JP2009265047A - Solid-liquid contact device and separation medium by hierarchical porous body containing mesopore having long-range order - Google Patents
Solid-liquid contact device and separation medium by hierarchical porous body containing mesopore having long-range order Download PDFInfo
- Publication number
- JP2009265047A JP2009265047A JP2008117990A JP2008117990A JP2009265047A JP 2009265047 A JP2009265047 A JP 2009265047A JP 2008117990 A JP2008117990 A JP 2008117990A JP 2008117990 A JP2008117990 A JP 2008117990A JP 2009265047 A JP2009265047 A JP 2009265047A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- sol
- inorganic
- reaction
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
【課題】本発明は、狭い細孔径分布と長距離にわたる規則性および形状を制御したメソ孔に加えて、精密に制御されたマクロ孔も併せもつ無機系および有機無機ハイブリッド系多孔性物質を製造することのできる新しい製造方法を提供することを目的とする。
【解決手段】本発明では、鋳型成分として両親媒性物質をゾル−ゲル反応触媒成分を含む水溶液に溶かし、それに加水分解性の官能基を有する無機低分子化合物あるいは有機無機低分子化合物を添加して得られる出発溶液から、マクロ孔となる溶媒リッチ相を含むゲルをゾル−ゲル法によって作製し、ついで乾燥によって溶媒を除去し、さらに熱分解などにより鋳型成分を除去する。
【選択図】 図1The present invention manufactures inorganic and organic-inorganic hybrid porous materials having precisely controlled macropores in addition to mesopores with controlled narrow pore size distribution and regularity and shape over long distances. It is an object of the present invention to provide a new manufacturing method that can be used.
In the present invention, an amphiphilic substance as a template component is dissolved in an aqueous solution containing a sol-gel reaction catalyst component, and an inorganic low molecular compound or an organic inorganic low molecular compound having a hydrolyzable functional group is added thereto. From the starting solution obtained, a gel containing a solvent-rich phase that becomes macropores is prepared by a sol-gel method, and then the solvent is removed by drying, and the template component is further removed by thermal decomposition or the like.
[Selection] Figure 1
Description
この発明は無機系および有機無機ハイブリッド多孔性物質からなる材料を固定相とした、固液接触媒体および様々なモードの液体クロマトグラフィー分離媒体として利用可能な通液型デバイスに関する。この発明の製造方法ならびに製品は、クロマトグラフィー用分離カラム、血液および血漿成分分離用媒体、吸湿剤用吸着媒体、消臭等の低分子吸着用媒体、あるいは酵素担体および触媒担体用多孔質体等の、製造法およびその製品として好適に利用される。 The present invention relates to a liquid-flowing device that can be used as a solid-liquid contact medium and various modes of liquid chromatography separation media using a material composed of inorganic and organic-inorganic hybrid porous materials as a stationary phase. The production method and product of the present invention include a chromatographic separation column, a medium for separating blood and plasma components, an adsorption medium for a hygroscopic agent, a low molecular adsorption medium such as deodorant, or a porous body for an enzyme carrier and a catalyst carrier. It is suitably used as a production method and a product thereof.
上述したような用途に用いられる多孔性物質としては、従前より、スチレン・ジビニルベンゼン共重合体等の有機ポリマーよりなるものと、シリカゲル等の無機系材料から成るもの、また最近では無機系材料の一部を金属原子と炭素原子の結合を含む有機無機ハイブリッドに置換したものがよく知られており、一般に、それらの多孔性物質は微粒子状に成型した上で、カラムに充填して用いられる。
有機系の材質で構成されたカラムは、低強度のために耐圧性が低い、溶媒により膨潤・収縮してしまう、加熱殺菌が不可能である等の難点がある。従って、特に高温・高圧での操作によって生産性を上げようとする場合、こうした難点がない無機系のもの、特にシリカゲルが、汎用されている。
As porous materials used for the above-mentioned applications, those made of organic polymers such as styrene / divinylbenzene copolymer, those made of inorganic materials such as silica gel, and more recently, It is well known that a part thereof is substituted with an organic-inorganic hybrid containing a bond between a metal atom and a carbon atom. Generally, these porous materials are formed into fine particles and then packed into a column for use.
A column made of an organic material has problems such as low pressure resistance due to low strength, swelling / shrinkage with a solvent, and inability to sterilize by heating. Therefore, especially when trying to increase productivity by operation at high temperature and high pressure, inorganic materials that do not have such difficulties, particularly silica gel, are widely used.
一般にシリカゲル等の無機質多孔体は、液相反応であるゾル−ゲル法によって作製される。ゾル−ゲル法とは、加水分解性の官能基を有する無機低分子化合物を出発物質とし、ゾル−ゲル反応、すなわち、加水分解とその後の重合(重縮合)反応により、最終的に無機低分子化合物から主に金属酸化物からなる凝集体や重合体を得る方法一般のことを指す。出発物質となる無機低分子化合物としては、金属アルコキシドが最もよく知られており、このほか、金属塩化物、硝酸塩、オキシ塩化物等の加水分解性の官能基をもつ金属塩、カルボキシ基やβ−ジケトンのような加水分解性の官能基をもつ配位化合物、水ガラスのような水溶性の縮合酸化物イオンを含む溶液、さらには金属アミン類等が挙げられる。
多孔質材料を各種担体等として利用する場合には、孔の表面に担持されて機能を発現する物質の大きさに依存した最適の細孔サイズと、できるだけ狭い細孔径分布とが必要である。したがって、ゾル−ゲル法によって得られる多孔性物質についても、ゲル合成時の反応条件を制御することによって、細孔サイズを制御する試みがなされてきた。
In general, an inorganic porous material such as silica gel is produced by a sol-gel method which is a liquid phase reaction. In the sol-gel method, an inorganic low molecular weight compound having a hydrolyzable functional group is used as a starting material, and finally an inorganic low molecular weight is obtained by a sol-gel reaction, that is, hydrolysis and subsequent polymerization (polycondensation) reaction. A general method for obtaining an aggregate or polymer mainly composed of a metal oxide from a compound. Metal alkoxides are the most well-known inorganic low-molecular compounds used as starting materials. In addition, metal salts having hydrolyzable functional groups such as metal chlorides, nitrates, and oxychlorides, carboxy groups, and β -Coordination compounds having hydrolyzable functional groups such as diketones, solutions containing water-soluble condensed oxide ions such as water glass, and metal amines.
When a porous material is used as various carriers, an optimum pore size depending on the size of a substance that is supported on the surface of the pores and exhibits a function, and a pore size distribution that is as narrow as possible are required. Therefore, an attempt has been made to control the pore size of the porous material obtained by the sol-gel method by controlling the reaction conditions during the gel synthesis.
特に、近年多くの研究者によって界面活性剤やブロック共重合体などいわゆる両親媒性物質(より厳密には、両親媒性物質が自己組織化して形成された分子集合体)を鋳型成分として共存させて、ゾル−ゲル法による多孔性物質を合成することにより、ナノメートル領域の細孔構造を高い精度で制御することができると報告されている。
しかし、ゾル−ゲル法で得られる従来の多孔性物質は、通常、ナノメートル領域の細孔(いわゆるメソ孔)のみを有し、その形態は多くの場合粉末や薄膜および不規則形状をもつ粒子状である。数ミリメートル以上の塊状材料が得られる場合にも、ナノメートル領域よりも大きいスケールの細孔構造(いわゆるマクロ孔)が、同時に系統的に制御されている例は極めて少ない。一例として、無定形(結晶のような長距離にわたる周期性を示さない)メソ孔と、大きさの揃ったマクロ孔からなる無機系多孔性物質は知られているが、その物質においてはメソ孔の形状と長距離にわたる規則性は制御されていない(特許文献1)。
In particular, many researchers have recently made so-called amphiphilic substances such as surfactants and block copolymers (more precisely, molecular aggregates formed by self-organization of amphiphilic substances) coexist as template components. It has been reported that the pore structure in the nanometer region can be controlled with high accuracy by synthesizing a porous material by a sol-gel method.
However, the conventional porous material obtained by the sol-gel method usually has only pores in the nanometer range (so-called mesopores), and the form thereof is often a powder, a thin film or an irregularly shaped particle. Is. Even when a massive material of several millimeters or more is obtained, there are very few examples in which pore structures (so-called macropores) having a scale larger than the nanometer range are controlled systematically. As an example, an inorganic porous material consisting of amorphous (not showing periodicity over a long distance like crystals) mesopores and macropores of uniform size is known. The regularity over the shape and long distance is not controlled (Patent Document 1).
上述したようなナノメートル領域の細孔(メソ孔)のみから成る多孔性物質は、一般に、細かく粉砕したり、粉砕物を結着させた状態で充填して、フィルターや担体材料等として使用される。すなわち、被処理物質(移動相としてのガスまたは液体)は、粉砕物の充填や結着によって生じる多孔体粒子間の隙間を通って、メソ孔内に導入されて該多孔性物質の所定の機能が発揮される。しかし、それらの隙間は一般に不規則である上、充分な多孔性を供しないことが多いため、所望の効果が得られないことが多い。ナノメートル領域の細孔(メソ孔)への外部からの目的物質の接触が促進されるような多孔性の集合状態や、そのような条件を満足するマクロ孔構造をもつ塊状試料を得ようとする場合には、煩雑で長時間を要する成形プロセスが要求される。 Porous substances consisting only of pores (mesopores) in the nanometer range as described above are generally used as filters, carrier materials, etc. after being finely pulverized or filled with a pulverized material bound thereto. The That is, the substance to be treated (gas or liquid as the mobile phase) is introduced into the mesopores through the gaps between the porous particles generated by filling and binding of the pulverized material, and a predetermined function of the porous substance is obtained. Is demonstrated. However, these gaps are generally irregular and often do not provide sufficient porosity, so the desired effect is often not obtained. An attempt was made to obtain a massive sample with a porous aggregate state that facilitates contact of the target substance from the outside with pores (mesopores) in the nanometer region and a macroporous structure that satisfies such conditions. In this case, a complicated and long molding process is required.
本発明の目的は、狭い細孔径分布と長距離にわたる規則性および形状を制御したメソ孔に加えて、精密に制御されたマクロ孔も併せもつ無機系および有機無機ハイブリッド系多孔性物質を製造することのできる新しい製造方法を提供すること、および上述の製造方法によって得られた多孔性物質を利用した、固液接触デバイスおよび分離媒体を提供することにある。特に、反応溶液から溶媒を除去しながら濃縮およびゲル化させたり、ゲルの乾燥に超臨界乾燥法を用いるなどの煩雑な手法を使わず、密閉条件下における反応溶液のゾル−ゲル転移と常温・常圧下での乾燥および通常の熱処理操作のみによって、狭い細孔径分布と長距離にわたる規則性および形状を制御したメソ孔に加えて、精密に制御されたマクロ孔も併せもつ、無機系および有機無機ハイブリッド系多孔性物質を製造する方法を提供するとともに、該多孔性物質を固液接触デバイスおよび分離媒体の構成に必要な適当な大きさの塊状材料として成型し、既存品を上回る性能をもつ新規デバイスならびに分離媒体を提供することにある。 It is an object of the present invention to produce inorganic and organic-inorganic hybrid porous materials that have precisely controlled macropores in addition to mesopores with controlled narrow pore size distribution and regularity and shape over long distances. An object of the present invention is to provide a new manufacturing method that can be used, and to provide a solid-liquid contact device and a separation medium using the porous material obtained by the above-described manufacturing method. In particular, the sol-gel transition of the reaction solution under normal conditions and the normal temperature and temperature are eliminated without using a complicated method such as concentration and gelation while removing the solvent from the reaction solution or using a supercritical drying method for drying the gel. Inorganic and organic inorganic materials that have precisely controlled macropores in addition to mesopores with controlled narrow pore size distribution and long-range regularity and shape, only by drying under normal pressure and normal heat treatment. Provided is a method for producing a hybrid porous material, and the porous material is molded as a bulk material of an appropriate size necessary for the construction of a solid-liquid contact device and a separation medium, and has a new performance superior to existing products It is to provide a device as well as a separation medium.
本発明者は、両親媒性物質を鋳型成分として共存させてゾル−ゲル法により無機系多孔質体を製造するに当って、ゾル−ゲル転移と相分離過程が同時に起こるようにし、1)鋳型成分の集合状態を安定化させる成分を共存させる、あるいは2)鋳型成分の集合状態が安定化する溶液組成で好ましい相分離が起こるような加水分解性の官能基を有する無機低分子化合物を選択する、3)鋳型成分の集合状態が安定となる溶媒組成を選ぶ、の少なくともひとつの条件を満たすことにより、上記の目的が達成されることを見出した。
かくして、本発明に従えば、下記の各工程を含むことを特徴とする、長距離秩序性ならびに形状および細孔径分布の制御されたメソ孔に加えて、制御された細孔径分布を有するマクロ孔を併せもつ、無機系および有機無機ハイブリッド系多孔性物質の製造方法が提供される。
(i) ゾル−ゲル反応触媒成分を含有する水溶液に、鋳型成分として両親媒性物質を溶かして均一溶液を調製する工程、
(ii) 該均一溶液に、両親媒性物質が自己組織化して形成された分子集合体が溶液中で安定化される溶媒組成あるいは添加成分を用いて溶液あるいは分散液を調製する工程、
(iii) 該溶液あるいは分散液に、加水分解性の官能基を有する無機低分子化合物あるいは有機無機低分子化合物を添加しゾル−ゲル反応を行わせて、溶媒に富む溶媒リッチ相と、ゾル−ゲル反応により前記無機低分子化合物から生成した無機酸化物重合体あるいは有機無機低分子化合物から生成した有機無機ハイブリッド重合体であって、前記両親媒性物質から成る鋳型成分の表面上に固着した無機酸化物重合体あるいは有機無機ハイブリッド重合体に富む骨格相とから成る、連続した3次元網目構造の湿潤ゲルを形成する工程、
(iv) 該湿潤ゲルを乾燥して前記溶媒リッチ相から溶媒を蒸発除去することによりマクロ孔を形成する工程、および
(v) 乾燥後のゲルから熱分解または抽出により前記鋳型成分を除去することにより前記骨格相内にメソ孔を形成する工程。
The present inventor made the sol-gel transition and the phase separation process occur simultaneously in the production of an inorganic porous material by the sol-gel method in the presence of an amphiphilic substance as a template component. Ingredients that stabilize the aggregation state of the components coexist, or 2) Select an inorganic low molecular weight compound having a hydrolyzable functional group that causes favorable phase separation in a solution composition that stabilizes the aggregation state of the template component 3) It has been found that the above object can be achieved by satisfying at least one of the following conditions: 3) selecting a solvent composition in which the assembly state of the template component is stable.
Thus, according to the present invention, macropores having controlled pore size distribution in addition to long-range order and controlled mesopores of shape and pore size distribution, characterized by comprising the following steps: A method for producing inorganic and organic-inorganic hybrid porous materials is also provided.
(i) a step of preparing a homogeneous solution by dissolving an amphiphile as a template component in an aqueous solution containing a sol-gel reaction catalyst component;
(ii) preparing a solution or dispersion in the homogeneous solution using a solvent composition or an additive component in which a molecular assembly formed by self-organization of an amphiphile is stabilized in the solution;
(iii) An inorganic low molecular weight compound having a hydrolyzable functional group or an organic inorganic low molecular weight compound is added to the solution or dispersion to perform a sol-gel reaction, and a solvent rich phase rich in solvent, An inorganic oxide polymer generated from the inorganic low molecular weight compound or an organic-inorganic hybrid polymer generated from the organic inorganic low molecular weight compound by a gel reaction, which is fixed on the surface of the template component composed of the amphiphilic substance. Forming a continuous three-dimensional network wet gel comprising a skeleton phase rich in oxide polymers or organic-inorganic hybrid polymers;
(iv) drying the wet gel to form macropores by evaporating and removing the solvent from the solvent-rich phase; and
(v) A step of forming mesopores in the skeletal phase by removing the template component from the dried gel by thermal decomposition or extraction.
また、上述の製造方法によって得られた多孔性物質を、固液接触デバイスあるいは液体クロマトグラフィーカラム等の分離媒体として利用するためには、出発溶液に尿素などの溶液中で徐々に分解して液性を変化させる物質を添加しておき、上記ゾル−ゲル反応中および反応後の熟成段階において、ゲルの構造を強固にすることによって、ひび割れや変形のない円柱状や円盤状の塊状試料を得ることが出来る。特に多孔性物質の化学組成が二酸化ケイ素(シリカ)である場合、ゾル−ゲル反応を酢酸などの弱酸性触媒を用いて、尿素の共存下で行い、ゾル−ゲル転移による反応溶液の固化が起こってから、60 ℃以上で密閉下で熟成することによって、ひび割れや変形のない機械強度の高い塊状材料とすることができる。 In addition, in order to use the porous material obtained by the above-described production method as a separation medium for a solid-liquid contact device or a liquid chromatography column, the liquid is gradually decomposed into a starting solution in a solution such as urea. By adding a substance that changes the property, and strengthening the gel structure during the sol-gel reaction and in the aging stage after the reaction, a cylindrical or disk-shaped lump sample without cracks or deformation is obtained. I can do it. Especially when the chemical composition of the porous material is silicon dioxide (silica), the sol-gel reaction is performed in the presence of urea using a weakly acidic catalyst such as acetic acid, and the reaction solution is solidified by the sol-gel transition. After that, by aging in a sealed state at 60 ° C. or higher, it is possible to obtain a massive material having high mechanical strength without cracking or deformation.
このようにして得られた多孔性材料は、液体クロマトグラフィーカラムに代表される分離媒体として利用する場合には、円柱状の形態に成型するために円筒状容器内に密閉した条件で反応溶液を固化させ、熟成、乾燥、熱処理の過程を経た後、側面を液体が浸透しない樹脂で被覆するとともに、両端にクロマトグラフ装置に接合可能なジョイントをつけることによって、カラムとしての利用が可能となる。また、注射器の先端部に取り付けるなどして、固相抽出等の多孔性材料中を液体を流通させる固液接触デバイスとして利用する場合には、円柱状あるいは円盤状の多孔性物質をピペットチップの先端部に隙間のないように固定することにより、注射器による液体の吸上・吐出操作とともに、多孔性物質内部を液体を流通させて、多孔性物質内部表面に担持した物質と液体との接触を促進することができる。 When the porous material thus obtained is used as a separation medium typified by a liquid chromatography column, the reaction solution is sealed in a cylindrical container so as to be molded into a cylindrical shape. After solidifying, aging, drying, and heat treatment, the side surfaces are covered with a resin that does not allow liquid to penetrate, and joints that can be joined to a chromatograph device are attached to both ends, so that it can be used as a column. In addition, when used as a solid-liquid contact device that circulates a liquid in a porous material such as solid phase extraction by attaching it to the tip of a syringe, a cylindrical or disk-shaped porous substance is attached to the pipette tip. By fixing the tip so that there is no gap, the liquid is circulated through the porous substance and the liquid carried by the syringe is brought into contact with the liquid and the liquid carried by the syringe. Can be promoted.
本発明の無機系多孔質体の製造方法の特徴は、適当な添加成分によって安定化せしめられた形状や集合状態を有する両親媒性物質の分子集合体を、鋳型成分として共存させてゾル−ゲル法により無機系多孔質体を製造するに際して、ゾル−ゲル転移と相分離とが同時に起こるように反応条件を調整することにより、後の乾燥工程によりマクロ孔を形成し得る溶媒リッチ相と、後の熱分解工程により内部にメソ孔を形成し得る骨格相とから成るゲルを調製する工程を含むことにある。これに対して、両親媒性物質を鋳型成分として共存させてゾル−ゲル法による多孔体を合成する従来の方法に従えば、既述のように、得られる多孔体はメソ孔のみを有するものであった。これは、従来の方法においては、鋳型成分の表面で局所的に早期に酸化物重合体が形成されて沈澱し系から分離してしまうからであると考えられる。また分子集合体を安定化させる成分を加えずに作製される、相分離を伴うゾル−ゲル反応による多孔体は、整ったマクロ孔は有するものの、大きさの揃ったメソ孔は無定形であり、長距離にわたる秩序や細孔形状の制御がなされたものではなかった。 A feature of the method for producing an inorganic porous material of the present invention is that a sol-gel is obtained by coexisting a molecular assembly of an amphiphile having a shape and an aggregation state stabilized by an appropriate additive component as a template component. When producing an inorganic porous material by the method, by adjusting the reaction conditions so that sol-gel transition and phase separation occur simultaneously, a solvent-rich phase capable of forming macropores in the subsequent drying step, and And a step of preparing a gel composed of a skeletal phase capable of forming mesopores therein by the pyrolysis step. On the other hand, according to the conventional method of synthesizing a porous material by the sol-gel method in the presence of an amphiphile as a template component, as described above, the obtained porous material has only mesopores. Met. This is considered to be because, in the conventional method, an oxide polymer is locally formed on the surface of the template component at an early stage and precipitates and separates from the system. In addition, a porous body made by a sol-gel reaction with phase separation that is made without adding a component that stabilizes the molecular assembly has well-defined macropores, but mesopores with uniform sizes are amorphous. However, the order and the shape of the pores over a long distance were not controlled.
なお、本発明において用いられる「マクロ孔」および「メソ孔」という語は、よく知られたIUPACによる提唱に従って定義されるものとする。すなわち、マクロ孔とは直径が50ナノメートル(nm)以上の細孔を指称し、また、メソ孔とは、マクロ孔とマイクロ孔(直径2 nm以下)との中間、すなわち、直径が2〜50 nmの範囲にある細孔を指称し、本発明によって得られる多孔性物質は、一般に、直径が2〜10 nm程度のメソ孔を中心として狭い細孔分布を有するが、マイクロ孔も併せもっている。
It should be noted that the terms “macropore” and “mesopore” used in the present invention are defined according to the well-known proposal by IUPAC. That is, a macropore refers to a pore having a diameter of 50 nanometers (nm) or more, and a mesopore is an intermediate between a macropore and a micropore (
本発明の原理は、背景技術に関連して既述したようなゾル−ゲル法により低分子化合物から酸化物の重合体を生成し得るものとして知られた各種の無機化合物および有機無機ハイブリッドに適用することができるが、本発明の方法が特に好ましく適用されるのは、多孔質体を構成する無機酸化物重合体が、シリカおよび/または有機官能基含有シロキサン重合体の場合である。
本発明に従いシリカやシロキサン重合体から成りメソ孔とマクロ孔とを併せもつ多孔性物質を製造するには、ゾル−ゲル反応工程を少なくともその反応初期において酸性領域で行い、且つ、該ゾル−ゲル反応において触媒成分を含有する水の量が反応系中のシリカ1.0g(無水シリカ換算重量として)に対して1.0〜100.0gの範囲にあるように反応条件を調整することが必要であり、これによって、ゾル−ゲル転移と相分離が同時に起こり、溶媒リッチ相と骨格相とから成るゲルが生成する。
The principle of the present invention is applied to various inorganic compounds and organic-inorganic hybrids known to be capable of producing oxide polymers from low-molecular compounds by the sol-gel method as described above in connection with the background art. However, the method of the present invention is particularly preferably applied when the inorganic oxide polymer constituting the porous body is a silica and / or organic functional group-containing siloxane polymer.
In order to produce a porous material composed of silica or siloxane polymer according to the present invention and having both mesopores and macropores, the sol-gel reaction step is carried out at least in the acidic region, and the sol-gel In the reaction, it is necessary to adjust the reaction conditions so that the amount of water containing the catalyst component is in the range of 1.0 to 100.0 g with respect to 1.0 g of silica in the reaction system (as weight of anhydrous silica). Thus, the sol-gel transition and the phase separation occur simultaneously, and a gel composed of a solvent-rich phase and a skeleton phase is generated.
更に詳述すれば、両親媒性物質を鋳型としてゾル−ゲル反応によりシリカを主成分とする多孔性物質を製造する場合、酸性、中性、塩基性いずれの触媒条件においても鋳型成分による大きさの揃ったメソ孔を得ることができることは従来より知られているが、本発明に従い溶媒リッチ相と骨格相に分離したゲルを作製するためには、均質な加水分解およびゲル形成を起こすことが容易な酸性領域での反応が必要である。あるいは反応溶液内部からの均質な反応によって、反応初期に酸性であった液性を徐々に塩基性に変化させて(例えば、反応溶液中に尿素を添加しておき、この尿素が徐々に加水分解してアンモニアを発生するようにする)均質な加水分解とゲル形成を誘起しても良い。
すなわち、ゾル−ゲル反応は、加水分解による結合部位(重縮合反応部位:代表的には水酸基)の生成と、該結合部位を介する重縮合反応によるゲル形成とから成るものであるが、酸性領域では加水分解反応が促進されて多くの重縮合反応部位が形成され、この多くの部位を介して均質に重縮合反応(ゲル形成)が起こるものと考えられる。これに対して、ゾル−ゲル反応初期から塩基性であると重縮合反応の方が促進されて不均質なゲル形成が誘起されてしまう。ゾル−ゲル反応の触媒成分としては、塩酸、硝酸、硫酸等の鉱酸および酢酸、クエン酸などの有機酸、またはアンモニア、アミン類などの弱塩基類、水酸化ナトリウム、水酸化カリウム等の強塩基類を挙げることができるが、液性の調整が重要な因子であるのでこれらの物質に限定されない。
More specifically, when a porous material mainly composed of silica is produced by a sol-gel reaction using an amphiphilic material as a template, the size of the template component depends on the acidic, neutral or basic catalyst conditions. It has been known that a uniform mesopore can be obtained. However, in order to produce a gel separated into a solvent-rich phase and a skeleton phase according to the present invention, homogeneous hydrolysis and gel formation may occur. A reaction in an easy acidic region is necessary. Alternatively, the liquidity that was acidic at the beginning of the reaction is gradually changed to basic by a homogeneous reaction from within the reaction solution (for example, urea is added to the reaction solution, and this urea is gradually hydrolyzed. To generate ammonia) and may induce homogeneous hydrolysis and gel formation.
That is, the sol-gel reaction is composed of the formation of a binding site (polycondensation reaction site: typically a hydroxyl group) by hydrolysis and gel formation by a polycondensation reaction via the binding site. Then, the hydrolysis reaction is promoted to form many polycondensation reaction sites, and it is considered that the polycondensation reaction (gel formation) occurs homogeneously through these many sites. On the other hand, if it is basic from the beginning of the sol-gel reaction, the polycondensation reaction is promoted, and inhomogeneous gel formation is induced. The catalyst component of the sol-gel reaction includes mineral acids such as hydrochloric acid, nitric acid and sulfuric acid, organic acids such as acetic acid and citric acid, weak bases such as ammonia and amines, strong acids such as sodium hydroxide and potassium hydroxide. Although bases can be mentioned, since adjustment of liquidity is an important factor, it is not limited to these substances.
また、本発明に従いシリカやシロキサン重合体から成りメソ孔に加えてマクロ孔を併せもつ多孔性物質を得るには、ゾル−ゲル反応における水の量も重要な因子であり、反応系中のケイ素原子0.0167モル(無水シリカ換算重量として1.0 g)に対して、触媒成分を含む水の量として、1.0〜100.0 g、好ましくは2.0〜50.0 g、より好ましくは3.0〜30.0 gとなるようにする。水の量が多すぎると重合度が充分に上がらない重合体が水中に沈澱してしまい均一なゲルができ難くなる。この現象は出発物質の反応性や反応温度に依存するため、その組成範囲や反応条件を一概に述べることは困難であるが、両親媒性物質を鋳型成分として共存させるゾル−ゲル法によるが、メソ孔しか有しない多孔質体を製造する従来の方法においては、上記のように定義される水の量は、一般に50 g以上であり、100 g以上とするものも多い。 In addition, the amount of water in the sol-gel reaction is an important factor for obtaining a porous material composed of silica or a siloxane polymer and having macropores in addition to mesopores according to the present invention. The amount of water containing the catalyst component is 1.0 to 100.0 g, preferably 2.0 to 50.0 g, more preferably 3.0 to 30.0 g with respect to 0.0167 mol of atoms (1.0 g in terms of anhydrous silica). If the amount of water is too large, a polymer whose degree of polymerization does not sufficiently increase will precipitate in water, making it difficult to form a uniform gel. Since this phenomenon depends on the reactivity and reaction temperature of the starting material, it is difficult to describe the composition range and reaction conditions in general, but it is based on the sol-gel method in which an amphiphile coexists as a template component. In the conventional method for producing a porous body having only mesopores, the amount of water defined as described above is generally 50 g or more, and many are 100 g or more.
以上のようにして、本発明においては、ゾル−ゲル転移と相分離とが実質的に同時に起こるようにゾル−ゲル反応工程を調整することにより、溶媒(水)に富む溶媒リッチ相と酸化物重合体に富む骨格相とから成るゲルが生成され、この生成は、沈澱を生じることなく溶液が白濁することによって確認される。この生成物は、粉末や沈殿ではなく一塊の固体として固化するので、その強度を増すために暫く熟成し(必要に応じて僅かに加温する)と、これを乾燥および熱分解(または抽出)に供することにより目的の多孔質体が得られる。
かくして、本発明の方法に従いメソ孔とマクロ孔を併せ持つ無機質多孔質を製造するには、先ず、ゾル−ゲル反応触媒成分を含有する水溶液に鋳型成分として両親媒性物質を溶かして均一溶液を調製する。この均一溶液に、必要に応じて両親媒性物質の分子集合体を安定化させる成分を加えた後、加水分解性の官能基を有する無機低分子化合物を添加してゾル−ゲル反応を行うと、上述したように、溶媒リッチ相と骨格相とに分離したゲルが生成する。
溶媒リッチ相は、マクロ孔に対応する直径を有する3次元網目状に連続した相であり、このことは、後述のように乾燥によって溶媒を除去した後の構造体を電子顕微鏡によって観察することにより確認できる(図1参照)。
骨格相は、ゾル−ゲル反応により無機低分子化合物から生成した無機酸化物重合体あるいは有機無機ハイブリッド重合体に富み、やはり連続した3次元網目構造の相である。この相は、鋳型成分となる両親媒性物質(厳密には、両親媒性物質が自己組織化して形成された分子集合体)の表面に固着して形成されているものであり、このことは、後に鋳型成分(両親媒性化合物)を除去すると、該骨格相の内部に細孔(メソ孔)が形成されていることからも確認できる(図6参照)。すなわち、酸化物重合体は、表面に水酸基を有し、この部分が両親媒性物質のプロトン受容部分と強く引力相互作用することによって、鋳型成分が溶液中で形成する自己組織化構造をゲル網目の中に転写することができる。
ゾル−ゲル反応の生成物(ゲル)が固化した後、適当な熟成時間を経た後、乾燥によって溶媒を除去すると、溶媒リッチ相の占めていた空間が連続貫通したマクロ孔となる。次いで両親媒性物質から成る鋳型成分を熱分解あるいは抽出除去すると、鋳型成分の自己組織化した構造によって形成されたナノメートル領域の大きさの揃った細孔(メソ孔)が得られる。
As described above, in the present invention, the solvent-rich phase and oxide rich in the solvent (water) are prepared by adjusting the sol-gel reaction step so that the sol-gel transition and the phase separation occur substantially simultaneously. A gel consisting of a polymer rich backbone phase is produced, which is confirmed by the cloudiness of the solution without precipitation. This product solidifies as a solid mass rather than a powder or precipitate, so it is aged for a while (to warm slightly if necessary) to increase its strength and then dried and pyrolyzed (or extracted) The target porous body is obtained by subjecting to the above.
Thus, in order to produce an inorganic porous material having both mesopores and macropores according to the method of the present invention, first, an amphiphile is dissolved as a template component in an aqueous solution containing a sol-gel reaction catalyst component to prepare a uniform solution. To do. When a component that stabilizes the molecular assembly of the amphiphilic substance is added to the homogeneous solution as necessary, an inorganic low-molecular compound having a hydrolyzable functional group is added to perform a sol-gel reaction. As described above, a gel separated into a solvent-rich phase and a skeleton phase is generated.
The solvent-rich phase is a three-dimensional network-like continuous phase having a diameter corresponding to the macropores, which is obtained by observing the structure after removing the solvent by drying with an electron microscope as described later. This can be confirmed (see FIG. 1).
The skeletal phase is rich in an inorganic oxide polymer or an organic-inorganic hybrid polymer formed from an inorganic low-molecular compound by a sol-gel reaction, and is also a continuous three-dimensional network phase. This phase is formed by adhering to the surface of the amphiphilic substance (strictly speaking, a molecular assembly formed by self-organization of the amphiphile) as the template component. Further, when the template component (amphiphilic compound) is removed later, it can be confirmed that pores (mesopores) are formed inside the skeleton phase (see FIG. 6). That is, the oxide polymer has a hydroxyl group on the surface, and this part strongly interacts with the proton-accepting part of the amphiphile to form a self-organized structure formed by the template component in the gel network. Can be transferred to the inside.
After the product (gel) of the sol-gel reaction has solidified, after passing through an appropriate aging time, when the solvent is removed by drying, macropores in which the space occupied by the solvent-rich phase is continuously penetrated are formed. Next, when the template component composed of the amphiphile is thermally decomposed or extracted and removed, pores (mesopores) having a uniform size in the nanometer region formed by the self-organized structure of the template component are obtained.
本発明の方法において鋳型として用いられる両親媒性物質として好ましいのは、四級アンモニウム塩等の親水部と主にアルキル基からなる疎水部とを含むカチオン性界面活性剤もしくは非イオン性親水部とアルキル基等の疎水部から成る界面活性剤、または親水部と疎水部をもつブロック共重合体であり、具体的な例としては、ハロゲン化アルキルアンモニウム、ポリオキシエチレンアルキルエーテル、エチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体などが挙げられるが、これらに限られるものではない。本発明において用いられる両親媒性物質は、界面活性剤や上記のブロック共重合体のように反応溶液に均一に溶解するものが好ましい。また、既述の説明から理解されるように、本発明における両親媒性物質は、鋳型成分としてナノメートル領域の細孔(メソ孔)の径を整える働きに加えて、マクロ孔となる溶媒リッチ相を持つ構造を生じさせる共存物質としての働きを兼ね備えた成分である。 Preferred as the amphiphilic substance used as a template in the method of the present invention is a cationic surfactant or nonionic hydrophilic part containing a hydrophilic part such as a quaternary ammonium salt and a hydrophobic part mainly composed of an alkyl group, A surfactant comprising a hydrophobic part such as an alkyl group, or a block copolymer having a hydrophilic part and a hydrophobic part. Specific examples thereof include halogenated alkyl ammonium, polyoxyethylene alkyl ether, ethylene oxide-propylene oxide- Examples thereof include, but are not limited to, ethylene oxide block copolymers. The amphiphilic substance used in the present invention is preferably one that is uniformly dissolved in the reaction solution, such as a surfactant or the above block copolymer. Further, as can be understood from the above description, the amphiphilic substance in the present invention is a solvent-rich material that forms macropores in addition to the function of adjusting the diameter of nanometer-scale pores (mesopores) as a template component. It is a component that also functions as a coexisting substance that produces a structure having a phase.
本発明の方法において上述の両親媒性物質の分子集合体を安定化させて、形状の整った長距離(典型的に100 nm以上)にわたるX線回折等の手法で検出可能な秩序を発現させ、なおかつその秩序構造が無機系および有機無機ハイブリッド系ゲルの構造中に細孔として転写されるための適切な添加物としては、非プロトン性の有機液体、例えばトリメチルベンゼンやクロロホルムなどが好適であるが、わずかに極性をもつ長鎖アルコールも利用することができ、これらに限定されるものではない。出発物質として比較的水の多い組成においてマクロ孔を生じる相分離を起こすアルコキシドを用いた場合には、上述の添加物を用いることなく両親媒性物質の分子集合体を安定化させて、形状の整った長距離にわたるX線回折等の手法で検出可能な秩序を発現させることもできる。この場合には上述の添加物は、主としてメソ孔径の制御を行うために加えられる。また上述の添加物を両親媒性物質に対して、長距離秩序が得られる適切な濃度範囲を超えて過剰に添加すると、両親媒性物質の分子集合体は再び秩序の低い状態に転化していくが、その際には典型的に直径20nm以上の比較的大きいメソ孔からなるメソ孔構造が得られる。この構造はメソ構造セル状泡(Mesostructured Cellular Foam)と呼ばれ、すでに両親媒性物質を含むゾル−ゲル反応によって粉末や沈殿の形状では知られているが、本発明によればこの特徴的な構造も、制御されたマクロ孔を与えるゲル骨格中に転写することが可能である。両親媒性物質の分子集合体を安定化させる添加物の好適な添加量は、両親媒性物質のに対して重量比で、0〜100%、好ましくは0〜70%、より好ましくは0〜50%の範囲である。添加物は通常ゾル−ゲル反応系の溶媒への溶解度が低いため、これを大過剰に加えると、両親媒性物質の分子集合体中へ溶解し切れなかった添加物が反応溶液中に液滴状に分散し、溶液を不均一な状態にし、結果として得られるゲルの多孔構造の中に液滴状の不均一なマクロ孔を形成するため、整ったマクロ孔を有する構造体を得るためには、これを避けることが必要である。 In the method of the present invention, the above-mentioned molecular assembly of the amphiphile is stabilized, and an order that can be detected by a technique such as X-ray diffraction over a long distance (typically 100 nm or more) with a uniform shape is developed. In addition, as an appropriate additive for transferring the ordered structure as pores in the structure of inorganic and organic-inorganic hybrid gels, aprotic organic liquids such as trimethylbenzene and chloroform are suitable. However, a slightly polar long chain alcohol can also be used, but is not limited thereto. When using an alkoxide that causes phase separation that produces macropores in a relatively water-rich composition as a starting material, the molecular assembly of the amphiphile is stabilized without using the above-mentioned additives, It is also possible to develop an order that can be detected by techniques such as X-ray diffraction over a long distance. In this case, the above-mentioned additives are added mainly for controlling the mesopore diameter. In addition, if the above additives are added excessively to the amphiphile beyond the appropriate concentration range where long-range order is obtained, the molecular aggregate of the amphiphile is again converted into a low order state. However, in that case, a mesopore structure consisting of relatively large mesopores typically having a diameter of 20 nm or more is obtained. This structure is called Mesostructured Cellular Foam and is already known in the form of powder and precipitate by sol-gel reaction containing amphiphile. The structure can also be transferred into a gel skeleton that provides controlled macropores. A suitable addition amount of the additive for stabilizing the molecular assembly of the amphiphile is 0 to 100%, preferably 0 to 70%, more preferably 0 to 0 by weight with respect to the amphiphile. The range is 50%. Additives usually have low solubility in the solvent of the sol-gel reaction system, so if they are added in large excess, the additives that could not be completely dissolved in the molecular assembly of the amphiphile will drop into the reaction solution. In order to obtain a structure with well-defined macropores, in order to disperse the solution and make the solution inhomogeneous and to form droplet-like heterogeneous macropores in the resulting gel porous structure It is necessary to avoid this.
また、本発明において用いられる加水分解性の官能基を有する無機低分子化合物あるいは有機無機低分子化合物としては、背景技術に関連して既述したような金属アルコキシドをはじめとする各種の金属化合物が適用可能であるが、本発明の特に好ましい態様に従い、シリカから成る多孔質体を製造する場合においては、シリカ源としてケイ素アルコキシドの単量体および低分子重合体(オリゴマー)が好適に使用される。また、有機官能基含有シロキサン重合体(有機無機ハイブリッド)から成る多孔質体を製造する場合には、そのような有機無機ハイブリッド源として、少なくとも1つのケイ素−炭素結合を含むケイ素アルコキシドの単量体および低分子量重合体、あるいは2つ以上のケイ素原子間を1つ以上の炭素を含む炭化水素鎖あるいはヘテロ原子を含む炭化水素鎖が架橋している構造の化合物(例えばビストリアルコキシシリルアルカン類)を用いることができる。なお、シリカと有機官能基含有シロキサン重合体とを任意の割合で混合して、本発明の無機系多孔性物質を製造することもできる。 In addition, as the inorganic low-molecular compound or organic inorganic low-molecular compound having a hydrolyzable functional group used in the present invention, various metal compounds including metal alkoxides as described above in relation to the background art may be used. Although applicable, in the case of producing a porous body composed of silica according to a particularly preferred embodiment of the present invention, a silicon alkoxide monomer and a low molecular weight polymer (oligomer) are preferably used as a silica source. . In the case of producing a porous body comprising an organic functional group-containing siloxane polymer (organic / inorganic hybrid), a silicon alkoxide monomer containing at least one silicon-carbon bond is used as such an organic / inorganic hybrid source. A low molecular weight polymer, or a compound having a structure in which a hydrocarbon chain containing one or more carbons or a hydrocarbon chain containing a hetero atom is bridged between two or more silicon atoms (for example, bistrialkoxysilylalkanes) Can be used. The inorganic porous material of the present invention can also be produced by mixing silica and an organic functional group-containing siloxane polymer at an arbitrary ratio.
以下に本発明の特徴を更に明らかにするため実施例を示すが、本発明はこれらの実施例により限定されるものではない。 Examples are given below to further clarify the features of the present invention, but the present invention is not limited to these Examples.
(実施例1):
まず両親媒性物質であるエチレンオキシド−プロピレンオキシド−エチレンオキシドブロック共重合体(EO20-PO70-EO20、平均分子量5800、BASF社製Pluronic P123同等品)1.80 gを0.01 mol/L酢酸水溶液20 gに溶解し、次に尿素1.0gを加えて、得られた均一溶液にテトラメトキシシラン5.15 gを攪拌下で加えて加水分解反応を行った。氷冷下で5分間攪拌したのち、得られた均一溶液を密閉容器に移し、60 ℃の恒温漕中に保持したところ約40分後に溶液の白濁に引き続いて固化した。固化した試料を、密閉条件下でさらに数時間〜数日熟成させ、ついで60 ℃において溶媒を蒸発させて除去し、そののち100℃/hの昇温速度で650 ℃まで加熱してこの温度で5時間保持した後、室温まで冷却した。これによって、シリカを成分とする多孔性物質を得た。
(Example 1):
First, 1.80 g of ethylene oxide-propylene oxide-ethylene oxide block copolymer (EO 20 -PO 70 -EO 20 , average molecular weight 5,800, BASF's Pluronic P123 equivalent), an amphiphilic substance, 0.01 mol / L aqueous acetic acid solution 20 g Next, 1.0 g of urea was added, and 5.15 g of tetramethoxysilane was added to the obtained uniform solution under stirring to perform a hydrolysis reaction. After stirring for 5 minutes under ice-cooling, the obtained homogeneous solution was transferred to a closed container and kept in a constant temperature bath at 60 ° C., and after about 40 minutes, the solution solidified following the cloudiness of the solution. The solidified sample is further aged for several hours to several days under sealed conditions, then the solvent is evaporated off at 60 ° C, and then heated to 650 ° C at a rate of 100 ° C / h. After holding for 5 hours, it was cooled to room temperature. As a result, a porous material containing silica as a component was obtained.
得られた多孔質体中には中心孔径1.3 μm(=1300 nm)程度の揃った貫通孔と太さ約0.2 μm(=200 nm)の円柱状のゲル骨格が3次元網目状に絡み合った構造で存在していることが電子顕微鏡観察(図1)によって確かめられた。図2には上記の測定値が得られた、水銀圧入測定による累積細孔径分布曲線を、図3には同測定による微分細孔径分布曲線を示す。そして、その貫通孔を構成する円柱状のシリカゲル骨格の内部に、直径13nm付近に分布の中心を持つ細孔が多数存在し、900 m2/g以上の比表面積を有していることが、窒素吸着測定によって確かめられた。窒素吸着測定によって得られた吸着等温線を図4に、またBarrett-Joyner-Halenda法による解析を用いて吸着分枝から計算された微分細孔径分布曲線を図5に示す。この試料の電界放射型走査電子顕微鏡像には、マクロ孔を形成するゲル骨格の断面に、大きさの均一な2次元六方配列状にならんだメソ孔が観察された(図6)。このことから、本試料の円柱状ゲル骨格の内部には、直径約13 nmのメソ孔と約10 nmの厚さのゲルの壁とが交互に長距離(典型的に100 nm以上)に渡って配列し、全体の配列は2次元六方対称性を有することがわかった。 The obtained porous body has a structure in which a through-hole with a central pore diameter of about 1.3 μm (= 1300 nm) and a cylindrical gel skeleton with a thickness of about 0.2 μm (= 200 nm) are intertwined in a three-dimensional network. It was confirmed by electron microscope observation (FIG. 1). FIG. 2 shows a cumulative pore size distribution curve obtained by mercury intrusion measurement, and FIG. 3 shows a differential pore size distribution curve obtained by the same measurement. And, inside the cylindrical silica gel skeleton constituting the through-hole, there are many pores having a distribution center near a diameter of 13 nm, and having a specific surface area of 900 m 2 / g or more, This was confirmed by nitrogen adsorption measurement. The adsorption isotherm obtained by the nitrogen adsorption measurement is shown in FIG. 4, and the differential pore size distribution curve calculated from the adsorption branch using the analysis by the Barrett-Joyner-Halenda method is shown in FIG. In the field emission scanning electron microscope image of this sample, mesopores aligned in a uniform two-dimensional hexagonal array were observed in the cross section of the gel skeleton forming the macropores (FIG. 6). Therefore, inside the cylindrical gel skeleton of this sample, mesopores with a diameter of about 13 nm and gel walls with a thickness of about 10 nm alternate over a long distance (typically over 100 nm). The entire array was found to have two-dimensional hexagonal symmetry.
(実施例2):
実施例1の製造法に従って、内径6 mm長さ150 mmの樹脂性容器内に反応溶液を入れ、ゾル−ゲル反応と引き続く処理を行なって、最終的に直径4.6 mm長さ83 mmの円柱状の多孔性シリカを作製した。この円柱状多孔性シリカの側面を熱収縮性テフロン樹脂で被覆し、その後に内径10 mmの樹脂チューブ内にエポキシ樹脂を用いて埋め込むとともに、両端部にジョイントを固定した。このカラムをWATERS製RCM8加圧モジュールに装てんして、液体クロマトグラフに接続し、室温において、シリカの表面をそのまま用いた順相クロマトグラムを測定した。また、シリカ表面にオクタデシルシリル基を結合させる処理を施した後、同様にして逆相クロマトグラムを得た。移動相速度は毎分1 mLに固定し、波長254 nmあるいは210 nmの紫外検出器によって、各溶質を検出した。
(Example 2):
In accordance with the manufacturing method of Example 1, the reaction solution was placed in a resin container having an inner diameter of 6 mm and a length of 150 mm, and a sol-gel reaction and subsequent treatment were performed. Finally, a cylindrical shape having a diameter of 4.6 mm and a length of 83 mm was obtained. A porous silica was prepared. The side surface of the cylindrical porous silica was covered with a heat-shrinkable Teflon resin, and thereafter embedded in a resin tube having an inner diameter of 10 mm using an epoxy resin, and joints were fixed to both ends. This column was loaded into a WATERS RCM8 pressure module, connected to a liquid chromatograph, and a normal phase chromatogram using the silica surface as it was was measured at room temperature. Moreover, after performing the process which couple | bonds an octadecyl silyl group to the silica surface, the reverse phase chromatogram was obtained similarly. The mobile phase velocity was fixed at 1 mL per minute, and each solute was detected by an ultraviolet detector with a wavelength of 254 nm or 210 nm.
シリカの表面をそのまま用いたカラムによる、トルエン、ニトロベンゼン、o-ニトロアニソールを溶質とした、順相クロマトグラムを図7に示す。また、シリカの表面をオクタデシルシリル基によって修飾したカラムによる、ベンゼンおよび炭素数1〜6の直鎖アルキル基の置換したアルキルベンゼンを溶質とした、逆相クロマトグラムを図8に示す。
本発明の多孔性物質が、順相、逆相ともに、十分な分離効率をもつ液体クロマトグラフィー分離媒体として利用できることが分かる。アミルベンゼンおよびヘキシルベンゼン(各々右から2番目および最も右のピークに対応する)の相対保持値から算出した分離係数αは、Chromolith(製造・販売Merck KGaA, ドイツ)として市販されている従来型のシリカ系一体型カラムとほぼ同等な値(約1.5)を示した。すなわち逆相におけるカラム全体としての保持挙動は、オクタデシルシリル化処理された従来の一体型カラムと同等であることが分かる。
しかしながら、直径4.6 mm長さ83 mm(体積1.38 cc)のカラムに含まれるシリカの量を比べてみると、Chromolithカラムでは0.37 gであるのに対して、本発明のカラムでは0.12 gであり、後者は前者の約1/3の固定相しか含んでいない。他方、Chromolithカラムに含まれる多孔質シリカは1グラム当り約300m2の比表面積を有するが、本発明のカラムでは1グラム当り約900m2であるため、カラムあたりの表面積はほぼ同等な値となる。以上のことから、本発明の多孔性物質は、界面活性剤によってナノメートル領域に規則正しく形成された細孔の構造と、その細孔を含むシリカ壁内の構造とが、液体クロマトグラフィーにおいて低分子物質が相互作用できるような表面を、従来品の約3倍の比表面積を与えるように形成しており、そのためにカラム内のシリカ量が少なくても、約3倍多いシリカを含むChromolithカラムと同等な分離係数を与えたものと、合理的に結論される。
単位シリカ量あたり利用できる表面積が大きいことは、他の形態の固液接触デバイスにおいても有益であり、同様な構成を溶液中の特定の成分を吸着することによって捕集する固相抽出デバイスに適用すれば、従来品の3倍以上の捕集容量を実現することができる。
FIG. 7 shows a normal phase chromatogram using toluene, nitrobenzene, and o-nitroanisole as a solute by a column using the silica surface as it is. Further, FIG. 8 shows a reverse phase chromatogram using benzene and an alkylbenzene substituted with a linear alkyl group having 1 to 6 carbon atoms as a solute by a column in which the surface of silica is modified with an octadecylsilyl group.
It can be seen that the porous material of the present invention can be used as a liquid chromatography separation medium having sufficient separation efficiency in both the normal phase and the reverse phase. The separation factor α, calculated from the relative retention values of amylbenzene and hexylbenzene (corresponding to the second and rightmost peaks, respectively), is the conventional value commercially available as Chromolith The value was almost the same as that of the silica-based integrated column (about 1.5). That is, it can be seen that the retention behavior of the entire column in the reverse phase is equivalent to that of a conventional integrated column subjected to octadecylsilylation treatment.
However, when comparing the amount of silica contained in a 4.6 mm diameter and 83 mm (volume 1.38 cc) column, it is 0.37 g for the Chromolith column and 0.12 g for the column of the present invention, The latter contains only about 1/3 of the stationary phase of the former. On the other hand, the porous silica contained in the Chromolith column has a specific surface area of about 300 m 2 per gram, but in the column of the present invention, it is about 900 m 2 per gram, so the surface area per column is almost the same value. . From the above, the porous material of the present invention has a structure in which pores regularly formed in the nanometer region by a surfactant and a structure in the silica wall containing the pores are low molecular weights in liquid chromatography. The surface on which substances can interact is formed so as to give a specific surface area about 3 times that of the conventional product. Therefore, even if the amount of silica in the column is small, a Chromolith column containing about 3 times more silica and It is reasonably concluded that it gave an equivalent separation factor.
The large surface area available per unit of silica is also beneficial for other forms of solid-liquid contact devices, and the same configuration applies to solid-phase extraction devices that collect by adsorbing specific components in solution. If so, it is possible to realize a collection capacity three times or more that of the conventional product.
以上のように本発明によれば、所望の細孔分布に制御された多孔質体を製造することができる。しかも本発明によって得られる多孔質体は、マクロ孔と長距離秩序をもつメソ孔との二重気孔構造の多孔質体であることから、一体型カラムとして適用可能であり、従来の無秩序なメソ孔をもつ一体型カラムに比べて、より少ない多孔性物質の使用によって同等な分離を実現することができるので、省資源プロセスに貢献できる。 As described above, according to the present invention, a porous body controlled to have a desired pore distribution can be produced. Moreover, since the porous body obtained by the present invention is a porous body having a double pore structure of macropores and mesopores having long-range order, it can be applied as an integrated column, and the conventional disordered meso Compared to an integrated column with pores, the use of fewer porous materials can achieve the same separation, thus contributing to a resource saving process.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008117990A JP2009265047A (en) | 2008-04-30 | 2008-04-30 | Solid-liquid contact device and separation medium by hierarchical porous body containing mesopore having long-range order |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008117990A JP2009265047A (en) | 2008-04-30 | 2008-04-30 | Solid-liquid contact device and separation medium by hierarchical porous body containing mesopore having long-range order |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009265047A true JP2009265047A (en) | 2009-11-12 |
Family
ID=41391067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008117990A Pending JP2009265047A (en) | 2008-04-30 | 2008-04-30 | Solid-liquid contact device and separation medium by hierarchical porous body containing mesopore having long-range order |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009265047A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017002871A1 (en) * | 2015-06-30 | 2017-01-05 | 株式会社エスエヌジー | Reaction method for reacting in contact with granular porous body |
JP2018134624A (en) * | 2017-02-21 | 2018-08-30 | 株式会社 京都モノテック | Monolith filter, solid state separation device using the same, and method for manufacturing the monolith filter |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741374A (en) * | 1993-07-30 | 1995-02-10 | Naohiro Soga | Production of inorganic porous body |
JPH07247180A (en) * | 1994-03-14 | 1995-09-26 | Naohiro Soga | Production of organic functional group bound inorganic porous material |
JPH10328558A (en) * | 1997-05-30 | 1998-12-15 | Toyota Central Res & Dev Lab Inc | Spherical mesoporous body and method for producing the same |
JP2001340755A (en) * | 2000-03-31 | 2001-12-11 | Toyota Central Res & Dev Lab Inc | Porous material for gas adsorption separation and gas adsorption separation method using the same |
WO2004018099A1 (en) * | 2002-08-26 | 2004-03-04 | Kyoto Monotech Co. | Process for producing integrated reactive porous carrier |
JP2005290032A (en) * | 2004-03-31 | 2005-10-20 | Kazuki Nakanishi | Method for producing hierarchical porous body containing meso pore having long range order |
WO2006019988A1 (en) * | 2004-07-30 | 2006-02-23 | Waters Investments Limited | Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation |
WO2006032140A1 (en) * | 2004-09-22 | 2006-03-30 | Benjamin David Hatton | Method of transformation of bridging organic groups in organosilica materials |
WO2007081212A1 (en) * | 2006-01-16 | 2007-07-19 | Stichting Energieonderzoek Centrum Nederland | Microporous molecular separation membrane with high hydrothermal stability |
-
2008
- 2008-04-30 JP JP2008117990A patent/JP2009265047A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0741374A (en) * | 1993-07-30 | 1995-02-10 | Naohiro Soga | Production of inorganic porous body |
JPH07247180A (en) * | 1994-03-14 | 1995-09-26 | Naohiro Soga | Production of organic functional group bound inorganic porous material |
JPH10328558A (en) * | 1997-05-30 | 1998-12-15 | Toyota Central Res & Dev Lab Inc | Spherical mesoporous body and method for producing the same |
JP2001340755A (en) * | 2000-03-31 | 2001-12-11 | Toyota Central Res & Dev Lab Inc | Porous material for gas adsorption separation and gas adsorption separation method using the same |
WO2004018099A1 (en) * | 2002-08-26 | 2004-03-04 | Kyoto Monotech Co. | Process for producing integrated reactive porous carrier |
JP2005290032A (en) * | 2004-03-31 | 2005-10-20 | Kazuki Nakanishi | Method for producing hierarchical porous body containing meso pore having long range order |
WO2006019988A1 (en) * | 2004-07-30 | 2006-02-23 | Waters Investments Limited | Porous inorganic/organic hybrid materials with ordered domains for chromatographic separations and processes for their preparation |
WO2006032140A1 (en) * | 2004-09-22 | 2006-03-30 | Benjamin David Hatton | Method of transformation of bridging organic groups in organosilica materials |
WO2007081212A1 (en) * | 2006-01-16 | 2007-07-19 | Stichting Energieonderzoek Centrum Nederland | Microporous molecular separation membrane with high hydrothermal stability |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017002871A1 (en) * | 2015-06-30 | 2017-01-05 | 株式会社エスエヌジー | Reaction method for reacting in contact with granular porous body |
JPWO2017002871A1 (en) * | 2015-06-30 | 2018-04-19 | 株式会社エスエヌジー | Reaction method of contacting a granular porous material to react |
US11207660B2 (en) | 2015-06-30 | 2021-12-28 | Sng Inc. | Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body |
US12303868B2 (en) | 2015-06-30 | 2025-05-20 | Sng Inc. | Reaction method for reacting reaction object with liquid containing the reaction object being in contact with granular porous body |
JP2018134624A (en) * | 2017-02-21 | 2018-08-30 | 株式会社 京都モノテック | Monolith filter, solid state separation device using the same, and method for manufacturing the monolith filter |
JP7011119B2 (en) | 2017-02-21 | 2022-02-10 | 株式会社 京都モノテック | A monolith filter, a solid separation device using it, and a method for manufacturing the monolith filter. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Consecutive generation of mesopores and micropores in SBA-15 | |
Ryoo et al. | Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants | |
EP2181069B1 (en) | A method for synthesising porous silica microparticles | |
Guo et al. | Triblock copolymer synthesis of highly ordered large-pore periodic mesoporous organosilicas with the aid of inorganic salts | |
DE112005001838B4 (en) | Porous inorganic / organic hybrid materials with ordered domains for chromatographic separations, methods for their preparation, as well as separation device and chromatographic column | |
Chen et al. | Nonionic block copolymer and anionic mixed surfactants directed synthesis of highly ordered mesoporous silica with bicontinuous cubic structure | |
US6911192B2 (en) | Method for preparing inorganic porous material | |
Misran et al. | Nonsurfactant route of fatty alcohols decomposition for templating of mesoporous silica | |
Fletcher et al. | Permeability of silica monoliths containing micro-and nano-pores | |
Raimondi | Invited article Liquid crystal templating of porous materials | |
Meléndez-Ortiz et al. | Synthesis of spherical SBA-15 mesoporous silica. Influence of reaction conditions on the structural order and stability | |
JP3397255B2 (en) | Method for producing inorganic porous body | |
Meera et al. | Mesoporous and biocompatible surface active silica aerogel synthesis using choline formate ionic liquid | |
Hao et al. | Synthesis of uniform periodic mesoporous organosilica hollow spheres with large-pore size and efficient encapsulation capacity for toluene and the large biomolecule bovine serum albumin | |
de Oliveira et al. | Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: Engineering the morphology and size of sonogels via a poly (ethylene glycol) dispersing agent | |
Nishihara et al. | Synthesis of silica-based porous monoliths with straight nanochannels using an ice-rod nanoarray as a template | |
Zhai et al. | Effect of preparation conditions on structural properties of PMHS-TEOS hybrid materials | |
Hasegawa et al. | Variation of meso-and macroporous morphologies in resorcinol–formaldehyde (RF) gels tailored via a sol–gel process combined with soft-templating and phase separation | |
AU2014356854B2 (en) | Process for producing inorganic particulate material | |
JP4538785B2 (en) | Method for producing organic-inorganic hybrid porous material | |
Zhong et al. | Direct synthesis of hierarchical monolithic silica for high performance liquid chromatography | |
JP2005290032A (en) | Method for producing hierarchical porous body containing meso pore having long range order | |
JP2009265047A (en) | Solid-liquid contact device and separation medium by hierarchical porous body containing mesopore having long-range order | |
Zhang et al. | Large pore methylene-bridged periodic mesoporous organosilicas: synthesis, bifunctionalization and their use as nanotemplates | |
Almeida et al. | The influence of secondary structure directing agents on the formation of mesoporous SBA-16 silicas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120403 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120807 |