JP2009262049A - Photocatalytic structure and method for producing the same - Google Patents
Photocatalytic structure and method for producing the same Download PDFInfo
- Publication number
- JP2009262049A JP2009262049A JP2008114423A JP2008114423A JP2009262049A JP 2009262049 A JP2009262049 A JP 2009262049A JP 2008114423 A JP2008114423 A JP 2008114423A JP 2008114423 A JP2008114423 A JP 2008114423A JP 2009262049 A JP2009262049 A JP 2009262049A
- Authority
- JP
- Japan
- Prior art keywords
- titanium oxide
- group metal
- platinum group
- platinum
- photocatalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001699 photocatalysis Effects 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 183
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 183
- 239000002245 particle Substances 0.000 claims abstract description 81
- 239000013078 crystal Substances 0.000 claims abstract description 78
- 239000002923 metal particle Substances 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 227
- 239000011941 photocatalyst Substances 0.000 claims description 104
- 229910052697 platinum Inorganic materials 0.000 claims description 72
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 30
- 239000007788 liquid Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 22
- 229910052707 ruthenium Inorganic materials 0.000 claims description 19
- 229910052763 palladium Inorganic materials 0.000 claims description 13
- 229910052741 iridium Inorganic materials 0.000 claims description 12
- 229910052762 osmium Inorganic materials 0.000 claims description 12
- 229910052703 rhodium Inorganic materials 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims 2
- 238000013032 photocatalytic reaction Methods 0.000 abstract description 20
- 238000000034 method Methods 0.000 abstract description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 53
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 27
- 229910021529 ammonia Inorganic materials 0.000 description 26
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 17
- 238000005259 measurement Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 14
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 13
- 239000002253 acid Substances 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 10
- 239000010948 rhodium Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000001179 sorption measurement Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 6
- YJLUBHOZZTYQIP-UHFFFAOYSA-N 2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)N1CC2=C(CC1)NN=N2 YJLUBHOZZTYQIP-UHFFFAOYSA-N 0.000 description 5
- 229910052878 cordierite Inorganic materials 0.000 description 5
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical group [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- JMVOCSLPMGHXPG-UHFFFAOYSA-N dipotassium;dioxido(dioxo)osmium Chemical compound [K+].[K+].[O-][Os]([O-])(=O)=O JMVOCSLPMGHXPG-UHFFFAOYSA-N 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 3
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 3
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 3
- LLQHSBBZNDXTIV-UHFFFAOYSA-N 6-[5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-4,5-dihydro-1,2-oxazol-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC1CC(=NO1)C1=CC2=C(NC(O2)=O)C=C1 LLQHSBBZNDXTIV-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 229910001260 Pt alloy Inorganic materials 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 125000005595 acetylacetonate group Chemical group 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910000457 iridium oxide Inorganic materials 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- SVOOVMQUISJERI-UHFFFAOYSA-K rhodium(3+);triacetate Chemical compound [Rh+3].CC([O-])=O.CC([O-])=O.CC([O-])=O SVOOVMQUISJERI-UHFFFAOYSA-K 0.000 description 3
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 2
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 2
- WTFUTSCZYYCBAY-SXBRIOAWSA-N 6-[(E)-C-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-N-hydroxycarbonimidoyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C/C(=N/O)/C1=CC2=C(NC(O2)=O)C=C1 WTFUTSCZYYCBAY-SXBRIOAWSA-N 0.000 description 2
- DFGKGUXTPFWHIX-UHFFFAOYSA-N 6-[2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]acetyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)C1=CC2=C(NC(O2)=O)C=C1 DFGKGUXTPFWHIX-UHFFFAOYSA-N 0.000 description 2
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 2
- 238000004887 air purification Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 229910000929 Ru alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- -1 platinum group metals Chemical class 0.000 description 1
- CFQCIHVMOFOCGH-UHFFFAOYSA-N platinum ruthenium Chemical compound [Ru].[Pt] CFQCIHVMOFOCGH-UHFFFAOYSA-N 0.000 description 1
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
Abstract
Description
本発明は、高い光触媒性能を有する光触媒構造体およびその製造方法に関するものであり、特に、空気浄化、水浄化などの環境浄化装置に適用できる光触媒構造体およびその製造方法に関するものである。 The present invention relates to a photocatalyst structure having high photocatalytic performance and a method for producing the same, and more particularly to a photocatalyst structure applicable to an environmental purification apparatus such as air purification and water purification and a method for producing the same.
光触媒は光を照射されて触媒作用を有するものであり、近年、空気浄化・脱臭、水浄化・排水処理、防汚、抗菌・殺菌、防曇等の広い分野で注目されている。光触媒は、光を照射されることにより、強い酸化作用や超撥水作用を示し、たとえば、有機物を分解して空気を浄化したり、防曇作用を発現したりする。 Photocatalysts have a catalytic action when irradiated with light, and have recently attracted attention in a wide range of fields such as air purification / deodorization, water purification / drainage treatment, antifouling, antibacterial / sterilization, and antifogging. When photocatalyst is irradiated with light, it exhibits a strong oxidizing action and a super-water-repellent action. For example, it decomposes organic substances to purify air or develop an antifogging action.
光触媒の酸化作用は、以下の機構により発現すると考えられている。すなわち、光半導体粒子にバンドギャップ以上のエネルギーを持つ波長の光が与えられると、価電子帯に存在している電子は光励起されて伝導帯に移動し、価電子帯に正孔(ホール)が生成される。 It is considered that the oxidation action of the photocatalyst is expressed by the following mechanism. That is, when light having a wavelength with energy equal to or greater than the band gap is given to the optical semiconductor particles, electrons existing in the valence band are photoexcited and moved to the conduction band, and holes are generated in the valence band. Generated.
伝導帯の電子(e−)は酸素(O2)と反応してスーパーオキサイドアニオン(・O2 −)を生成し、価電子帯の正孔(h+)は水と反応してヒドロキシラジカル(・OH)を生成する。スーパーオキサイドアニオン(・O2 −)およびヒドロキシラジカル(・OH)は強い酸化力を示すため、光触媒に酸化作用が生じる。 The electron (e − ) in the conduction band reacts with oxygen (O 2 ) to generate a superoxide anion (• O 2 − ), and the hole (h + ) in the valence band reacts with water to generate a hydroxy radical ( -OH). Since the superoxide anion (.O 2 − ) and the hydroxy radical (.OH) exhibit a strong oxidizing power, an oxidizing action occurs in the photocatalyst.
光触媒は、応用範囲が極めて広く、また、太陽光または蛍光灯の光などをエネルギー源として直接利用できるため、環境に優しいという点で注目されている。しかし、光触媒の触媒反応はあまり強力でなくまた迅速でもないため、触媒反応の効率を向上させることが望まれている。 Photocatalysts are attracting attention because they have a very wide range of applications and can be directly used as energy sources such as sunlight or light from fluorescent lamps. However, since the catalytic reaction of the photocatalyst is not so strong and rapid, it is desired to improve the efficiency of the catalytic reaction.
光触媒の触媒反応の効率の向上を目的とする従来技術としては、以下のものが挙げられる。 Examples of conventional techniques for improving the efficiency of the photocatalytic reaction include the following.
例えば、特開平9−262482号公報(特許文献1)には、Cr、Cu、Pd、Pt等から選択される1種以上の金属イオンを特定の割合で酸化チタンの表面から内部に含有する光触媒が開示されている。この光触媒によれば、紫外光に加え可視光を利用して触媒反応を行えるため、光触媒の効率の向上を図れる。 For example, Japanese Patent Laid-Open No. 9-262482 (Patent Document 1) discloses a photocatalyst containing one or more metal ions selected from Cr, Cu, Pd, Pt and the like in a specific ratio from the surface of titanium oxide. Is disclosed. According to this photocatalyst, since the catalytic reaction can be performed using visible light in addition to ultraviolet light, the efficiency of the photocatalyst can be improved.
また、特開平2−107339号公報(特許文献2)には、3次元網目構造の基材上に、光触媒活性成分を担持させた光触媒が開示されている。この光触媒によれば、光触媒の効率が向上するとともに、充填して使用するときに圧力損失が少なくなる。 Japanese Patent Application Laid-Open No. 2-107339 (Patent Document 2) discloses a photocatalyst in which a photocatalytic active component is supported on a base material having a three-dimensional network structure. According to this photocatalyst, the efficiency of the photocatalyst is improved and the pressure loss is reduced when the photocatalyst is filled and used.
さらに、特開平8−103631号公報(特許文献3)には、球状の耐熱ガラスが融着されてなる基材の表面が酸化チタン膜で被覆された光触媒が開示されている。この光触媒によれば、表面積が大きく、入射光が酸化チタン全体に当たるため、効率良く汚染物質を吸着または分解除去できる。
しかしながら、特許文献1〜3に開示された光触媒では光触媒の効率が十分でなく、光触媒の効率の向上が求められていた。 However, the photocatalysts disclosed in Patent Documents 1 to 3 are not sufficient in the efficiency of the photocatalyst, and an improvement in the efficiency of the photocatalyst has been demanded.
本発明は、上記事情に鑑みてなされたものであり、光触媒反応の効率を向上できる光触媒構造体およびその製造方法を提供することを目的とする。 This invention is made | formed in view of the said situation, and it aims at providing the photocatalyst structure which can improve the efficiency of a photocatalytic reaction, and its manufacturing method.
本発明に係る光触媒構造体は、上記問題点を解決するものであり、基材と、この基材表面に形成され、酸化チタン結晶粒が固着した酸化チタン層と、この酸化チタン層の酸化チタン結晶粒の表面に固着した白金族金属粒と、を備え、前記白金族金属粒は前記酸化チタン結晶粒間の粒界に実質的に存在せず、前記酸化チタン層は酸化チタン結晶粒の平均粒径が100nm以下であり、前記白金族金属粒は平均粒径が20nm以下であることを特徴とする。 The photocatalyst structure according to the present invention solves the above-mentioned problems, a base material, a titanium oxide layer formed on the surface of the base material, to which titanium oxide crystal grains are fixed, and the titanium oxide of the titanium oxide layer. Platinum group metal grains fixed to the surface of the crystal grains, the platinum group metal grains are substantially not present at grain boundaries between the titanium oxide crystal grains, and the titanium oxide layer is an average of the titanium oxide crystal grains. The platinum group metal particles have a particle size of 100 nm or less and an average particle size of 20 nm or less.
また、本発明に係る光触媒構造体の製造方法は、上記問題点を解決するものであり、酸化チタン層の表面に白金族金属を含む液状組成物を付着させ、この液状組成物を乾燥させ、熱処理して、前記酸化チタン層の酸化チタン結晶粒の表面に白金族金属粒を固着させる光触媒構造体の製造方法であって、前記酸化チタン層は酸化チタン結晶粒の平均粒径が100nm以下であり、前記白金族金属粒は平均粒径が20nm以下であることを特徴とする。 Moreover, the method for producing a photocatalyst structure according to the present invention solves the above-described problems, and attaches a liquid composition containing a platinum group metal to the surface of the titanium oxide layer, and dries the liquid composition. A method of manufacturing a photocatalyst structure in which platinum group metal particles are fixed to the surface of titanium oxide crystal grains of the titanium oxide layer by heat treatment, wherein the titanium oxide layer has an average particle diameter of titanium oxide crystal grains of 100 nm or less. The platinum group metal particles have an average particle size of 20 nm or less.
本発明に係る光触媒構造体は、光触媒反応の効率が高く、低コストで量産可能である。 The photocatalyst structure according to the present invention has high photocatalytic reaction efficiency and can be mass-produced at low cost.
また、本発明に係る光触媒構造体の製造方法は、光触媒反応の効率が高い光触媒構造体を、低コストで量産することができる。 In addition, the method for producing a photocatalyst structure according to the present invention can mass-produce a photocatalyst structure having high photocatalytic reaction efficiency at low cost.
[光触媒構造体]
本発明に係る光触媒構造体は、基材と、この基材表面に形成された酸化チタン層と、この酸化チタン層の表面に固着した白金族金属粒とを備える。
[Photocatalyst structure]
The photocatalyst structure according to the present invention includes a base material, a titanium oxide layer formed on the surface of the base material, and platinum group metal particles fixed to the surface of the titanium oxide layer.
(基材)
本発明で用いられる基材としては、3次元網目構造を有する基材が用いられる。3次元網目構造を有する基材としては、たとえば、コーディエライト(Mg2Al4Si5O18)を主成分とするケイ酸塩、アルミナ珪酸ガラス等が挙げられる。ここで、コーディエライトを主成分とするとは、ケイ酸塩の50重量%以上がコーディエライトであることを意味する。3次元網目構造を有する基材は、コーディエライトであると、酸化チタン層が基材から剥離しにくいため好ましい。3次元網目構造を有する基材は、開気孔率が75%以上であると、圧力損失が小さいため好ましい。
(Base material)
As the substrate used in the present invention, a substrate having a three-dimensional network structure is used. Examples of the base material having a three-dimensional network structure include silicate, alumina silicate glass, and the like whose main component is cordierite (Mg 2 Al 4 Si 5 O 18 ). Here, cordierite as a main component means that 50% by weight or more of the silicate is cordierite. The base material having a three-dimensional network structure is preferably cordierite because the titanium oxide layer is difficult to peel from the base material. A base material having a three-dimensional network structure is preferred to have an open porosity of 75% or more because the pressure loss is small.
(酸化チタン層)
酸化チタン層は、基材の表面に形成される。酸化チタン層は、酸化チタン結晶粒同士が固着したものになっている。酸化チタン層は、酸化チタン層の厚さ方向に酸化チタン結晶粒が1層以上存在するようになっている。酸化チタン層の厚さ方向に酸化チタン結晶粒が2層以上存在する場合は、酸化チタン結晶粒間に隙間が生じてもよい。この隙間は、酸化チタン結晶粒が3個以上接触した部分に生じることがある。
(Titanium oxide layer)
The titanium oxide layer is formed on the surface of the substrate. The titanium oxide layer has titanium oxide crystal grains fixed to each other. The titanium oxide layer has one or more titanium oxide crystal grains in the thickness direction of the titanium oxide layer. When two or more titanium oxide crystal grains exist in the thickness direction of the titanium oxide layer, a gap may be generated between the titanium oxide crystal grains. This gap may occur at a portion where three or more titanium oxide crystal grains are in contact.
酸化チタン層は、酸化チタン結晶粒の平均粒径が100nm以下、好ましくは6nm〜100nmである。酸化チタン結晶粒の平均粒径が100nm以下であると、酸化チタン結晶粒の比表面積が大きく光触媒反応の活性が高いため好ましい。 The titanium oxide layer has an average particle diameter of titanium oxide crystal grains of 100 nm or less, preferably 6 nm to 100 nm. It is preferable that the average particle diameter of the titanium oxide crystal grains is 100 nm or less because the specific surface area of the titanium oxide crystal grains is large and the activity of the photocatalytic reaction is high.
ここで、酸化チタン結晶粒の平均粒径とは、物理吸着による窒素ガス吸着法を用いて測定した酸化チタン結晶粒の平均粒径を意味する。 Here, the average particle diameter of the titanium oxide crystal grains means the average particle diameter of the titanium oxide crystal grains measured using a nitrogen gas adsorption method based on physical adsorption.
酸化チタン層は、酸化チタンの真密度4.26g/cm3に対する相対密度が85%以上、好ましくは85%〜100%である。酸化チタンの相対密度が85%以上であると、酸化チタン層の強度が高く、かつ、光触媒反応の活性が高いため好ましい。酸化チタンの相対密度が85%未満であると、酸化チタン層の強度が低いため酸化チタン層が基材から剥離する等のおそれがある。 The titanium oxide layer has a relative density of 85% or more, preferably 85% to 100%, with respect to the true density of titanium oxide 4.26 g / cm 3 . It is preferable that the relative density of titanium oxide is 85% or more because the strength of the titanium oxide layer is high and the activity of the photocatalytic reaction is high. If the relative density of titanium oxide is less than 85%, the strength of the titanium oxide layer is so low that the titanium oxide layer may peel off from the substrate.
酸化チタン層は、平均厚さが1μm〜300μmであると、基材から剥離しにくいため好ましい。 The titanium oxide layer preferably has an average thickness of 1 μm to 300 μm because it is difficult to peel off from the substrate.
(白金族金属粒)
白金族金属粒は、酸化チタン層の酸化チタン結晶粒の表面に固着される。また、白金族金属粒は酸化チタン層の酸化チタン結晶粒間の粒界に実質的に存在しないようになっている。酸化チタン層の酸化チタン結晶粒間に隙間が生じる場合は、白金族金属粒は、この隙間にある酸化チタン結晶粒の表面に存在していてもよい。
(Platinum group metal particles)
The platinum group metal particles are fixed to the surface of the titanium oxide crystal grains of the titanium oxide layer. Further, the platinum group metal grains are not substantially present at the grain boundaries between the titanium oxide crystal grains of the titanium oxide layer. In the case where a gap is generated between the titanium oxide crystal grains of the titanium oxide layer, the platinum group metal grain may be present on the surface of the titanium oxide crystal grain in the gap.
白金族金属粒は、Pt、Ru、Rh、Pd、OsおよびIrから選ばれる少なくとも1種の元素を含む金属からなる。 The platinum group metal particles are made of a metal containing at least one element selected from Pt, Ru, Rh, Pd, Os, and Ir.
また、白金族金属粒は、Ptと、Ru、Rh、Pd、OsおよびIrから選ばれる少なくとも1種の元素との合金であると、光触媒反応の活性を高く保ったまま、高価な白金族金属の中でも特に高価なPt(白金)の使用量を少なくすることができ経済的であり、さらに合金化すると白金単独の場合より光触媒反応の活性が向上するため好ましい。 Further, when the platinum group metal particle is an alloy of Pt and at least one element selected from Ru, Rh, Pd, Os, and Ir, an expensive platinum group metal is maintained while keeping the activity of the photocatalytic reaction high. Among them, the amount of expensive Pt (platinum) used is particularly economical because it is economical, and further alloying is preferable because the activity of the photocatalytic reaction is improved as compared with the case of platinum alone.
ここで白金族金属粒が合金であるとは、第1の白金族金属の粒子と、第1の白金族金属以外の白金族金属の粒子とが、それぞれ酸化チタン結晶粒の表面に固着していることを意味する。第1の白金族金属の粒子と、第1の白金族金属以外の白金族金属の粒子とは、固着していてもよいし固着していなくてもよい。 Here, the platinum group metal particle is an alloy that the first platinum group metal particle and the platinum group metal particle other than the first platinum group metal are fixed to the surface of the titanium oxide crystal particle. Means that The first platinum group metal particles and the platinum group metal particles other than the first platinum group metal may or may not adhere to each other.
たとえば、第1の白金族金属の粒子が白金粒で、第1の白金族金属以外の白金族金属の粒子がルテニウム粒であり、これらがそれぞれ酸化チタン結晶粒の表面に固着している場合、白金−ルテニウム合金が形成されていると認定する。 For example, when the first platinum group metal particles are platinum particles, the platinum group metal particles other than the first platinum group metal are ruthenium particles, and these are fixed to the surface of the titanium oxide crystal grains, respectively. It is recognized that a platinum-ruthenium alloy is formed.
さらに、白金族金属粒は、合金中のPtの含有量が50mol%以上であると、光触媒反応の活性が高いため好ましい。 Furthermore, it is preferable that the platinum group metal particles have a Pt content of 50 mol% or more in the alloy because the activity of the photocatalytic reaction is high.
白金族金属粒は、実質的に酸化チタン層の酸化チタン結晶粒の表面のみに形成され、酸化チタン結晶粒の粒界や酸化チタン結晶粒内部には実質的に存在しない。本発明では、実質的に光触媒反応の反応場である酸化チタン層の酸化チタン結晶粒の表面のみに触媒活性成分である白金族金属粒が存在するため、光触媒反応が効率的に行われ、高価な白金族金属の使用量が少なくても、光触媒反応の活性が高い。 The platinum group metal grains are substantially formed only on the surface of the titanium oxide crystal grains of the titanium oxide layer, and are substantially not present at the grain boundaries of the titanium oxide crystal grains or inside the titanium oxide crystal grains. In the present invention, since the platinum group metal particles, which are catalytically active components, are present only on the surface of the titanium oxide crystal grains of the titanium oxide layer, which is the reaction field for the photocatalytic reaction, the photocatalytic reaction is efficiently performed and the Even if the amount of the platinum group metal used is small, the activity of the photocatalytic reaction is high.
一般的に、酸化チタンに紫外線が照射させると、表面に電子と正孔が生成することによって光触媒反応が起こるが、この電子と正孔は再結合し、活性を低下させる原因となっている。そこで白金族微粒子を表面に担持させると、電子と正孔の再結合を抑制し、効率よく光触媒反応が起こる。白金族金属粒は平均粒径が20nm以下、好ましくは1nm〜20nmである。白金族金属粒の平均粒径が20nm以下であると、光触媒反応の活性が高いため好ましい。 Generally, when titanium oxide is irradiated with ultraviolet rays, a photocatalytic reaction occurs due to the generation of electrons and holes on the surface, but these electrons and holes recombine, causing a decrease in activity. Therefore, when platinum group fine particles are supported on the surface, recombination of electrons and holes is suppressed, and a photocatalytic reaction occurs efficiently. The platinum group metal particles have an average particle size of 20 nm or less, preferably 1 nm to 20 nm. It is preferable that the average particle size of the platinum group metal particles is 20 nm or less because the activity of the photocatalytic reaction is high.
白金族金属粒の平均粒径が20nmを超えると、光触媒反応の活性が低くなるおそれがある。 If the average particle size of the platinum group metal particles exceeds 20 nm, the activity of the photocatalytic reaction may be lowered.
ここで、白金族金属粒の平均粒径とは、水素による化学吸着法を用いて測定した平均粒径を意味する。 Here, the average particle diameter of the platinum group metal particles means an average particle diameter measured by a chemical adsorption method using hydrogen.
白金族金属粒は、酸化チタン層に対し、0.9mmol%以下、好ましくは0.5mmol%〜0.9mmol%の量で形成される。 The platinum group metal particles are formed in an amount of 0.9 mmol% or less, preferably 0.5 mmol% to 0.9 mmol% with respect to the titanium oxide layer.
白金族金属粒が酸化チタン層に対し0.9mmol%以下であると光触媒反応の活性が高いため好ましい。また、白金族金属粒が酸化チタン層に対し0.5mmol%〜0.9mmol%であると、光触媒反応の活性がより高いためさらに好ましい。 It is preferable that the platinum group metal particles be 0.9 mmol% or less with respect to the titanium oxide layer because the activity of the photocatalytic reaction is high. Further, it is more preferable that the platinum group metal particles are 0.5 mmol% to 0.9 mmol% with respect to the titanium oxide layer because the activity of the photocatalytic reaction is higher.
光触媒構造体の光触媒反応の活性は、たとえば、光を当てた光触媒構造体にアンモニア含有ガスを供給し、光触媒構造体を流通後、アンモニア含有ガス中のアンモニアの含有量を測定することにより調べることができる。 The activity of the photocatalytic reaction of the photocatalyst structure is examined by, for example, supplying ammonia-containing gas to the photocatalyst structure exposed to light, and measuring the content of ammonia in the ammonia-containing gas after flowing through the photocatalyst structure. Can do.
[光触媒構造体の製造方法]
本発明に係る光触媒構造体は、たとえば、以下の方法により製造することができる。
[Method for producing photocatalyst structure]
The photocatalyst structure according to the present invention can be produced, for example, by the following method.
初めに、基材の表面に酸化チタンゾルを付着させる。基材の表面に酸化チタンゾルを付着させる方法としては、たとえば、基材に酸化チタンゾルを含浸させる方法が挙げられる。 First, a titanium oxide sol is attached to the surface of the substrate. Examples of the method of attaching the titanium oxide sol to the surface of the base material include a method of impregnating the base material with the titanium oxide sol.
酸化チタンゾルは、平均粒径が、通常1nm〜20nm、好ましくは3nm〜10nmのものを用いる。 The titanium oxide sol has an average particle size of usually 1 nm to 20 nm, preferably 3 nm to 10 nm.
酸化チタンゾルの平均粒径が1nm〜20nmであると、結晶粒の平均粒径が100nm以下の酸化チタン結晶粒からなる酸化チタン層の形成が容易であるため好ましい。 It is preferable that the average particle diameter of the titanium oxide sol is 1 nm to 20 nm because it is easy to form a titanium oxide layer composed of titanium oxide crystal grains having an average crystal grain diameter of 100 nm or less.
次に、付着させた酸化チタンゾルを乾燥させ、熱処理して酸化チタン層を得る。酸化チタンゾルの熱処理は、酸化チタン層の酸化チタン結晶粒の平均粒径が100nm以下、好ましくは6nm〜100nmになるように行う。上記平均粒径の酸化チタン結晶粒は、たとえば、大気中、350℃〜700℃で、2時間〜8時間、加熱処理することにより得られる。 Next, the attached titanium oxide sol is dried and heat-treated to obtain a titanium oxide layer. The heat treatment of the titanium oxide sol is performed so that the average particle diameter of the titanium oxide crystal grains in the titanium oxide layer is 100 nm or less, preferably 6 nm to 100 nm. The titanium oxide crystal grains having the above average particle diameter can be obtained, for example, by heat treatment at 350 ° C. to 700 ° C. for 2 hours to 8 hours in the air.
酸化チタン結晶粒の平均粒径は、物理吸着による窒素ガス吸着法を用いて測定することができる。 The average particle diameter of the titanium oxide crystal grains can be measured using a nitrogen gas adsorption method based on physical adsorption.
さらに、酸化チタン層の表面に白金族金属を含む液状組成物を付着させる。白金族金属を含む液状組成物は、Pt、Ru、Rh、Pd、OsおよびIrから選ばれる少なくとも1種の元素の液状組成物である。液状組成物の具体例としては、塩化白金酸、塩化パラジウム、酸化イリジウム、酢酸ロジウム、トリス(アセチルアセトナト)ルテニウム、オスミウム酸カリウムを含む溶液等が挙げられる。 Further, a liquid composition containing a platinum group metal is attached to the surface of the titanium oxide layer. The liquid composition containing a platinum group metal is a liquid composition of at least one element selected from Pt, Ru, Rh, Pd, Os, and Ir. Specific examples of the liquid composition include chloroplatinic acid, palladium chloride, iridium oxide, rhodium acetate, tris (acetylacetonato) ruthenium, and a solution containing potassium osmate.
白金族金属を含む液状組成物は、酸化チタン層の表面に付着させ、乾燥させ、熱処理することにより、酸化チタン層の酸化チタン結晶粒の表面に白金族金属粒を固着させるものである。 The liquid composition containing a platinum group metal is adhered to the surface of the titanium oxide layer, dried, and heat-treated to fix the platinum group metal particles to the surface of the titanium oxide crystal grains of the titanium oxide layer.
白金族金属粒を、Pt、Ru、Rh、Pd、OsおよびIrから選ばれる2種以上の金属からなる白金合金とする場合は、たとえば、異なる白金族金属を含む液状組成物を2種以上混合してから酸化チタン層の表面に付着させることにより白金合金を得ることができる。 When the platinum group metal particles are made of a platinum alloy composed of two or more metals selected from Pt, Ru, Rh, Pd, Os and Ir, for example, two or more liquid compositions containing different platinum group metals are mixed. Then, a platinum alloy can be obtained by adhering to the surface of the titanium oxide layer.
次に、付着させた白金族金属を含む液状組成物を乾燥させ、熱処理することにより酸化チタン結晶粒の表面に固着した白金族金属粒を得る。白金族金属を含む液状組成物の熱処理は、白金族金属粒の平均粒径が20nm以下、好ましくは1nm〜20nmになるように行う。上記平均粒径の白金族金属粒は、たとえば、大気中、200℃〜600℃で、0.5時間〜4時間、加熱処理することにより得られる。 Next, the liquid composition containing the deposited platinum group metal is dried and heat-treated to obtain platinum group metal particles fixed to the surface of the titanium oxide crystal grains. The heat treatment of the liquid composition containing the platinum group metal is performed so that the average particle size of the platinum group metal particles is 20 nm or less, preferably 1 nm to 20 nm. The platinum group metal particles having the above average particle diameter can be obtained by, for example, heat treatment at 200 ° C. to 600 ° C. in the air for 0.5 hours to 4 hours.
白金族金属粒の平均粒径は、水素による化学吸着法を用いて測定することができる。 The average particle diameter of the platinum group metal particles can be measured using a chemical adsorption method using hydrogen.
以上の工程により、本発明に係る光触媒構造体が得られる。 Through the above steps, the photocatalyst structure according to the present invention is obtained.
以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 Examples are shown below, but the present invention is not construed as being limited thereto.
[実施例1−1]
(基材)
基材として、コーディエライト(Mg2Al4Si5O18)を主成分とし、開気孔率85%の3次元網目構造を有するケイ酸塩を用いた。
[Example 1-1]
(Base material)
As a base material, a silicate having a three-dimensional network structure having cordierite (Mg 2 Al 4 Si 5 O 18 ) as a main component and an open porosity of 85% was used.
(酸化チタン膜の形成)
基材に、濃度30%、結晶粒径6nmの酸化チタンゾルとポリエチレングリコール(和光純薬工業株式会社製、ポリエチレングリコール200)の混合物を含浸し、乾燥させた。その後、大気中、600℃で4時間熱処理することにより、基材上に酸化チタン膜が形成された光触媒モジュールを作製した。
(Formation of titanium oxide film)
The substrate was impregnated with a mixture of titanium oxide sol having a concentration of 30% and a crystal grain size of 6 nm and polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd., polyethylene glycol 200) and dried. Then, the photocatalyst module in which the titanium oxide film was formed on the base material was produced by heat-processing at 600 degreeC for 4 hours in air | atmosphere.
(白金族金属粒の形成)
酸化チタン膜が形成された光触媒モジュールを、白金換算濃度が0.2mmol%の塩化白金酸水溶液に浸けた後、大気中、500℃で1時間熱処理することにより、基材上の酸化チタン膜表面に白金粒が形成された光触媒モジュールを作製した。光触媒モジュールの製造条件を表1に示す。
(Formation of platinum group metal particles)
The photocatalyst module on which the titanium oxide film is formed is immersed in an aqueous solution of chloroplatinic acid having a platinum equivalent concentration of 0.2 mmol%, and then heat-treated at 500 ° C. for 1 hour in the atmosphere, thereby the surface of the titanium oxide film on the substrate. A photocatalytic module in which platinum particles were formed on was prepared. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールの光触媒膜について、走査型電子顕微鏡(SEM)およびエネルギー分散型X線分析装置(EDX)で観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に白金粒が存在することが分かった。 When the photocatalyst film of the obtained photocatalyst module is observed with a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDX), platinum particles are present on the surface of the titanium oxide crystal grains of the titanium oxide film. I understood.
得られた光触媒モジュールの光触媒膜について、物理吸着による窒素ガス吸着法を用いて酸化チタン膜の酸化チタン結晶粒の平均粒径を測定した。また、得られた光触媒モジュールの光触媒膜について、水素による化学吸着法を用いて白金粒の平均粒径を測定した。測定結果を表3に示す。 About the photocatalyst film | membrane of the obtained photocatalyst module, the average particle diameter of the titanium oxide crystal grain of a titanium oxide film | membrane was measured using the nitrogen gas adsorption method by physical adsorption. Moreover, about the photocatalyst film | membrane of the obtained photocatalyst module, the average particle diameter of the platinum particle was measured using the chemical adsorption method by hydrogen. Table 3 shows the measurement results.
(アンモニアの分解効率の測定)
光触媒膜の光触媒効率を、アンモニアの分解効率の測定により評価した。具体的には、最終的に得られた光触媒モジュールにブラックライト(平均波長370nm、強度3mW/cm2)の光を当てながら、空気中にアンモニアを濃度100ppmで含み、流量を0.5l/minとしたアンモニアガスを光触媒モジュールの一方から流入した。そして、流入した側と反対の光触媒モジュールの出口側におけるアンモニア濃度を測定した。
(Measurement of ammonia decomposition efficiency)
The photocatalytic efficiency of the photocatalytic film was evaluated by measuring the decomposition efficiency of ammonia. Specifically, while the light of black light (average wavelength 370 nm,
光触媒モジュールのアンモニアの分解効率の測定結果を表3および図1に示す。 The measurement results of the ammonia decomposition efficiency of the photocatalyst module are shown in Table 3 and FIG.
[実施例1−2〜実施例1−3、比較例1](酸化チタン結晶粒の粒径の影響)
酸化チタン膜の形成の熱処理の温度と処理時間を変えることにより、酸化チタン膜の酸化チタン結晶粒の平均粒径を表3に示すように変えた以外は実施例1−1と同様にして光触媒モジュールを作製した。光触媒モジュールの製造条件を表1に示す。
[Example 1-2 to Example 1-3, Comparative Example 1] (Influence of grain size of titanium oxide crystal grains)
A photocatalyst was prepared in the same manner as in Example 1-1, except that the average particle diameter of the titanium oxide crystal grains of the titanium oxide film was changed as shown in Table 3 by changing the temperature and processing time of the heat treatment for forming the titanium oxide film. A module was produced. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に白金粒が存在することが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed with SEM and EDX, it was found that platinum particles were present on the surface of the titanium oxide crystal grains of the titanium oxide film.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表3および図1に示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the titanium oxide crystal grain of the titanium oxide film, the average particle diameter of platinum grain, and the decomposition efficiency of ammonia. The measurement results are shown in Table 3 and FIG.
[比較例2](白金族金属粒の影響)
白金族金属粒を作製しない以外は実施例1−1と同様にして基材上に酸化チタン膜が形成された光触媒モジュールを作製した。光触媒モジュールの製造条件を表1に示す。
[Comparative Example 2] (Influence of platinum group metal particles)
A photocatalyst module in which a titanium oxide film was formed on a substrate was produced in the same manner as in Example 1-1 except that platinum group metal particles were not produced. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表3および図6に示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the average particle diameter of the titanium oxide crystal grain of a titanium oxide film, and the decomposition efficiency of ammonia. The measurement results are shown in Table 3 and FIG.
酸化チタン結晶粒の平均粒径を変えた実施例1−1〜実施例1−3、比較例1および比較例2の結果より、図1に示すように、酸化チタン結晶粒の平均粒径が120nmである場合には出口側のアンモニア濃度が50ppmを超え光触媒効率が低下するが、酸化チタン結晶粒の平均粒径が95nm以下の場合には出口側のアンモニア濃度が30ppmよりも低く光触媒効率が良好であることが分かった。 From the results of Examples 1-1 to 1-3, Comparative Example 1 and Comparative Example 2 in which the average particle diameter of the titanium oxide crystal grains was changed, the average particle diameter of the titanium oxide crystal grains was as shown in FIG. In the case of 120 nm, the ammonia concentration on the outlet side exceeds 50 ppm and the photocatalytic efficiency is lowered. However, when the average particle diameter of the titanium oxide crystal grains is 95 nm or less, the ammonia concentration on the outlet side is lower than 30 ppm and the photocatalytic efficiency is low. It was found to be good.
[実施例2−1〜実施例2−2、比較例3](白金粒の粒径の影響)
白金族金属粒の形成の熱処理の温度と処理時間を変えることにより、白金族金属粒の白金粒の平均粒径を表3に示すように変えた以外は実施例2と同様にして光触媒モジュールを作製した。光触媒モジュールの製造条件を表1に示す。
[Example 2-1 to Example 2-2, Comparative Example 3] (Effect of particle size of platinum particles)
The photocatalyst module was prepared in the same manner as in Example 2 except that the average particle diameter of the platinum group metal particles was changed as shown in Table 3 by changing the heat treatment temperature and the treatment time for forming the platinum group metal particles. Produced. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に白金粒が存在することが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed with SEM and EDX, it was found that platinum particles were present on the surface of the titanium oxide crystal grains of the titanium oxide film.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表3および図2に示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the titanium oxide crystal grain of the titanium oxide film, the average particle diameter of platinum grain, and the decomposition efficiency of ammonia. The measurement results are shown in Table 3 and FIG.
白金粒の平均粒径を変えた実施例2−1〜実施例2−2および比較例3の結果より、図2に示すように、白金粒の平均粒径が22nmである場合には、出口のアンモニア濃度が50ppmを超えているが、平均粒径が19nm以下である場合には、出口のアンモニア濃度は30ppmよりも低く光触媒効率が良好であることが分かった。 From the results of Example 2-1 to Example 2-2 and Comparative Example 3 in which the average particle diameter of the platinum particles was changed, as shown in FIG. 2, when the average particle diameter of the platinum particles was 22 nm, the outlet However, when the average particle size was 19 nm or less, the ammonia concentration at the outlet was lower than 30 ppm and the photocatalytic efficiency was good.
[比較例4](白金相の存在部位の影響)
(光触媒膜作製用液状組成物の作製)
濃度30%、結晶粒径6nmの酸化チタンゾルとポリエチレングリコールの混合物に、白金換算濃度が0.2mmol%である塩化白金酸水溶液を混合して、光触媒膜作製用液状組成物を作製した。
[Comparative Example 4] (Effect of platinum phase existing site)
(Preparation of a liquid composition for preparing a photocatalytic film)
A liquid composition for preparing a photocatalyst film was prepared by mixing a titanium oxide sol having a concentration of 30% and a crystal grain size of 6 nm with polyethylene glycol with a chloroplatinic acid aqueous solution having a platinum equivalent concentration of 0.2 mmol%.
(光触媒膜の作製)
実施例1−1と同様の基材に、光触媒膜作製用液状組成物を含浸し、乾燥させた。その後、大気中、500℃で1時間熱処理することにより、基材上に、酸化チタンと白金を含む光触媒膜が形成された光触媒モジュールを作製した。光触媒モジュールの製造条件を表1に示す。
(Production of photocatalytic film)
A base material similar to that of Example 1-1 was impregnated with the liquid composition for producing a photocatalyst film and dried. Then, the photocatalyst module by which the photocatalyst film | membrane containing a titanium oxide and platinum was formed on the base material was produced by heat-processing at 500 degreeC for 1 hour in air | atmosphere. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面および酸化チタン結晶粒間の粒界に白金粒が存在することが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed by SEM and EDX, it was found that platinum particles were present at the surface of the titanium oxide crystal grains of the titanium oxide film and at the grain boundaries between the titanium oxide crystal grains.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表3および図3に示す。図3には、実施例1−1の測定結果も併せて示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the titanium oxide crystal grain of the titanium oxide film, the average particle diameter of platinum grain, and the decomposition efficiency of ammonia. The measurement results are shown in Table 3 and FIG. FIG. 3 also shows the measurement results of Example 1-1.
酸化チタン結晶粒の粒界に白金相が存在するか否かを変えた比較例4および実施例1−1の結果より、図3に示すように、白金が酸化チタン結晶粒界に存在する場合には、出口側のアンモニア濃度は50ppm以上を示し光触媒効率が低下することが分かった。 From the results of Comparative Example 4 and Example 1-1 in which the presence or absence of the platinum phase is changed at the grain boundaries of the titanium oxide crystal grains, as shown in FIG. 3, when platinum is present at the titanium oxide crystal grain boundaries It was found that the ammonia concentration on the outlet side was 50 ppm or more and the photocatalytic efficiency was lowered.
[実施例3−1〜実施例3−4](酸化チタン層の密度の影響)
濃度30%、結晶粒径6nmの酸化チタンゾルに、添加するポリエチレングリコールの量を変えた点以外は実施例1−1と同様にして光触媒モジュールを作製した。
[Example 3-1 to Example 3-4] (Influence of the density of the titanium oxide layer)
A photocatalyst module was produced in the same manner as in Example 1-1 except that the amount of polyethylene glycol added to the titanium oxide sol having a concentration of 30% and a crystal grain size of 6 nm was changed.
実施例3−1〜実施例3−4とした。ポリエチレングリコールの添加量は、酸化チタン膜の相対密度が所定量(83%(実施例3−1)、86%(実施例3−2)、91%(実施例3−3)、97%(実施例3−4))になるように調整した。光触媒モジュールの製造条件を表1に示す。 It was set as Example 3-1 to Example 3-4. As for the addition amount of polyethylene glycol, the relative density of the titanium oxide film is a predetermined amount (83% (Example 3-1), 86% (Example 3-2), 91% (Example 3-3), 97% ( Example 3-4)) was adjusted. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に白金粒が存在することが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed with SEM and EDX, it was found that platinum particles were present on the surface of the titanium oxide crystal grains of the titanium oxide film.
また、酸化チタン膜の膜厚を測定し、この膜厚と酸化チタン重量とから酸化チタン膜の相対密度を算出した。酸化チタン膜の相対密度は、酸化チタンの真密度4.26g/cm3を100%としたときの相対密度として求めた。 Moreover, the film thickness of the titanium oxide film was measured, and the relative density of the titanium oxide film was calculated from the film thickness and the titanium oxide weight. The relative density of the titanium oxide film was determined as the relative density when the true density of titanium oxide 4.26 g / cm 3 was taken as 100%.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表3および図4に示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the titanium oxide crystal grain of the titanium oxide film, the average particle diameter of platinum grain, and the decomposition efficiency of ammonia. The measurement results are shown in Table 3 and FIG.
酸化チタン膜の相対密度を変えた実施例3−1〜実施例3−4の結果より、図4に示すように、酸化チタン膜の相対密度が97%から86%の範囲にある場合には、相対密度83%の場合と比較して出口のアンモニア濃度が低く、良好な光触媒効率を示すことが分かった。 From the results of Example 3-1 to Example 3-4 in which the relative density of the titanium oxide film was changed, as shown in FIG. 4, when the relative density of the titanium oxide film was in the range of 97% to 86%, It was found that the ammonia concentration at the outlet was lower than that in the case of a relative density of 83%, indicating a good photocatalytic efficiency.
[実施例4−1〜実施例4−5](塩化白金酸水溶液の白金濃度の影響)
白金換算濃度が0.1mmol%(実施例4−1)、0.2mmol%(実施例4−2)、0.5mmol%(実施例4−3)、0.7mmol%(実施例4−4)、0.9mmol%(実施例4−5)、になるように塩化白金酸水溶液の濃度を変えた以外は実施例1−1と同様にして光触媒モジュールを作製した。光触媒モジュールの製造条件を表1に示す。
[Example 4-1 to Example 4-5] (Influence of platinum concentration of chloroplatinic acid aqueous solution)
Platinum conversion concentration is 0.1 mmol% (Example 4-1), 0.2 mmol% (Example 4-2), 0.5 mmol% (Example 4-3), 0.7 mmol% (Example 4-4) ), 0.9 mmol% (Example 4-5), a photocatalyst module was produced in the same manner as in Example 1-1 except that the concentration of the chloroplatinic acid aqueous solution was changed. The production conditions for the photocatalyst module are shown in Table 1.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に白金粒が存在することが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed with SEM and EDX, it was found that platinum particles were present on the surface of the titanium oxide crystal grains of the titanium oxide film.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表3および図5に示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the titanium oxide crystal grain of the titanium oxide film, the average particle diameter of platinum grain, and the decomposition efficiency of ammonia. The measurement results are shown in Table 3 and FIG.
塩化白金酸水溶液の濃度を変えた実施例4−1〜実施例4−5の結果より、図5に示すように、白金粒の白金量が酸化チタン膜の酸化チタンに対し0.1mmol%、0.2mmol%である場合は出口のアンモニア濃度は25ppmより低く光触媒効率は良好であるが、0.5mmol%、0.7mmol%、0.9mmol%とした場合にはさらに良好であることが分かった。 From the results of Example 4-1 to Example 4-5 in which the concentration of the chloroplatinic acid aqueous solution was changed, as shown in FIG. 5, the platinum amount of the platinum particles was 0.1 mmol% with respect to the titanium oxide of the titanium oxide film, When the concentration is 0.2 mmol%, the ammonia concentration at the outlet is lower than 25 ppm and the photocatalytic efficiency is good. However, when the concentration is 0.5 mmol%, 0.7 mmol%, and 0.9 mmol%, the ammonia concentration is even better. It was.
[実施例5−1〜実施例5−6](白金族金属種類の影響)
酸化チタンゾル中の酸化チタン量に対する白金換算濃度が0.2mmol%の塩化白金酸水溶液に代えて、以下の白金族金属を含む溶液を用いた以外は実施例1−1と同様にして光触媒モジュール(実施例5−1〜実施例5−6)を作製した。
[Example 5-1 to Example 5-6] (Influence of platinum group metal type)
A photocatalyst module (in the same manner as in Example 1-1) except that a solution containing the following platinum group metal was used instead of the chloroplatinic acid aqueous solution having a platinum equivalent concentration of 0.2 mmol% with respect to the amount of titanium oxide in the titanium oxide sol. Examples 5-1 to 5-6) were prepared.
すなわち、実施例1−1の白金換算濃度が0.2mmol%の塩化白金酸水溶液(実施例5−1)に代えて、ルテニウム換算濃度が0.2mmol%のトリス(アセチルアセトナト)ルテニウム(実施例5−2)、ロジウム換算濃度が0.2mmol%の酢酸ロジウム(実施例5−3)、パラジウム換算濃度が0.2mmol%の塩化パラジウム(実施例5−4)、オスミウム換算濃度が0.2mmol%のオスミウム酸カリウム(実施例5−5)またはイリジウム換算濃度が0.2mmol%の酸化イリジウム(実施例5−6)を用いた。光触媒モジュールの製造条件を表2に示す。 That is, instead of the chloroplatinic acid aqueous solution (Example 5-1) having a platinum equivalent concentration of 0.2 mmol% in Example 1-1, tris (acetylacetonato) ruthenium having a ruthenium equivalent concentration of 0.2 mmol% (implementation) Example 5-2), rhodium acetate having a rhodium equivalent concentration of 0.2 mmol% (Example 5-3), palladium chloride having a palladium equivalent concentration of 0.2 mmol% (Example 5-4), and an osmium equivalent concentration of 0. 2 mmol% potassium osmate (Example 5-5) or iridium oxide having a iridium equivalent concentration of 0.2 mmol% (Example 5-6) was used. Table 2 shows the production conditions of the photocatalyst module.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に、白金粒(実施例5−1)、ルテニウム粒(実施例5−2)、ロジウム粒(実施例5−3)、パラジウム粒(実施例5−4)、オスミウム粒(実施例5−5)、イリジウム粒(実施例5−6)が存在することが分かった。 About the photocatalyst film | membrane of the obtained photocatalyst module, when it observed by SEM and EDX, platinum particle | grains (Example 5-1), ruthenium particle | grains (Example 5-2) on the surface of the titanium oxide crystal grain of a titanium oxide film | membrane, It was found that rhodium particles (Example 5-3), palladium particles (Example 5-4), osmium particles (Example 5-5), and iridium particles (Example 5-6) were present.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金族金属粒(白金粒、ルテニウム粒、ロジウム粒、パラジウム粒、オスミウム粒、イリジウム粒)の平均粒径、アンモニアの分解効率を測定した。測定結果を表4および図6に示す。図6には、比較例2の測定結果も併せて示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and the titanium oxide crystal grain of a titanium oxide film, and platinum group metal grain (Platinum grain, ruthenium grain, rhodium grain, palladium grain, osmium grain, iridium grain) The average particle size and ammonia decomposition efficiency were measured. The measurement results are shown in Table 4 and FIG. FIG. 6 also shows the measurement results of Comparative Example 2.
[実施例6−1〜実施例6−20](白金族金属合金の種類と、白金族金属合金中の白金含有比率の影響)
白金族金属粒形成用の液状組成物として、塩化白金酸水溶液とトリス(アセチルアセトナト)ルテニウムとを混合して作製した、白金換算濃度が0.2mmol%、ルテニウム換算濃度が0.2mmol%の液状組成物を用いた以外は実施例1−1と同様にして光触媒モジュールを作製した(実施例6−1、6−6、6−11、6−16)。
[Example 6-1 to Example 6-20] (Type of platinum group metal alloy and influence of platinum content ratio in platinum group metal alloy)
As a liquid composition for forming a platinum group metal particle, a platinum-converted aqueous solution and tris (acetylacetonato) ruthenium were mixed, and the platinum-converted concentration was 0.2 mmol% and the ruthenium-converted concentration was 0.2 mmol%. Photocatalyst modules were produced in the same manner as in Example 1-1 except that the liquid composition was used (Examples 6-1, 6-6, 6-11, 6-16).
また、白金族金属粒形成用の液状組成物として、塩化白金酸水溶液と酢酸ロジウムとを混合して作製した、白金換算濃度が0.2mmol%、ロジウム換算濃度が0.2mmol%の液状組成物を用いた以外は実施例1−1と同様にして光触媒モジュールを作製した(実施例6−2、6−7、6−12、6−17)。 Further, as a liquid composition for forming platinum group metal particles, a liquid composition having a platinum equivalent concentration of 0.2 mmol% and a rhodium equivalent concentration of 0.2 mmol% prepared by mixing a chloroplatinic acid aqueous solution and rhodium acetate. Photocatalyst modules were produced in the same manner as in Example 1-1 except that was used (Examples 6-2, 6-7, 6-12, 6-17).
さらに、白金族金属粒形成用の液状組成物として、塩化白金酸水溶液と塩化パラジウムとを混合して作製した、白金換算濃度が0.2mmol%、パラジウム換算濃度が0.2mmol%の液状組成物を用いた以外は実施例1−1と同様にして光触媒モジュールを作製した(実施例6−3、6−8、6−13、6−18)。 Furthermore, as a liquid composition for forming platinum group metal particles, a liquid composition having a platinum equivalent concentration of 0.2 mmol% and a palladium equivalent concentration of 0.2 mmol% prepared by mixing an aqueous chloroplatinic acid solution and palladium chloride. Photocatalyst modules were produced in the same manner as in Example 1-1 except that was used (Examples 6-3, 6-8, 6-13, 6-18).
また、白金族金属粒形成用の液状組成物として、塩化白金酸水溶液とオスミウム酸カリウムとを混合して作製した、白金換算濃度が0.2mmol%、オスミウム換算濃度が0.2mmol%の液状組成物を用いた以外は実施例1−1と同様にして光触媒モジュールを作製した(実施例6−4、6−9、6−14、6−19)。 Further, as a liquid composition for forming platinum group metal particles, a liquid composition having a platinum equivalent concentration of 0.2 mmol% and an osmium equivalent concentration of 0.2 mmol% prepared by mixing an aqueous chloroplatinic acid solution and potassium osmate. Photocatalyst modules were produced in the same manner as in Example 1-1 except that the product was used (Examples 6-4, 6-9, 6-14, 6-19).
さらに、白金族金属粒形成用の液状組成物として、塩化白金酸水溶液と酸化イリジウムとを混合して作製した、白金換算濃度が0.2mmol%、イリジウム換算濃度が0.2mmol%の液状組成物を用いた以外は実施例1−1と同様にして光触媒モジュールを作製した(実施例6−5、6−10、6−15、6−20)。 Further, as a liquid composition for forming platinum group metal particles, a liquid composition having a platinum equivalent concentration of 0.2 mmol% and an iridium equivalent concentration of 0.2 mmol% prepared by mixing an aqueous chloroplatinic acid solution and iridium oxide. Photocatalyst modules were produced in the same manner as in Example 1-1 except that was used (Examples 6-5, 6-10, 6-15, 6-20).
実施例6−1〜実施例6−5は、液状組成物中の白金とルテニウム等の白金以外の白金族金属とのモル比が4:6になるようにした。 In Example 6-1 to Example 6-5, the molar ratio of platinum in the liquid composition to a platinum group metal other than platinum such as ruthenium was set to 4: 6.
実施例6−6〜実施例6−10は、液状組成物中の白金とルテニウム等の白金以外の白金族金属とのモル比が5:5になるようにした。 In Examples 6-6 to 6-10, the molar ratio of platinum in the liquid composition to a platinum group metal other than platinum such as ruthenium was set to 5: 5.
実施例6−11〜実施例6−15は、液状組成物中の白金とルテニウム等の白金以外の白金族金属とのモル比が6:4になるようにした。 In Examples 6-11 to 6-15, the molar ratio of platinum in the liquid composition to a platinum group metal other than platinum such as ruthenium was set to 6: 4.
実施例6−16〜実施例6−20は、液状組成物中の白金とルテニウム等の白金以外の白金族金属とのモル比が7:3になるようにした。 In Examples 6-16 to 6-20, the molar ratio of platinum in the liquid composition to a platinum group metal other than platinum such as ruthenium was set to 7: 3.
光触媒モジュールの製造条件を表2に示す。 Table 2 shows the production conditions of the photocatalyst module.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、酸化チタン膜の酸化チタン結晶粒の表面に、白金粒とルテニウム粒が固着し(実施例6−1、6−6、6−11、6−16)、白金粒とロジウム粒が固着し(実施例6−2、6−7、6−12、6−17)、白金粒とパラジウム粒が固着し(実施例6−3、6−8、6−13、6−18)、白金粒とオスミウム粒が固着し(実施例6−4、6−9、6−14、6−19)、白金粒とイリジウム粒が固着して(実施例6−5、6−10、6−15、6−20)いることが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed by SEM and EDX, platinum particles and ruthenium particles were fixed to the surface of the titanium oxide crystal grains of the titanium oxide film (Examples 6-1, 6-6, 6). -11, 6-16), platinum particles and rhodium particles are fixed (Examples 6-2, 6-7, 6-12, 6-17), and platinum particles and palladium particles are fixed (Example 6-3). 6-8, 6-13, 6-18), platinum particles and osmium particles are fixed (Examples 6-4, 6-9, 6-14, 6-19), and platinum particles and iridium particles are fixed. (Examples 6-5, 6-10, 6-15, 6-20).
実施例6−1〜実施例6−5は、酸化チタン結晶粒の表面に形成される白金族金属粒の白金粒の比率が40mol%、白金以外の白金族金属の粒子の比率が60mol%であった。 In Example 6-1 to Example 6-5, the ratio of platinum group metal particles formed on the surface of the titanium oxide crystal grains is 40 mol%, and the ratio of platinum group metal particles other than platinum is 60 mol%. there were.
実施例6−6〜実施例6−10は、酸化チタン結晶粒の表面に形成される白金族金属粒の白金粒の比率が50mol%、白金以外の白金族金属の粒子の比率が50mol%であった。 In Examples 6-6 to 6-10, the proportion of platinum group metal particles formed on the surface of the titanium oxide crystal grains is 50 mol%, and the proportion of platinum group metal particles other than platinum is 50 mol%. there were.
実施例6−11〜実施例6−15は、酸化チタン結晶粒の表面に形成される白金族金属粒の白金粒の比率が60mol%、白金以外の白金族金属の粒子の比率が40mol%であった。 In Examples 6-11 to 6-15, the proportion of platinum group metal particles formed on the surface of the titanium oxide crystal grains is 60 mol%, and the proportion of platinum group metal particles other than platinum is 40 mol%. there were.
実施例6−16〜実施例6−20は、酸化チタン結晶粒の表面に形成される白金族金属粒の白金粒の比率が70mol%、白金以外の白金族金属の粒子の比率が30mol%であった。 In Examples 6-16 to 6-20, the ratio of platinum group metal particles formed on the surface of the titanium oxide crystal grains was 70 mol%, and the ratio of platinum group metal particles other than platinum was 30 mol%. there were.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金族金属粒(白金粒、ルテニウム粒、ロジウム粒、パラジウム粒、オスミウム粒、イリジウム粒)の平均粒径、アンモニアの分解効率を測定した。測定結果を表4および図7に示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and the titanium oxide crystal grain of a titanium oxide film, and platinum group metal grain (Platinum grain, ruthenium grain, rhodium grain, palladium grain, osmium grain, iridium grain) The average particle size and ammonia decomposition efficiency were measured. The measurement results are shown in Table 4 and FIG.
白金合金中の金属元素の種類や白金の含有比率を変えた実施例6−1〜実施例6−20の結果より、図7に示すように、白金の含有比率が50mol%以上では出口のアンモニア濃度がいずれも40ppmよりも低く光触媒効率が良好であったが、白金の含有比率が40%以下になると光触媒効率が低下することが分かった。 From the results of Example 6-1 to Example 6-20 in which the type of metal element and the platinum content in the platinum alloy were changed, as shown in FIG. 7, when the platinum content was 50 mol% or more, the ammonia at the outlet The concentrations were both lower than 40 ppm and the photocatalytic efficiency was good, but it was found that the photocatalytic efficiency was lowered when the platinum content was 40% or less.
[実施例7−1](基材の種類の影響)
また、基材として、セルの断面形状が正六角形の無機繊維製ハニカム基材を用いた以外は実施例1−1と同様にして光触媒モジュールを作製した(実施例7−1)。光触媒モジュールの製造条件を表2に示す。
[Example 7-1] (Influence of substrate type)
Further, a photocatalyst module was produced in the same manner as in Example 1-1 except that an inorganic fiber honeycomb substrate having a regular hexagonal cell cross-section was used (Example 7-1). Table 2 shows the production conditions of the photocatalyst module.
得られた光触媒モジュールの光触媒膜について、SEMおよびEDXで観察したところ、実施例6−1では酸化チタン膜の酸化チタン結晶粒の表面に、白金粒が固着していることが分かった。 When the photocatalyst film of the obtained photocatalyst module was observed by SEM and EDX, it was found that in Example 6-1, platinum particles were fixed to the surface of the titanium oxide crystal grains of the titanium oxide film.
得られた光触媒モジュールについて、実施例1−1と同様にして、酸化チタン膜の酸化チタン結晶粒および白金粒の平均粒径、アンモニアの分解効率を測定した。測定結果を表4および図8に示す。図8には、実施例1−1の測定結果も併せて示す。 About the obtained photocatalyst module, it carried out similarly to Example 1-1, and measured the titanium oxide crystal grain of the titanium oxide film, the average particle diameter of platinum grain, and the decomposition efficiency of ammonia. The measurement results are shown in Table 4 and FIG. FIG. 8 also shows the measurement results of Example 1-1.
基材の種類を変えた実施例1−1と実施例7−1の結果より、図8に示すように、3次元網目構造を有する基材は出口のアンモニア濃度が30ppm以下で光触媒効率が良好であったが、ハニカム基材の場合は光触媒効率が低下することが分かった。 From the results of Example 1-1 and Example 7-1 in which the type of base material was changed, as shown in FIG. 8, the base material having a three-dimensional network structure has an ammonia concentration of 30 ppm or less at the outlet and good photocatalytic efficiency. However, it was found that the photocatalytic efficiency was lowered in the case of the honeycomb substrate.
Claims (9)
この基材表面に形成され、酸化チタン結晶粒が固着した酸化チタン層と、
この酸化チタン層の酸化チタン結晶粒の表面に固着した白金族金属粒と、
を備え、
前記白金族金属粒は前記酸化チタン結晶粒間の粒界に実質的に存在せず、
前記酸化チタン層は酸化チタン結晶粒の平均粒径が100nm以下であり、
前記白金族金属粒は平均粒径が20nm以下であることを特徴とする光触媒構造体。 A substrate;
A titanium oxide layer formed on the surface of the substrate and having titanium oxide crystal grains fixed thereto;
Platinum group metal particles fixed to the surface of the titanium oxide crystal grains of the titanium oxide layer;
With
The platinum group metal grains are not substantially present at grain boundaries between the titanium oxide crystal grains,
The titanium oxide layer has an average particle diameter of titanium oxide crystal grains of 100 nm or less,
The platinum group metal particles have an average particle size of 20 nm or less.
前記酸化チタン層は酸化チタン結晶粒の平均粒径が100nm以下であり、
前記白金族金属粒は平均粒径が20nm以下であることを特徴とする光触媒構造体の製造方法。 A photocatalyst for adhering a liquid composition containing a platinum group metal to the surface of the titanium oxide layer, drying the liquid composition, and heat-treating the platinum group metal grains on the surface of the titanium oxide crystal grains of the titanium oxide layer. A method of manufacturing a structure,
The titanium oxide layer has an average particle diameter of titanium oxide crystal grains of 100 nm or less,
The method for producing a photocatalyst structure, wherein the platinum group metal particles have an average particle size of 20 nm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008114423A JP2009262049A (en) | 2008-04-24 | 2008-04-24 | Photocatalytic structure and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008114423A JP2009262049A (en) | 2008-04-24 | 2008-04-24 | Photocatalytic structure and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009262049A true JP2009262049A (en) | 2009-11-12 |
Family
ID=41388579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008114423A Pending JP2009262049A (en) | 2008-04-24 | 2008-04-24 | Photocatalytic structure and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009262049A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011194400A (en) * | 2010-03-18 | 2011-10-06 | Tsinghua Univ | Device for removing harmful substance and air cleaning apparatus performing air cleaning by using the same |
JP2012200592A (en) * | 2011-03-24 | 2012-10-22 | Tsinghua Univ | Toxic substance removing device and air cleaning device using the same |
US20150293268A1 (en) * | 2012-11-21 | 2015-10-15 | Murakami Corporation | Hydrophilic member and method for manufacturing same |
JP2016538110A (en) * | 2013-09-26 | 2016-12-08 | エルジー・ハウシス・リミテッドLg Hausys,Ltd. | LED photocatalyst module using photocatalyst material |
CN107983327A (en) * | 2017-12-01 | 2018-05-04 | 西安理工大学 | A kind of method for improving ZnO nano-rod array photocatalysis performance |
CN111185158A (en) * | 2020-02-26 | 2020-05-22 | 左娟 | A kind of composite photoelectric catalytic material and preparation method thereof |
-
2008
- 2008-04-24 JP JP2008114423A patent/JP2009262049A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011194400A (en) * | 2010-03-18 | 2011-10-06 | Tsinghua Univ | Device for removing harmful substance and air cleaning apparatus performing air cleaning by using the same |
JP2012200592A (en) * | 2011-03-24 | 2012-10-22 | Tsinghua Univ | Toxic substance removing device and air cleaning device using the same |
US20150293268A1 (en) * | 2012-11-21 | 2015-10-15 | Murakami Corporation | Hydrophilic member and method for manufacturing same |
US10042090B2 (en) * | 2012-11-21 | 2018-08-07 | Murakami Corporation | Hydrophilic member and method for manufacturing same |
JP2016538110A (en) * | 2013-09-26 | 2016-12-08 | エルジー・ハウシス・リミテッドLg Hausys,Ltd. | LED photocatalyst module using photocatalyst material |
CN107983327A (en) * | 2017-12-01 | 2018-05-04 | 西安理工大学 | A kind of method for improving ZnO nano-rod array photocatalysis performance |
CN107983327B (en) * | 2017-12-01 | 2020-08-18 | 西安理工大学 | Method for improving photocatalytic performance of ZnO nanorod array |
CN111185158A (en) * | 2020-02-26 | 2020-05-22 | 左娟 | A kind of composite photoelectric catalytic material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mazierski et al. | Photocatalytically active TiO2/Ag2O nanotube arrays interlaced with silver nanoparticles obtained from the one-step anodic oxidation of Ti–Ag alloys | |
Wang et al. | Water-assisted production of honeycomb-like gC 3 N 4 with ultralong carrier lifetime and outstanding photocatalytic activity | |
Liu et al. | One-dimensional visible-light-driven bifunctional photocatalysts based on Bi4Ti3O12 nanofiber frameworks and Bi2XO6 (X= Mo, W) nanosheets | |
Wu et al. | Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen | |
Liu et al. | TiO2 nanoflakes modified with gold nanoparticles as photocatalysts with high activity and durability under near UV irradiation | |
Thalluri et al. | Green-synthesized BiVO4 oriented along {040} facets for visible-light-driven ethylene degradation | |
Do et al. | Preparation of basalt fiber@ perovskite PbTiO3 core–shell composites and their effects on CH4 production from CO2 photoreduction | |
Feng et al. | Fe (III) cluster-grafted (BiO) 2 CO 3 superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation | |
JP2005199204A (en) | Ultrafine metal particle-containing photocatalyst and method for producing the same | |
JP2009262049A (en) | Photocatalytic structure and method for producing the same | |
Kim et al. | CdS-loaded flexible carbon nanofiber mats as a platform for solar hydrogen production | |
TWI584877B (en) | High surface area photocatalyst material and method of manufacturing same | |
Li et al. | Ag and Cu nanoparticles synergistically enhance photocatalytic CO2 reduction activity of B phase TiO2 | |
Nguyen et al. | Photocatalytic composites based on titania nanoparticles and carbon nanomaterials | |
Liu et al. | Template-assisted synthesis of hollow TiO2@ rGO core–shell structural nanospheres with enhanced photocatalytic activity | |
Lu et al. | Plasmonic AgX nanoparticles-modified ZnO nanorod arrays and their visible-light-driven photocatalytic activity | |
JP5612050B2 (en) | Method for producing metal particle supported catalyst | |
Wang et al. | Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light | |
CN104226340B (en) | Visible light nano composite photo-catalyst AgCl-SnO 2preparation method | |
JP2015116526A (en) | Photocatalyst complex, method for producing the same, and photocatalyst deodorization system including photocatalyst complex | |
CN104399457A (en) | A kind of Au/TiO2/CFP ternary composite nano photocatalyst and its preparation method and application | |
Wu et al. | Preparation of N-TiO2/SiO2 composites by solvothermal method and their photocatalytic properties | |
JP2002320862A (en) | Photocatalytic thin film with metal supported on titanium oxide thin film | |
WO2009130924A1 (en) | Dendritic substances and structures containing the same | |
WO2011118695A1 (en) | Tungsten oxide secondary structure having antimicrobial activity |