[go: up one dir, main page]

JP2009270834A - Sample shape measuring method, holding device and shape measuring device - Google Patents

Sample shape measuring method, holding device and shape measuring device Download PDF

Info

Publication number
JP2009270834A
JP2009270834A JP2008118938A JP2008118938A JP2009270834A JP 2009270834 A JP2009270834 A JP 2009270834A JP 2008118938 A JP2008118938 A JP 2008118938A JP 2008118938 A JP2008118938 A JP 2008118938A JP 2009270834 A JP2009270834 A JP 2009270834A
Authority
JP
Japan
Prior art keywords
sample
vapor pressure
shape
temperature
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008118938A
Other languages
Japanese (ja)
Inventor
Nobuo Kawasaki
暢夫 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008118938A priority Critical patent/JP2009270834A/en
Publication of JP2009270834A publication Critical patent/JP2009270834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple measuring method of the shape of a sample for rapidly changing the temperature of the sample to a desired temperature with favorable temperature distribution and rapidly and accurately determining the sample of the sample, a holding device and a shape determination device. <P>SOLUTION: The method measures the shape of a sample 90 using an interferometer 40, and includes the steps of: providing a housing unit 25 for housing a low vapor pressure fluid 253 in the inside of a casing 21 made of an airtight material; placing the sample 90 on a light path OP of a measuring light emitted form a light source of the interferometer 40 with a part thereof immersed in the low vapor pressure fluid 253; sealing the inside of the case 21 and reducing the pressure therein; acquiring interference data by emitting the measuring light from the light source to a part 91 of the sample 90 which is not immersed in the low vapor pressure fluid 253; and determining the shape of the sample 90 based on the interference data. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、試料の形状を測定する技術に関し、具体的には干渉計を用い試料の形状を測定する測定方法に関する。   The present invention relates to a technique for measuring the shape of a sample, and more specifically to a measurement method for measuring the shape of a sample using an interferometer.

従来、試料の形状やその変化を精密に測定するために、干渉計を用いた系が使用されているが、干渉計の光路に存在する空気によるゆらぎ(空気ゆらぎ)が、測定精度の低下の原因になっている。そこで、高い測定精度が要求される場合には、真空チャンバ内に試料及び干渉計が配置された測定装置が使用されている。   Conventionally, a system using an interferometer has been used to precisely measure the shape of the sample and its changes. However, fluctuations caused by air in the optical path of the interferometer (air fluctuations) can reduce the measurement accuracy. It is the cause. Therefore, when high measurement accuracy is required, a measurement apparatus in which a sample and an interferometer are arranged in a vacuum chamber is used.

しかし、かかる測定装置では、試料雰囲気の熱伝導速度が大気に比べて極めて小さいため、温度ならしに多大な時間を要し、試料の熱分布による測定誤差が生じやすい。   However, in such a measuring apparatus, since the heat conduction speed of the sample atmosphere is extremely smaller than that of the air, it takes a long time to adjust the temperature, and a measurement error due to the heat distribution of the sample is likely to occur.

そこで、特許文献1には、真空チャンバに隣接してワークストッカが配置された測定装置が開示されている。この測定装置によれば、試料がワークストッカで予め温度ならしされた後に真空チャンバ内に設置されるので、真空チャンバ内での温度ならしに費やされる時間を短縮できる。
特開平7−318308号公報
Therefore, Patent Document 1 discloses a measuring apparatus in which a work stocker is disposed adjacent to a vacuum chamber. According to this measuring apparatus, since the sample is set in the vacuum chamber after the temperature is adjusted in advance by the work stocker, the time spent for adjusting the temperature in the vacuum chamber can be shortened.
JP 7-318308 A

ところで、特開2005−89272号公報に開示される極低膨張ガラスセラミックス等の極低膨張材料は、その用途において高精度の寸法安定性を求められることが多く、材料内での熱膨張特性の均一性が問題となる場合がある。そこでこのような材料の熱膨張特性の分布を非破壊で測定する場合、材料(試料)の温度条件を変化させ、各々の温度条件における材料の形状を高精度に測定し、各々の温度条件の変化による材料の形状変化に基づいてその材料の膨張特性の分布を測定することができる。   By the way, extremely low expansion materials such as extremely low expansion glass ceramics disclosed in Japanese Patent Application Laid-Open No. 2005-89272 often require high-precision dimensional stability, and the thermal expansion characteristics within the material are often required. Uniformity may be a problem. Therefore, when measuring the distribution of thermal expansion characteristics of such materials nondestructively, the temperature conditions of the material (sample) are changed, the shape of the material under each temperature condition is measured with high accuracy, Based on the change in the shape of the material due to the change, the distribution of the expansion characteristics of the material can be measured.

しかし、前述した特許文献1に示される測定装置では、複数の温度条件で測定を行う場合、測定の度に試料を真空チャンバ及びワークストッカの間で移送する必要がある。ここで、各測定の際に試料を設置する位置が僅かでも相違すると、形状比較の精度が低下する。また、設置位置を正確に調節するためには、別途の制御装置が必要となり、装置が煩雑化する。   However, in the measurement apparatus disclosed in Patent Document 1 described above, when measurement is performed under a plurality of temperature conditions, it is necessary to transfer the sample between the vacuum chamber and the work stocker each time measurement is performed. Here, if the position where the sample is placed in each measurement is slightly different, the accuracy of the shape comparison is lowered. Further, in order to accurately adjust the installation position, a separate control device is required, which complicates the device.

本発明は、以上の実情に鑑みてなされたものであり、試料を目的温度へと迅速且つ温度分布良く到達し、試料の形状を迅速且つ正確に測定できる簡便な測定方法、保持装置及び形状測定装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and a simple measurement method, a holding device, and a shape measurement that can quickly and accurately measure the shape of a sample by quickly reaching the target temperature with a good temperature distribution. An object is to provide an apparatus.

本発明者らは、減圧条件下、試料を低蒸気圧液体に浸した状態で測定を行うことで、ゆらぎを抑制しつつ形状を迅速に測定できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のようなものを提供する。   The inventors of the present invention have found that the shape can be measured quickly while suppressing fluctuation by performing measurement in a state where the sample is immersed in a low vapor pressure liquid under reduced pressure conditions, and the present invention has been completed. Specifically, the present invention provides the following.

(1) 干渉計を用い試料の形状を測定する測定方法であって、
気密性材料で形成された匡体の内部に、低蒸気圧液体が収容される収容手段を設け、
前記試料を、その一部が前記低蒸気圧液体に浸された状態で、前記干渉計の光源から発射される測定光の光路上に配置し、
前記匡体の内部を密閉して減圧し、
前記測定光を前記光源から、前記試料のうち前記低蒸気圧液体に浸されていない部分へと発射して干渉データを取得し、
前記干渉データに基づいて前記試料の形状を測定する工程を有する測定方法。
(1) A measurement method for measuring the shape of a sample using an interferometer,
In the housing formed of an airtight material, an accommodating means for accommodating a low vapor pressure liquid is provided,
The sample is placed on the optical path of measurement light emitted from the light source of the interferometer, with a part of the sample immersed in the low vapor pressure liquid,
The inside of the housing is sealed and decompressed,
The measurement light is emitted from the light source to a portion of the sample that is not immersed in the low vapor pressure liquid to obtain interference data,
A measurement method comprising a step of measuring the shape of the sample based on the interference data.

(2) 前記低蒸気圧液体の温度調節を介して前記試料の温度を変化させる温度調節工程を更に有する(1)記載の測定方法。   (2) The measurement method according to (1), further including a temperature adjustment step of changing the temperature of the sample through temperature adjustment of the low vapor pressure liquid.

(3) 前記収容手段の一部又は全部には、高い熱伝導率を有する高伝熱性部材が設けられ、
前記測定方法は、前記低蒸気圧液体を前記高伝熱性部材と接触させる工程を更に有する(1)又は(2)記載の測定方法。
(3) A part or all of the housing means is provided with a high heat transfer member having high thermal conductivity,
The measurement method according to (1) or (2), further including a step of bringing the low vapor pressure liquid into contact with the high heat transfer member.

(4) 前記匡体には、前記測定光を透過する光学窓が設けられており、
前記測定方法は、前記光源を前記匡体の外部に配置し、前記光源から発射した測定光を前記光学窓を通して前記試料へと到達させる工程を更に有する(1)から(3)いずれか記載の測定方法。
(4) The casing is provided with an optical window that transmits the measurement light,
The measurement method further includes a step of arranging the light source outside the housing and causing the measurement light emitted from the light source to reach the sample through the optical window. Measuring method.

(5) 前記試料の温度変化に伴う前記試料の形状の変化を測定する(1)から(4)いずれか記載の測定方法。   (5) The measuring method according to any one of (1) to (4), wherein a change in the shape of the sample accompanying a change in temperature of the sample is measured.

(6) 前記試料の温度変化に伴う形状の変化から前記試料の熱膨張特性の分布を測定する(5)記載の測定方法。   (6) The measurement method according to (5), wherein a distribution of thermal expansion characteristics of the sample is measured from a change in shape accompanying a temperature change of the sample.

(7) 干渉計を用い形状が測定される試料を保持する保持装置であって、
気密性材料で形成され且つ内部が密閉可能な匡体と、
前記匡体の内圧を減圧する減圧手段と、
前記匡体の内部に設けられ、低蒸気圧液体が収容される収容手段と、を備え、
前記試料は、その一部が前記低蒸気圧液体に浸された状態で、前記低蒸気圧液体に浸されていない部分へと前記干渉計の光源から発射される測定光の光路上に配置される保持装置。
(7) A holding device for holding a sample whose shape is measured using an interferometer,
A housing made of an airtight material and capable of being sealed inside;
Pressure reducing means for reducing the internal pressure of the housing;
A housing means provided inside the housing and housing a low vapor pressure liquid;
The sample is disposed on the optical path of measurement light emitted from the light source of the interferometer to a portion not immersed in the low vapor pressure liquid in a state where a part of the sample is immersed in the low vapor pressure liquid. Holding device.

(8) 前記低蒸気圧液体の温度調節を介して前記試料の温度を変化させる温度調節手段を更に備える(7)記載の保持装置。   (8) The holding device according to (7), further comprising temperature adjusting means for changing the temperature of the sample through temperature adjustment of the low vapor pressure liquid.

(9) 前記収容手段の一部又は全部には、高い熱伝導率を有する高伝熱性部材が設けられ、
前記高伝熱性部材は前記低蒸気圧液体と接触させられる(7)又は(8)記載の保持装置。
(9) A part or all of the housing means is provided with a high heat transfer member having high thermal conductivity,
The holding device according to (7) or (8), wherein the high heat transfer member is brought into contact with the low vapor pressure liquid.

(10) 前記匡体には、前記測定光を透過する光学窓が設けられている(7)から(9)いずれか記載の保持装置。   (10) The holding device according to any one of (7) to (9), wherein the housing is provided with an optical window that transmits the measurement light.

(11) (7)から(10)いずれか記載の保持装置と、前記保持装置の光路に測定光を発射する光源を有する干渉計と、この干渉計で得られる干渉データに基づいて前記試料の形状を測定する測定手段と、を備える形状測定装置。   (11) The holding device according to any one of (7) to (10), an interferometer having a light source that emits measurement light to the optical path of the holding device, and the sample based on interference data obtained by the interferometer A shape measuring device comprising: a measuring means for measuring a shape.

(12) 前記測定手段は、前記試料の温度変化に伴う前記試料の形状の変化を測定する(11)記載の形状測定装置。   (12) The shape measuring apparatus according to (11), wherein the measuring unit measures a change in the shape of the sample accompanying a temperature change of the sample.

(13) 前記測定手段は、前記試料の温度変化に伴う形状変化から前記試料の熱膨張特性の分布を測定する(12)記載の形状測定装置。   (13) The shape measuring apparatus according to (12), wherein the measuring unit measures a distribution of thermal expansion characteristics of the sample from a shape change accompanying a temperature change of the sample.

本発明によれば、匡体内部に設けられた収容手段内の液体に試料を浸したので、液体が熱媒体として作用し、試料を目的温度へと迅速且つ温度分布良く到達できる。そして、液体に浸されていない部分に測定光を発射することで、簡便且つ迅速に測定を行うことができる。
また、液体として低蒸気圧液体を採用したので、匡体の内部が充分に減圧される。これにより、ゆらぎが抑制されるため、形状測定を正確に行うことができる。
According to the present invention, since the sample is immersed in the liquid in the storage means provided inside the housing, the liquid acts as a heat medium, and the sample can reach the target temperature quickly and with good temperature distribution. And it can measure simply and rapidly by emitting measurement light to the part which is not immersed in the liquid.
Moreover, since the low vapor pressure liquid is adopted as the liquid, the inside of the housing is sufficiently decompressed. Thereby, since fluctuation is suppressed, shape measurement can be performed accurately.

以下、本発明の一実施形態について、図面を参照しながら説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る形状測定装置10の概略構成図である。形状測定装置10は、保持装置20、ベース30、干渉計40、及び図示しない測定手段を備える。以下、各構成要素について詳細に説明する。   FIG. 1 is a schematic configuration diagram of a shape measuring apparatus 10 according to an embodiment of the present invention. The shape measuring apparatus 10 includes a holding device 20, a base 30, an interferometer 40, and measurement means (not shown). Hereinafter, each component will be described in detail.

〔保持装置〕
保持装置20は、気密性材料で形成された匡体21を備え、この匡体21は本体部211と、この本体部211の開口を塞ぐ蓋部213とを有する。蓋部213が閉じると匡体21の内部は密閉され、蓋部213が開くと匡体21の内部の密閉が解除される。気密性材料は、多孔質のような通気性に優れるものでない限り特に限定されず、種々の金属、樹脂等を含んでいてよいが、後述のように匡体21の内部が減圧された際にも保形できる程度の強度を有する。
[Holding device]
The holding device 20 includes a housing 21 made of an airtight material. The housing 21 includes a main body 211 and a lid 213 that closes an opening of the main body 211. When the lid 213 is closed, the inside of the housing 21 is sealed, and when the lid 213 is opened, the inside of the housing 21 is released. The airtight material is not particularly limited as long as it is not porous and has excellent air permeability, and may contain various metals, resins, etc., but when the inside of the casing 21 is decompressed as described later. Has a strength sufficient to retain the shape.

形状測定装置10は、減圧手段としての減圧部23を更に備え、この減圧部23は匡体21の内圧を減圧する。具体的には、減圧部23は真空ポンプ231を有し、この真空ポンプ231が連通管233を介して匡体21の内部に連通されている。蓋部213が閉じた状態で真空ポンプ231が稼動すると、匡体21内部の気体が真空ポンプ231へと吸引され、匡体21の内圧が低下してゆく(ただし、後述の低蒸気圧液体253の蒸気圧を下回ることはない)。なお、匡体21の内圧は、真空ポンプ231を稼動し続けることで維持してもよいが、連通管233の途中に閉止弁を設けて、この閉止弁を閉じることで維持してもよい。これにより、真空ポンプ231から伝わる微細な振動により測定精度が低下するのを抑制できる。   The shape measuring apparatus 10 further includes a decompression unit 23 as decompression means, and the decompression unit 23 reduces the internal pressure of the housing 21. Specifically, the decompression unit 23 has a vacuum pump 231, and the vacuum pump 231 is communicated with the inside of the housing 21 through a communication pipe 233. When the vacuum pump 231 is operated with the lid 213 closed, the gas inside the housing 21 is sucked into the vacuum pump 231 and the internal pressure of the housing 21 decreases (however, a low vapor pressure liquid 253 described later). Will not drop below the vapor pressure). The internal pressure of the housing 21 may be maintained by continuously operating the vacuum pump 231, but may be maintained by providing a closing valve in the middle of the communication pipe 233 and closing the closing valve. Thereby, it can suppress that a measurement precision falls by the fine vibration transmitted from the vacuum pump 231. FIG.

形状測定装置10は、収容手段としての収容部25を更に備え、この収容部25は、匡体21の内部に、具体的には匡体21の底面212の上に設けられている。また、収容部25は低蒸気圧液体253を収容し、この低蒸気圧液体253には試料90の一部が浸される。これにより、低蒸気圧液体253が熱媒体として作用し、試料90を目的温度へと迅速且つ温度分布良く到達できる。試料90のうち低蒸気圧液体253に浸される部分は広くなるにつれて試料90の温度ならしが迅速化されるが、測定光が照射される部分、本実施形態では上面91が低蒸気圧液体253に浸からないよう留意すべきである。   The shape measuring apparatus 10 further includes a housing portion 25 as a housing means, and this housing portion 25 is provided inside the housing 21, specifically, on the bottom surface 212 of the housing 21. The accommodating portion 25 accommodates a low vapor pressure liquid 253, and a part of the sample 90 is immersed in the low vapor pressure liquid 253. Thereby, the low vapor pressure liquid 253 acts as a heat medium, and the sample 90 can reach the target temperature quickly and with a good temperature distribution. As the portion of the sample 90 that is immersed in the low vapor pressure liquid 253 becomes wider, the temperature adjustment of the sample 90 is accelerated. However, in this embodiment, the upper surface 91 is irradiated with the measurement light. Care should be taken not to immerse in H.253.

ここで、低蒸気圧液体とは、広義には水よりも蒸気圧の低い液体を指し、液体が気化したときの屈折率の大きさや測定光路の長さ等にもよるが、約0.1nm以下にゆらぎの誤差を抑制できる点では、常温での蒸気圧が好ましくは1×10−3Pa以下、より好ましくは1×10−5Pa以下、最も好ましくは1×10−6Pa以下の液体である。なお、低蒸気圧液体の蒸気圧は、本発明では低ければ低いほど好ましく、その下限値は特に規定されない。このような低蒸気圧液体253の蒸気圧が低いため、減圧条件下では、匡体21の内部は略真空状態を維持される。これにより、ゆらぎが抑制されるのみならず、試料90の熱が後述の干渉計40へと輻射されるため、測定精度が向上する。また、低蒸気圧液体は気体化した際の屈折率が低いこと、熱伝導率が高く比熱が小さいこと、安定で反応性が低く、測定試料や収容部と反応しにくいことが好ましい。このような液体の具体例としては、テトラフェニルテトラメチルトリシロキサン、ペンタフェニルトリメチルトリシロキサン等のシリコン油、ペンタフェニルエーテル、テトラッフェニルエーテル、アルキルジフェニルエーテル等のフェニルエーテル油、パーフロロポリエーテル等のフッ素油が挙げられ、求められる特性をバランス良く備える点でパーフロロポリエーテルが好ましい。 Here, the low vapor pressure liquid refers to a liquid having a vapor pressure lower than that of water in a broad sense. Depending on the refractive index when the liquid is vaporized, the length of the measurement optical path, etc., it is about 0.1 nm. The liquid having a vapor pressure at room temperature of preferably 1 × 10 −3 Pa or less, more preferably 1 × 10 −5 Pa or less, and most preferably 1 × 10 −6 Pa or less is preferable in that fluctuation error can be suppressed below. It is. Note that the vapor pressure of the low vapor pressure liquid is preferably as low as possible in the present invention, and the lower limit is not particularly defined. Since the vapor pressure of such a low vapor pressure liquid 253 is low, the inside of the housing 21 is maintained in a substantially vacuum state under reduced pressure conditions. Thereby, not only fluctuation is suppressed, but also the heat of the sample 90 is radiated to the interferometer 40 to be described later, so that the measurement accuracy is improved. In addition, it is preferable that the low vapor pressure liquid has a low refractive index when gasified, a high thermal conductivity, a small specific heat, a stable and low reactivity, and is difficult to react with the measurement sample and the container. Specific examples of such liquids include silicon oils such as tetraphenyltetramethyltrisiloxane and pentaphenyltrimethyltrisiloxane, phenyl ether oils such as pentaphenyl ether, tetraphenyl ether and alkyldiphenyl ether, and perfluoropolyethers. Fluoro oil is mentioned, and perfluoropolyether is preferred from the viewpoint of providing the required properties with a good balance.

低蒸気圧液体は、測定精度を向上できる点では、気化した気体によるゆらぎが小さい(つまり、気体時の屈折率が低い)ことが好ましく、試料90の温度を迅速に変化できる点では、比熱が小さく熱伝導率が大きいことが好ましい。   The low vapor pressure liquid is preferably small in fluctuation due to the vaporized gas (that is, has a low refractive index at the time of gas) in terms of improving measurement accuracy, and has a specific heat in that the temperature of the sample 90 can be rapidly changed. It is preferable that the thermal conductivity is small.

測定の際には、試料90は、その一部が低蒸気圧液体253に浸された状態で、測定光の光路OP上に配置される。本実施形態では、試料90は光学窓216の下方に配置される。ここで測定光とは、後述のように、干渉計40の光源41から、試料90のうち低蒸気圧液体253に浸されていない部分91へと発射される光である。また、試料90は、その側面に図示しない温度センサが取り付けられており、この温度センサで検出された温度値は後述の制御装置に送信される。なお本実施形態では、試料の温度分布を測定するため、温度センサが複数個所に取り付けられている。   At the time of measurement, the sample 90 is disposed on the optical path OP of the measurement light in a state where a part of the sample 90 is immersed in the low vapor pressure liquid 253. In the present embodiment, the sample 90 is disposed below the optical window 216. Here, the measurement light is light emitted from the light source 41 of the interferometer 40 to the portion 91 of the sample 90 that is not immersed in the low vapor pressure liquid 253, as will be described later. Further, the sample 90 has a temperature sensor (not shown) attached to its side surface, and a temperature value detected by the temperature sensor is transmitted to a control device described later. In the present embodiment, temperature sensors are attached to a plurality of locations in order to measure the temperature distribution of the sample.

収容部25の一部又は全部には、高い熱伝導率を有する高伝熱性部材が設けられていることが好ましい。本実施形態における高伝熱性部材251は収容部25の全部(具体的には側壁及び底部)を構成し、収容部25に収容された低蒸気圧液体253と接触する。また、高伝熱性部材251は温度調節手段としての温度調節部26にも接触しているため、この温度調節部26からの熱エネルギが効率的に低蒸気圧液体253全体へ伝導される。なお、高伝熱性部材は、従来公知の金属等であってよいが、低蒸気圧液体253に侵されにくい安定素材で形成されることが好ましい。   It is preferable that a part or the whole of the housing portion 25 is provided with a highly heat conductive member having a high thermal conductivity. The high heat transfer member 251 in the present embodiment constitutes the entire housing part 25 (specifically, the side wall and the bottom part), and comes into contact with the low vapor pressure liquid 253 housed in the housing part 25. Further, since the high heat transfer member 251 is also in contact with the temperature adjusting unit 26 as temperature adjusting means, the heat energy from the temperature adjusting unit 26 is efficiently conducted to the entire low vapor pressure liquid 253. The high heat transfer member may be a conventionally known metal or the like, but is preferably formed of a stable material that is not easily affected by the low vapor pressure liquid 253.

温度調節部26は、低蒸気圧液体253の温度調節を介して試料90の温度を変化させる。低蒸気圧液体253の温度調節を行う形式は特に限定されないが、本実施形態では、温度調節部26が収容部25の底側に設けられて低蒸気圧液体253に直接的に接触しており、熱エネルギが低蒸気圧液体253と直接的に授受されるとともに、高伝熱性部材251を介して間接的に授受される。なお、温度調節部26の出力は後述の制御装置によって制御されている。   The temperature adjustment unit 26 changes the temperature of the sample 90 through temperature adjustment of the low vapor pressure liquid 253. The type of adjusting the temperature of the low vapor pressure liquid 253 is not particularly limited, but in this embodiment, the temperature adjustment unit 26 is provided on the bottom side of the storage unit 25 and is in direct contact with the low vapor pressure liquid 253. The thermal energy is directly exchanged with the low vapor pressure liquid 253 and is indirectly exchanged via the high heat transfer member 251. In addition, the output of the temperature control part 26 is controlled by the control apparatus mentioned later.

本実施形態の匡体21には光学窓216が設けられ、この光学窓216を測定光が透過可能である。具体的には、光学窓216は上壁214の略中央に設けられ、その上方に配置された干渉計40からの測定光を透過して試料90へと到達させる。   The housing 21 of the present embodiment is provided with an optical window 216, and measurement light can pass through the optical window 216. Specifically, the optical window 216 is provided substantially at the center of the upper wall 214 and transmits the measurement light from the interferometer 40 disposed above the optical window 216 to reach the sample 90.

〔ベース〕
ベース30は、干渉計40に対する試料90の位置及び姿勢を変動する。本実施形態では、後述のように位相シフト法を用いるため、ベース30は試料90を水平に保持する。ベース30は後述の制御装置によって駆動制御される。
〔base〕
The base 30 varies the position and posture of the sample 90 with respect to the interferometer 40. In this embodiment, since the phase shift method is used as will be described later, the base 30 holds the sample 90 horizontally. The base 30 is driven and controlled by a control device described later.

〔干渉計〕
図2は一実施形態に係る干渉計40の概略構成図である。ここでは、位相シフト法を用いるためにフィゾー干渉計を説明するが、これに限られずフーリエ変換法(空間キャリア法の1種)を用いてもよい。
[Interferometer]
FIG. 2 is a schematic configuration diagram of an interferometer 40 according to an embodiment. Here, a Fizeau interferometer will be described in order to use the phase shift method, but the present invention is not limited to this, and a Fourier transform method (a kind of spatial carrier method) may be used.

干渉計40は光源41(例えばHe−Neレーザ)を備え、この光源41から発射された光束は発散レンズ42で発散光となり、ビームスプリッタ43を透過してコリメータレンズ44で平行光束となる。この平行光束の一部は基準板45の参照面45aで反射する。平行光束の残りは基準板45を透過し、試料90の上面91で反射し、再び基準板45を透過し、参照面45aで反射した光束と干渉する。干渉した光束は再びコリメータレンズ44を透過して、ビームスプリッタ43で反射し、撮像レンズ47を介して撮像素子48に照射される。そして、撮像素子48で干渉縞画像を取得する。ここで、試料90に向かう光を測定光と称する。なお、図2では上壁214及び光学窓216を省略しているが、実際には測定光の光路OP上に光学窓216が配置され、この光学窓216を測定光及びその反射光が透過する。   The interferometer 40 includes a light source 41 (for example, a He—Ne laser). A light beam emitted from the light source 41 becomes divergent light by the diverging lens 42, passes through the beam splitter 43, and becomes a parallel light beam by the collimator lens 44. A part of this parallel light beam is reflected by the reference surface 45 a of the reference plate 45. The remainder of the parallel light beam is transmitted through the reference plate 45, reflected by the upper surface 91 of the sample 90, transmitted through the reference plate 45 again, and interferes with the light beam reflected by the reference surface 45a. The interfered light beam is again transmitted through the collimator lens 44, reflected by the beam splitter 43, and applied to the image sensor 48 through the image pickup lens 47. Then, an interference fringe image is acquired by the image sensor 48. Here, the light traveling toward the sample 90 is referred to as measurement light. Although the upper wall 214 and the optical window 216 are omitted in FIG. 2, the optical window 216 is actually disposed on the optical path OP of the measurement light, and the measurement light and its reflected light are transmitted through the optical window 216. .

〔測定手段〕
測定手段は、干渉計40で得られる干渉データに基づいて試料90の形状を測定する。干渉データから形状測定を行う理論は従来周知であるので省略する。測定手段は図示しない制御装置を備えており、この制御装置は、温度調節部26の出力を調節して試料90の温度変化を行う温度制御部と、温度センサからの検出値に基づいて測定開始を決定する測定開始部と、ベースを駆動制御する駆動制御部と、を有する。
(Measuring means)
The measuring means measures the shape of the sample 90 based on the interference data obtained by the interferometer 40. The theory of measuring the shape from the interference data is well known in the art and will not be described. The measurement means includes a control device (not shown). The control device adjusts the output of the temperature adjustment unit 26 to change the temperature of the sample 90, and starts measurement based on the detection value from the temperature sensor. And a drive control unit that controls the drive of the base.

温度制御部は、基本的には、試料90の温度を設定値へと変化するべく温度調節部26の出力を調節し、これにより、試料90を速やかに設定温度で温度ならしをし、設定温度における試料90の形状を測定できる。温度制御部は、試料90の温度が設定値へと所望の速度で変化するように、温度調節部26の出力を調節する機能も更に有することが好ましい。これにより、測定手段は、試料90の温度変化に伴う形状の変化を正確に測定することができる。   The temperature control unit basically adjusts the output of the temperature adjustment unit 26 so as to change the temperature of the sample 90 to a set value, thereby quickly adjusting the temperature of the sample 90 at the set temperature. The shape of the sample 90 at temperature can be measured. It is preferable that the temperature control unit further has a function of adjusting the output of the temperature adjustment unit 26 so that the temperature of the sample 90 changes to a set value at a desired speed. As a result, the measuring means can accurately measure a change in shape associated with a temperature change of the sample 90.

このとき、駆動制御部がベース30を駆動制御することで、試料90の傾きを調整することができ、フーリエ変換法や位相シフト法等を用いて試料90の形状を測定することができる。   At this time, the drive control unit drives and controls the base 30 to adjust the inclination of the sample 90, and the shape of the sample 90 can be measured using a Fourier transform method, a phase shift method, or the like.

測定開始部は、温度センサからの検出値が設定温度に達するまでは測定を停止し、設定温度に達すると測定を開始する。これにより、設定温度下における試料90の形状を正確に測定できる。   The measurement start unit stops the measurement until the detection value from the temperature sensor reaches the set temperature, and starts the measurement when the set temperature is reached. Thereby, the shape of the sample 90 under preset temperature can be measured correctly.

試料90の温度は、温度調節部26に近い側(図1では下側)から順に変化するため、温度変化後の経過時間が短い間、試料90の温度が不均一になりやすい。そこで、本実施形態における測定開始部は、複数の温度センサからの検出値のバラつきを算出し、このバラつきが許容範囲内に収まると測定を開始する機能を更に有する。これにより、設定温度下における試料90の形状をより正確に測定できるし、熱膨張特性の分布の精度を格段に向上できる。   Since the temperature of the sample 90 changes in order from the side closer to the temperature control unit 26 (the lower side in FIG. 1), the temperature of the sample 90 tends to be non-uniform while the elapsed time after the temperature change is short. Therefore, the measurement start unit in the present embodiment further has a function of calculating variations in detection values from a plurality of temperature sensors and starting measurement when the variations fall within an allowable range. Thereby, the shape of the sample 90 under the set temperature can be measured more accurately, and the accuracy of the distribution of thermal expansion characteristics can be significantly improved.

[測定方法]
以上の形状測定装置10を用いた形状測定方法を以下に説明する。
[Measuring method]
A shape measuring method using the above shape measuring apparatus 10 will be described below.

まず、気密性材料で形成された匡体21の内部に収容部25を設ける。そして、試料90をその一部が低蒸気圧液体253に浸された状態で、測定光の光路OP上に配置する。ここで、収容部25への低蒸気圧液体の供給、及び試料90の配置の先後は特に限定されない。   First, the accommodating part 25 is provided in the inside of the housing | casing 21 formed with the airtight material. Then, the sample 90 is placed on the optical path OP of the measurement light in a state where a part of the sample 90 is immersed in the low vapor pressure liquid 253. Here, the supply of the low vapor pressure liquid to the storage unit 25 and the arrangement of the sample 90 are not particularly limited.

続いて、蓋部213を閉めて匡体21の内部を密閉した後、真空ポンプ231を稼動して匡体21の内部を減圧する。これにより、匡体21の内圧は低下してゆくが、後述の低蒸気圧液体253の蒸気圧を下回ることはない。前述のように、低蒸気圧液体253の蒸気圧が低いため、匡体21の内部は略真空状態になる。   Subsequently, after closing the lid 213 and sealing the inside of the housing 21, the vacuum pump 231 is operated to decompress the inside of the housing 21. Thereby, although the internal pressure of the housing 21 falls, it does not fall below the vapor pressure of the low vapor pressure liquid 253 mentioned later. As described above, since the vapor pressure of the low vapor pressure liquid 253 is low, the inside of the housing 21 is in a substantially vacuum state.

ここで、温度調節部26を所定の出力に設定すると、低蒸気圧液体253を熱媒体として、試料90が迅速に試料を目的温度へと迅速且つ温度分布良く到達できる。本実施形態では、収容部25の側壁及び底部に設けられた高伝熱性部材251を、低蒸気圧液体253と接触させる。これにより、低蒸気圧液体253が温度調節部26と直接的に熱エネルギを授受するのみならず、高伝熱性部材251を介して間接的にも熱エネルギを授受するため、温度ならしがより迅速になされる。   Here, when the temperature control unit 26 is set to a predetermined output, the sample 90 can quickly reach the target temperature with good temperature distribution using the low vapor pressure liquid 253 as a heat medium. In the present embodiment, the high heat transfer member 251 provided on the side wall and the bottom of the storage unit 25 is brought into contact with the low vapor pressure liquid 253. As a result, the low vapor pressure liquid 253 not only directly transfers thermal energy to and from the temperature adjusting unit 26 but also indirectly transfers thermal energy via the high heat transfer member 251, so that the temperature leveling is further improved. Done quickly.

温度センサの検出値に基づき試料90の略全体の温度が設定値に達したと判断すると、測定を開始する。即ち、光源41から光を発射し、試料90のうち前記低蒸気圧液体に浸されていない部分91へと測定光を発射する。本実施形態では、匡体の外部に干渉計40を配置し、測定光が光学窓216を通して試料90へと到達させる。測定光は試料90の上面91で反射され、この反射光は、再び光学窓216を透過して干渉計40へと戻る。この間、匡体21の内部が略真空状態のため、ゆらぎが抑制されている。   When it is determined that substantially the entire temperature of the sample 90 has reached the set value based on the detection value of the temperature sensor, the measurement is started. That is, light is emitted from the light source 41 and measurement light is emitted to a portion 91 of the sample 90 that is not immersed in the low vapor pressure liquid. In the present embodiment, the interferometer 40 is disposed outside the housing, and the measurement light reaches the sample 90 through the optical window 216. The measurement light is reflected by the upper surface 91 of the sample 90, and the reflected light passes through the optical window 216 again and returns to the interferometer 40. During this time, since the inside of the housing 21 is in a substantially vacuum state, fluctuations are suppressed.

上面91からの反射光は、参照面45aで反射した光束と干渉する。干渉した光束は再びコリメータレンズ44を透過して、ビームスプリッタ43で反射し、撮像レンズ47を介して撮像素子48に照射される。これにより、撮像素子48で干渉縞画像を取得する。そして、取得した干渉データに基づいて、試料90の形状を測定する。   The reflected light from the upper surface 91 interferes with the light beam reflected by the reference surface 45a. The interfered light beam is again transmitted through the collimator lens 44, reflected by the beam splitter 43, and applied to the image sensor 48 through the image pickup lens 47. Thereby, an interference fringe image is acquired by the image sensor 48. Then, the shape of the sample 90 is measured based on the acquired interference data.

以上の測定の後、本実施形態では温度調節部26の出力を調節し、低蒸気圧液体253の温度調節を介して試料90の温度を次の設定温度へと変化させる。この温度変化も、低蒸気圧液体253が熱媒体として作用するため、迅速になされる。この温度変化が終了し、試料の略全体の温度が設定値に達した後、試料90の形状を再び測定する。この後、必要であればさらに次の設定温度へと試料90の温度を変化させ、形状の測定を同様に行う。このようにして温度変化に伴う試料90の形状の変化を測定する。また、試料90の温度変化に伴う形状の変化から試料90の熱膨張特性の分布を測定する。   After the above measurement, in this embodiment, the output of the temperature adjustment unit 26 is adjusted, and the temperature of the sample 90 is changed to the next set temperature through the temperature adjustment of the low vapor pressure liquid 253. This temperature change is also quickly made because the low vapor pressure liquid 253 acts as a heat medium. After this temperature change is completed and the temperature of almost the entire sample reaches the set value, the shape of the sample 90 is measured again. Thereafter, if necessary, the temperature of the sample 90 is further changed to the next set temperature, and the shape is similarly measured. In this way, the change in the shape of the sample 90 accompanying the temperature change is measured. Further, the distribution of the thermal expansion characteristics of the sample 90 is measured from the change in shape accompanying the temperature change of the sample 90.

[作用効果]
本実施形態によれば、以下のような作用効果が得られる。
[Function and effect]
According to this embodiment, the following effects can be obtained.

匡体21内部に設けられた収容部25内の液体253に試料90を浸したので、液体253が熱媒体として作用し、試料90試料を目的温度へと迅速且つ温度分布良く到達できる。そして、液体253に浸されていない部分91に測定光を発射することで、簡便且つ迅速に測定を行うことができる。
また、液体253として低蒸気圧液体を採用したので、匡体21の内部が充分に減圧される。これにより、ゆらぎが抑制されるため、形状測定を正確に行うことができる。
Since the sample 90 is immersed in the liquid 253 in the housing portion 25 provided inside the housing 21, the liquid 253 acts as a heat medium, and the sample 90 sample can reach the target temperature quickly and with good temperature distribution. And it can measure simply and rapidly by emitting measurement light to the part 91 which is not immersed in the liquid 253. FIG.
In addition, since a low vapor pressure liquid is used as the liquid 253, the inside of the housing 21 is sufficiently decompressed. Thereby, since fluctuation is suppressed, shape measurement can be performed accurately.

低蒸気圧液体253の温度調節を介して試料90の温度を変化させることで、温度変化に伴う試料の形状変化を迅速且つ正確に測定できる。また、試料90の温度変化に伴う形状の変化から試料90の熱膨張特性の分布も迅速且つ正確に測定することができる。   By changing the temperature of the sample 90 through the temperature adjustment of the low vapor pressure liquid 253, the change in the shape of the sample accompanying the temperature change can be measured quickly and accurately. In addition, the distribution of the thermal expansion characteristics of the sample 90 can be quickly and accurately measured from the change in the shape of the sample 90 accompanying the temperature change.

収容部25に高伝熱性部材251を設けたので、この高伝熱性部材251を介して低蒸気圧液体253の温度が効率的に変化するので、測定をより迅速且つ正確に行うことができる。   Since the high heat transfer member 251 is provided in the housing portion 25, the temperature of the low vapor pressure liquid 253 changes efficiently via the high heat transfer member 251, so that the measurement can be performed more quickly and accurately.

測定光が光学窓216を通して試料90に到達可能のため、干渉計40を匡体21の外部に配置することができる。これにより匡体21を小型化でき、減圧効率が向上するため、測定をより正確に行うことができる。   Since the measurement light can reach the sample 90 through the optical window 216, the interferometer 40 can be disposed outside the housing 21. As a result, the housing 21 can be miniaturized and the pressure reduction efficiency can be improved, so that the measurement can be performed more accurately.

本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

例えば、前記実施形態では、干渉計40を匡体21の外部に配置し、光学窓216を介して測定光を試料90に到達させたが、これに限られず、匡体には光学窓を設けず、匡体の内部に干渉計を配置してもよい。この場合、匡体21外部の空気ゆらぎによる測定精度の低下を抑制できる。   For example, in the above embodiment, the interferometer 40 is arranged outside the housing 21 and the measurement light reaches the sample 90 via the optical window 216. However, the present invention is not limited to this, and the housing is provided with an optical window. Alternatively, an interferometer may be arranged inside the housing. In this case, a decrease in measurement accuracy due to air fluctuation outside the housing 21 can be suppressed.

また干渉計として、波長変調位相シフト干渉計を用いる場合、干渉計の参照面を匡体21の内側、即ち光学窓216と試料90との間に置くことで、光学窓216の温度変化に伴う測定誤差や、参照面を匡体21外に配置した場合における光学窓216と参照面との間の空気ゆらぎの影響を回避し、より正確な試料形状の測定が可能となる。   When a wavelength modulation phase shift interferometer is used as the interferometer, the reference surface of the interferometer is placed inside the housing 21, i.e., between the optical window 216 and the sample 90, so that the optical window 216 changes in temperature. Measurement errors and the influence of air fluctuation between the optical window 216 and the reference surface when the reference surface is arranged outside the housing 21 can be avoided, and a more accurate sample shape measurement can be performed.

本発明の一実施形態に係る形状測定装置の概略構成図である。It is a schematic block diagram of the shape measuring apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る干渉計の概略構成図である。It is a schematic block diagram of the interferometer which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

10 形状測定装置
20 保持装置
21 匡体
211 本体部
216 光学窓
23 減圧部(減圧手段)
25 収容部(収容手段)
251 高伝熱性部材
253 低蒸気圧液体
26 温度調節部(温度調節手段)
40 干渉計
41 光源
90 試料
91 上面
DESCRIPTION OF SYMBOLS 10 Shape measuring apparatus 20 Holding apparatus 21 Housing 211 Main body part 216 Optical window 23 Depressurization part (decompression means)
25 Accommodation part (accommodation means)
251 High heat conductivity member 253 Low vapor pressure liquid 26 Temperature control unit (temperature control means)
40 Interferometer 41 Light source 90 Sample 91 Upper surface

Claims (13)

干渉計を用い試料の形状を測定する測定方法であって、
気密性材料で形成された匡体の内部に、低蒸気圧液体が収容される収容手段を設け、
前記試料を、その一部が前記低蒸気圧液体に浸された状態で、前記干渉計の光源から発射される測定光の光路上に配置し、
前記匡体の内部を密閉して減圧し、
前記測定光を前記光源から、前記試料のうち前記低蒸気圧液体に浸されていない部分へと発射して干渉データを取得し、
前記干渉データに基づいて前記試料の形状を測定する工程を有する測定方法。
A measurement method for measuring the shape of a sample using an interferometer,
In the housing formed of an airtight material, an accommodating means for accommodating a low vapor pressure liquid is provided,
The sample is placed on the optical path of measurement light emitted from the light source of the interferometer, with a part of the sample immersed in the low vapor pressure liquid,
The inside of the housing is sealed and decompressed,
The measurement light is emitted from the light source to a portion of the sample that is not immersed in the low vapor pressure liquid to obtain interference data,
A measurement method comprising a step of measuring the shape of the sample based on the interference data.
前記低蒸気圧液体の温度調節を介して前記試料の温度を変化させる温度調節工程を更に有する請求項1記載の測定方法。   The measurement method according to claim 1, further comprising a temperature adjustment step of changing the temperature of the sample through temperature adjustment of the low vapor pressure liquid. 前記収容手段の一部又は全部には、高い熱伝導率を有する高伝熱性部材が設けられ、
前記測定方法は、前記低蒸気圧液体を前記高伝熱性部材と接触させる工程を更に有する請求項1又は2記載の測定方法。
A part or all of the accommodating means is provided with a high heat transfer member having high thermal conductivity,
The measurement method according to claim 1, further comprising a step of bringing the low vapor pressure liquid into contact with the high heat transfer member.
前記匡体には、前記測定光を透過する光学窓が設けられており、
前記測定方法は、前記光源を前記匡体の外部に配置し、前記光源から発射した測定光を前記光学窓を通して前記試料へと到達させる工程を更に有する請求項1から3いずれか記載の測定方法。
The housing is provided with an optical window that transmits the measurement light,
4. The measurement method according to claim 1, further comprising a step of disposing the light source outside the housing and causing the measurement light emitted from the light source to reach the sample through the optical window. 5. .
前記試料の温度変化に伴う前記試料の形状の変化を測定する請求項1から4いずれか記載の測定方法。   The measurement method according to claim 1, wherein a change in the shape of the sample accompanying a change in temperature of the sample is measured. 前記試料の温度変化に伴う形状の変化から前記試料の熱膨張特性の分布を測定する請求項5記載の測定方法。   The measurement method according to claim 5, wherein a distribution of thermal expansion characteristics of the sample is measured from a change in shape accompanying a temperature change of the sample. 干渉計を用い形状が測定される試料を保持する保持装置であって、
気密性材料で形成され且つ内部が密閉可能な匡体と、
前記匡体の内圧を減圧する減圧手段と、
前記匡体の内部に設けられ、低蒸気圧液体が収容される収容手段と、を備え、
前記試料は、その一部が前記低蒸気圧液体に浸された状態で、前記低蒸気圧液体に浸されていない部分へと前記干渉計の光源から発射される測定光の光路上に配置される保持装置。
A holding device for holding a sample whose shape is measured using an interferometer,
A housing made of an airtight material and capable of being sealed inside;
Pressure reducing means for reducing the internal pressure of the housing;
A housing means provided inside the housing and housing a low vapor pressure liquid;
The sample is disposed on the optical path of the measurement light emitted from the light source of the interferometer to a portion not immersed in the low vapor pressure liquid in a state where a part of the sample is immersed in the low vapor pressure liquid. Holding device.
前記低蒸気圧液体の温度調節を介して前記試料の温度を変化させる温度調節手段を更に備える請求項7記載の保持装置。   The holding device according to claim 7, further comprising temperature adjusting means for changing the temperature of the sample through temperature adjustment of the low vapor pressure liquid. 前記収容手段の一部又は全部には、高い熱伝導率を有する高伝熱性部材が設けられ、
前記高伝熱性部材は前記低蒸気圧液体と接触させられる請求項7又は8記載の保持装置。
A part or all of the accommodating means is provided with a high heat transfer member having high thermal conductivity,
The holding device according to claim 7 or 8, wherein the high heat transfer member is brought into contact with the low vapor pressure liquid.
前記匡体には、前記測定光を透過する光学窓が設けられている請求項7から9いずれか記載の保持装置。   The holding device according to claim 7, wherein the housing is provided with an optical window that transmits the measurement light. 請求項7から10いずれか記載の保持装置と、前記保持装置の光路に測定光を発射する光源を有する干渉計と、この干渉計で得られる干渉データに基づいて前記試料の形状を測定する測定手段と、を備える形状測定装置。   11. A holding device according to claim 7, an interferometer having a light source that emits measurement light to an optical path of the holding device, and a measurement for measuring the shape of the sample based on interference data obtained by the interferometer A shape measuring apparatus comprising: means. 前記測定手段は、前記試料の温度変化に伴う前記試料の形状の変化を測定する請求項11記載の形状測定装置。   The shape measuring apparatus according to claim 11, wherein the measuring unit measures a change in the shape of the sample accompanying a change in temperature of the sample. 前記測定手段は、前記試料の温度変化に伴う形状変化から前記試料の熱膨張特性の分布を測定する請求項12記載の形状測定装置。   The shape measurement apparatus according to claim 12, wherein the measurement unit measures a distribution of thermal expansion characteristics of the sample from a shape change accompanying a temperature change of the sample.
JP2008118938A 2008-04-30 2008-04-30 Sample shape measuring method, holding device and shape measuring device Pending JP2009270834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118938A JP2009270834A (en) 2008-04-30 2008-04-30 Sample shape measuring method, holding device and shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118938A JP2009270834A (en) 2008-04-30 2008-04-30 Sample shape measuring method, holding device and shape measuring device

Publications (1)

Publication Number Publication Date
JP2009270834A true JP2009270834A (en) 2009-11-19

Family

ID=41437538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118938A Pending JP2009270834A (en) 2008-04-30 2008-04-30 Sample shape measuring method, holding device and shape measuring device

Country Status (1)

Country Link
JP (1) JP2009270834A (en)

Similar Documents

Publication Publication Date Title
TWI497030B (en) Consumption method
JP4843503B2 (en) Microlithographic projection exposure apparatus and measuring apparatus for projection lens
US7542148B2 (en) Method for measuring physical quantity of measurement object in substrate processing apparatus and storage medium storing program for implementing the method
CN102201356A (en) Substrate mounting table
JP6937823B2 (en) Gas laser device and magnetic bearing control method
JP2003214958A (en) Wavelength detecting device, laser device, and wavelength detecting method
TWI680290B (en) Apparatus for and method of sensing fluorine concentration
JP2012204806A (en) Determination method, control method, determination device, pattern formation system, and program
US11913116B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
TW200818258A (en) Lithographic apparatus, method of calibrating a lithographic apparatus and device manufacturing method
JP4748803B2 (en) Substrate processing apparatus, physical quantity measuring method of measured object in substrate processing apparatus, and storage medium
JP2017003434A (en) Method of measuring refractive index, measuring device, and method of manufacturing optical element
JP3897655B2 (en) Linear expansion coefficient measuring device
Tilford Three and a half centuries later-the modern art of liquid-column manometry
US8500326B2 (en) Probe for temperature measurement, temperature measuring system and temperature measuring method using the same
CN116642850A (en) Fourier Transform Infrared Spectrophotometer
JP2009270834A (en) Sample shape measuring method, holding device and shape measuring device
TW201020691A (en) Lithographic apparatus and humidity measurement system
RU71163U1 (en) MOBILE LASER HYDROPHONE
CN106030286A (en) Method and device for determining the composition of a gas in a transparent container
US7164481B2 (en) Coefficient of linear expansion measuring apparatus and coefficient of linear expansion measuring method
CN117091519A (en) Wafer thickness measuring method and device
JP2022518954A (en) Inverted wick temperature control system for sorption analysis
CN116941145A (en) Atomic beam generating device, physical package for optical crystal lattice clock, physical package for atomic interferometer, physical package for quantum information processing device, and physical package system
JP3908211B2 (en) Linear expansion coefficient measuring apparatus and linear expansion coefficient measuring method