[go: up one dir, main page]

JP2009265285A - Rocking member apparatus - Google Patents

Rocking member apparatus Download PDF

Info

Publication number
JP2009265285A
JP2009265285A JP2008113345A JP2008113345A JP2009265285A JP 2009265285 A JP2009265285 A JP 2009265285A JP 2008113345 A JP2008113345 A JP 2008113345A JP 2008113345 A JP2008113345 A JP 2008113345A JP 2009265285 A JP2009265285 A JP 2009265285A
Authority
JP
Japan
Prior art keywords
drive
frequency
amplitude
driving
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008113345A
Other languages
Japanese (ja)
Inventor
Hideta Nishizawa
秀太 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008113345A priority Critical patent/JP2009265285A/en
Publication of JP2009265285A publication Critical patent/JP2009265285A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rocking member apparatus with which a relatively high resonance frequency of an oscillation system is derived by a resonance frequency detection operation, and to provide a method of detecting the resonance frequency. <P>SOLUTION: The rocking apparatus has: an oscillation system 100 having a rocking member; a driving part 120 which drives the oscillation system; detection means 140 and 152; a driving amplitude control part 154; and a driving frequency control part 156. The detection means detects the rocking amplitude of the rocking member. The driving amplitude control part performs a feedback control of the amplitude of a driving signal. The driving frequency control part controls the frequency of the driving signal input to the driving part 120. In the resonance frequency detection operation, the feedback gain of the driving amplitude control part 154 is set at a lower value than the feedback gain at other operating states, and the driving amplitude control part controls the driving amplitude so that the detected rocking amplitude may become a target value. In this state, the driving frequency control part determines the driving frequency at which the driving amplitude becomes minimum as the resonance frequency of the oscillation system on the basis of the frequencies at the respective driving states at a plurality of driving frequencies and the controlled amplitude. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揺動可能に支持された揺動体を有する揺動体装置の技術に関する。より詳しくは、共振型揺動体装置などの揺動体装置、それを用いる光偏向装置、揺動体装置の振動系の共振周波数検出方法などに関する。この光偏向装置は、走査型ディスプレイやレーザビームプリンタやデジタル複写機等の画像形成装置などの光学機器に好適に用いられる。 The present invention relates to a technique of an oscillating device having an oscillating body supported so as to be able to oscillate. More specifically, the present invention relates to an oscillating device such as a resonant oscillating device, an optical deflection device using the oscillating device, a method for detecting a resonance frequency of a vibration system of the oscillating device, and the like. This optical deflecting device is suitably used for an optical apparatus such as an image forming apparatus such as a scanning display, a laser beam printer, or a digital copying machine.

近年、光ビームを走査する光走査装置は、光ディスク、レーザビームプリンタなどで光ビームを走査するために用いられている。また、シリコンマイクロマシンニング技術を利用して、極小ミラーが共振駆動される光偏向装置を用いた光走査装置が提案されている。この様な共振型光偏向装置は、ポリゴンミラー等の回転多面鏡を使用したものに比べ、大幅に小型化することが可能である。また、消費電力が少ないこと、ミラー面の面倒れが理論的に存在しないこと、特に半導体プロセスによって製造されるSi単結晶からなる光偏向装置は理論上金属疲労が無く耐久性にも優れていること等の特徴がある。 In recent years, an optical scanning device that scans a light beam is used to scan the light beam by an optical disk, a laser beam printer, or the like. Further, there has been proposed an optical scanning device using an optical deflecting device in which a minimal mirror is driven to resonate using silicon micromachining technology. Such a resonant optical deflecting device can be significantly reduced in size as compared with a device using a rotating polygon mirror such as a polygon mirror. In addition, low power consumption, theoretically no tilting of the mirror surface, especially the optical deflection device made of Si single crystal manufactured by the semiconductor process has no metal fatigue and excellent durability. There are features such as.

従来の共振型光偏向装置は、駆動信号の駆動周波数を共振周波数付近の周波数に固定して駆動するものが一般的である。そこでは、振動系の揺動体で偏向・走査される走査ビームの位置検出、若しくは揺動体の変位角を検出する検出手段により、走査ビームが所定走査位置に来る時間又は揺動体が所定変位角になる時間を測定する。そして、その時間が基準の時間と等しくなる様に制御される(特許文献1参照)。 Conventional resonance type optical deflecting devices are generally driven by fixing the drive frequency of the drive signal to a frequency near the resonance frequency. In this case, the position of the scanning beam deflected and scanned by the oscillating body of the oscillating system or the detecting means for detecting the displacement angle of the oscillating body is used to detect the time when the scanning beam reaches the predetermined scanning position or Measure the time. The time is controlled to be equal to the reference time (see Patent Document 1).

しかし、製造バラツキや温度などの環境により共振周波数が異なる場合、駆動開始時に振動系の共振周波数を検出しなければならない。振動系の共振周波数を検出する方法として、駆動信号の駆動周波数の変更を繰り返し行い、その中で最も効率が良くなった駆動周波数を共振周波数とする方法が知られている(特許文献2参照)。
特開2005-292627号公報 特開2005-241482号公報
However, when the resonance frequency varies depending on the environment such as manufacturing variation and temperature, the resonance frequency of the vibration system must be detected at the start of driving. As a method for detecting the resonance frequency of the vibration system, a method is known in which the drive frequency of the drive signal is repeatedly changed, and the drive frequency having the highest efficiency among them is used as the resonance frequency (see Patent Document 2). .
JP 2005-292627 A JP 2005-241482 A

しかし、揺動体と弾性支持部を有する高効率の共振型振動系では、駆動周波数を変更した際、揺動体の揺動周波数が駆動周波数と等しくなるまでに或る程度の時間を要する。とりわけ共振周波数近傍では、慣性力に対して駆動力が小さいため、揺動周波数の変化は時定数を持ち、揺動周波数変化の所要時間が長くなり易い。例えば、振動系の共振特性のQ値が1000前後の場合、共振周波数近傍では約0.5秒程度の時間を要する場合もあり得る。 However, in a high-efficiency resonance type vibration system having an oscillating body and an elastic support portion, when the driving frequency is changed, a certain amount of time is required until the oscillating frequency of the oscillating body becomes equal to the driving frequency. Particularly in the vicinity of the resonance frequency, since the driving force is small with respect to the inertial force, the change in the oscillation frequency has a time constant, and the time required for the oscillation frequency change tends to be long. For example, when the Q value of the resonance characteristics of the vibration system is around 1000, it may take about 0.5 seconds in the vicinity of the resonance frequency.

また、駆動周波数の変更する刻みは、必要となる周波数精度で行う必要がある。そのため、最初に設定された駆動周波数が、共振周波数から大きく外れていた場合、共振周波数を見つけるまでに何度も駆動周波数を変更する必要があることもある。例えば、共振周波数を見つけるまでに50回駆動周波数を変更したとし、変更のたびに0.5秒間の待機時間を設けたとすると、共振周波数を見つけるまでに25秒程度の時間を要することになる。このことは、例えばレーザビームプリンタに用いた場合、駆動開始に掛かる時間に影響しかねない。 Further, it is necessary to change the driving frequency with the required frequency accuracy. Therefore, if the initially set drive frequency is significantly different from the resonance frequency, it may be necessary to change the drive frequency many times before finding the resonance frequency. For example, if the drive frequency is changed 50 times before finding the resonance frequency, and a standby time of 0.5 seconds is provided for each change, it takes about 25 seconds to find the resonance frequency. For example, when this is used for a laser beam printer, it may affect the time required to start driving.

上記課題に鑑み、本発明の揺動体装置は、揺動可能に支持された揺動体を有し共振周波数を持つ振動系と、駆動信号に基づき振動系に駆動力を供給する駆動部と、検出手段と、駆動振幅制御部と、駆動周波数制御部とを有する。検出手段は、少なくとも揺動体の揺動振幅を検出する。駆動振幅制御部は、駆動信号の駆動振幅をフィードバック制御する。駆動周波数制御部は、駆動部へ供給する駆動信号の駆動周波数を制御する。共振周波数検出動作において、駆動振幅制御部のフィードバック利得を、他の動作状態で設定するフィードバック利得よりも低い値に設定し、駆動振幅制御部が、検出手段で検出される揺動振幅が目標の値となる様に駆動信号の駆動振幅を制御している状態とする。そして、この状態で、駆動周波数制御部が、複数の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、駆動信号の駆動振幅が最小となる駆動周波数を振動系の共振周波数として取得する。 In view of the above problems, the oscillator device of the present invention includes an oscillation system having an oscillation body that is supported so as to be capable of oscillation, a resonance frequency, a drive unit that supplies a drive force to the oscillation system based on a drive signal, and a detection Means, a drive amplitude control unit, and a drive frequency control unit. The detection means detects at least the swing amplitude of the swing body. The drive amplitude control unit feedback controls the drive amplitude of the drive signal. The drive frequency control unit controls the drive frequency of the drive signal supplied to the drive unit. In the resonance frequency detection operation, the feedback gain of the drive amplitude control unit is set to a value lower than the feedback gain set in other operation states, and the drive amplitude control unit sets the swing amplitude detected by the detection means to the target It is assumed that the drive amplitude of the drive signal is controlled to be a value. In this state, the drive frequency control unit determines that the drive amplitude of the drive signal is the minimum based on the information including the drive frequency and the controlled drive amplitude in each drive state with the drive signals having a plurality of drive frequencies. Is obtained as the resonance frequency of the vibration system.

また、上記課題に鑑み、本発明の光偏向装置は、前記揺動体装置を有し、少なくとも1つの揺動体に光偏向素子が配置され、光偏向素子に入射する光ビームを偏向することを特徴とする。 In view of the above problems, an optical deflecting device of the present invention includes the oscillator device, wherein the optical deflector is disposed on at least one oscillator, and deflects the light beam incident on the optical deflector. And

また、上記課題に鑑み、本発明の画像形成装置などの光学機器は、前記光偏向装置を有し、光偏向装置が、光源からの光ビームを偏向し、該光ビームの少なくとも一部を光照射対象物に入射させることを特徴とする。 In view of the above problems, an optical apparatus such as an image forming apparatus according to the present invention includes the light deflecting device, and the light deflecting device deflects a light beam from a light source, and at least part of the light beam is light. It is made to enter into an irradiation target object.

また、上記課題に鑑み、本発明の検出方法は、揺動可能に支持された揺動体を有し共振周波数を持つ振動系と駆動信号に基づき振動系に駆動力を供給する駆動部とを有し、駆動信号の駆動振幅をフィードバック制御する揺動体装置の振動系の共振周波数を検出する。該共振周波数検出方法では、共振周波数検出動作において、フィードバック利得を、他の動作状態で設定するフィードバック利得よりも低い値に設定し、駆動部で駆動される揺動体の揺動振幅が目標の値となる様に駆動信号の駆動振幅を制御している状態とする。そして、この状態で、揺動体を複数の駆動周波数の駆動信号で夫々駆動し、これらの駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、駆動信号の駆動振幅が最小となる駆動周波数を振動系の共振周波数として取得する。 In view of the above problems, the detection method of the present invention includes a vibration system having a rocking body supported so as to be rockable and having a resonance frequency, and a drive unit that supplies a driving force to the vibration system based on a drive signal. Then, the resonance frequency of the vibration system of the oscillator device that feedback-controls the drive amplitude of the drive signal is detected. In the resonance frequency detection method, in the resonance frequency detection operation, the feedback gain is set to a value lower than the feedback gain set in another operation state, and the oscillation amplitude of the oscillator driven by the drive unit is a target value. The drive amplitude of the drive signal is controlled so that In this state, the oscillator is driven by drive signals having a plurality of drive frequencies, and the drive amplitude of the drive signal is minimized based on the information including the drive frequency and the controlled drive amplitude in these drive states. Is obtained as the resonance frequency of the vibration system.

本発明によれば、共振周波数検出動作において、駆動振幅制御部のフィードバック利得を、他の動作状態でのフィードバック利得よりも低い値に設定することで、振動系の共振周波数と看做し得る周波数を比較的高速に求めることができる。 According to the present invention, in the resonance frequency detection operation, the frequency that can be regarded as the resonance frequency of the vibration system by setting the feedback gain of the drive amplitude control unit to a value lower than the feedback gain in other operation states. Can be obtained at a relatively high speed.

以下、本発明の実施形態を説明する。本発明による揺動体装置の基本的な実施形態は、揺動可能な揺動体を有し共振周波数を持つ振動系と、駆動信号で振動系に駆動力を供給する駆動部と、揺動体の揺動振幅を検出する検出手段と、駆動振幅制御部を有する。駆動振幅制御部は、駆動信号の駆動振幅をフィードバック制御するものであって、揺動体の振幅と目標の振幅を制御偏差とし、制御偏差に利得をかけた値を駆動部にフィードバックする。更に、駆動部へ供給する駆動信号の駆動周波数を制御する駆動周波数制御部を有する。揺動体装置では、共振周波数検出動作において、駆動振幅制御部のフィードバック利得を、定常状態などの他の動作状態で設定するフィードバック利得よりも低い値に設定する。そして、駆動振幅制御部が、検出手段で検出される揺動振幅が目標の値となる様に駆動信号の駆動振幅を制御している状態とする。この状態で、駆動周波数制御部が、複数の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、駆動信号の駆動振幅が最小となる駆動周波数を前記振動系の共振周波数として取得する。 Embodiments of the present invention will be described below. A basic embodiment of an oscillator device according to the present invention includes an oscillation system having an oscillation body that can swing and having a resonance frequency, a drive unit that supplies a driving force to the oscillation system by a drive signal, and an oscillation of the oscillator. It has a detection means for detecting the dynamic amplitude and a drive amplitude control section. The drive amplitude control unit performs feedback control of the drive amplitude of the drive signal, and uses the amplitude of the oscillator and the target amplitude as a control deviation, and feeds back a value obtained by multiplying the control deviation by a gain to the drive unit. Furthermore, a drive frequency control unit that controls the drive frequency of the drive signal supplied to the drive unit is provided. In the oscillator device, in the resonance frequency detection operation, the feedback gain of the drive amplitude control unit is set to a value lower than the feedback gain set in another operation state such as a steady state. Then, the drive amplitude control unit controls the drive amplitude of the drive signal so that the swing amplitude detected by the detection means becomes a target value. In this state, the drive frequency control unit drives the drive signal with the minimum drive amplitude based on the information including the drive frequency and the controlled drive amplitude in each drive state with the drive signals having a plurality of drive frequencies. The frequency is acquired as the resonance frequency of the vibration system.

振動系の揺動体が1つの場合、振動系は1つの共振周波数を持ち、駆動信号は1つの周波数の信号成分で生成でき、揺動体の振動は1つの周波数成分を持つ。従って、検出手段は1つの揺動体の揺動振幅を検出し、駆動振幅制御部は駆動信号の1つの駆動振幅をフィードバック制御し、駆動周波数制御部は駆動信号の1つの駆動周波数を制御すればよい。 When there is one oscillating body of the vibration system, the vibration system has one resonance frequency, the drive signal can be generated with a signal component of one frequency, and the vibration of the oscillating body has one frequency component. Therefore, the detection means detects the swing amplitude of one swing body, the drive amplitude control unit feedback-controls one drive amplitude of the drive signal, and the drive frequency control unit controls one drive frequency of the drive signal. Good.

振動系の揺動体が複数の場合は、振動系は複数の共振周波数を持ち、駆動信号は複数の周波数の信号成分で生成する必要があり、揺動体の振動も複数の周波数成分を持つ。従って、制御部によって、揺動体の振動に含まれる複数の周波数成分間の位相差が所定の値になる様に、駆動信号の複数の周波数の信号成分間の位相差を制御する必要がある。このとき、制御部は、複数の信号成分の周波数の整数比を保ったまま周波数を変更し、揺動体の振動の周波数成分に対応する駆動信号の信号成分の周波数と該振動の周波数成分の振幅との関係を測定し、該測定結果に基づいて複数の駆動周波数を制御する。 When there are a plurality of oscillators in the vibration system, the vibration system has a plurality of resonance frequencies, the drive signal needs to be generated with signal components having a plurality of frequencies, and the vibration of the oscillator has a plurality of frequency components. Therefore, it is necessary to control the phase difference between the signal components of the plurality of frequencies of the drive signal so that the phase difference between the plurality of frequency components included in the vibration of the oscillator has a predetermined value. At this time, the control unit changes the frequency while maintaining the integer ratio of the frequency of the plurality of signal components, and the frequency of the signal component of the drive signal corresponding to the frequency component of the vibration of the oscillator and the amplitude of the frequency component of the vibration And a plurality of drive frequencies are controlled based on the measurement result.

即ち、振動系の共振周波数は、基本波の基本周波数とn倍波の前記基本周波数の略n倍のn倍周波数を持つ(nは2以上の整数)。駆動周波数制御部は、前記基本波とn倍波に夫々対応する1対nの比の駆動周波数の駆動成分から成る駆動信号を駆動部に供給して駆動部に前記振動系を駆動させ、検出手段は、振動系の揺動体の前記基本波又はn倍波に対応する揺動成分の揺動振幅を検出する。駆動振幅制御部は、駆動信号の前記基本波又はn倍波に対応する駆動成分の駆動振幅をフィードバック制御する。共振周波数検出動作において、駆動振幅制御部の前記基本波及びn倍波に対応する駆動成分の駆動振幅へのフィードバック利得を、夫々、他の動作状態で設定するフィードバック利得よりも低い値に設定する。そして、駆動振幅制御部が、前記検出される揺動体の前記基本波又はn倍波に対応する揺動成分の揺動振幅が目標の値となる様に駆動信号の前記基本波又はn倍波に対応する駆動成分の駆動振幅を制御している状態とする。この状態で、駆動周波数制御部は、複数の前記基本波又はn倍波に対応する駆動成分の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、振動系の前記基本波又はn倍波の共振周波数を取得する。つまり、駆動信号の前記基本波又はn倍波に対応する駆動成分の駆動振幅が最小となる駆動周波数を振動系の前記基本波又はn倍波の共振周波数として取得する。 That is, the resonance frequency of the vibration system has an n-fold frequency that is approximately n times the fundamental frequency of the fundamental wave and the fundamental frequency of the n-fold wave (n is an integer of 2 or more). The drive frequency control unit supplies a drive signal composed of drive components having a drive frequency ratio of 1 to n corresponding to the fundamental wave and the n-th harmonic to the drive unit to drive the vibration system to detect The means detects the swing amplitude of the swing component corresponding to the fundamental wave or the n-th harmonic wave of the swing body of the vibration system. The drive amplitude control unit feedback-controls the drive amplitude of the drive component corresponding to the fundamental wave or the nth harmonic wave of the drive signal. In the resonance frequency detection operation, the feedback gain to the drive amplitude of the drive component corresponding to the fundamental wave and the nth harmonic wave of the drive amplitude control unit is set to a value lower than the feedback gain set in the other operation states, respectively. . Then, the drive amplitude control unit is configured to drive the fundamental wave or the nth harmonic wave of the drive signal so that the oscillation amplitude of the oscillation component corresponding to the detected fundamental wave or the nth harmonic wave of the oscillator is a target value. It is assumed that the drive amplitude of the drive component corresponding to is controlled. In this state, the drive frequency control unit is information including the drive frequency and the controlled drive amplitude in each drive state in the drive signal of the drive frequency of the drive component corresponding to the plurality of fundamental waves or n-th harmonic wave. Based on the above, the resonance frequency of the fundamental wave or n-th harmonic wave of the vibration system is acquired. That is, the drive frequency that minimizes the drive amplitude of the drive component corresponding to the fundamental wave or the nth harmonic wave of the drive signal is acquired as the resonance frequency of the fundamental wave or the nth harmonic wave of the vibration system.

典型的には、駆動周波数制御部は、定常動作の状態において、振動系の共振周波数に基づいて決定した駆動周波数の駆動信号を前記駆動部へ供給する。前記共振周波数検出動作におけるフィードバック利得は、予め記憶手段に記憶しておくことができる。 Typically, the drive frequency control unit supplies a drive signal having a drive frequency determined based on the resonance frequency of the vibration system to the drive unit in a steady operation state. The feedback gain in the resonance frequency detection operation can be stored in advance in the storage means.

また、本発明による検出方法の基本的な実施形態では、揺動可能に支持された揺動体を有し共振周波数を持つ振動系と駆動信号で振動系に駆動力を供給する駆動部とを有し駆動信号の駆動振幅をフィードバック制御する揺動体装置の振動系の共振周波数を検出する。該共振周波数検出方法では、共振周波数検出動作において、フィードバック利得を、他の動作状態で設定するフィードバック利得よりも低い値に設定する。そして、駆動部で駆動される揺動体の揺動振幅が目標の値となる様に駆動信号の駆動振幅を制御している状態とする。この状態で、揺動体を複数の駆動周波数の駆動信号で夫々駆動し、これらの駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、駆動信号の駆動振幅が最小となる駆動周波数を振動系の共振周波数として取得する。 In addition, the basic embodiment of the detection method according to the present invention includes a vibration system having a rocking body supported so as to be rockable and having a resonance frequency, and a drive unit that supplies a driving force to the vibration system using a drive signal. Then, the resonance frequency of the vibration system of the oscillator device that feedback-controls the drive amplitude of the drive signal is detected. In the resonance frequency detection method, in the resonance frequency detection operation, the feedback gain is set to a value lower than the feedback gain set in another operation state. Then, the drive amplitude of the drive signal is controlled so that the swing amplitude of the swing body driven by the drive unit becomes a target value. In this state, the oscillator is driven by drive signals having a plurality of drive frequencies, and the drive signal having the minimum drive amplitude is driven based on the information including the drive frequency and the controlled drive amplitude in these drive states. The frequency is acquired as the resonance frequency of the vibration system.

以上の様にすれば、共振周波数検出動作において、駆動周波数変更ごとに行う駆動信号の振幅の測定を短い時間で行って共振周波数を求めることができる様になり、共振周波数を求めるまでの時間を短縮できる。 In this manner, in the resonance frequency detection operation, the resonance frequency can be obtained by measuring the amplitude of the drive signal performed every time the drive frequency is changed in a short time, and the time until the resonance frequency is obtained can be obtained. Can be shortened.

以下、図を用いて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

(実施例1)
本発明の揺動体装置を光偏向装置に適用した実施例1の構成図を図1と図2に示す。図1に制御部150の詳細を示し、図2に光偏向装置の光偏向部(光スキャナ)を示す。本実施例において、光偏向部は、1つの揺動体200と弾性支持部であるねじりバネ212とからなる振動系100と、振動系100を支持する支持部211を有する。振動系100に駆動力を印加する駆動手段である駆動部120は、駆動信号を受けて、電磁方式、静電方式、圧電方式などによって振動系100に駆動力を供給する構成となっている。電磁駆動の場合は、例えば揺動体に永久磁石を設け、この永久磁石に磁場を印加するコイルを揺動体の近傍に配置してもよいし、永久磁石とコイルをこれとは逆の配置としてもよい。静電駆動の場合は、揺動体に電極を形成し、この電極との間に静電力を働かせる様な電極を揺動体の近傍に形成する。圧電駆動の場合は、圧電素子を振動系や振動系の固定支持部などに設けて駆動力を印加する。また、駆動部120を制御する制御手段である制御部150が設けられている。
(Example 1)
FIG. 1 and FIG. 2 show a configuration diagram of Embodiment 1 in which the oscillator device of the present invention is applied to an optical deflection device. FIG. 1 shows details of the control unit 150, and FIG. 2 shows an optical deflection unit (optical scanner) of the optical deflection apparatus. In this embodiment, the light deflection unit includes a vibration system 100 including one oscillator 200 and a torsion spring 212 that is an elastic support unit, and a support unit 211 that supports the vibration system 100. The driving unit 120 that is a driving unit that applies a driving force to the vibration system 100 is configured to receive a driving signal and supply the driving force to the vibration system 100 by an electromagnetic method, an electrostatic method, a piezoelectric method, or the like. In the case of electromagnetic driving, for example, a permanent magnet may be provided on the oscillating body, and a coil for applying a magnetic field to the permanent magnet may be arranged in the vicinity of the oscillating body, or the permanent magnet and the coil may be arranged oppositely. Good. In the case of electrostatic driving, an electrode is formed on the oscillating body, and an electrode that applies an electrostatic force to the electrode is formed in the vicinity of the oscillating body. In the case of piezoelectric driving, a piezoelectric element is provided on a vibration system or a fixed support portion of the vibration system and a driving force is applied. Further, a control unit 150 that is a control unit that controls the drive unit 120 is provided.

揺動体200は表面に反射ミラー230などの光偏向素子を有し、光源131からの光ビーム132を反射・偏向して走査する。こうして、揺動体に光偏向素子が配置され、光偏向素子に入射する光ビームを偏向する光偏向装置が構成される。更に、検出手段を構成する受光素子140が配され、受光素子140を走査光133が通過するタイミングが受光素子140で検出される。制御部150は、走査光133が受光素子140を通過する時間に基づき駆動信号を生成し、この駆動信号を駆動部120に供給する。 The oscillating body 200 has a light deflection element such as a reflection mirror 230 on the surface, and scans by reflecting and deflecting the light beam 132 from the light source 131. Thus, the light deflecting element is arranged on the oscillator, and an optical deflecting device for deflecting the light beam incident on the light deflecting element is configured. Further, a light receiving element 140 constituting a detecting means is arranged, and the light receiving element 140 detects the timing at which the scanning light 133 passes through the light receiving element 140. The control unit 150 generates a drive signal based on the time that the scanning light 133 passes through the light receiving element 140 and supplies the drive signal to the drive unit 120.

図3に、光偏向装置の揺動体200の反射ミラー230による走査光133の偏向角について示す。受光素子140は、光スキャナの最大偏向角θampより小さい偏向角の走査光133を受光できる位置(走査中心から設置角θBDの位置)に配置される。図3では光スキャナの走査軌跡上に受光素子140を配置しているが、別途設けた反射ミラーなどによって更に偏向された走査光の光路に受光素子を配置してもよい。図4に、光スキャナによる走査光133の偏向角θの時間変化、及び受光素子140の設置位置の設置角θBDを走査光133が通過する時刻に係る時間t1、t2を示す。例えば揺動体200が振幅θampで振動しているとすると、走査光133は揺動体の振動一周期で受光素子140を2回通過する。t1とt2の判別方法は、検出時刻の時間が駆動信号の半周期以下となる方をt1、もう一方をt2として判別する。すなわち、間隔が短い期間をt1、間隔が長い期間をt2とする。走査光133の偏向角θの時間変化は、揺動体200が或る揺動周波数で揺動している振動運動に対応している。 FIG. 3 shows the deflection angle of the scanning light 133 by the reflection mirror 230 of the oscillator 200 of the optical deflection apparatus. The light receiving element 140 is disposed at a position where the scanning light 133 having a deflection angle smaller than the maximum deflection angle θamp of the optical scanner can be received (position of the installation angle θBD from the scanning center). In FIG. 3, the light receiving element 140 is arranged on the scanning locus of the optical scanner, but the light receiving element may be arranged in the optical path of the scanning light further deflected by a reflection mirror or the like provided separately. FIG. 4 shows time t1 and t2 related to the time change of the deflection angle θ of the scanning light 133 by the optical scanner and the time when the scanning light 133 passes through the installation angle θBD of the installation position of the light receiving element 140. For example, if the oscillating body 200 is oscillating with an amplitude θamp, the scanning light 133 passes through the light receiving element 140 twice in one oscillation period of the oscillating body. The determination method of t1 and t2 is determined as t1 when the detection time is equal to or less than a half cycle of the drive signal, and t2 as the other. That is, a period with a short interval is t1, and a period with a long interval is t2. The time change of the deflection angle θ of the scanning light 133 corresponds to the oscillating motion in which the oscillating body 200 is oscillating at a certain oscillating frequency.

制御部150の詳細な構成と動作について説明する。
検出手段を構成する時間計測部152は、受光素子140の出力信号を取り込み、走査光133の検出時刻に係る時間t1、t2を計測する。また、制御部150では、揺動体200を目標の振動変位に制御するため、コントローラ151が目標時間153を設定する。駆動振幅制御部154は、目標時間153と検出時間の差分にフィードバック利得を乗算し、その結果を駆動指令値159と加算する。該加算値は、波形生成器157から出力される信号に乗算され、その信号が駆動部120に出力される。波形生成器157は、駆動周波数制御部156で設定された周波数の波形を生成する。
A detailed configuration and operation of the control unit 150 will be described.
The time measuring unit 152 constituting the detecting unit takes in the output signal of the light receiving element 140 and measures the times t1 and t2 related to the detection time of the scanning light 133. In the control unit 150, the controller 151 sets a target time 153 to control the oscillator 200 to a target vibration displacement. The drive amplitude control unit 154 multiplies the difference between the target time 153 and the detection time by a feedback gain, and adds the result to the drive command value 159. The added value is multiplied by the signal output from the waveform generator 157, and the signal is output to the drive unit 120. The waveform generator 157 generates a waveform having a frequency set by the drive frequency control unit 156.

駆動位相検出部155は、時間計測部152の出力する検出時間t1、t2と波形生成器157が出力する波形に基づき、揺動体200の駆動位相φを検出する。駆動位相φとは、駆動信号の位相に対する揺動体200の振動運動の位相である。後述する様に、駆動周波数が共振周波数より小さい場合、駆動位相φは、駆動周波数が共振周波数f0のときの駆動位相φ0より小さくなり(振動運動の位相の遅れが小さい)、駆動周波数が共振周波数より大きい場合、駆動位相はφ0より大きくなる。ここでは、時間計測部152の出力に基づいて駆動信号の振幅と駆動位相φが決まればよいので、検出手段は、1つの受光素子140を設けて検出時間t1、t2を計測する構成で済む。 The drive phase detection unit 155 detects the drive phase φ of the oscillator 200 based on the detection times t1 and t2 output from the time measurement unit 152 and the waveform output from the waveform generator 157. The drive phase φ is the phase of the oscillating motion of the oscillator 200 with respect to the phase of the drive signal. As will be described later, when the drive frequency is smaller than the resonance frequency, the drive phase φ is smaller than the drive phase φ 0 when the drive frequency is the resonance frequency f 0 (the phase delay of the vibration motion is small), and the drive frequency is greater than the resonant frequency, the drive phase is greater than phi 0. Here, since it is only necessary to determine the amplitude of the drive signal and the drive phase φ based on the output of the time measuring unit 152, the detection means may be configured to measure the detection times t1 and t2 by providing one light receiving element 140.

駆動情報記録部158は、振動系100の揺動体200が目標の振幅となる様に駆動振幅制御部154が制御した駆動信号の振幅、及び駆動周波数制御部156が波形生成器157に設定している駆動周波数fdを記録する。本実施例では、駆動周波数制御部156は、駆動情報記録部158に記録されている駆動信号の振幅及び駆動周波数、駆動位相検出部155により検出された駆動位相φに基づき、駆動周波数fdを決定し波形生成器157へ設定する。すなわち、駆動周波数制御部156は、現在の駆動周波数の駆動信号の位相に対する揺動体の駆動位相によって、次回の駆動信号の駆動周波数を決定する。 The drive information recording unit 158 sets the amplitude of the drive signal controlled by the drive amplitude control unit 154 so that the oscillator 200 of the vibration system 100 has a target amplitude, and the drive frequency control unit 156 sets the waveform generator 157. Record the drive frequency fd. In this embodiment, the drive frequency control unit 156 determines the drive frequency fd based on the amplitude and drive frequency of the drive signal recorded in the drive information recording unit 158 and the drive phase φ detected by the drive phase detection unit 155. Set to the waveform generator 157. That is, the drive frequency control unit 156 determines the drive frequency of the next drive signal based on the drive phase of the oscillator with respect to the phase of the drive signal at the current drive frequency.

図5に、本実施例における駆動周波数制御部156及び駆動情報記録部158の動作フローを示す。これに沿って説明する。駆動開始時、駆動周波数制御部156は、製造時の共振周波数や前回駆動時の駆動周波数などに基づいた駆動周波数fd1を波形生成器157へ設定し、駆動を開始する(S101)。例えば、製造時の共振周波数や前回駆動時の駆動周波数をそのまま用いてもよいし、その時の温度を考慮して(一般に温度が上がれば共振周波数は低下する)設定してもよい。この設定は、装置側で自動的に行ってもよいし、使用者が手動で設定してもよい。更に、本実施例で駆動周波数を決定する際に揺動体装置の振動系100をフィードバック制御するときの利得G1を設定する(S102)。 FIG. 5 shows an operation flow of the drive frequency control unit 156 and the drive information recording unit 158 in the present embodiment. It demonstrates along this. At the start of driving, the driving frequency control unit 156 sets the driving frequency fd 1 based on the resonance frequency at the time of manufacture, the driving frequency at the previous driving, and the like to the waveform generator 157 and starts driving (S101). For example, the resonance frequency at the time of manufacture or the drive frequency at the previous drive may be used as it is, or may be set in consideration of the temperature at that time (generally, the resonance frequency decreases as the temperature rises). This setting may be performed automatically on the apparatus side or manually by the user. Moreover, setting the gain G 1 at the time of feedback control of the oscillation system 100 of the oscillator device in determining the driving frequency in the present embodiment (S102).

駆動開始(S103)後、受光素子140に信号(BD信号)が入ってくるのを確認する(S104)。この初期動作では、制御部150の波形生成器157に開始駆動周波数が設定され、初期の駆動振幅が設定される。開始駆動周波数は、取り得る共振周波数の平均値、前回停止時の共振周波数などを設定する。駆動振幅は、受光素子140に走査光133が入るのに十分な初期値を設定する。駆動部120への駆動信号印加により揺動体200が振動し、受光素子140に信号が入ってきたら、振幅制御を開始する(S105)。すなわち、駆動振幅制御部154は、駆動周波数fd1において振動系100の揺動体200が目標の揺動振幅となる様に駆動信号振幅A1を制御する。駆動情報記録部158は、このときの駆動周波数fd1及び駆動信号振幅A1を記録する(S106)。 After the start of driving (S103), it is confirmed that a signal (BD signal) enters the light receiving element 140 (S104). In this initial operation, the start drive frequency is set in the waveform generator 157 of the control unit 150, and the initial drive amplitude is set. As the start drive frequency, an average value of possible resonance frequencies, a resonance frequency at the time of the previous stop, and the like are set. The drive amplitude is set to an initial value sufficient for the scanning light 133 to enter the light receiving element 140. When the oscillating body 200 vibrates by application of a drive signal to the drive unit 120 and a signal enters the light receiving element 140, amplitude control is started (S105). That is, the drive amplitude control unit 154 controls the drive signal amplitude A 1 so that the oscillating body 200 of the vibration system 100 becomes the target oscillation amplitude at the drive frequency fd 1 . The drive information recording unit 158 records the drive frequency fd 1 and the drive signal amplitude A 1 at this time (S106).

図6に、駆動位相比較による駆動周波数変更の方向を示す。駆動周波数制御部156は、駆動位相検出部155が検出した駆動位相φ1と共振周波数f0で駆動した時の駆動位相φ0(これは予め計測して記憶してある)を比較する。その結果、現在の駆動位相φ1が共振周波数f0における駆動位相φ0よりも小さかった(揺動位相の遅れが小さい)場合、次の様にする。駆動周波数制御部156は駆動周波数fd1より所定の周波数変更刻みfaddだけ周波数を上げた駆動周波数fd2を波形生成器157へ設定する。逆に、現在の駆動位相φ1が共振周波数f0における駆動位相φ0よりも大きかった場合、駆動周波数制御部156は駆動周波数fd1より所定の周波数変更刻みfaddだけ周波数を下げた駆動周波数fd2を波形生成器157へ設定する(S107)。このときも、駆動情報記録部158は、駆動周波数がfd1のとき同様に、駆動周波数fd2において振動系100の揺動体200が目標の振幅となる様な駆動信号振幅A2とこの駆動周波数fd2とを記録する(S108)。 FIG. 6 shows the direction of drive frequency change by drive phase comparison. The drive frequency control unit 156 compares the drive phase φ 1 detected by the drive phase detection unit 155 with the drive phase φ 0 when driving at the resonance frequency f 0 (this is measured and stored in advance). As a result, when the current drive phase φ 1 is smaller than the drive phase φ 0 at the resonance frequency f 0 (the oscillation phase delay is small), the following is performed. Drive frequency control unit 156 sets the drive frequency fd 2 raising the frequency by a predetermined frequency change increment f the add than the drive frequency fd 1 to the waveform generator 157. On the other hand, when the current drive phase φ 1 is larger than the drive phase φ 0 at the resonance frequency f 0 , the drive frequency control unit 156 reduces the drive frequency by a predetermined frequency change step f add from the drive frequency fd 1. fd 2 is set in the waveform generator 157 (S107). At this time, similarly to the case where the drive frequency is fd 1 , the drive information recording unit 158 uses the drive signal amplitude A 2 and the drive frequency so that the oscillator 200 of the vibration system 100 has a target amplitude at the drive frequency fd 2 . fd 2 is recorded (S108).

周波数変更刻みfaddは、前回駆動時からの温度変化、周波数変更を行う予定回数、必要となる共振周波数精度などを考慮して決める。例えば、前回駆動時からの温度変化から考えて共振周波数がαHz程度変化していると想定され、駆動周波数fd1を該変化している所に設定して、周波数変更を最初の設定も含めて3回行うとする場合、周波数変更刻みfaddはα/2Hz以上とする。また、周波数変更を最初のものを含めて2回行う予定とする場合、周波数変更刻みfaddはαHz以上とする。言い換えれば、最初に設定される駆動周波数から始めて、最後に設定される駆動周波数までには共振周波数を越える様に周波数変更刻みを設定する。 The frequency change increment f add is determined in consideration of the temperature change from the previous driving, the scheduled frequency of frequency change, the required resonance frequency accuracy, and the like. For example, it is assumed that the resonance frequency has changed by about αHz considering the temperature change from the previous drive, and the drive frequency fd 1 is set to the place where it has changed, and the frequency change is also included in the initial setting When performing three times, the frequency change increment f add is α / 2 Hz or more. When the frequency change is scheduled to be performed twice including the first one, the frequency change increment f add is set to α Hz or more. In other words, the frequency change increment is set so as to exceed the resonance frequency from the first set drive frequency to the last set drive frequency.

図7と図8に、駆動信号振幅の比較による駆動周波数変更の方向を示す。これは最初の駆動周波数変更のときには適用できず、最初の駆動周波数変更には前記の駆動位相比較の方法を適用すればよい。駆動周波数制御部156は、駆動情報記録部158に記録された駆動振幅信号A2と駆動振幅信号A1の大きさを比較する。その結果、A1がA2よりも大きい場合は、前回の周波数変更と同じ方向に所定の周波数変更刻みfaddだけ変更した駆動周波数fd3を波形生成器157へ設定する(図8の駆動信号振幅An、An-1、An-2参照)。図8の場合、駆動位相が共振周波数f0における駆動位相φ0よりも小さいので、駆動周波数fdn-3、fdn-2、fdn-1は順に大きくしている。 FIG. 7 and FIG. 8 show the direction of drive frequency change by comparing the drive signal amplitude. This cannot be applied when the driving frequency is changed for the first time, and the above-described driving phase comparison method may be applied for the first driving frequency change. The drive frequency control unit 156 compares the magnitudes of the drive amplitude signal A 2 and the drive amplitude signal A 1 recorded in the drive information recording unit 158. As a result, when A 1 is larger than A 2 , the drive frequency fd 3 changed by a predetermined frequency change increment f add in the same direction as the previous frequency change is set in the waveform generator 157 (drive signal in FIG. 8). (See Amplitudes A n , A n-1 , A n-2 ). In the case of FIG. 8, since the drive phase is smaller than the drive phase φ 0 at the resonance frequency f 0 , the drive frequencies fd n−3 , fd n−2 , and fd n−1 are sequentially increased.

逆に、図7に示す様にA1がA2よりも小さかった場合、本実施例では、駆動周波数制御部156は、前回の周波数変更とは逆の方向に周波数変更刻みfaddの2倍だけ周波数を変更した駆動周波数fd3を波形生成器157へ設定する(S109)。この場合、駆動位相φ1は共振周波数f0における駆動位相φ0よりも大きかったので、駆動周波数fd2は駆動周波数fd1から下降させているが、駆動位相φ2は駆動位相φ0よりも小さいので、駆動周波数fd3は駆動周波数fd2から上昇させている。ここでも、駆動情報記録部158は、駆動周波数がfd1のときと同様に、駆動周波数fd3において振動系100の揺動体200が目標の振幅となる様な駆動信号振幅A3を記録する(S110)。この様に、駆動周波数制御部156は、駆動情報記録部158に記録された駆動信号の駆動周波数及び駆動振幅に基づき、次回の駆動信号の駆動周波数を決定する。より具体的には、駆動周波数制御部156は、駆動信号の駆動周波数を変更する際に、現在の駆動周波数の駆動信号の駆動振幅と前回の駆動周波数の駆動信号の駆動振幅との大小比較によって、次回の駆動信号の駆動周波数を決定する。 Conversely, as shown in FIG. 7, when A 1 is smaller than A 2 , in this embodiment, the drive frequency control unit 156 doubles the frequency change increment f add in the direction opposite to the previous frequency change. The drive frequency fd 3 whose frequency is changed by only this is set in the waveform generator 157 (S109). In this case, since the driving phase φ 1 is larger than the driving phase φ 0 at the resonance frequency f 0 , the driving frequency fd 2 is lowered from the driving frequency fd 1, but the driving phase φ 2 is lower than the driving phase φ 0. Since it is small, the driving frequency fd 3 is increased from the driving frequency fd 2 . Here, as in the case where the drive frequency is fd 1 , the drive information recording unit 158 records the drive signal amplitude A 3 such that the oscillator 200 of the vibration system 100 has a target amplitude at the drive frequency fd 3 ( S110). In this manner, the drive frequency control unit 156 determines the drive frequency of the next drive signal based on the drive frequency and drive amplitude of the drive signal recorded in the drive information recording unit 158. More specifically, when changing the drive frequency of the drive signal, the drive frequency control unit 156 compares the drive amplitude of the drive signal of the current drive frequency with the drive amplitude of the drive signal of the previous drive frequency. The drive frequency of the next drive signal is determined.

次に、駆動周波数制御部156は、駆動情報記録部158に記録された駆動周波数fd1、fd2のうち駆動周波数fd3と近い駆動周波数の時に記録した駆動信号振幅とA3を比較する(S111)。その結果、A3が大きい場合、駆動情報記録部158に記録された駆動周波数及び駆動振幅より、下記の式1-1、式1-2、式1-3を用いて二次曲線補間を行い、駆動振幅Aが最小となる共振周波数に相当する駆動周波数fd0を求める(S114)。こうして共振周波数と看做し得る駆動周波数fd0を取得することができる。下記の式において、aは、図7の3点を通る二次式の二次の項の係数であり、bは同じく一次の項の係数である。 Next, the drive frequency control unit 156 compares the drive signal amplitude recorded at the drive frequency close to the drive frequency fd 3 out of the drive frequencies fd 1 and fd 2 recorded in the drive information recording unit 158 with A 3 ( S111). As a result, when A 3 is large, performs the driving frequency and driving amplitude is recorded in the drive information storage unit 158, wherein 1-1, wherein 1-2 below, the quadratic curve interpolation using Equation 1-3 Then, the drive frequency fd 0 corresponding to the resonance frequency that minimizes the drive amplitude A is obtained (S114). In this way, the drive frequency fd 0 that can be regarded as the resonance frequency can be acquired. In the following equation, “a” is a coefficient of the quadratic term of the quadratic equation passing through the three points in FIG. 7, and “b” is a coefficient of the primary term.

Figure 2009265285
Figure 2009265285

次に駆動周波数制御部156は、駆動周波数fd0を波形生成器157へ設定する。この様に、駆動周波数制御部156は、振動系の共振周波数として取得した駆動周波数の駆動信号を駆動部120へ供給し、検出手段で検出される揺動振幅が目標の値となる様に駆動部120に揺動体200を駆動させる。意図的に、駆動周波数制御部156は、駆動周波数fd0から所定値ずらした駆動周波数を波形生成器157へ設定して、揺動体200の駆動を行うこともできる。即ち、装置が本来目的とする動作状態である定常状態においては、フィードバック制御しながら共振周波数近傍の周波数で駆動してもよいし、共振周波数から所定値ずらした周波数近傍で駆動してもよい。 Next, the drive frequency control unit 156 sets the drive frequency fd 0 in the waveform generator 157. In this way, the drive frequency control unit 156 supplies the drive signal of the drive frequency acquired as the resonance frequency of the vibration system to the drive unit 120, and drives the oscillation amplitude detected by the detection unit to be a target value. The rocking body 200 is driven by the unit 120. Intentionally, the drive frequency control unit 156 can drive the oscillator 200 by setting the drive frequency shifted from the drive frequency fd 0 by a predetermined value in the waveform generator 157. In other words, in a steady state, which is the intended operating state of the apparatus, it may be driven at a frequency near the resonance frequency while performing feedback control, or may be driven near a frequency shifted from the resonance frequency by a predetermined value.

逆に、A3が小さかった場合は、図8の破線で囲んだ部分に示す様に中央の周波数における駆動信号振幅が他の2つの駆動信号振幅に比べ小さくなる様に、更に駆動周波数の変更を行い駆動情報記録部158に駆動信号振幅を記録する。具体的には、前回の駆動周波数変更と同じ方向にfaddだけ周波数を変更した駆動周波数fdnを波形生成器157へ設定する(S112)。また、駆動情報記録部158は、駆動周波数fdnにおいて振動系が目標の振幅となる様な駆動信号振幅Anを記録する(S113)。そして、駆動周波数制御部156は、駆動信号振幅Anよりも駆動信号振幅An-1が小さくなるまで周波数変更を繰り返す。その後、駆動情報記録部158に記録された駆動周波数fdn、fdn-1、fdn-2と駆動振幅An、An-1、An-2より、前記の式1-1、式1-2、式1-3と同様の式より二次曲線補間を行い駆動振幅が最小となる駆動周波数fd0を求める。この様に、駆動周波数制御部156は、連続する3つの異なる駆動周波数のうち中央の駆動周波数の駆動信号の駆動振幅が他の駆動周波数の駆動信号の駆動振幅よりも小さくなる様に、次回の駆動信号の駆動周波数を決定する。 Conversely, if the A 3 smaller, as the drive signal amplitude at the center frequency as shown in a portion surrounded by a broken line in FIG. 8 is smaller than the other two drive signal amplitude further changes the drive frequency The drive signal amplitude is recorded in the drive information recording unit 158. Specifically, to set the drive frequency fd n changing the frequency by f the add in the same direction as the previous drive frequency changes to the waveform generator 157 (S112). The driving information recording unit 158, the vibration system records the amplitude and comprising such a drive signal amplitude A n of the target in the drive frequency fd n (S113). Then, the driving frequency control unit 156 repeats the frequency changes until the drive signal amplitude A n-1 is smaller than the driving signal amplitude A n. Thereafter, from the drive frequencies fd n , fd n−1 , fd n−2 and the drive amplitudes A n , A n−1 , A n−2 recorded in the drive information recording unit 158, the above formula 1-1, formula A quadratic curve interpolation is performed from the same expressions as 1-2 and 1-3 to obtain the drive frequency fd 0 at which the drive amplitude is minimized. In this way, the drive frequency control unit 156 performs the next time so that the drive amplitude of the drive signal at the center drive frequency among the three consecutive different drive frequencies is smaller than the drive amplitude of the drive signal at the other drive frequency. The drive frequency of the drive signal is determined.

以上の本実施例は、駆動信号の駆動周波数と振幅を記録する駆動情報記録部158を有し、駆動情報記録部が、複数の駆動周波数の駆動信号での夫々の駆動状態において揺動体200が目標の揺動振幅となる当該駆動信号の駆動周波数と振幅を記録する。そして、駆動周波数制御部156は、前記記録された複数の駆動信号の駆動周波数及び駆動振幅の情報に基づき、駆動信号の駆動振幅が最小となる駆動周波数を振動系100の共振周波数として取得する。 The present embodiment described above has the drive information recording unit 158 that records the drive frequency and amplitude of the drive signal, and the drive information recording unit has the oscillator 200 in each drive state with drive signals of a plurality of drive frequencies. Record the drive frequency and amplitude of the drive signal to be the target swing amplitude. Then, the drive frequency control unit 156 acquires the drive frequency at which the drive amplitude of the drive signal is the minimum as the resonance frequency of the vibration system 100 based on the recorded drive frequency and drive amplitude information of the plurality of drive signals.

本実施例では、3つの駆動周波数のうち、中央の駆動周波数における駆動信号振幅が他の駆動信号振幅よりも小さくない場合は、同方向に更に駆動周波数を変更して駆動信号振幅を測定するとしたが、この工程は必ずしも行わなくてもよい。例えば、共振周波数の位置が予めどの辺りにあるかが分かっている場合には、その前提を入れて前記と同様の二次曲線補間を行い、共振周波数に相当する駆動周波数fd0を求めてもよい。また、駆動信号振幅の変化率を見て(例えば、変化率が次第に小さくなっている)、それを考慮に入れて前記と同様の二次曲線補間を行い、共振周波数に相当する駆動周波数fd0を求めてもよい。 In this embodiment, when the drive signal amplitude at the central drive frequency is not smaller than the other drive signal amplitudes among the three drive frequencies, the drive signal amplitude is measured by further changing the drive frequency in the same direction. However, this step is not necessarily performed. For example, when the position of the resonance frequency is found to where it is in the neighborhood previously performs the same quadratic curve interpolation and the putting its premise, also be determined driving frequency fd 0 corresponding to the resonance frequency Good. Also, the rate of change of the drive signal amplitude is observed (for example, the rate of change is gradually reduced), taking into consideration it, quadratic curve interpolation similar to the above is performed, and the drive frequency fd 0 corresponding to the resonance frequency is obtained. You may ask for.

また、本実施例では、3つの駆動周波数における駆動信号振幅を用いたが、3つに限らず複数個(n個、nは4以上の整数)の駆動周波数における駆動信号振幅を用いて、n-1次曲線補間を行ってもよい。すなわち、ここでは、駆動周波数制御部が、駆動情報記録部に記録されたn個(nは3以上の整数)の駆動周波数の駆動信号での夫々の駆動状態における当該駆動信号の駆動周波数及び駆動振幅よりn-1次曲線補間を行う。そして、駆動信号の駆動振幅が最小となる駆動周波数を振動系の共振周波数として取得する。 In this embodiment, drive signal amplitudes at three drive frequencies are used, but the number is not limited to three, and drive signal amplitudes at a plurality of drive frequencies (n, n is an integer of 4 or more) are used. A negative curve interpolation may be performed. That is, here, the drive frequency control unit performs the drive frequency and the drive of the drive signal in each drive state with the drive signals of n (n is an integer of 3 or more) drive frequencies recorded in the drive information recording unit. N-1 order curve interpolation is performed from the amplitude. Then, the drive frequency that minimizes the drive amplitude of the drive signal is acquired as the resonance frequency of the vibration system.

また、駆動情報記録部158が記録した2つ以上の駆動周波数における駆動信号振幅と、事前に測定されている振動系100のパラメータ(Q値など)に基づき駆動信号の振幅が最小となる周波数を決定することもできる。例えば、2つ以上の駆動周波数における駆動信号振幅を用い、振動系100のパラメータを考慮して作成したテーブルや何らかの関数によって駆動信号の振幅Aが最小となる駆動周波数を求めてもよい。例えば、複数(2つ以上)の駆動周波数での駆動信号振幅から駆動信号振幅の変化率を求めて、振幅Aが最小の駆動周波数からの複数の駆動周波数のうちの最小振幅の周波数のずれ量と変化率のテーブルから振幅Aが最小の駆動周波数を求めてもよい。 Further, the frequency at which the amplitude of the drive signal is minimized based on the drive signal amplitude at two or more drive frequencies recorded by the drive information recording unit 158 and the parameters (Q value, etc.) of the vibration system 100 measured in advance. It can also be determined. For example, the drive signal amplitude at two or more drive frequencies may be used, and the drive frequency that minimizes the amplitude A of the drive signal may be obtained using a table created in consideration of the parameters of the vibration system 100 or some function. For example, the rate of change in drive signal amplitude is calculated from drive signal amplitudes at multiple (two or more) drive frequencies, and the amount of deviation of the minimum amplitude frequency among the multiple drive frequencies from the drive frequency with the minimum amplitude A The drive frequency with the minimum amplitude A may be obtained from the change rate table.

また、振動系の共振特性のパラメータであるQ値の環境による変動が少ない場合には、式1-1によって求められるaを固定値とすることができる。固定値a及び駆動周波数fd1、fd2と駆動信号振幅A1、A2より、下記の式1-4、前記の式1-3を用いて二次曲線補間を行い、共振周波数に相当する駆動信号の振幅Aが最小となる駆動周波数fd0を求めてもよい。つまり、駆動周波数制御部は、2つ以上の駆動周波数の駆動信号での夫々の駆動状態における当該駆動信号の駆動周波数と駆動振幅、及び事前に測定された振動系の特性パラメータに基づき、駆動振幅が最小の駆動周波数を振動系の共振周波数として取得する。 In addition, when the variation of the Q value, which is a parameter of the resonance characteristics of the vibration system, due to the environment is small, a obtained by Equation 1-1 can be a fixed value. From the fixed value a, the drive frequencies fd 1 and fd 2 and the drive signal amplitudes A 1 and A 2 , quadratic curve interpolation is performed using the following formula 1-4 and the above formula 1-3, which corresponds to the resonance frequency. The drive frequency fd 0 that minimizes the amplitude A of the drive signal may be obtained. In other words, the drive frequency control unit determines the drive amplitude based on the drive frequency and drive amplitude of the drive signal in each drive state with the drive signals of two or more drive frequencies, and the characteristic parameter of the vibration system measured in advance. Is obtained as the resonance frequency of the vibration system.

Figure 2009265285
Figure 2009265285

また、駆動周波数変更刻みfaddは、駆動周波数f0を決定する際の精度と共振周波数の変動幅によって任意に決めてよい。本実施例では駆動周波数変更刻みfaddを一定の値としていたが、周波数変更のたびにfaddを変更しても構わない。例えば、駆動信号振幅の変化率を考慮して(例えば、変化率に比例して)変更刻みfaddを変更してもよい。 Further, the drive frequency change increment f add may be arbitrarily determined according to the accuracy in determining the drive frequency f 0 and the fluctuation range of the resonance frequency. In this embodiment, the drive frequency change increment f add is set to a constant value, but f add may be changed each time the frequency is changed. For example, the change increment f add may be changed in consideration of the change rate of the drive signal amplitude (for example, in proportion to the change rate).

また、本実施例では、次の駆動周波数fd2の決定方法として駆動位相を用いたが、駆動位相による判断を用いずに駆動周波数fd2を決定してもよい。例えば、予め大略の存在範囲が分かっている共振周波数より低めの駆動周波数から始めるようにして、次の駆動周波数fd2は一定の方向(大きくする方向)に変更する様にしてもよい。また、駆動信号振幅の変化率を考慮して駆動周波数の変更方向を決定してもよい。 In the present embodiment, the driving phase is used as a method for determining the next driving frequency fd 2. However, the driving frequency fd 2 may be determined without using the determination based on the driving phase. For example, the next drive frequency fd 2 may be changed in a certain direction (increase direction) by starting from a drive frequency lower than the resonance frequency whose approximate existence range is known in advance. Also, the change direction of the drive frequency may be determined in consideration of the change rate of the drive signal amplitude.

駆動信号振幅の記録は、駆動周波数を変更してから、実際に揺動体200がその周波数で揺動するまでの時間待機してもよい。また、変更の後の所定時間における駆動信号振幅を平均化したものを駆動情報記録部158が記録してもよい。 The recording of the drive signal amplitude may wait for a time from when the drive frequency is changed until the oscillator 200 actually swings at that frequency. In addition, the drive information recording unit 158 may record the average of the drive signal amplitude in a predetermined time after the change.

更に、本実施例では、走査光133と受光素子140を用いて揺動体200の揺動周波数を検出しているが、ピエゾ素子、圧電素子など揺動周波数を検出できる何らかの検出器を用いてもよい。例えば、ピエゾセンサを弾性支持部212に設ける方法や、静電容量センサを用いる方法、磁気センサを用いる方法等がある。 Further, in this embodiment, the oscillation frequency of the oscillator 200 is detected using the scanning light 133 and the light receiving element 140, but any detector that can detect the oscillation frequency such as a piezoelectric element or a piezoelectric element may be used. Good. For example, there are a method of providing a piezo sensor on the elastic support 212, a method of using a capacitance sensor, a method of using a magnetic sensor, and the like.

次に、前記共振周波数検出動作におけるフィードバック利得G1の設定(S102)の詳細を説明する。本実施例で、共振周波数検出動作の開始時に設定する利得G1と、駆動周波数fd0を設定した後に設定する利得G2との関係は、次の式(2)となっている。
G1<G2 (2)
Next, details of the setting of the feedback gain G 1 (S102) in the resonance frequency detecting operation. In this embodiment, the relationship between the gain G 1 set at the start of the resonance frequency detection operation and the gain G 2 set after setting the drive frequency fd 0 is expressed by the following equation (2).
G 1 <G 2 (2)

図9に、一周期での駆動信号の駆動電圧振幅変動量と揺動体200の変位振幅(揺動振幅)変動量を示す。利得は、駆動信号の駆動電圧振幅の制御ループが安定な限り、出来るだけ大きくした方が、揺動体200の変位変動量が小さくなり、目標の揺動振幅により近づけることができる。一方で、利得が大きい場合、駆動電圧の振幅変動量は大きくなる。そのため、正確な駆動信号の振幅を得るためには、多数回測定による平均化が必要になる。多数回測定により、共振周波数検出動作を経て駆動周波数fd0を設定するまでにかかる時間が増大してしまう。 FIG. 9 shows the drive voltage amplitude fluctuation amount of the drive signal and the displacement amplitude (oscillation amplitude) fluctuation amount of the oscillator 200 in one cycle. As long as the control loop of the drive voltage amplitude of the drive signal is stable, the gain can be made closer to the target swing amplitude as the displacement fluctuation amount of the swing body 200 becomes smaller. On the other hand, when the gain is large, the amplitude fluctuation amount of the drive voltage becomes large. For this reason, in order to obtain an accurate amplitude of the drive signal, it is necessary to perform averaging by many measurements. The multiple measurements, the time it takes to set the drive frequency fd 0 through the resonance frequency detecting operation increases.

逆に利得を小さくした場合は、揺動体200の変位変動量が大きくなるが、駆動電圧の振幅変動量が小さくなり、駆動周波数fd0を設定までにかかる時間が短縮可能となる。そのため、揺動体の変位変動量の許容範囲までフィードバック利得を下げれば、利得の低減による時間短縮効果が最大になる。本実施例では、こうした原理に基づいて、共振周波数検出動作における利得G1を前記(2)式の様に設定する。 Conversely, when the gain is reduced, the displacement fluctuation amount of the oscillating body 200 increases, but the amplitude fluctuation amount of the drive voltage decreases, and the time required for setting the drive frequency fd 0 can be shortened. For this reason, if the feedback gain is lowered to the allowable range of the displacement fluctuation amount of the oscillator, the time shortening effect due to the gain reduction is maximized. In the present embodiment, based on such a principle, the gain G 1 in the resonance frequency detection operation is set as in the equation (2).

以上に述べた本実施例によれば、共振周波数検出動作において、駆動振幅制御部のフィードバック利得を、他の動作状態でのフィードバック利得よりも低い値に設定することで、振動系の共振周波数と看做し得る周波数を高速且つ高精度に求めることができる。すなわち、駆動周波数変更ごとに行う駆動信号の振幅の測定を短い時間で行って共振周波数を求めることができる様になり、共振周波数を求めるまでの時間を短縮できる。従って、その後に、取得した共振周波数に基づいて駆動周波数を設定して、装置が本来目的とする定常動作を開始するまでの時間も短縮できる。 According to the present embodiment described above, in the resonance frequency detection operation, the feedback gain of the drive amplitude control unit is set to a value lower than the feedback gain in other operation states, so that the resonance frequency of the vibration system The frequency that can be viewed can be obtained at high speed and with high accuracy. That is, the resonance frequency can be obtained by measuring the amplitude of the drive signal every time the drive frequency is changed, and the time required to obtain the resonance frequency can be shortened. Therefore, after that, the drive frequency is set based on the acquired resonance frequency, and the time until the apparatus starts the intended steady operation can be shortened.

(実施例2)
本発明の揺動体装置を光偏向装置に適用した実施例2を図10、図11、図12を用いて説明する。図10は、本光偏向装置の光偏向部(光スキャナ)のブロック図であり、図11は、本光偏向装置の揺動体200の反射ミラー230による走査光133の偏向角について示す図であり、図12は制御部150の詳細を示す図である。
(Example 2)
A second embodiment in which the oscillator device of the present invention is applied to an optical deflecting device will be described with reference to FIGS. 10, 11, and 12. FIG. FIG. 10 is a block diagram of an optical deflecting unit (optical scanner) of the present optical deflecting device, and FIG. 11 is a diagram illustrating a deflection angle of the scanning light 133 by the reflection mirror 230 of the oscillator 200 of the present optical deflecting device. FIG. 12 is a diagram showing details of the control unit 150.

本実施例において、図10に示す様に、光偏向部(光スキャナ)は、第1の揺動体200、第2の揺動体201、第1のねじりバネ212、第2のねじりバネ213を少なくとも有する振動系100と、振動系100を支持する支持部211とを有する。弾性支持部である第1のねじりバネ212は第1の揺動体200と第2の揺動体201とを接続している。弾性支持部である第2のねじりバネ213は、第1のねじりバネ212のねじり軸と共通するねじり軸を有する様に第2の揺動体201に接続されている。本実施例の振動系100は、2つの揺動体と2つのねじりバネとを少なくとも有すればよく、3つ以上の揺動体と3つ以上のねじりバネで構成してもよい。 In the present embodiment, as shown in FIG. 10, the light deflection unit (optical scanner) includes at least a first rocking body 200, a second rocking body 201, a first torsion spring 212, and a second torsion spring 213. And a support unit 211 that supports the vibration system 100. A first torsion spring 212 as an elastic support part connects the first rocking body 200 and the second rocking body 201. The second torsion spring 213, which is an elastic support portion, is connected to the second oscillator 201 so as to have a torsion axis common to the torsion axis of the first torsion spring 212. The vibration system 100 of the present embodiment only needs to have at least two oscillating bodies and two torsion springs, and may be configured by three or more oscillating bodies and three or more torsion springs.

本実施例では、第1の揺動体200は表面に反射ミラー230を有し、光源131からの光ビーム132を走査する。駆動部120の機能、制御部150の動作などは、基本的に前記実施例1と同様である。 In the present embodiment, the first oscillator 200 has a reflection mirror 230 on the surface, and scans the light beam 132 from the light source 131. The function of the drive unit 120, the operation of the control unit 150, and the like are basically the same as in the first embodiment.

図11に示す様に、光スキャナは第1及び第2の受光素子140、160を有し、夫々、光スキャナの最大偏向角Θampより小さい偏向角の走査光133を受光できる位置(設置角θBD1及び設置角θBD2の位置)に配置される。ここでも、図11では走査光133の光路に第1及び第2の受光素子140、160を配置しているが、別途設けた反射ミラーなどによって更に偏向された走査光の光路に第1及び第2の受光素子を配置してもよい。ここでは、時間計測部152の出力に基づいて、少なくとも第1の揺動体200の振動運動の後述する2つの振幅と位相を求める必要がある。よって、2つの受光素子を設けて前記実施例1で得た検出時間の数より多い数の検出時間を計測できる構成としている。 As shown in FIG. 11, the optical scanner has first and second light receiving elements 140 and 160, each of which can receive scanning light 133 having a deflection angle smaller than the maximum deflection angle Θamp of the optical scanner (installation angle θBD1). And an installation angle θBD2). Here, in FIG. 11, the first and second light receiving elements 140 and 160 are arranged in the optical path of the scanning light 133. However, the first and second light receiving elements 140 and 160 are arranged in the optical path of the scanning light further deflected by a reflection mirror provided separately. Two light receiving elements may be arranged. Here, it is necessary to obtain at least two amplitudes and phases described later of the vibration motion of the first rocking body 200 based on the output of the time measuring unit 152. Therefore, two light receiving elements are provided so that a larger number of detection times than the number of detection times obtained in the first embodiment can be measured.

本実施例では、振動系100は、基本周波数である基本波で駆動される第1の振動運動と、基本周波数の略整数倍(ここでは略2倍)の周波数であるn倍波で駆動される第2の振動運動とを同時に発生可能な構成となっている。つまり、本実施例の光偏向装置の走査光の偏向角θは、次の様になる。第1の振動運動の振幅、周波数(角周波数)、位相を夫々A、ω1、Ψ1、第2の振動運動の振幅、周波数(角周波数)、位相を夫々B、ω2、Ψ2、適当な時間を原点ないし基準時間としたときの時間をtとしたとき、次の式(3)の様に表現できる。第1の揺動体200の振動運動と走査光の偏向角θは1対1に対応しているので、第1の揺動体200の振動運動もこの式と同様な形式で表現される。
θ(t)=Asin(ω1t+Ψ1)+Bsin(ω2t+Ψ2) (3)
In this embodiment, the vibration system 100 is driven by the first vibration motion driven by the fundamental wave that is the fundamental frequency, and by the nth harmonic wave that is a frequency that is approximately an integral multiple (here, approximately twice) of the fundamental frequency. The second vibration motion can be generated simultaneously. That is, the deflection angle θ of the scanning light of the optical deflecting device of this embodiment is as follows. The amplitude, frequency (angular frequency) and phase of the first vibration motion are A, ω 1 and Ψ 1 , respectively, and the amplitude, frequency (angular frequency) and phase of the second vibration motion are B, ω 2 and Ψ 2 , respectively. When the time when the appropriate time is the origin or the reference time is t, it can be expressed as the following equation (3). Since the vibration motion of the first rocking body 200 and the deflection angle θ of the scanning light have a one-to-one correspondence, the vibration motion of the first rocking body 200 is also expressed in the same format as this equation.
θ (t) = Asin (ω 1 t + Ψ 1 ) + Bsin (ω 2 t + Ψ 2 ) (3)

本実施例では、光偏向装置の偏向角θを発生させる駆動信号も前記A、ω1、Ψ1、B、ω2、Ψ2に対応するファクターで表されるので、これら共通の記号を用いる。偏向角θのものか駆動信号のものかは、前後関係から明らかなときは説明を省く。 In this embodiment, the drive signal for generating the deflection angle θ of the optical deflecting device is also expressed by factors corresponding to A, ω 1 , Ψ 1 , B, ω 2 , Ψ 2 , and these common symbols are used. . If it is clear from the context whether the deflection angle θ or the driving signal, it will be omitted.

こうした第1の揺動体200の振動運動を実現するために、本実施例に係る2つの固有振動モードを有する揺動体装置の駆動信号は、第1の揺動体200が2つの正弦波の項を含む前記の如き式で表される振動となる様に振動系100を駆動する。駆動信号は、第1の揺動体200をこの様な振動運動とする信号であればどの様な信号でもよい。 In order to realize such oscillatory motion of the first oscillator 200, the drive signal of the oscillator device having two natural vibration modes according to the present embodiment, the first oscillator 200 has two sinusoidal terms. The vibration system 100 is driven so as to have the vibration represented by the above formula. The drive signal may be any signal as long as the first oscillating body 200 has such a oscillating motion.

本実施例では、駆動信号の基本波に対応する成分の駆動周波数を決めれば、駆動信号のn倍波に対応する成分の駆動周波数は基本波の駆動周波数をn倍して自動的に決まる。逆であれば、駆動信号の基本波に対応する成分の駆動周波数はn倍波の駆動周波数を1/n倍して自動的に決まる。尚、本明細書において略整数倍とは、基本波の周波数をf1、n倍波の周波数をf2とした場合、0.98N≦f2/f1≦1.02N(Nは2以上の整数)の関係を満たす場合をいう。 In this embodiment, if the drive frequency of the component corresponding to the fundamental wave of the drive signal is determined, the drive frequency of the component corresponding to the nth harmonic wave of the drive signal is automatically determined by multiplying the fundamental frequency drive frequency by n. If it is reversed, the drive frequency of the component corresponding to the fundamental wave of the drive signal is automatically determined by multiplying the drive frequency of the nth harmonic by 1 / n. In this specification, the approximate integer multiple is 0.98N ≦ f 2 / f 1 ≦ 1.02N (N is an integer of 2 or more, where f 1 is the fundamental frequency and f 2 is the frequency of the nth harmonic) ) Is satisfied.

本実施例においては、前記実施例1の揺動振幅とは、基本波又はn倍波で駆動される第1の揺動体200の第1又は第2の振動運動の揺動振幅(上式のA又はB)のことを指す。また、前記駆動信号の振幅とは、駆動信号の基本波又はn倍波に対応する成分の振幅のことを指す。そして、時間計測部152で計測される検出時間から基本波又はn倍波に対応する揺動振幅を検知し、これを目標の値とする様に駆動信号の基本周波数又はn倍波に対応する成分の駆動振幅を制御する。実施例1の揺動振幅と駆動信号の振幅をこれらの振幅に夫々置き換えれば、実施例1の説明が本実施例の動作の説明となる。基本波の共振周波数を求めようとするときは、基本波についてのものに置き換え、n倍波の共振周波数を求めようとするときは、n倍波についてのものに置き換えればよい。以下では、基本波の共振周波数を求める場合について説明する。 In this embodiment, the swing amplitude of the first embodiment is the swing amplitude of the first or second oscillatory motion of the first oscillator 200 driven by the fundamental wave or the n-th harmonic wave (the above equation) A or B). The amplitude of the drive signal refers to the amplitude of the component corresponding to the fundamental wave or the nth harmonic wave of the drive signal. Then, the oscillation amplitude corresponding to the fundamental wave or the nth harmonic wave is detected from the detection time measured by the time measuring unit 152, and the drive signal corresponds to the fundamental frequency or the nth harmonic wave so as to be a target value. Controls the drive amplitude of the component. If the oscillation amplitude and the drive signal amplitude in the first embodiment are replaced with these amplitudes, the description of the first embodiment will explain the operation of the present embodiment. When it is desired to obtain the resonance frequency of the fundamental wave, it is replaced with that for the fundamental wave, and when it is desired to obtain the resonance frequency of the nth harmonic wave, it may be replaced with that for the nth harmonic wave. Below, the case where the resonant frequency of a fundamental wave is calculated | required is demonstrated.

基本波の共振周波数を求める共振周波数検出動作において、まず、初期動作が行われる。ここでは、制御部150の波形生成器157に開始駆動周波数が設定され、初期の駆動振幅AとΨ1が設定され、基本波のみの駆動信号で駆動が行われる。開始駆動周波数は、取り得る共振周波数の平均値、前回停止時の共振周波数などを設定する。Aは、受光素子140、160に走査光133が入るのに十分な初期値を設定する。駆動部120への駆動信号印加により揺動体200が振動する。揺動体200の揺動振幅が大きくなり、受光素子140、160に信号が入って来るまで待機する。続いて、倍波の駆動信号成分を印加する。制御部150では、初期の倍波成分の揺動振幅BとΨ2を設定する。倍波を加えた後に、所望の振動変位になる様に制御部150は制御を開始する。この制御は、例えば、検出時間と目標時間との時間差から、駆動信号の各周波数成分の振幅と位相の操作量を、行列を用いた演算などにより求めて行なわれる。制御して揺動体が所望の振動変位に収束したら、以下の制御動作に入る。 In the resonance frequency detection operation for obtaining the resonance frequency of the fundamental wave, an initial operation is first performed. Here, the start drive frequency is set in the waveform generator 157 of the control unit 150, the initial drive amplitude A and Ψ 1 are set, and the drive is performed with the drive signal of only the fundamental wave. As the start drive frequency, an average value of possible resonance frequencies, a resonance frequency at the time of the previous stop, and the like are set. A sets an initial value sufficient for the scanning light 133 to enter the light receiving elements 140 and 160. The oscillating body 200 vibrates by applying a drive signal to the drive unit 120. It waits until the oscillation amplitude of the oscillator 200 increases and a signal enters the light receiving elements 140 and 160. Subsequently, a harmonic drive signal component is applied. The control unit 150 sets the oscillation amplitude B and Ψ 2 of the initial harmonic component. After applying the harmonic wave, the control unit 150 starts control so that the desired vibration displacement is obtained. This control is performed, for example, by calculating the operation amount of the amplitude and phase of each frequency component of the drive signal from the time difference between the detection time and the target time by calculation using a matrix. When the oscillator is controlled to converge to the desired vibration displacement, the following control operation is started.

本実施例では、駆動振幅制御部154は、時間計測部152で計測された検出時間とコントローラ151により設定された目標時間153との差分に基づき、次の制御を行う。すなわち、振動系の第1の振動運動が目標の振動運動となる様に駆動信号の基本波に対応する成分の振幅A及び位相Ψ1、Ψ2を制御する。より具体的には、振幅Aは、前記差分に駆動振幅制御部154によるフィードバック利得を乗算し、基本波信号駆動指令値159を加算した値であり、波形生成器157から出力される基本駆動波形に乗算される。位相Ψ1、Ψ2は、前記差分に利得1102を乗算し、駆動指令値1104を加算した値を波形生成器157に送る。波形生成器157は該位相Ψ1、Ψ2に合わせて波形を出力する。 In the present embodiment, the drive amplitude control unit 154 performs the following control based on the difference between the detection time measured by the time measurement unit 152 and the target time 153 set by the controller 151. That is, the amplitude A and the phases ψ 1 and ψ 2 of the component corresponding to the fundamental wave of the drive signal are controlled so that the first vibration motion of the vibration system becomes the target vibration motion. More specifically, the amplitude A is a value obtained by multiplying the difference by the feedback gain by the drive amplitude control unit 154 and adding the fundamental wave signal drive command value 159, and the fundamental drive waveform output from the waveform generator 157 Is multiplied by For the phases Ψ 1 and Ψ 2 , a value obtained by multiplying the difference by the gain 1102 and adding the drive command value 1104 is sent to the waveform generator 157. The waveform generator 157 outputs a waveform in accordance with the phases ψ 1 and ψ 2 .

ここで、n倍波の共振周波数を求める場合、振幅Bは、前記差分に駆動振幅制御部1101によるフィードバック利得を乗算し、基本波信号指令値1103を加算した値であり、波形生成器157から出力される倍波駆動波形に乗算される。 Here, when obtaining the resonance frequency of the n-th harmonic wave, the amplitude B is a value obtained by multiplying the difference by the feedback gain by the drive amplitude control unit 1101 and adding the fundamental wave signal command value 1103, and from the waveform generator 157 The output is multiplied by the double wave driving waveform.

波形生成器157は、駆動周波数制御部156によって設定された周波数及びそのn倍波の波形を生成する。駆動位相検出部155は、時間計測部152の出力する検出時間と波形生成器157が出力する波形に基づき、振動系100の揺動体200の第1の振動運動に係る駆動位相φ1を検出する。駆動情報記録部158は、振動系が目標の振動運動となる様に駆動振幅制御部154が制御した駆動信号の基本波に対応する成分の振幅、及び駆動周波数制御部156が波形生成器157に設定している基本波に対応する成分の駆動周波数fdを記録する。 The waveform generator 157 generates the frequency set by the drive frequency control unit 156 and the waveform of the nth harmonic wave. The drive phase detection unit 155 detects the drive phase φ 1 related to the first vibration motion of the oscillator 200 of the oscillation system 100 based on the detection time output from the time measurement unit 152 and the waveform output from the waveform generator 157. . The drive information recording unit 158 includes the amplitude of the component corresponding to the fundamental wave of the drive signal controlled by the drive amplitude control unit 154 and the drive frequency control unit 156 in the waveform generator 157 so that the vibration system has a target vibration motion. The drive frequency fd of the component corresponding to the set fundamental wave is recorded.

駆動周波数制御部156は、駆動情報記録部158に記録された駆動信号の振幅及び駆動位相φ1に基づき、基本波に対応する成分の次の駆動周波数を決定し波形生成器157へ設定する。この際、上述した様に、基本波に対応する成分の駆動周波数が決まれば、n倍波に対応する成分の駆動周波数は決まる。本実施例における駆動周波数制御部156及び駆動情報記録部158の動作フローは、前記の如き置き換えを行えば、実施例1に記載した内容と同様である。 Based on the amplitude of the drive signal and the drive phase φ 1 recorded in the drive information recording unit 158, the drive frequency control unit 156 determines the next drive frequency of the component corresponding to the fundamental wave and sets it in the waveform generator 157. At this time, as described above, if the drive frequency of the component corresponding to the fundamental wave is determined, the drive frequency of the component corresponding to the n-th harmonic wave is determined. The operation flow of the drive frequency control unit 156 and the drive information recording unit 158 in the present embodiment is the same as that described in the first embodiment if the above replacement is performed.

一方、n倍波の共振周波数を求める際に第2の振動運動の駆動周波数fd0を求める場合は、計算に用いる値をn倍波の駆動周波数fd1、fd2、fd3にする(このとき基本波の駆動周波数はこれらのn分の1の1/n×fd1、1/n×fd2、1/n×fd3)。そして、目標の振動運動となるn倍波に対応する駆動信号の成分の振幅B1、 B2、 B3を用いることによって、n倍波の駆動周波数fd0を求めることができる。第2の振動運動の共振周波数に相当する、駆動信号の振幅Bが最小となる駆動周波数fd0を求める際、駆動位相の比較を行う場合は、振動系100の揺動体200の第2の振動運動に係る駆動位相φ2を用いる。 On the other hand, when the driving frequency fd 0 of the second oscillating motion is obtained when obtaining the resonance frequency of the nth harmonic wave, the values used for the calculation are set to the driving frequencies fd 1 , fd 2 , and fd 3 of the nth harmonic wave (this When the fundamental frequency is 1 / n × fd 1 , 1 / n × fd 2 , 1 / n × fd 3 ). Then, by using the amplitudes B 1 , B 2 , and B 3 of the components of the drive signal corresponding to the n-th harmonic wave that becomes the target vibration motion, the drive frequency fd 0 of the n-th harmonic wave can be obtained. When determining the drive frequency fd 0 corresponding to the resonance frequency of the second vibration motion and minimizing the amplitude B of the drive signal, when comparing the drive phase, the second vibration of the oscillator 200 of the oscillation system 100 The driving phase φ 2 related to the motion is used.

以上に述べた様に、本実施例では、振動系は、複数の揺動体と複数の弾性支持部を有し、その共振周波数は、基本波の基本周波数とn倍波の前記基本周波数の略n倍のn倍周波数を持つ(nは2以上の整数)。駆動周波数制御部は、基本波とn倍波に夫々対応する1対nの比の駆動周波数の成分を有する駆動信号を駆動部に供給して駆動部に振動系を駆動させる。検出手段は、振動系の揺動体の基本波又はn倍波に対応する揺動成分の揺動振幅を検出し、駆動振幅制御部は、駆動信号の基本波又はn倍波に対応する成分の駆動振幅を制御する。そして、駆動振幅制御部が、前記検出される揺動体の基本波又はn倍波に対応する揺動成分の揺動振幅が目標の値となる様に駆動信号の基本波又はn倍波に対応する成分の駆動振幅を制御している状態において、駆動周波数制御部は、次の様に動作する。複数の基本波又はn倍波に対応する成分の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、振動系の基本波又はn倍波の共振周波数を取得する。これは、駆動信号の基本波又はn倍波に対応する成分の駆動振幅が最小となる駆動周波数として得られるものである。 As described above, in the present embodiment, the vibration system includes a plurality of oscillators and a plurality of elastic support portions, and the resonance frequency is substantially equal to the fundamental frequency of the fundamental wave and the fundamental frequency of the nth harmonic wave. It has n times the frequency n times (n is an integer of 2 or more). The drive frequency control unit supplies a drive signal having a drive frequency component having a ratio of 1 to n corresponding to the fundamental wave and the n-th harmonic to the drive unit, and causes the drive unit to drive the vibration system. The detection means detects the oscillation amplitude of the oscillation component corresponding to the fundamental wave or the nth harmonic wave of the oscillator of the vibration system, and the drive amplitude control unit detects the oscillation amplitude of the component corresponding to the fundamental wave or the nth harmonic wave of the drive signal. Control the drive amplitude. Then, the drive amplitude control unit corresponds to the fundamental wave or the nth harmonic wave of the drive signal so that the oscillation amplitude of the oscillation component corresponding to the detected fundamental wave or the nth harmonic wave of the oscillator is the target value. In a state where the drive amplitude of the component to be controlled is controlled, the drive frequency control unit operates as follows. Based on the information including the driving frequency and the controlled driving amplitude in each driving state with the driving signal of the driving frequency of the component corresponding to a plurality of fundamental waves or n-th harmonic wave, the fundamental wave or n-th harmonic wave of the vibration system Get the resonance frequency of. This is obtained as a drive frequency at which the drive amplitude of the component corresponding to the fundamental wave or n-th harmonic wave of the drive signal is minimized.

その他、変形態様などについて、前記実施例1で述べたものと同様のものが本実施例でも可能である。尚、第1の振動運動の駆動周波数と第2の振動運動の駆動周波数について、同様に扱える場合は、両者の共振周波数を同時に検出することもできる。 In addition, the same modification as described in the first embodiment can be used in the present embodiment. If the drive frequency of the first vibration motion and the drive frequency of the second vibration motion can be handled in the same way, the resonance frequencies of both can be detected simultaneously.

以上に述べた実施例2でも、実施例1と同様な効果が得られる。 In the second embodiment described above, the same effects as in the first embodiment can be obtained.

(実施例3)
実施例3を説明する。実施例3では実施例2と同じ図10に示す光スキャナと図12の制御部150を用いる。共振周波数を検出して駆動周波数を決定までのフローは、概ね実施例1、2と同じである。差異点は、図5における利得G1の設定のところである。2つの揺動体を持つ振動系の場合、2つの共振周波数があり、概ねその共振周波数が1:2になる様に作られている。この共振周波数の比は、略1:n(nは整数)であってもよい。
(Example 3)
Example 3 will be described. The third embodiment uses the same optical scanner shown in FIG. 10 as the second embodiment and the control unit 150 shown in FIG. The flow from the detection of the resonance frequency to the determination of the drive frequency is substantially the same as in the first and second embodiments. The difference is in the setting of the gain G 1 in FIG. In the case of a vibration system having two oscillators, there are two resonance frequencies, and the resonance frequency is approximately 1: 2. The ratio of the resonance frequencies may be approximately 1: n (n is an integer).

図13に示す様に、2つの共振周波数は整数比から若干ずれる可能性がある。このずれをΔfとし、第1の共振周波数(基本波)をf01とし、第2の共振周波数(倍波)をf02とすると、次の式(3)が成り立つ。
Δf=f02−2×f01 (3)
As shown in FIG. 13, the two resonance frequencies may deviate slightly from the integer ratio. When this deviation is Δf, the first resonance frequency (fundamental wave) is f 0 1, and the second resonance frequency (double wave) is f 0 2, the following equation (3) is established.
Δf = f 0 2−2 × f 0 1 (3)

一般に、揺動体の振幅を制御するとき、フィードバック利得が同じ値のとき、駆動周波数が共振周波数に近い方が揺動体の変位変動量は小さくなる。実施例1で示した通り、揺動体の変位変動量が小さい場合、駆動電圧の振幅変動量は大きくなる。上述した通り、共振周波数を検出して駆動周波数を決定するまでの時間を短縮するためには、駆動電圧の振幅変動量を小さくしたい。しかし、Δfが大きいほど、駆動基本波又は倍波のどちらかのフィードバック利得が大きくなる。この状態で、温度変化等の環境により共振周波数が変化したとき、揺動体の感度に対するフィードバック利得は相対的に大きくなり、駆動電圧の振幅変動量が大きくなる。 In general, when controlling the amplitude of the oscillating body, when the feedback gain is the same value, the displacement fluctuation amount of the oscillating body is smaller when the drive frequency is closer to the resonance frequency. As shown in the first embodiment, when the displacement fluctuation amount of the oscillator is small, the amplitude fluctuation amount of the drive voltage is large. As described above, in order to shorten the time required to detect the resonance frequency and determine the drive frequency, it is desired to reduce the amplitude fluctuation amount of the drive voltage. However, as Δf increases, the feedback gain of either the driving fundamental wave or the harmonic wave increases. In this state, when the resonance frequency changes due to an environment such as temperature change, the feedback gain with respect to the sensitivity of the oscillator becomes relatively large, and the amplitude fluctuation amount of the drive voltage becomes large.

そこで、実施例3では、共振周波数検出動作時に設定する基本波の駆動信号の振幅へのフィードバック利得G31と倍波の駆動信号の振幅へのフィードバック利得G32は、Δfの大きさを考慮して、その値を設定する。 Therefore, in the third embodiment, the feedback gain G 31 to the amplitude of the fundamental drive signal and the feedback gain G 32 to the amplitude of the double-wave drive signal set during the resonance frequency detection operation take the magnitude of Δf into consideration. To set that value.

例えば、駆動周波数fd決定後に定常駆動するときの駆動基本波へのフィードバック利得をG01、駆動倍波へのフィードバック利得をG02とする。このとき、共振周波数検出動作状態での夫々のフィードバック利得G31、G32を次の式(4)、(5)の様に設定する。ここで、αとβは、夫々、G31<G01、G32<G02とする様な0と1との間の値である。
G31=α×[(Δf+f01)/f01]×G01=α×[f02/f01-1]×G01 (4)
G32=β×[(Δf+f02)/f02]×G02=2×β×[1-f01/f02]×G02 (5)
For example, let G 01 be the feedback gain to the drive fundamental wave when steady driving is performed after determining the drive frequency fd, and G 02 be the feedback gain to the drive harmonic. At this time, the respective feedback gains G 31 and G 32 in the resonance frequency detection operation state are set as in the following equations (4) and (5). Here, α and β are values between 0 and 1 such that G 31 <G 01 and G 32 <G 02 , respectively.
G 31 = α × [(Δf + f 0 1) / f 0 1] × G 01 = α × [f 0 2 / f 0 1-1] × G 01 (4)
G 32 = β × [(Δf + f 0 2) / f 0 2] × G 02 = 2 × β × [1-f 0 1 / f 0 2] × G 02 (5)

すなわち、本実施例では、前記フィードバック利得を、第1の共振周波数(基本波)を整数倍した値と第2の共振周波数値(倍波)との差Δf、又は第1の共振周波数値と第2の共振周波数値との比に基づいて設定する。 That is, in this embodiment, the feedback gain is set to a difference Δf between a value obtained by multiplying the first resonance frequency (fundamental wave) by an integer and a second resonance frequency value (double wave), or the first resonance frequency value. It is set based on the ratio with the second resonance frequency value.

本実施例によっても、上記実施例2と同様な効果が得られる。 Also in this embodiment, the same effect as in the second embodiment can be obtained.

(実施例4)
実施例4を説明する。実施例4でも、実施例2と同じ図10に示す光スキャナと図12の制御部150を用いる。駆動周波数決定までのフローも概ね実施例1、2と同じである。差異点は、図5における利得G1の設定のところである。
(Example 4)
Example 4 will be described. In the fourth embodiment, the same optical scanner shown in FIG. 10 as in the second embodiment and the control unit 150 shown in FIG. 12 are used. The flow up to the determination of the drive frequency is also substantially the same as in the first and second embodiments. The difference is in the setting of the gain G 1 in FIG.

実施例3で説明した様に、2つの揺動体を持つ振動系の場合、図13の様に2つの共振周波数は整数比から若干ずれる可能性がある。こうした場合、実施例3で説明した様なことが起こる。 As described in the third embodiment, in the case of a vibration system having two oscillators, the two resonance frequencies may slightly deviate from the integer ratio as shown in FIG. In such a case, the situation described in Example 3 occurs.

そこで、実施例4では、共振周波数検出動作時に設定する基本波の駆動信号成分の振幅へのフィードバック利得G41を、定常駆動時に共振周波数f01近傍に駆動周波数fdを設定したときの駆動基本波へのフィードバック利得G401に設定する。他方、倍波の駆動信号の振幅へのフィードバック利得G42は、定常駆動時に共振周波数f02近傍に駆動周波数fdを設定したときの駆動倍波へのフィードバック利得G402に設定する。これにより、共振周波数が温度変化等の環境により駆動周波数に近づく方向へずれても、揺動体の感度に対するフィードバック利得は定常駆動時のフィードバック利得を超えることはなくなる。よって、共振周波数検出動作時の駆動電圧の振幅変動量は小さく抑えることが可能となる。 Therefore, in the fourth embodiment, the feedback gain G 41 to the amplitude of the drive signal component of the fundamental wave set during the resonance frequency detection operation is the drive basic when the drive frequency fd is set in the vicinity of the resonance frequency f 0 1 during steady drive. Set to feedback gain G 401 to wave. On the other hand, the feedback gain G 42 to the amplitude of the drive signal frequency doubled sets the feedback gain G 402 to the drive frequency doubled at the time of setting the drive frequency fd in the resonance frequency f 0 2 vicinity during steady driving. Thereby, even if the resonance frequency shifts in a direction approaching the drive frequency due to an environment such as a temperature change, the feedback gain with respect to the sensitivity of the oscillator does not exceed the feedback gain at the time of steady driving. Therefore, the amplitude fluctuation amount of the drive voltage during the resonance frequency detection operation can be suppressed to be small.

すなわち、ここでは、共振周波数検出動作時に設定する駆動基本波への第1の利得を、第1の共振周波数(基本波)と該共振周波数の整数倍した値との合成波の駆動信号で定常駆動するときの駆動基本波へのフィードバック利得に設定する。そして、駆動倍波への第2の利得を、第2の共振周波数(倍波)とその整数分の1(n分の1の値)との合成波の駆動信号で定常駆動するときの駆動倍波へのフィードバック利得に設定する。 That is, here, the first gain to the drive fundamental wave set during the resonance frequency detection operation is steady with a drive signal of a composite wave of the first resonance frequency (fundamental wave) and an integer multiple of the resonance frequency. Set to the feedback gain to the driving fundamental wave when driving. Then, the second gain to the drive harmonic is driven when the stationary drive is performed with the drive signal of the composite wave of the second resonance frequency (harmonic) and 1 / integer thereof (1 / n value). Set to feedback gain to harmonic.

本実施例によっても、上記実施例2と同様な効果が得られる。 Also in this embodiment, the same effect as in the second embodiment can be obtained.

(実施例5)
図14は、本発明の光偏向装置を用いた光学機器に係る実施例5を示す図である。ここでは、光学機器として画像形成装置を示している。図14において、803は本発明による光偏向装置であり、本実施例では入射光を1次元に走査する。801はレーザ光源である。802はレンズ或いはレンズ群であり、804は書き込みレンズ或いはレンズ群である。805は感光体、806は走査軌跡である。
(Example 5)
FIG. 14 is a diagram showing a fifth embodiment relating to an optical apparatus using the light deflection apparatus of the present invention. Here, an image forming apparatus is shown as an optical apparatus. In FIG. 14, 803 is an optical deflecting device according to the present invention, and in this embodiment, incident light is scanned one-dimensionally. Reference numeral 801 denotes a laser light source. Reference numeral 802 denotes a lens or a lens group, and reference numeral 804 denotes a writing lens or a lens group. Reference numeral 805 denotes a photosensitive member, and reference numeral 806 denotes a scanning locus.

レーザ光源801から射出されたレーザ光は、光の偏向・走査のタイミングと関係した所定の強度変調を受けて、光偏向装置803により1次元に走査される。この走査されたレーザ光は、書き込みレンズ804により、感光体805上へ画像を形成する。感光体805は図示しない帯電器により一様に帯電されており、この上に光を走査することでその部分に静電潜像が形成される。次に、図示しない現像器により静電潜像の画像部分にトナー像が形成され、これを例えば図示しない用紙に転写・定着することで用紙上に画像が形成される。高い精度で共振周波数と看做し得る周波数を迅速に求めて駆動することができる本発明の光偏向装置を利用した画像形成装置であるので、駆動開始が迅速にできる高性能な画像形成装置を実現できる。 The laser light emitted from the laser light source 801 is subjected to predetermined intensity modulation related to the light deflection / scanning timing, and is scanned one-dimensionally by the light deflector 803. The scanned laser light forms an image on the photosensitive member 805 by the writing lens 804. The photosensitive member 805 is uniformly charged by a charger (not shown), and an electrostatic latent image is formed on the portion by scanning light thereon. Next, a toner image is formed on the image portion of the electrostatic latent image by a developing device (not shown), and an image is formed on the paper by transferring and fixing the image on, for example, a paper (not shown). Since it is an image forming apparatus using the optical deflecting device of the present invention capable of quickly obtaining and driving a frequency that can be regarded as a resonance frequency with high accuracy, a high-performance image forming apparatus that can quickly start driving is provided. realizable.

本発明の光偏向装置は、他の光学機器にも使用できて、これらの装置において、光源からの光ビームを偏向し、該光ビームの少なくとも一部を光照射対象物に入射させる。こうした光学機器としては、レーザビームプリンタなどの画像形成装置の他に、画像表示装置、バーコードリーダー等の光ビームを走査する光学機器がある。 The light deflecting device of the present invention can also be used for other optical devices. In these devices, the light beam from the light source is deflected and at least part of the light beam is incident on the light irradiation target. As such an optical apparatus, there is an optical apparatus that scans a light beam such as an image display apparatus or a barcode reader, in addition to an image forming apparatus such as a laser beam printer.

本発明の揺動体装置を用いた光偏向装置に係る実施例1の構成例を示すブロック図である。FIG. 3 is a block diagram showing a configuration example of Example 1 according to an optical deflecting device using the oscillator device of the present invention. 実施例1の光偏向器のブロック図である。1 is a block diagram of an optical deflector according to Embodiment 1. FIG. 実施例1の光偏向装置の偏向角を説明する図である。FIG. 6 is a diagram for explaining a deflection angle of the optical deflecting device of the first embodiment. 実施例1の光偏向装置の偏向角の時間変化を示すグラフである。3 is a graph showing a change with time of a deflection angle of the optical deflecting device of Example 1. FIG. 実施例1のフローチャートである。2 is a flowchart of the first embodiment. 駆動位相比較による駆動信号の駆動周波数の変更を説明する図である。It is a figure explaining the change of the drive frequency of the drive signal by drive phase comparison. 駆動信号振幅の比較による駆動信号の駆動周波数の変更を説明する図である。It is a figure explaining the change of the drive frequency of a drive signal by the comparison of a drive signal amplitude. 二次曲線補間に用いる3つの駆動周波数を示す図である。It is a figure which shows three drive frequencies used for quadratic curve interpolation. 駆動電圧振幅変動量と揺動体変位変動量を説明する図である。It is a figure explaining a drive voltage amplitude fluctuation amount and a rocking body displacement fluctuation amount. 実施例2乃至4の光偏向器のブロック図である。6 is a block diagram of an optical deflector according to Embodiments 2 to 4. FIG. 実施例2乃至4の光偏向装置の偏向角を説明する図である。FIG. 6 is a diagram for explaining a deflection angle of the optical deflecting devices of Examples 2 to 4. 本発明の揺動体装置を用いた光偏向装置に係る実施例2乃至4の構成例を示すブロック図である。FIG. 6 is a block diagram showing a configuration example of Examples 2 to 4 related to an optical deflecting device using the oscillator device of the present invention. 2つの揺動体を含む振動系の制御時における周波数−駆動電圧特性を示すグラフである。It is a graph which shows the frequency-drive voltage characteristic at the time of control of the vibration system containing two rocking bodies. 本発明の揺動体装置を光偏向装置に用いた画像形成装置に係る実施例5を説明する図である。FIG. 10 is a diagram for explaining an embodiment 5 according to an image forming apparatus using the oscillator device of the present invention for an optical deflecting device.

符号の説明Explanation of symbols

100 振動系
120 駆動部
131、801 光源
132 光ビーム
133 走査光
140、160 検出手段(受光素子)
150 制御部
151 コントローラ
152 検出手段(時間計測部)
153 目標時間
154、1101、1102 駆動振幅制御部(フィードバック利得)
155 駆動位相検出部
156 駆動周波数制御部
157 波形生成器
158 駆動情報記録部
200、201 揺動体
230 光偏向素子(ミラー)
803
光偏向装置
805 光照射対象物(感光体)
100 Vibration system
120 Drive unit
131, 801 Light source
132 Light beam
133 Scanning light
140, 160 Detection means (light receiving element)
150 Control unit
151 controller
152 Detection means (time measurement unit)
153 Target time
154, 1101, 1102 Drive amplitude controller (feedback gain)
155 Drive phase detector
156 Drive frequency controller
157 Waveform generator
158 Drive information recording unit
200, 201 Oscillator
230 Optical deflection element (mirror)
803
Optical deflection device
805 Light irradiation object (photoconductor)

Claims (9)

揺動可能に支持された揺動体を有し共振周波数を持つ振動系と、
駆動信号に基づき前記振動系に駆動力を供給する駆動部と、
少なくとも前記揺動体の揺動振幅を検出する検出手段と、
前記駆動信号の駆動振幅をフィードバック制御する駆動振幅制御部と、
前記駆動部へ供給する駆動信号の駆動周波数を制御する駆動周波数制御部と、を有し、
共振周波数検出動作において、前記駆動振幅制御部のフィードバック利得を、他の動作状態で設定するフィードバック利得よりも低い値に設定し、前記駆動振幅制御部が、前記検出手段で検出される揺動振幅が目標の値となる様に駆動信号の駆動振幅を制御している状態で、前記駆動周波数制御部が、複数の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、前記駆動信号の駆動振幅が最小となる駆動周波数を前記振動系の共振周波数として取得することを特徴とする揺動体装置。
A vibration system having a oscillating body supported so as to be able to oscillate and having a resonance frequency;
A drive unit for supplying a driving force to the vibration system based on a drive signal;
Detection means for detecting at least a swing amplitude of the swing body;
A drive amplitude control unit that feedback controls the drive amplitude of the drive signal;
A drive frequency control unit that controls a drive frequency of a drive signal supplied to the drive unit,
In the resonance frequency detection operation, the feedback gain of the drive amplitude control unit is set to a value lower than the feedback gain set in another operation state, and the swing amplitude detected by the detection unit is detected by the drive amplitude control unit. In the state where the drive amplitude of the drive signal is controlled so that becomes the target value, the drive frequency control unit controls the drive frequency and the controlled frequency in each drive state with the drive signals of a plurality of drive frequencies. An oscillator device characterized in that, based on information including a drive amplitude, a drive frequency that minimizes the drive amplitude of the drive signal is acquired as a resonance frequency of the vibration system.
請求項1に記載の揺動体装置であって、
前記振動系は、揺動可能に支持された複数の揺動体を有し、その共振周波数は、基本波の基本周波数とn倍波の前記基本周波数の略n倍のn倍周波数を持ち(nは2以上の整数)、
前記駆動周波数制御部は、前記基本波とn倍波に夫々対応する1対nの比の駆動周波数の駆動成分から成る駆動信号を前記駆動部に供給して前記駆動部に前記振動系を駆動させ、
前記検出手段は、前記振動系の揺動体の前記基本波又はn倍波に対応する揺動成分の揺動振幅を検出し、
前記駆動振幅制御部は、前記駆動信号の前記基本波又はn倍波に対応する駆動成分の駆動振幅をフィードバック制御し、
前記共振周波数検出動作において、前記駆動振幅制御部の前記基本波及びn倍波に対応する駆動成分の駆動振幅へのフィードバック利得を、夫々、前記他の動作状態で設定するフィードバック利得よりも低い値に設定し、前記駆動振幅制御部が、前記検出される揺動体の前記基本波又はn倍波に対応する揺動成分の揺動振幅が目標の値となる様に駆動信号の前記基本波又はn倍波に対応する駆動成分の駆動振幅を制御している状態で、前記駆動周波数制御部は、複数の前記基本波又はn倍波に対応する駆動成分の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、駆動信号の前記基本波又はn倍波に対応する駆動成分の駆動振幅が最小となる駆動周波数を前記振動系の前記基本波又はn倍波の共振周波数として取得することを特徴とする揺動体装置。
The oscillator device according to claim 1,
The vibration system includes a plurality of oscillators supported so as to be capable of oscillation, and a resonance frequency thereof has a fundamental frequency of a fundamental wave and an n-fold frequency that is approximately n times the fundamental frequency of an n-fold wave (n Is an integer greater than or equal to 2),
The drive frequency control unit supplies the drive unit with a drive signal having a drive frequency with a ratio of 1 to n corresponding to the fundamental wave and the n-th harmonic wave to drive the vibration system to the drive unit. Let
The detecting means detects a swing amplitude of a swing component corresponding to the fundamental wave or the n-th harmonic wave of the swing body of the vibration system;
The drive amplitude control unit feedback-controls the drive amplitude of the drive component corresponding to the fundamental wave or the nth harmonic wave of the drive signal,
In the resonance frequency detection operation, the feedback gain to the drive amplitude of the drive component corresponding to the fundamental wave and the nth harmonic wave of the drive amplitude control unit is lower than the feedback gain set in the other operation state, respectively. And the drive amplitude control section sets the fundamental wave or the drive signal so that the oscillation amplitude of the oscillation component corresponding to the fundamental wave or the n-th harmonic wave of the detected oscillator becomes a target value. In a state where the drive amplitude of the drive component corresponding to the nth harmonic wave is controlled, the drive frequency control unit is configured to drive each of the drive signals having the drive frequency corresponding to the plurality of fundamental waves or nth harmonic wave. Based on the information including the drive frequency and the controlled drive amplitude in the drive state, the drive frequency at which the drive amplitude of the drive component corresponding to the fundamental wave or the n-th harmonic wave of the drive signal is minimized is the fundamental of the vibration system. Wave or n Oscillator device and acquires the resonance frequency of the wave.
請求項1又は2に記載の揺動体装置であって、
前記駆動周波数制御部は、定常動作の状態において、前記振動系の共振周波数に基づいて決定した駆動周波数の駆動信号を前記駆動部へ供給することを特徴とする揺動体装置。
The oscillator device according to claim 1 or 2,
The drive device according to claim 1, wherein the drive frequency controller supplies a drive signal having a drive frequency determined based on a resonance frequency of the vibration system to the drive unit in a steady operation state.
請求項1乃至3の何れか1項に記載の揺動体装置であって、
記憶手段を有し、
前記共振周波数検出動作におけるフィードバック利得を予め前記記憶手段に記憶しておくことを特徴とする揺動体装置。
The oscillator device according to any one of claims 1 to 3,
Having storage means;
An oscillator device, wherein a feedback gain in the resonance frequency detection operation is stored in the storage means in advance.
請求項2に記載の揺動体装置であって、
前記共振周波数検出動作におけるフィードバック利得を、前記基本波の基本周波数をn倍した値と前記n倍波のn倍周波数との差、又は前記基本波の基本周波数と前記n倍波のn倍周波数との比に基づいて設定することを特徴とする揺動体装置。
The oscillator device according to claim 2,
The feedback gain in the resonance frequency detection operation is the difference between the value obtained by multiplying the fundamental frequency of the fundamental wave by n and the n-fold frequency of the n-fold wave, or the fundamental frequency of the fundamental wave and the n-fold frequency of the n-fold wave. The oscillator device is set based on a ratio of
請求項2に記載の揺動体装置であって、
前記駆動振幅制御部の前記基本波及びn倍波に対応する駆動成分の駆動振幅へのフィードバック利得を、夫々、前記基本波の基本周波数と該基本周波数をn倍した値の駆動周波数の駆動成分から成る駆動信号で駆動するときの前記基本周波数の駆動周波数の駆動成分の駆動振幅へのフィードバック利得、前記n倍周波数と該n倍周波数のn分の1の値の駆動周波数の駆動成分から成る駆動信号で駆動するときの前記n倍周波数の駆動周波数の駆動成分の駆動振幅へのフィードバック利得に設定することを特徴とする揺動体装置。
The oscillator device according to claim 2,
The feedback gain to the drive amplitude of the drive component corresponding to the fundamental wave and the n-th harmonic wave of the drive amplitude control unit, respectively, the fundamental frequency of the fundamental wave and the drive component of the drive frequency of the value obtained by multiplying the fundamental frequency by n A feedback gain to a drive amplitude of a drive component of the fundamental frequency drive frequency when driven by a drive signal consisting of: a drive component of a drive frequency of the n-fold frequency and a value of 1 / n of the n-fold frequency An oscillator device characterized in that it is set to a feedback gain to a driving amplitude of a driving component of the driving frequency of the n-fold frequency when driving with a driving signal.
請求項1乃至6の何れか1項に記載の揺動体装置を有し、
少なくとも1つの前記揺動体に光偏向素子が配置され、前記光偏向素子に入射する光ビームを偏向することを特徴とする光偏向装置。
The oscillator device according to any one of claims 1 to 6,
An optical deflecting device, wherein an optical deflecting element is disposed on at least one of the oscillators, and deflects a light beam incident on the optical deflecting element.
請求項7に記載の光偏向装置を有し、
前記光偏向装置が、光源からの光ビームを偏向し、該光ビームの少なくとも一部を光照射対象物に入射させることを特徴とする光学機器。
It has an optical deflecting device according to claim 7,
An optical apparatus, wherein the light deflector deflects a light beam from a light source and causes at least a part of the light beam to enter a light irradiation target.
揺動可能に支持された揺動体を有し共振周波数を持つ振動系と駆動信号に基づき前記振動系に駆動力を供給する駆動部とを有し、前記駆動信号の駆動振幅をフィードバック制御する揺動体装置の振動系の共振周波数検出方法であって、
共振周波数検出動作において、前記フィードバック利得を、他の動作状態で設定するフィードバック利得よりも低い値に設定し、前記駆動部で駆動される揺動体の揺動振幅が目標の値となる様に駆動信号の駆動振幅を制御している状態で、前記揺動体を複数の駆動周波数の駆動信号で夫々駆動し、前記複数の駆動周波数の駆動信号での夫々の駆動状態における当該駆動周波数と前記制御された駆動振幅を含む情報に基づき、駆動信号の駆動振幅が最小となる駆動周波数を前記振動系の共振周波数として取得することを特徴とする共振周波数検出方法。
A vibration system having a vibration body that is supported so as to be capable of rocking and having a resonance frequency and a drive unit that supplies a driving force to the vibration system based on a drive signal, and that performs feedback control on the drive amplitude of the drive signal. A method for detecting a resonance frequency of a vibration system of a moving body device,
In the resonance frequency detection operation, the feedback gain is set to a value lower than the feedback gain set in other operation states, and the oscillation is driven so that the oscillation amplitude of the oscillation body driven by the drive unit becomes a target value. In a state where the drive amplitude of the signal is controlled, the oscillator is driven with a drive signal having a plurality of drive frequencies, and the drive frequency in each drive state with the drive signals having the plurality of drive frequencies is controlled. A resonance frequency detection method comprising: obtaining a drive frequency that minimizes the drive amplitude of a drive signal as a resonance frequency of the vibration system based on information including the drive amplitude.
JP2008113345A 2008-04-24 2008-04-24 Rocking member apparatus Pending JP2009265285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113345A JP2009265285A (en) 2008-04-24 2008-04-24 Rocking member apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113345A JP2009265285A (en) 2008-04-24 2008-04-24 Rocking member apparatus

Publications (1)

Publication Number Publication Date
JP2009265285A true JP2009265285A (en) 2009-11-12

Family

ID=41391239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113345A Pending JP2009265285A (en) 2008-04-24 2008-04-24 Rocking member apparatus

Country Status (1)

Country Link
JP (1) JP2009265285A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205770A (en) * 2012-03-29 2013-10-07 Kyocera Document Solutions Inc Optical scanner and image forming device
JP2014128449A (en) * 2012-12-28 2014-07-10 Canon Inc Image generation device, and image generation method
JP2018517172A (en) * 2015-05-21 2018-06-28 マイクロビジョン,インク. Resonant system excitation power reduction using dynamic phase offset
JPWO2022014471A1 (en) * 2020-07-16 2022-01-20

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205770A (en) * 2012-03-29 2013-10-07 Kyocera Document Solutions Inc Optical scanner and image forming device
JP2014128449A (en) * 2012-12-28 2014-07-10 Canon Inc Image generation device, and image generation method
US9615737B2 (en) 2012-12-28 2017-04-11 Canon Kabushiki Kaisha Image forming apparatus, image forming method, program, and ophthalmic apparatus
JP2018517172A (en) * 2015-05-21 2018-06-28 マイクロビジョン,インク. Resonant system excitation power reduction using dynamic phase offset
JPWO2022014471A1 (en) * 2020-07-16 2022-01-20
JP7455976B2 (en) 2020-07-16 2024-03-26 富士フイルム株式会社 Optical scanning device and micromirror device driving method

Similar Documents

Publication Publication Date Title
JP5064864B2 (en) Optical deflection apparatus, image forming apparatus, and driving method of optical deflection apparatus
US8400698B2 (en) Oscillator device, optical deflecting device and method of controlling the same
JP5400925B2 (en) Oscillator device, optical deflector, and optical apparatus using the same
JP2007322466A (en) Optical deflector and optical equipment using the same
JP2007322506A (en) Optical deflector and optical equipment using the same
JP2006243251A (en) Optical deflector
JP5184909B2 (en) Oscillator device and optical deflection device
JP5404102B2 (en) Oscillator device and optical deflection device using the same
JP5065116B2 (en) Oscillator device, optical deflection device, and control method thereof
US8451308B2 (en) Image forming apparatus
JP2009198839A (en) Oscillator device
JP2009265285A (en) Rocking member apparatus
US8159513B2 (en) Image forming apparatus and control method for same
JP2009058616A (en) Oscillating body apparatus, light deflector and image forming apparatus using the same
JP5188315B2 (en) Oscillator device, optical deflection device, and optical apparatus using the same
JP2010048928A (en) Oscillating body device and light deflector using the same
JP2008292741A (en) Optical deflector and image forming apparatus with the same, and scanning type display device
JP5341372B2 (en) Oscillator device and image forming apparatus using the oscillator device
JP2010014871A (en) Oscillator device, light deflector, optical equipment, and resonance frequency detection method
JP5408887B2 (en) Oscillator device and image forming apparatus using the oscillator device
US6914366B2 (en) Apparatus for suppressing vibration of optical part
JP2009086557A (en) Oscillator device, optical deflection device, and optical apparatus using the same
JP5058661B2 (en) Image forming apparatus
JP2009034961A (en) Image forming apparatus
JP2009258392A (en) Oscillator device, optical deflection apparatus using the same, and drive control method of oscillator device