸光度を測定し、(吸光度)/(試料の厚さ)により算出される。 That is, the glass heating method of the present invention has an emission peak in a wavelength range of 500 to 2500 nm using a near-infrared lamp on glass having an absorption coefficient of 1.0 cm −1 or more at any wavelength of 500 to 2500 nm. It is characterized by irradiating light having. The “absorption coefficient” is calculated from (absorbance) / (sample thickness) by measuring the absorbance of a plate-like glass sample using a spectrophotometer.
レーザー光の代わりにハロゲンランプ等の近赤外線ランプを用いてガラス表面を加熱することにより、短時間で効率よく、大面積領域でガラス表面を加熱することが可能となる。 By heating the glass surface using a near-infrared lamp such as a halogen lamp instead of laser light, the glass surface can be efficiently heated in a large area in a short time.
また、近赤外線ランプの照射対象であるガラスとして、500〜2500nmのいずれかの波長において、吸光係数が1.0cm−1以上のものであれば、近赤外線ランプの照射光エネルギーを効率よく吸収し、例えば結晶化等の反応が促進されやすい。 Moreover, as glass which is the object of irradiation of the near infrared lamp, if the absorption coefficient is 1.0 cm −1 or more at any wavelength of 500 to 2500 nm, the irradiation light energy of the near infrared lamp is efficiently absorbed. For example, a reaction such as crystallization is easily promoted.
第二に、本発明のガラスの加熱方法は、ガラスの表面において近赤外線ランプのスポット径を5mm以上とすることを特徴とする。 Second, the glass heating method of the present invention is characterized in that the spot diameter of the near-infrared lamp is 5 mm or more on the surface of the glass.
第三に、本発明のガラスの加熱方法は、近赤外線ランプがハロゲンランプであることを特徴とする。 Third, the glass heating method of the present invention is characterized in that the near-infrared lamp is a halogen lamp.
第四に、本発明のガラスの加熱方法は、ガラスが、500〜2500nmのいずれかの波長に吸収ピークを有する遷移金属イオンを含有することを特徴とする。 Fourth, the glass heating method of the present invention is characterized in that the glass contains a transition metal ion having an absorption peak at any wavelength of 500 to 2500 nm.
遷移金属イオンは幅広い波長域で光吸収を行うことができるため、照射するランプの光を効率よく熱エネルギーに変換することが可能であり、例えばガラスの結晶化を行う際にも反応を促進することが可能となる。 Since transition metal ions can absorb light in a wide wavelength range, it is possible to efficiently convert the light of the lamp to be irradiated into thermal energy, for example, when crystallization of glass is promoted. It becomes possible.
第五に、本発明のガラスの加熱方法は、遷移金属イオンが、チタンイオン、ジルコニウムイオン、バナジウムイオン、ニオブイオンから選択される少なくとも1種であることを特徴とする。
第六に、本発明の結晶化ガラスの製造方法は、前記いずれかに記載の方法を用いてガラスを加熱することにより結晶を析出させることを特徴とする。
本発明の結晶化ガラスの製造方法においては、加熱対象となる「ガラス」は「結晶性ガラス」である。目的とする結晶の結晶化温度付近まで結晶性ガラスを加熱し、結晶を析出させることにより結晶化ガラスを得ることができる。
第七に、本発明の結晶化ガラスは、前記方法により製造されたものである。
Fifth, the glass heating method of the present invention is characterized in that the transition metal ions are at least one selected from titanium ions, zirconium ions, vanadium ions, and niobium ions.
Sixth, the method for producing crystallized glass of the present invention is characterized in that crystals are precipitated by heating the glass using any one of the methods described above.
In the method for producing crystallized glass of the present invention, “glass” to be heated is “crystalline glass”. Crystallized glass can be obtained by heating the crystalline glass to near the crystallization temperature of the target crystal and precipitating the crystal.
Seventh, the crystallized glass of the present invention is produced by the above method.
第八に、本発明の結晶化ガラスは、LiFePO4結晶、Li3Fe2(PO4)3結晶、またはLiVOPO4結晶を含有することを特徴とする。 Eighth, the crystallized glass of the present invention is characterized by containing LiFePO 4 crystal, Li 3 Fe 2 (PO 4 ) 3 crystal, or LiVOPO 4 crystal.
第九に、本発明の光部品の封着方法は、光部品用封着ガラスを用いた光部品の封着方法であって、前記いずれかに記載の加熱方法により光部品用封着ガラスを軟化させて、封着処理に供することを特徴とする。 Ninth, the optical component sealing method of the present invention is an optical component sealing method using an optical component sealing glass, wherein the optical component sealing glass is formed by the heating method described above. It is characterized by being softened and subjected to a sealing process.
本発明において用いられる近赤外線ランプとしては、波長500〜2500nmの範囲に発光ピークを有する光を照射するものであれば特に限定されない。具体例としては、ハロゲンランプが挙げられる。 The near-infrared lamp used in the present invention is not particularly limited as long as it emits light having an emission peak in the wavelength range of 500 to 2500 nm. A specific example is a halogen lamp.
近赤外線ランプの照射条件は、照射対象であるガラスの吸光係数や吸収ピーク波長によって異なり、結晶性ガラスの結晶化が十分に進行するよう適宜調整される。例えば、出力は300W以上であることが好ましく、照射時間は30〜300秒、さらには45〜120秒間であることが好ましい。 The irradiation conditions of the near-infrared lamp vary depending on the absorption coefficient and absorption peak wavelength of the glass to be irradiated, and are appropriately adjusted so that the crystallization of the crystalline glass proceeds sufficiently. For example, the output is preferably 300 W or more, and the irradiation time is preferably 30 to 300 seconds, more preferably 45 to 120 seconds.
ガラス表面における近赤外線ランプのスポット径は、好ましくは5mm以上、より好ましくは10mm以上、さらに好ましくは20mm以上である。近赤外線ランプのスポット径が5mm未満であると、ガラスの大面積領域を加熱するには長時間を要する傾向がある。一方、上限については特に限定されないが、スポット径が大きすぎると光の強度が低下するため、現実的には100mm以下である。 The spot diameter of the near-infrared lamp on the glass surface is preferably 5 mm or more, more preferably 10 mm or more, and further preferably 20 mm or more. When the spot diameter of the near-infrared lamp is less than 5 mm, it takes a long time to heat a large area of the glass. On the other hand, the upper limit is not particularly limited. However, if the spot diameter is too large, the light intensity is lowered, so that it is practically 100 mm or less.
なお、ガラス表面に近赤外線ランプの光を照射するにあたって、照射領域を調節するためにガラス表面に適宜マスクを設けてもよい。 In addition, when irradiating the light of a near-infrared lamp on the glass surface, you may provide a mask suitably in the glass surface in order to adjust an irradiation area | region.
本発明に係るガラスは、500〜2500nmのいずれかの波長において、吸光係数が1.0cm−1以上、好ましくは10.0cm−1以上、より好ましくは50.0cm−1以上、さらに好ましく100.0cm−1以上である。ガラスの波長500〜2500nmの範囲での吸光係数が1.0cm−1未満であると、近赤外線ランプを照射してもガラスの温度上昇が不十分となる。その結果、例えば、当該加熱方法を用いてガラスの結晶化を行う際に、目的とする結晶析出が困難となる傾向がある。 The glasses according to the invention, in any of the wavelengths of 500~2500Nm, absorption coefficient 1.0 cm -1 or more, preferably 10.0 cm -1 or more, more preferably 50.0 cm -1 or more, more preferably 100. 0 cm −1 or more. When the glass has a light absorption coefficient of less than 1.0 cm −1 in the wavelength range of 500 to 2500 nm, the temperature rise of the glass becomes insufficient even when the near infrared lamp is irradiated. As a result, for example, when crystallization of glass is performed using the heating method, target crystal precipitation tends to be difficult.
ガラスとしては、500〜2500nmのいずれかの波長に吸収ピークを持つ遷移金属イオンを含有することが好ましい。このような遷移金属イオンとしては、チタンイオン、ジルコニウムイオン、バナジウムイオン、ニオブイオンなどが挙げられる。これらは2種以上含有されていても構わない。なお、本発明において「ガラス」とは、既述の「結晶性ガラス」のみならず、「非結晶性ガラス」、「結晶化ガラス」等ガラス全般を対象とする。 The glass preferably contains a transition metal ion having an absorption peak at any wavelength of 500 to 2500 nm. Examples of such transition metal ions include titanium ions, zirconium ions, vanadium ions, niobium ions, and the like. Two or more of these may be contained. In the present invention, “glass” covers not only the above-mentioned “crystalline glass” but also general glass such as “amorphous glass” and “crystallized glass”.
これらの遷移金属イオンの含有量は、ガラス中において、酸化物換算で好ましくは0.1モル%以上、より好ましくは1モル%以上、さらに好ましくは3モル%以上である。上限については特に限定されないが、遷移金属イオンの含有量が多すぎると、例えば電池の正極材料として用いた場合、電気伝導度が低下するおそれがあることから、25モル%以下に制限することが好ましい。 The content of these transition metal ions is preferably 0.1 mol% or more, more preferably 1 mol% or more, and further preferably 3 mol% or more in terms of oxide in the glass. The upper limit is not particularly limited, but if the content of transition metal ions is too large, for example, when used as a positive electrode material of a battery, there is a possibility that the electrical conductivity may decrease, so it may be limited to 25 mol% or less. preferable.
本発明の加熱方法により結晶性ガラスを加熱することにより得られる結晶化ガラスとしては、例えば、LiFePO4結晶、Li3Fe2(PO4)3結晶、またはLiVOPO4結晶を含有する結晶化ガラスが挙げられる。これらはリチウムイオン電池正極材料として好適である。 Examples of the crystallized glass obtained by heating the crystalline glass by the heating method of the present invention include a crystallized glass containing LiFePO 4 crystal, Li 3 Fe 2 (PO 4 ) 3 crystal, or LiVOPO 4 crystal. Can be mentioned. These are suitable as lithium ion battery positive electrode materials.
本発明のガラスの加熱方法は、例えば、光部品用封着ガラスを用いた光部品の封着方法等に好適である。 The glass heating method of the present invention is suitable for, for example, an optical component sealing method using an optical component sealing glass.
以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.
(実施例1)
Li2CO3、Fe(II)C2O4・2H2O、Nb2O5、NH4H2PO4を原料とし、モル比で、26Li2O−43FeO−26P2O5−5Nb2O5となるように原料粉末を調合し、窒素雰囲気中にて300℃で10時間仮焼成してアンモニア、水等を除去した後に、1200℃にて15分間一酸化炭素雰囲気中にて溶融を行った。その後、プレス急冷することによりガラス試料(結晶性ガラス)を作製した。得られたガラスの光吸収のピーク波長は約1000nmであり、そのときの吸光係数は140cm−1であった。なお、吸光係数は分光光度計(株式会社島津製作所製UV−3100)を用いて算出した。
Example 1
Using Li 2 CO 3 , Fe (II) C 2 O 4 .2H 2 O, Nb 2 O 5 , NH 4 H 2 PO 4 as raw materials, the molar ratio is 26Li 2 O-43FeO-26P 2 O 5 -5Nb 2 The raw material powder was prepared so as to be O 5 , calcined at 300 ° C. for 10 hours in a nitrogen atmosphere to remove ammonia, water, etc., and then melted in a carbon monoxide atmosphere at 1200 ° C. for 15 minutes. went. Then, the glass sample (crystalline glass) was produced by carrying out press quenching. The peak wavelength of light absorption of the obtained glass was about 1000 nm, and the extinction coefficient at that time was 140 cm −1 . The extinction coefficient was calculated using a spectrophotometer (UV-3100 manufactured by Shimadzu Corporation).
得られたガラス試料を、1000nm付近に発光ピークを有するハロゲンランプの焦点付近に配置し、出力1.2kWで60秒間光照射した。このとき、ガラス試料表面におけるハロゲンランプのスポット径は30mmであった。光照射後のガラス試料の薄膜X線回折パターンを図1に示す。 The obtained glass sample was placed near the focal point of a halogen lamp having an emission peak near 1000 nm, and irradiated with light at an output of 1.2 kW for 60 seconds. At this time, the spot diameter of the halogen lamp on the glass sample surface was 30 mm. The thin film X-ray diffraction pattern of the glass sample after light irradiation is shown in FIG.
図1からリン酸鉄リチウム(LiFePO4)結晶が析出していることが確認できた。 From FIG. 1, it was confirmed that lithium iron phosphate (LiFePO 4 ) crystals were precipitated.
(実施例2)
実施例1で得られたガラス試料を平均粒径4μmになるように粉砕した。得られたガラス粉末をハロゲンランプの焦点付近に配置し、出力1.5kWで60秒間照射した。このとき、ガラス試料表面におけるハロゲンランプのスポット径は30mmであった。光照射後のガラス試料の粉末X線回折パターンを図2に示す。
(Example 2)
The glass sample obtained in Example 1 was pulverized so as to have an average particle size of 4 μm. The obtained glass powder was placed near the focal point of a halogen lamp and irradiated at an output of 1.5 kW for 60 seconds. At this time, the spot diameter of the halogen lamp on the glass sample surface was 30 mm. The powder X-ray diffraction pattern of the glass sample after light irradiation is shown in FIG.
図2からリン酸鉄リチウム(Li3Fe2(PO4)3)結晶が析出していることが確認できた。 From FIG. 2, it was confirmed that lithium iron phosphate (Li 3 Fe 2 (PO 4 ) 3 ) crystals were precipitated.
実施例1および2ともに、短時間の光照射で、結晶性ガラスの比較的大面積領域の結晶化を行うことができた。 In both Examples 1 and 2, it was possible to crystallize a relatively large area of crystalline glass by light irradiation for a short time.
(比較例1)
実施例1で得られたガラス試料を、1000nm付近に発光ピークを有するYAGレーザーにて、出力70〜100mWで25μm/sの走査速度で照射した。このとき、ガラス試料表面におけるYAGレーザーのスポット径は0.1mmであった。光照射後のガラス試料の薄膜X線回折パターンによると、LiFePO4結晶が析出していることが確認できたが、実施例1で結晶化を行った領域の1/10の領域を結晶化するために8時間要した。
(Comparative Example 1)
The glass sample obtained in Example 1 was irradiated with a YAG laser having an emission peak near 1000 nm at an output of 70 to 100 mW at a scanning speed of 25 μm / s. At this time, the spot diameter of the YAG laser on the glass sample surface was 0.1 mm. According to the thin film X-ray diffraction pattern of the glass sample after the light irradiation, it was confirmed that LiFePO 4 crystals were precipitated, but 1/10 of the region crystallized in Example 1 was crystallized. It took 8 hours.
本発明は、リチウムイオン二次電池用途、超伝導用途、磁性用途に使用される結晶化ガラスの製造や有機ELなどのディスプレイのパネル封止などに好適である。 The present invention is suitable for the production of crystallized glass used for lithium ion secondary battery applications, superconducting applications, magnetic applications, and panel sealing of displays such as organic EL.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008129501A JP2009274935A (en) | 2008-05-16 | 2008-05-16 | Method for heating glass, method for manufacturing crystallized glass using the same and method for sealing optical component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008129501A JP2009274935A (en) | 2008-05-16 | 2008-05-16 | Method for heating glass, method for manufacturing crystallized glass using the same and method for sealing optical component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009274935A true JP2009274935A (en) | 2009-11-26 |
Family
ID=41440698
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008129501A Pending JP2009274935A (en) | 2008-05-16 | 2008-05-16 | Method for heating glass, method for manufacturing crystallized glass using the same and method for sealing optical component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009274935A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150086A (en) * | 2008-12-25 | 2010-07-08 | Tohoku Univ | Method of producing crystallized glass |
JP2011241133A (en) * | 2010-05-21 | 2011-12-01 | Hitachi Ltd | Crystallized glass and method for producing the same |
JP2012134409A (en) * | 2010-12-24 | 2012-07-12 | Hitachi Ltd | Thermoelectric conversion material |
JP2020136211A (en) * | 2019-02-25 | 2020-08-31 | 国立大学法人長岡技術科学大学 | How to manufacture a secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146470A (en) * | 1993-09-20 | 1995-06-06 | Semiconductor Energy Lab Co Ltd | Heat treatment method |
JPH10310452A (en) * | 1997-03-03 | 1998-11-24 | Taiyo Yuden Co Ltd | Structurally gradient element and its production |
JPH11354076A (en) * | 1998-06-05 | 1999-12-24 | Toto Ltd | Discharge lamp and its sealing method |
JP2004523917A (en) * | 2001-03-09 | 2004-08-05 | コーニング・インコーポレーテッド | Laser-induced crystals of transparent glass ceramic |
JP2008047412A (en) * | 2006-08-15 | 2008-02-28 | Nagaoka Univ Of Technology | Precursor glass for positive electrode material of lithium secondary battery, positive electrode material, and production method thereof |
-
2008
- 2008-05-16 JP JP2008129501A patent/JP2009274935A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146470A (en) * | 1993-09-20 | 1995-06-06 | Semiconductor Energy Lab Co Ltd | Heat treatment method |
JPH10310452A (en) * | 1997-03-03 | 1998-11-24 | Taiyo Yuden Co Ltd | Structurally gradient element and its production |
JPH11354076A (en) * | 1998-06-05 | 1999-12-24 | Toto Ltd | Discharge lamp and its sealing method |
JP2004523917A (en) * | 2001-03-09 | 2004-08-05 | コーニング・インコーポレーテッド | Laser-induced crystals of transparent glass ceramic |
JP2008047412A (en) * | 2006-08-15 | 2008-02-28 | Nagaoka Univ Of Technology | Precursor glass for positive electrode material of lithium secondary battery, positive electrode material, and production method thereof |
Non-Patent Citations (1)
Title |
---|
JPN6012057165; Keita Hirose et al.: 'Glass-ceramics with LiFePO4 crystals and crystal line patterning in glass by YAG laser irradiation' SOLID STATE IONICS Vol.178, 2007, p801-807 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010150086A (en) * | 2008-12-25 | 2010-07-08 | Tohoku Univ | Method of producing crystallized glass |
JP2011241133A (en) * | 2010-05-21 | 2011-12-01 | Hitachi Ltd | Crystallized glass and method for producing the same |
JP2012134409A (en) * | 2010-12-24 | 2012-07-12 | Hitachi Ltd | Thermoelectric conversion material |
KR101357401B1 (en) | 2010-12-24 | 2014-02-03 | 가부시키가이샤 히타치세이사쿠쇼 | Thermoelectric conversion material |
JP2020136211A (en) * | 2019-02-25 | 2020-08-31 | 国立大学法人長岡技術科学大学 | How to manufacture a secondary battery |
JP7345748B2 (en) | 2019-02-25 | 2023-09-19 | 国立大学法人長岡技術科学大学 | Manufacturing method for secondary batteries |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8201421B2 (en) | Optical component and method for its production | |
You et al. | Ultrafast laser-annealing of perovskite films for efficient perovskite solar cells | |
Qiu et al. | Space-selective precipitation of metal nanoparticles inside glasses | |
TWI477473B (en) | Thermoelectric conversion material | |
JP5510036B2 (en) | Active material, method for producing active material, and lithium ion secondary battery | |
Hirose et al. | Glass–ceramics with LiFePO4 crystals and crystal line patterning in glass by YAG laser irradiation | |
JP6385452B2 (en) | Method for producing solid electrolyte powder | |
CN1706028A (en) | Method of producing thin-film semiconductor and production device | |
JP2009274935A (en) | Method for heating glass, method for manufacturing crystallized glass using the same and method for sealing optical component | |
US9285506B2 (en) | ITO film, ITO powder used in manufacturing same ITO film, manufacturing method of ITO powder, and manufacturing method of ITO film | |
CN1326790C (en) | Rare earth ion doped YAG micro crystalline glass and its preparation method | |
JP5305431B2 (en) | Impurity introduction method for semiconductors used in photovoltaic power generation | |
JP2011241133A (en) | Crystallized glass and method for producing the same | |
Park et al. | Light–Material Interactions Using Laser and Flash Sources for Energy Conversion and Storage Applications | |
JP4129528B2 (en) | Thin film containing β-FeSi2 crystal particles and light emitting material using the same | |
CN110540362B (en) | Perovskite quantum dot doped glass with reversible luminescence and preparation method thereof | |
JP2006512610A (en) | Improved crystal resistance to "light damage" | |
JP2698363B2 (en) | Manufacturing method of polycrystalline silicon thin film | |
JP4158926B2 (en) | Method for producing β-FeSi2 using laser annealing | |
CN111118607A (en) | Hetero-anion nonlinear optical material and preparation method and application thereof | |
Losin et al. | Effect of femtosecond irradiation on the luminescence of CsPbI3 perovskite crystals in borogermanate glass | |
CN114806567B (en) | Rare earth ion doped fluorescent powder based on laser excitation and crystal preparation method | |
JP2876527B1 (en) | Amorphous substance for wavelength conversion and method for producing the same | |
Mirza et al. | Laser Annealing of Anodic TiO2 Nanotubes: Explosive Solid Phase Crystallization into Anatase | |
JP2006222047A (en) | Crystallized solid electrolyte and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110516 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121031 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121113 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131015 |