[go: up one dir, main page]

JP2009274464A - Frictional resistance-reduced ship, and method for operation thereof - Google Patents

Frictional resistance-reduced ship, and method for operation thereof Download PDF

Info

Publication number
JP2009274464A
JP2009274464A JP2008110813A JP2008110813A JP2009274464A JP 2009274464 A JP2009274464 A JP 2009274464A JP 2008110813 A JP2008110813 A JP 2008110813A JP 2008110813 A JP2008110813 A JP 2008110813A JP 2009274464 A JP2009274464 A JP 2009274464A
Authority
JP
Japan
Prior art keywords
ship
duct
frictional resistance
wing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008110813A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takahashi
義明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008110813A priority Critical patent/JP2009274464A/en
Publication of JP2009274464A publication Critical patent/JP2009274464A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frictional resistance-reduced ship reduced in frictional resistance and improved in fuel economy. <P>SOLUTION: A duct 3 is demarcated by partition walls 4 into a plurality of separated chambers 5 along the length. Pipes 6 for supplying air to the respective chambers 5 penetrate the partition walls 4 and introduced into the chambers 5. Air is supplied from an assist compressor 7 into the pipes 6. An opening 8 is formed at an outside surface of each chamber 5, and a microbubble generating member 10 is installed on the opening 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微細気泡(マイクロバブル)を船体の外表面に供給して、船体と水との間の摩擦抵抗を低減した摩擦抵抗低減船およびその運転方法に関する。   The present invention relates to a frictional resistance-reducing ship in which fine bubbles (microbubbles) are supplied to the outer surface of a hull to reduce the frictional resistance between the hull and water and a method for operating the same.

航行中の船体の表面に気泡を供給することで、水に対する船体の摩擦抵抗が小さくなることが従来から知られている。   Conventionally, it is known that the frictional resistance of a hull against water is reduced by supplying bubbles to the surface of the hull during navigation.

船底(外側面)に設けた気泡発生部まで空気を送り込む手段として、船体の外側面に沿ってパイプを取り付け、このパイプによって空気を供給する手段が、特許文献1および特許文献2に提案されている。   Patent Document 1 and Patent Document 2 propose means for attaching air along the outer surface of the hull and supplying air through the pipe as means for sending air to the bubble generating portion provided on the ship bottom (outer surface). Yes.

摩擦抵抗を効果的に低減するには長時間気泡が船体表面に留まることが好ましく、そのためには気泡の径はできるだけ小さいことが要求される。このような微小気泡(マイクロバブル)はケルビン−ヘルムホルツ不安定性現象(Kelvin-Helmholtz-Instability)によって発生することが特許文献3に記載されている。   In order to effectively reduce the frictional resistance, it is preferable that the bubbles stay on the hull surface for a long time, and for this purpose, the diameter of the bubbles is required to be as small as possible. Patent Document 3 describes that such microbubbles are generated by a Kelvin-Helmholtz-Instability phenomenon.

即ち、特許文献3では船底の外板(没水表面)に凹部を設け、この凹部に空気を供給する気体導入管を接続するとともに、凹部の上流側に楔状の負圧形成部を取り付け、凹部内にケルビン−ヘルムホルツ不安定性現象を発生させて微小気泡(マイクロバブル)を作り出すようにしている。   That is, in Patent Document 3, a concave portion is provided on the outer plate (submerged surface) of the ship bottom, a gas introduction pipe for supplying air is connected to the concave portion, and a wedge-shaped negative pressure forming portion is attached upstream of the concave portion. A Kelvin-Helmholtz instability phenomenon is generated inside to create microbubbles.

また、特許文献4では微小気泡(マイクロバブル)を作り出す手段として、特許文献3の楔状の負圧形成部の代わりに、ウイングを用いる技術が開示されている。   Patent Document 4 discloses a technique that uses wings instead of the wedge-shaped negative pressure forming part of Patent Document 3 as means for creating microbubbles.

特開平11−180380号公報JP-A-11-180380 特開2000−296796号公報JP 2000-296696 A 特開2002−2582号公報Japanese Patent Laid-Open No. 2002-2582 特許第4070385号公報Japanese Patent No. 4070385

特許文献1〜4の何れも、船底(外側面)を気泡の発生箇所として選定している。気泡の粒径が小さければ、浮力も小さいため船体の側面で発生させても船尾に到達するまでの時間は十分に側面に留まらせることができるが、特許文献1,2に開示される技術では、微細気泡を大量に発生されることができない。   In all of Patent Documents 1 to 4, the ship bottom (outer surface) is selected as a location where bubbles are generated. If the bubble particle size is small, the buoyancy is also small, so even if it is generated on the side of the hull, the time to reach the stern can be kept sufficiently on the side, but in the techniques disclosed in Patent Documents 1 and 2, Can not generate a lot of fine bubbles.

一方、特許文献3,4に開示される技術によれば船体の側面でも、ある程度留まることができる微細気泡(マイクロバブル)を発生させることが可能である。しかしながら、特許文献3,4に開示される技術は船体自体の形状も特定の形状にする必要があり、この特許文献3,4に開示される技術を特許文献1,2に開示される技術に組み合わせることはできない。   On the other hand, according to the techniques disclosed in Patent Documents 3 and 4, it is possible to generate fine bubbles (microbubbles) that can stay to some extent even on the side of the hull. However, the techniques disclosed in Patent Documents 3 and 4 require that the shape of the hull itself also be a specific shape. Cannot be combined.

上記課題を解決するため本発明に係る摩擦抵抗低減船は、船体の外側面から船底に沿って断面チャネル状の樋部材を取り付けて空気供給用のダクトとし、このダクトの外側面に開口部を形成し、この開口部にプレートとウイングとからなる微細気泡発生部材を取り付けた摩擦抵抗低減船であって、前記プレートのウイングと対向する箇所には前記ダクト内と外部とを連通する窓部が形成され、前記ウイングは船体の外側面と平行に配置され、更に前記ウイングの前端縁と前記プレートとの間隔よりも前記ウイングの後端縁と前記プレートとの間隔を大きくすることで、船が航行する際に前記ウイングと窓部の間に負圧を発生させるようにした。
ここで、微細気泡とは数mm以下、好ましくは1mm以下の粒径の気泡を指す。
In order to solve the above problems, a frictional resistance reduction ship according to the present invention is a duct for supplying air by attaching a dredging member having a channel cross section along the ship bottom from the outer surface of the hull, and an opening is formed on the outer surface of the duct. A frictional resistance reduction ship formed and attached to this opening with a fine bubble generating member composed of a plate and a wing, and a window portion that communicates the inside and outside of the duct is provided at a location facing the wing of the plate. And the wing is arranged in parallel with the outer surface of the hull, and further, the distance between the rear end edge of the wing and the plate is made larger than the distance between the front end edge of the wing and the plate. When sailing, a negative pressure was generated between the wing and the window.
Here, the fine bubbles refer to bubbles having a particle size of several mm or less, preferably 1 mm or less.

前記プレートの構造として、船の進行方向を基準として、上流側となる部分に前記窓部とダクト内とを連通する溝部を形成したものが考えられる。この溝はプレートに取付け用のボルト穴が形成されている場合は、これを避けた位置に形成する。   As the structure of the plate, it is conceivable that a groove portion that communicates the window portion and the inside of the duct is formed in the upstream portion with respect to the traveling direction of the ship. If the mounting bolt hole is formed in the plate, this groove is formed at a position avoiding this.

また、上記の摩擦抵抗低減船の運転方法としては、気液境界面を喫水面よりも更に下方の微細気泡発生部まで押し下げるために、航行中はアシストコンプレッサを継続して使用する。   Further, as an operation method of the above-described ship for reducing frictional resistance, the assist compressor is continuously used during navigation in order to push down the gas-liquid boundary surface to the fine bubble generating portion further below the draft surface.

因みに、船が走り出すと気液境界面はそれにしたがって下がり、下がった界面から微細気泡発生部の上部までの水柱を押し込めるだけの空気の圧力が有れば足りるため、それほど大きな容量のコンプレッサは必要でなく、例えば、主機関の出力が10,000kwの船の場合はコンプレッサの容量は10〜20kwで充分である。   Incidentally, when the ship starts running, the gas-liquid interface will drop accordingly, and it is sufficient to have enough air pressure to push the water column from the lowered interface to the top of the microbubble generator, so a compressor with such a large capacity is necessary. For example, in the case of a ship with a main engine output of 10,000 kw, a compressor capacity of 10 to 20 kw is sufficient.

本発明に係る摩擦抵抗低減船によれば、船体の外側面に微細気泡を供給することができ、しかも長時間微細気泡が船体の外側面に留まるため、大幅に摩擦抵抗が低減され、燃費が向上する。   According to the ship with reduced frictional resistance according to the present invention, fine bubbles can be supplied to the outer surface of the hull, and the fine bubbles remain on the outer surface of the hull for a long time. improves.

また本発明によれば船体に穴をあける必要がないので、取り付け工事が短期間のうちに終了する。   Further, according to the present invention, since it is not necessary to make a hole in the hull, the installation work is completed within a short period of time.

また、微細気泡発生部材の構造として、気液不安定界面を形成する窓部を有するプレートと、このプレートに取り付けられる負圧発生用のウイングとからなるものを採用した場合に、前記プレート自体に前記窓部とダクト内とを連通する溝部を形成すれば、プレートが船体に接する位置でプレートをダクトに取り付けることができるので、船体外側に張り出すダクト(微細気泡発生部材)の寸法を最小限に抑えることができ、更に抵抗を低減することができる。   In addition, when a plate having a window portion that forms a gas-liquid unstable interface and a wing for generating negative pressure attached to the plate is adopted as the structure of the fine bubble generating member, the plate itself By forming a groove that connects the window and the inside of the duct, the plate can be attached to the duct at a position where the plate is in contact with the hull. Therefore, the size of the duct (fine bubble generating member) that projects outside the hull is minimized. The resistance can be further reduced.

以下に本発明の実施例を添付図面を参照しつつ説明する。図1(a)及び(b)は本発明に係る摩擦抵抗低減船の側面図、図2は摩擦抵抗低減船の側面に取り付けたダクトの一部を示す図、図3は図2のA方向矢視図、図4は図3のB-B方向断面図、図5(a)は微細気泡(マイクロバブル)発生のメカニズムを説明した縦断面図、(b)は微細気泡(マイクロバブル)発生のメカニズムを説明した平断面図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 (a) and 1 (b) are side views of a frictional resistance reducing ship according to the present invention, FIG. 2 is a diagram showing a part of a duct attached to the side of the frictional resistance reducing ship, and FIG. 3 is a direction A in FIG. 4 is a cross-sectional view taken along the line B-B of FIG. 3, FIG. 5A is a vertical cross-sectional view illustrating the mechanism of generation of microbubbles, and FIG. 4B is a microbubble generation. It is the plane sectional view explaining the mechanism of.

本発明に係る摩擦抵抗低減船は船体の外側面1から船底2に沿って上下方向に空気供給用のダクト3を設けている。ダクト3の左右方向の端部はテーパー状とされ、航行時の抵抗が小さくなるようにしている。このテーパー状部分は別部材を用いてもよい。   The ship with reduced frictional resistance according to the present invention is provided with a duct 3 for supplying air in the vertical direction along the bottom 2 from the outer surface 1 of the hull. The end of the duct 3 in the left-right direction is tapered so that the resistance during navigation is reduced. Another member may be used for the tapered portion.

本実施例では、ダクト3自体は断面矩形状ではなく、断面チャネル状をなし、船体に取り付けられた状態で外側への張り出し量(H)を少なくした扁平なダクトとなるが、初めから断面矩形状のダクトを船体に取り付けてもよい。尚、図4に示した実施例の場合、張り出し量(H)は約40mmである。   In this embodiment, the duct 3 itself is not a rectangular section, but a channel section, and is a flat duct with a small amount of outward protrusion (H) attached to the hull. A shaped duct may be attached to the hull. In the case of the embodiment shown in FIG. 4, the overhang amount (H) is about 40 mm.

図1(a)に示す実施例では、ダクト3は1本であるが、(b)に示す実施例では前記ダクト3を2本連設している。それぞれのダクト3は隔壁4によって長さ方向に沿って独立した複数のチャンバー5…に区画され、各チャンバー5毎に空気を供給するための配管6…が隔壁4を貫通して各チャンバー5内に導入され、アシストコンプレッサ7から空気が配管6内に供給される。   In the embodiment shown in FIG. 1 (a), there is one duct 3, but in the embodiment shown in FIG. 1 (b), two ducts 3 are connected in series. Each duct 3 is partitioned into a plurality of independent chambers 5 along the length direction by partition walls 4, and pipes 6 for supplying air to each chamber 5 penetrate through the partition walls 4 and are in the chambers 5. The air is supplied into the pipe 6 from the assist compressor 7.

各チャンバー5の外側面には開口部8が形成され、この開口部8に微細気泡発生部材10が取り付けられている。微細気泡発生部材10の配置は図1(b)では千鳥状にして、微小気泡が均一に船体表面を覆うようにしている。また、実施例では1つのチャンバー5に複数の微細気泡発生部材10を取り付けているが、1つのチャンバー5に1つの微細気泡発生部材10を取り付けてもよい。   An opening 8 is formed on the outer surface of each chamber 5, and a fine bubble generating member 10 is attached to the opening 8. The arrangement of the fine bubble generating members 10 is staggered in FIG. 1B so that the fine bubbles uniformly cover the hull surface. In the embodiment, a plurality of fine bubble generating members 10 are attached to one chamber 5, but one fine bubble generating member 10 may be attached to one chamber 5.

微細気泡発生部材10はチャンバー5の外側面に形成した開口部8に嵌め付けられる長円形状(小判状)のプレート11と、このプレート11に連結部12を介して取り付けられる側面視ドルフィン状のウイング13とからなる。そして、前記プレート11のウイング13に対向する位置には前記ウイング13の外形形状と略等しい矩形状の窓部14が形成され、前記ウイング13の窓部14に対向する面13aは窓部14に向かって膨出した凸形状をなしている。   The fine bubble generating member 10 has an oval (oblong shape) plate 11 fitted into an opening 8 formed on the outer surface of the chamber 5, and a dolphin shape in side view attached to the plate 11 via a connecting portion 12. It consists of wing 13. A rectangular window portion 14 that is substantially equal to the outer shape of the wing 13 is formed at a position facing the wing 13 of the plate 11, and a surface 13 a that faces the window portion 14 of the wing 13 is formed on the window portion 14. Convex shape bulging toward.

またウイング13は船体の外側面1と平行、つまり対向する面13aが略垂直状態となるように取り付けられ、且つウイング13の前端縁とプレート11との間隔g1よりもウイング13の後端縁とプレート11との間隔g2を大きくしている。このような構成とすることで船が航行する際にウイング13と窓部14の間に負圧が発生する。   The wing 13 is mounted so that the outer surface 1 of the hull is parallel, that is, the opposite surface 13a is in a substantially vertical state, and the rear edge of the wing 13 is larger than the gap g1 between the front edge of the wing 13 and the plate 11. The gap g2 with the plate 11 is increased. With this configuration, a negative pressure is generated between the wing 13 and the window portion 14 when the ship navigates.

以上において、船が航行を開始すると、ダクト3を画成した複数のチャンバー5…のうち、船体の外側面1に取り付けられたチャンバー5内では、ウイング13によって形成される負圧によってチャンバー5内の気液境界面が下がる。そして窓部14の近傍まで気液境界面を更に下げるためにアシストコンプレッサ7によって気液境界面15を押し下げる。   In the above, when the ship starts sailing, the chamber 5 attached to the outer surface 1 of the hull among the plurality of chambers 5 defining the duct 3 is inside the chamber 5 due to the negative pressure formed by the wing 13. The gas-liquid interface is lowered. Then, the gas-liquid interface 15 is pushed down by the assist compressor 7 in order to further lower the gas-liquid interface to the vicinity of the window 14.

そして、航行速度が更に速くなるとウイング13によって形成される負圧が大きくなり、結果としてチャンバー内が外側(海水側)に比べて正圧になり気液界面15は水平状態から垂直状態に変化する。この状態を図5(a)、(b)で示している。   When the cruising speed is further increased, the negative pressure formed by the wing 13 increases, and as a result, the inside of the chamber becomes a positive pressure compared to the outside (seawater side), and the gas-liquid interface 15 changes from a horizontal state to a vertical state. . This state is shown in FIGS. 5 (a) and 5 (b).

気液境界面15が窓部14の近傍まで押し下げられた状態では、空気と水(海水)がこの部分では異なる速度で運動している。空気と水は密度が異なるため、図5(a)、(b)で示したように、微細気泡発生部材10の窓部14の内側空間において、ケルビン−ヘルムホルツ不安定性現象によって微細気泡(マイクロバブル)が発生し、この微細気泡が船体に沿って下流側に流れる。   In a state where the gas-liquid boundary surface 15 is pushed down to the vicinity of the window portion 14, air and water (seawater) are moving at different speeds in this portion. Since air and water have different densities, as shown in FIGS. 5A and 5B, microbubbles (microbubbles) are generated in the inner space of the window portion 14 of the microbubble generating member 10 due to the Kelvin-Helmholtz instability phenomenon. ) And the fine bubbles flow downstream along the hull.

一方、船底2まで回り込んだダクト3(チャンバー5)に取り付けられた微細気泡発生部材10にあっては、船体の外側面1に垂直方向に取り付けた微細気泡発生部材10と異なり、気液境界面は水平のままで、擾乱が生じることで微細気泡が発生する。   On the other hand, in the fine bubble generating member 10 attached to the duct 3 (chamber 5) that goes to the bottom 2 of the vessel, unlike the fine bubble generating member 10 attached to the outer surface 1 of the hull in the vertical direction, the gas-liquid boundary. The surface remains horizontal, and fine bubbles are generated when disturbance occurs.

図6は微細気泡発生部材10の別実施例を示すものであり、(a)は図4と同様の図、(b)は微細気泡(マイクロバブル)発生のメカニズムを説明した図5(c)と同様の図である。   FIG. 6 shows another embodiment of the fine bubble generating member 10, (a) is a view similar to FIG. 4, and (b) is a view explaining the mechanism of generating fine bubbles (microbubbles). FIG.

この実施例にあっては、船の進行方向(図において右方向)を基準として、前記プレート11の上流側となる部分に窓部14とチャンバー(ダクト)5内とを連通する溝部16を形成している。   In this embodiment, a groove portion 16 that connects the window portion 14 and the inside of the chamber (duct) 5 is formed in a portion on the upstream side of the plate 11 with reference to the traveling direction of the ship (right direction in the drawing). is doing.

溝部16はプレート11の厚みの範囲内でボルトの取付け穴と干渉しないように形成されるため、前記実施例に示したプレート11の厚みに変化はない。プレート11の厚みに変化はなく且つプレート11の厚み範囲内の溝16を介して窓部14内に空気を供給することができるので、プレート11の裏面側を船体に当たるまで突出量を抑えることがでる。この実施例の場合には、張り出し量(H)を約20mmにすることができ、前記実施例の半分の厚さで済む。   Since the groove portion 16 is formed within the thickness range of the plate 11 so as not to interfere with the bolt mounting hole, the thickness of the plate 11 shown in the above embodiment is not changed. Since there is no change in the thickness of the plate 11 and air can be supplied into the window portion 14 through the groove 16 within the thickness range of the plate 11, the amount of protrusion can be suppressed until the back side of the plate 11 hits the hull. Out. In the case of this embodiment, the overhang amount (H) can be about 20 mm, which is half the thickness of the above embodiment.

この実施例の場合には、図6(b)に示すように、窓部14の内側部にケルビン−ヘルムホルツ不安定性現象が発生し、これによって微細気泡(マイクロバブル)が生じる。   In the case of this embodiment, as shown in FIG. 6B, the Kelvin-Helmholtz instability phenomenon occurs in the inner portion of the window portion 14, thereby generating fine bubbles (microbubbles).

実施例にあっては船体の側面と底面の両方に微細気泡発生部材10を取り付けた例を示したが、側面のみに取り付け、底面については他の構造の微細気泡発生手段を設けてもよい。
また、ダクトを隔壁によって複数のチャンバーに区画したが、チャンバーに関しては省略してもよい。
In the embodiment, the example in which the fine bubble generating member 10 is attached to both the side surface and the bottom surface of the hull is shown. However, the fine bubble generating means having another structure may be provided on the bottom surface.
Further, although the duct is partitioned into a plurality of chambers by partition walls, the chambers may be omitted.

(a)及び(b)は本発明に係る摩擦抵抗低減船の側面図(A) And (b) is a side view of the frictional resistance reduction ship which concerns on this invention 摩擦抵抗低減船の側面に取り付けたダクトの一部を示す図A diagram showing a part of a duct attached to the side of a ship with reduced frictional resistance 図2のA方向矢視拡大図A direction enlarged view of FIG. 図3のB-B方向断面図BB sectional view of FIG. (a)は微細気泡(マイクロバブル)発生のメカニズムを説明した縦断面図、(b)は微細気泡(マイクロバブル)発生のメカニズムを説明した平断面図(A) is a longitudinal sectional view explaining the mechanism of generation of microbubbles (microbubbles), (b) is a plan sectional view explaining the mechanism of generation of microbubbles (microbubbles) (a)は別実施例を示す図4と同様の図、(b)は微細気泡(マイクロバブル)発生のメカニズムを説明した図5(b)と同様の図(A) is a diagram similar to FIG. 4 showing another embodiment, (b) is a diagram similar to FIG. 5 (b) illustrating the mechanism of the generation of microbubbles.

符号の説明Explanation of symbols

1…船体の外側面、2…船底、3…空気供給用のダクト、4…隔壁、5……チャンバー、6…配管、7…アシストコンプレッサ、8…開口部、10…微細気泡発生部材、11…プレート、12…連結部、13…ウイング、13a…ウイングの窓部に対抗する面、14…窓部、15…気液境界面、16…溝、H…ダクトの外側への張り出し量、g1…ウイングの前端縁とプレートとの間隔、g2…ウイングの後端縁とプレートとの間隔。
DESCRIPTION OF SYMBOLS 1 ... Outer surface of a hull, 2 ... Ship bottom, 3 ... Air supply duct, 4 ... Bulkhead, 5 ... Chamber, 6 ... Piping, 7 ... Assist compressor, 8 ... Opening part, 10 ... Fine bubble generating member, 11 ... Plate, 12 ... Connecting part, 13 ... Wing, 13a ... Surface facing the window part of wing, 14 ... Window part, 15 ... Air-liquid interface, 16 ... Groove, H ... Extension amount to outside of duct, g1 ... the distance between the front edge of the wing and the plate, g2 ... the distance between the rear edge of the wing and the plate.

Claims (3)

船体の外側面から船底に沿って断面チャネル状の樋部材を取り付けて空気供給用のダクトとし、このダクトの外側面に開口部を形成し、この開口部にプレートとウイングとからなる微細気泡発生部材を取り付けた摩擦抵抗低減船であって、
前記プレートのウイングと対向する箇所には前記ダクト内と外部とを連通する窓部が形成され、前記ウイングは船体の外側面と平行に配置され、更に前記ウイングの前端縁と前記プレートとの間隔よりも前記ウイングの後端縁と前記プレートとの間隔を大きくすることで船が航行する際に前記ウイングと窓部の間に負圧を発生させるようにしたことを特徴とする摩擦抵抗低減船。
A channel-shaped dredging member is attached from the outer surface of the hull along the bottom of the ship to form a duct for air supply. An opening is formed on the outer surface of the duct, and fine bubbles consisting of plates and wings are generated in the opening. It is a ship with reduced frictional resistance attached with a member,
A window portion that communicates the inside and outside of the duct is formed at a location facing the wing of the plate, the wing is disposed in parallel with the outer side surface of the hull, and the distance between the front edge of the wing and the plate A frictional resistance reduction ship characterized in that a negative pressure is generated between the wing and the window when the ship sails by increasing the distance between the rear edge of the wing and the plate. .
請求項1に記載の摩擦抵抗低減船において、船の進行方向を基準として、前記プレートの上流側となる部分に前記窓部とダクト内とを連通する溝部が形成されていることを特徴とする摩擦抵抗低減船。 The frictional resistance reduction ship according to claim 1, wherein a groove part that communicates the window part and the inside of the duct is formed in a part on the upstream side of the plate with reference to the traveling direction of the ship. A ship with reduced frictional resistance. 請求項1または請求項2に記載の摩擦抵抗低減船の運転方法であって、アシストコンプレッサによってダクト内の気液境界面を微細気泡発生部まで押し下げるとともに船の航行に伴って前記ウイングによって発生する負圧によりダクト内の空気を微細気泡として船体に沿って排出し、この状態を維持しつつ航行することを特徴とする摩擦抵抗低減船の運転方法。 3. A method for operating a frictional resistance-reducing ship according to claim 1 or 2, wherein the assist compressor compresses the gas-liquid interface in the duct to the fine bubble generating part and is generated by the wing as the ship sails. A method for operating a frictional resistance-reducing ship, characterized in that the air in the duct is discharged along the hull as fine bubbles by negative pressure, and sails while maintaining this state.
JP2008110813A 2008-04-17 2008-04-22 Frictional resistance-reduced ship, and method for operation thereof Pending JP2009274464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008110813A JP2009274464A (en) 2008-04-17 2008-04-22 Frictional resistance-reduced ship, and method for operation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008107490 2008-04-17
JP2008110813A JP2009274464A (en) 2008-04-17 2008-04-22 Frictional resistance-reduced ship, and method for operation thereof

Publications (1)

Publication Number Publication Date
JP2009274464A true JP2009274464A (en) 2009-11-26

Family

ID=41440297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008110813A Pending JP2009274464A (en) 2008-04-17 2008-04-22 Frictional resistance-reduced ship, and method for operation thereof

Country Status (1)

Country Link
JP (1) JP2009274464A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115105928A (en) * 2022-07-05 2022-09-27 南京大学 Promoting CO 2 Decarburization device and method for absorbing mass transfer rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115105928A (en) * 2022-07-05 2022-09-27 南京大学 Promoting CO 2 Decarburization device and method for absorbing mass transfer rate
CN115105928B (en) * 2022-07-05 2023-12-26 南京大学 Promoting CO 2 Decarbonization device and method for absorbing mass transfer rate

Similar Documents

Publication Publication Date Title
JP4183048B1 (en) Friction resistance reducing ship and its operating method
JP4212640B1 (en) Friction resistance reducing ship and its operating method
US9102383B2 (en) Air lubrication system of ship
CN104080694B (en) There is around propeller the air cavity of staged stern shape and use the boats and ships of air lubrication mode
JP5705486B2 (en) Ship air lubrication system
JP2009274464A (en) Frictional resistance-reduced ship, and method for operation thereof
JP2002002582A (en) Friction drag reduction ship
JP2001106171A (en) Friction resistance reducing ship and method for reducing frictional resistance of hull
JP2011088515A (en) Frictional resistance reducing ship
JP2001106173A (en) Friction drag reduction ship
JP2010023765A (en) Ship with reduced friction resistance and operating method therefor
JP2010115942A (en) Frictional resistance reduced vessel and its operation method
JPH03246188A (en) Marine vessel with micro air bubble generating mechanism
JP3121607U (en) Practical microbubble generator using ship speed
JP2001106172A (en) Friction drag reduction ship
JP2002145171A (en) Frictional resistance reduced type vessel
JP2019123282A (en) Bubble generation device
JP2000203485A (en) Friction drag reduction ship
JPH09240571A (en) Ship friction reduction device
JP2023132401A (en) Friction resistance reduction system, navigating body, and friction resistance reduction method for navigating body
WO2001066410A1 (en) Frictional resistance reducing method, and ship with reduced frictional resistance
JP2001341690A (en) Friction drag reduction ship
JP2002002583A (en) Method of reducing frictional resistance of hull and ship with reduced frictional resistance
JP2012051394A (en) Frictional resistance-reduced ship and method for operating the same
JP2002019689A (en) Friction drag reduction ship