JP2009259354A - 磁気ヘッド及びその製造方法 - Google Patents
磁気ヘッド及びその製造方法 Download PDFInfo
- Publication number
- JP2009259354A JP2009259354A JP2008108925A JP2008108925A JP2009259354A JP 2009259354 A JP2009259354 A JP 2009259354A JP 2008108925 A JP2008108925 A JP 2008108925A JP 2008108925 A JP2008108925 A JP 2008108925A JP 2009259354 A JP2009259354 A JP 2009259354A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- layer
- free layer
- film
- domain control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3909—Arrangements using a magnetic tunnel junction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3912—Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B2005/3996—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/127—Structure or manufacture of heads, e.g. inductive
- G11B5/33—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
- G11B5/39—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
- G11B5/3903—Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
- G11B5/3906—Details related to the use of magnetic thin film layers or to their effects
- G11B5/3929—Disposition of magnetic thin films not used for directly coupling magnetic flux from the track to the MR film or for shielding
- G11B5/3932—Magnetic biasing films
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Heads (AREA)
Abstract
【課題】再生動作が安定で、且つ磁気揺らぎノイズが少ない再生ヘッドを有する磁気ヘッドを提供する。
【解決手段】自由層を、非磁性中間層19を介して反強磁性的に結合する2層の強磁性層(自由層1,自由層2)からなる構造とし、自由層1(18)の磁化量を自由層2(20)の磁化量より大きく設定する。また、自由層1(18)と磁区制御膜41との距離SP1より、自由層2(20)と磁区制御膜41との距離SP2を広くして、磁区制御膜41の磁化量を調整することにより、自由層1(18)と自由層2(20)の磁区を同時に安定化させ、さらに自由層全体の体積を大きくすることで、磁気揺らぎノイズが大幅に減少させ、高SN比を示す再生ヘッド100を得る。
【選択図】図1
【解決手段】自由層を、非磁性中間層19を介して反強磁性的に結合する2層の強磁性層(自由層1,自由層2)からなる構造とし、自由層1(18)の磁化量を自由層2(20)の磁化量より大きく設定する。また、自由層1(18)と磁区制御膜41との距離SP1より、自由層2(20)と磁区制御膜41との距離SP2を広くして、磁区制御膜41の磁化量を調整することにより、自由層1(18)と自由層2(20)の磁区を同時に安定化させ、さらに自由層全体の体積を大きくすることで、磁気揺らぎノイズが大幅に減少させ、高SN比を示す再生ヘッド100を得る。
【選択図】図1
Description
本発明は、磁気記録再生装置に用いられる磁気ヘッド及びその製造方法に係り、特に磁気再生ヘッドの構成及び製造方法に関する。
一般に磁気再生ヘッドは、一対の上下磁気シールド層と、その間に配置される磁気抵抗効果膜と、磁気抵抗効果膜に電気的に接続される一対の電極から構成される。面記録密度が1平方インチあたり300ギガビットを超える磁気記録再生装置の場合には、磁気抵抗効果膜としてトンネル磁気抵抗効果膜(TMR膜)もしくは垂直通電型巨大磁気抵抗効果膜(CPP-GMR)といった高感度再生素子が利用される。これらの磁気抵抗効果膜は、自由層,中間層および固定層を有し、自由層の磁化は、記録媒体からの信号磁場の変化に応じて回転する。一方、固定層の磁気モーメントの方向は、概ね固定されている。これらの磁気抵抗効果膜に感知電流を通電すると、自由層の磁気モーメントと固定層の磁気モーメントの為す角に依存して素子の電極間の電圧が変化し、これを再生信号として検出する。CPP-GMR膜では中間層は導体であり、TMR膜では酸化物などが用いられる。
磁気再生ヘッドは、自由層を単一磁区構造にするために、もしくは磁区移動を防止するために、磁区制御膜を自由層のトラック幅方向両端部に配置する。これは、自由層の磁区が記録素子や上下磁気シールド等から磁気的に影響を受けた場合に、磁区移動が原因の出力変動等で生じる記録再生装置の誤動作を防止するためである。このような磁区制御膜として永久磁石が一般的に用いられている(特許文献1)。一方、TMR膜やCPP-GMR膜の場合には、磁区制御膜を強磁性自由層に積層する構造も提案されている。この場合、磁区制御膜として、永久磁石(特許文献2)もしくは反強磁性膜と強磁性膜との積層膜(特許文献3)が知られている。
磁気記録再生装置の高密度化のためには、記録ビットの狭小化が必要となり、これに対応するため、磁気再生ヘッドの上下磁気シールド間隔と再生トラック幅を狭くすることが必要とされている。
前述のとおり、磁気記録再生装置の記録密度を向上すべく、これまでは磁気再生ヘッドの再生トラック幅を微細に形成してきた。一般に再生トラック幅が狭くなる程、再生出力が低下していく。さらに、再生素子の微細化が進むと、磁化揺らぎノイズが顕在化することが指摘されている。磁化揺らぎノイズは自由層磁化の熱揺らぎによって生じるノイズである。一般に磁性体の体積が減少すると、磁化の熱的な揺らぎが大きくなる。従って、素子が微小になると、自由層の体積が減少し、自由層磁化の熱揺らぎが大きくなる。すると、自由層磁化と固定層磁化の間の相対角度が大きく揺らぎ、その結果、ノイズが増加する。更に、磁化揺らぎノイズは出力に比例して増加するという特徴を持つ。これは、磁化揺らぎノイズ自身を抑制しない限り、単に出力を高くしても、信号ノイズ比の向上は期待できないことを意味する。
そこで、磁気揺らぎノイズを有効に低減させる構造として、積層フェリ自由層が提案されている。積層フェリ自由層は、2層の強磁性膜(自由層1と自由層2)を、非磁性金属を介して積層させ、互いの磁化を反平行に維持するものである。従って、実効磁化は、自由層1の磁化量と自由層2の磁化量の差分で決まる。積層フェリ自由層の特徴は、自由層の全体積を維持しつつ、実効磁化を小さくできる点にある。このように、自由層の全体積を大きくし、且つ実効磁化を小さくすると、高い再生感度を維持し且つ磁化揺らぎノイズを抑制することが可能となる。
積層フェリ自由層では、磁化量が大きい層(自由層1)の磁化方向と磁区制御膜の磁化方向が概ね一致する。従って、自由層2の磁化方向は磁区制御膜の磁化方向に対し反平行になる。さらに、自由層1と自由層2の間の反強磁性結合は有限であるから、磁区制御磁場が大きいと、自由層1磁化と自由層2磁化を互いに反平行に維持できない領域が生じる。このような領域があると、媒体信号磁場印加時に自由層2磁化の動作が不安定となり、ノイズ増加及び再生出力変動の原因となる。一方、磁区制御磁場が弱いと、自由層1の動作が不安定になる。即ち、現状の磁区制御構造では、積層フェリ自由層の自由層1と自由層2を同時に安定に制御することは困難である。
このように、磁気揺らぎノイズを有効に抑制できる積層フェリ自由層を用いても、現状の磁区制御構造では、ノイズ増加やヘッド動作の不安定性が懸念される。仮にこのような磁気ヘッドを磁気記録再生装置に組み込んだ場合、装置が正常に動作しないことは明らかである。
本発明の目的は、再生時の磁化揺らぎノイズが少なく、且つ安定に動作する磁気ヘッドを提供することである。
本発明の他の目的は、再生時の磁化揺らぎノイズが少なく、且つ安定に動作する磁気ヘッドの製造方法を提供することである。
本発明の他の目的は、再生時の磁化揺らぎノイズが少なく、且つ安定に動作する磁気ヘッドの製造方法を提供することである。
上記目的を達成するために、本発明の磁気ヘッドにおいては、下部磁気シールド層と、
上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に設けられた、固定層と中間層と自由層を有する磁気抵抗効果膜と、前記磁気抵抗効果膜のトラック幅方向両端部に設けられた磁区制御膜と、を有し、
前記自由層は非磁性中間層を介して積層された自由層1と自由層2を有し、前記自由層1は前記固定層に前記中間層を介して積層されており、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、前記自由層1の磁化量は前記自由層2の磁化量よりも大きく、
さらに、前記自由層1と前記磁区制御膜との距離をSp1、前記自由層2と前記磁区制御膜との距離をSp2としたとき、Sp2>Sp1を満たすものである。
上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に設けられた、固定層と中間層と自由層を有する磁気抵抗効果膜と、前記磁気抵抗効果膜のトラック幅方向両端部に設けられた磁区制御膜と、を有し、
前記自由層は非磁性中間層を介して積層された自由層1と自由層2を有し、前記自由層1は前記固定層に前記中間層を介して積層されており、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、前記自由層1の磁化量は前記自由層2の磁化量よりも大きく、
さらに、前記自由層1と前記磁区制御膜との距離をSp1、前記自由層2と前記磁区制御膜との距離をSp2としたとき、Sp2>Sp1を満たすものである。
前記Sp1とSp2の関係が、Sp2>2×Sp1であることが望ましい。
前記Sp1は前記自由層1の膜厚方向の中心と前記磁区制御膜との間の距離であり、前記Sp2は前記自由層2の膜厚方向の中心と前記磁区制御膜との間の距離であることが望ましい。
前記下部磁気シールド層の上部に下部電極層を有し、前記上部磁気シールド層の下部に上部電極層を有することが望ましい。
前記自由層1及び自由層2それぞれは、非磁性金属層を介した2層以上の強磁性層で構成されても良く、その場合、各強磁性層の磁化は平行である。
前記非磁性中間層は、Ta,Cu,Ru,Cr,Ir及びRhからなる群から選択される少なくとも一種の元素であることが望ましい。
前記上部磁気シールド層に隣接して記録ヘッドを設けることにより、記録再生ヘッドを構成することができる。
上記目的を達成するために、本発明の磁気ヘッドにおいては、下部磁気シールド層と、上部磁気シールド層と、前記下部磁気シールド層と上部磁気シールド層の間に設けられた、固定層と中間層と自由層を有する磁気抵抗効果膜と、前記磁気抵抗効果膜のトラック幅方向両端部に設けられた磁区制御膜と、を有し、
前記自由層は非磁性中間層を介して積層された自由層1と自由層2を有し、前記自由層1は前記固定層に前記中間層を介して積層されており、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、前記自由層1の飽和磁束密度と膜厚の積(Bs・t)1は前記自由層2の飽和磁束密度と膜厚の積(Bs・t)2よりも大きく、
さらに、前記自由層1と前記磁区制御膜との距離をSp1、前記自由層2と前記磁区制御膜との距離をSp2、前記自由層1と前記上部磁気シールドとの距離をts、前記磁区制御膜の残留磁束密度と膜厚との積を(Br・t)PM、前記自由層2に印加される反強磁性結合磁場をHAF2、前記自由層2に印加される磁区制御磁場をHbias2としたとき、(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }且つHAF2>Hbias2を満たすものである。
前記自由層は非磁性中間層を介して積層された自由層1と自由層2を有し、前記自由層1は前記固定層に前記中間層を介して積層されており、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、前記自由層1の飽和磁束密度と膜厚の積(Bs・t)1は前記自由層2の飽和磁束密度と膜厚の積(Bs・t)2よりも大きく、
さらに、前記自由層1と前記磁区制御膜との距離をSp1、前記自由層2と前記磁区制御膜との距離をSp2、前記自由層1と前記上部磁気シールドとの距離をts、前記磁区制御膜の残留磁束密度と膜厚との積を(Br・t)PM、前記自由層2に印加される反強磁性結合磁場をHAF2、前記自由層2に印加される磁区制御磁場をHbias2としたとき、(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }且つHAF2>Hbias2を満たすものである。
前記HAF2>Hbias2の関係は、前記Sp1とSp2の関係をSp2>Sp1とすることで達成する。
上記他の目的を達成するために、本発明の磁気ヘッドの製造方法においては、下部磁気シールド層を形成する工程と、前記下部磁気シールド層の上部に固定層と中間層と自由層1と非磁性中間層と自由層2を積層して磁気抵抗効果膜を形成する工程であって、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、且つ前記自由層1の磁化量が前記自由層2の磁化量よりも大きい磁気抵抗効果膜を形成する工程と、前記磁気抵抗効果膜のトラック幅方向両端部に磁区制御膜を形成する工程であって、前記自由層1の膜厚方向の中心と前記磁区制御膜との間の距離をSp1、前記自由層2の膜厚方向の中心と前記磁区制御膜の間の距離をSp2としたとき、Sp2>Sp1を満たす磁区制御膜を形成する工程と、前記磁気抵抗効果膜及び磁区制御膜の上部に上部磁気シールド層を形成する工程と、を有するものである。
前記磁区制御膜を形成する工程は、前記Sp2>Sp1を満たすようにスパッタされた磁性粒子の入射方向を調整する工程を含むものである。
前記磁区制御膜を形成する工程は、硬磁性膜を形成する工程と、前記Sp2>Sp1を満たすように前記硬磁性膜をイオンミリングによりパターニングする工程とを含むものである。
本発明によれば、積層フェリ自由層の、自由層1に印加される磁区制御磁場を十分に確保しつつ、自由層2に印加される磁区制御磁場を低減することができるので、自由層1と自由層2を同時に十分に磁区制御することができ、磁化揺らぎノイズが十分抑制され且つ動作が安定な磁気ヘッドを提供することができる。
まず、図1を用いて本発明に係る磁気ヘッドの特徴部の構成について説明する。図1は再生ヘッドの媒体対向面から見た概念図である。図1には、上下磁気シールド層,磁区制御膜,及び積層フェリ自由層のみを示しており、また、説明を簡単にするために一対の磁区制御膜のうちの片方のみを示してある。自由層1と自由層2の間には非磁性中間層が配置され、自由層1の磁化と自由層2の磁化は反強磁性的に強く結合している。自由層1と自由層2の磁化量(飽和磁束密度と膜厚の積)をそれぞれ(Bs・t)1,(Bs・t)2とし、(Bs・t)1>(Bs・t)2となるように互いに積層させる。自由層1の磁化と自由層2の磁化が互いに反平行を概ね維持するため、磁化量の差分(Bs・t)1-(Bs・t)2 は1T・nm以上が望ましい。このとき、磁区制御膜の磁化と自由層1の磁化の方向は概ね一致する。一方、磁区制御膜の磁化と自由層2の磁化の方向は反対方向になる。
仮に自由層2に印加される磁区制御磁場が、自由層1と自由層2の間の反強磁性結合磁場を上回った場合、自由層2の磁化も磁区制御磁場と同じ方向になる。このような場合、もはや積層フェリ自由層構造とはならず、再生感度も著しく低いものになってしまう。従って磁区制御磁場は、自由層2に印加される反強磁性結合磁場より小さいものとする必要がある。
ここで、自由層1の膜厚方向中心と磁区制御膜の距離をSp1,自由層2の膜厚方向中心と磁区制御膜の距離をSp2とし、まずSp1=Sp2の場合を考える。このとき、自由層1に印加される磁区制御磁場と自由層2に印加される磁区制御磁場は概ね等しくなる。すると自由層1の磁化と磁区制御磁場は同方向であり、磁区制御磁場が十分確保されれば、自由層1の磁区は安定化もしくは単磁区化される。一方、自由層2の磁化は磁区制御磁場と反対方向であり、自由層2に印加される正味の磁場は、反強磁性結合磁場からこの磁区制御磁場を引いたものとなる。従って、磁区制御磁場が強いと自由層2に印加される正味の磁場は小さくなり、自由層2の磁区は安定化されなくなる。結局、Sp1=Sp2では、自由層1と自由層2の磁区を同時に安定化するのは困難となる。
そこで、Sp2>Sp1となるように磁区制御膜を形成する。Sp1を狭くすると、自由層1に印加される磁区制御磁場を強くすることができる。同時にSp2を広くすると、自由層2に印加される磁区制御磁場を小さくするようにコントロールできる。
具体的には、自由層1と上部磁気シールドとの距離をts、磁区制御膜の磁化量(残留磁束密度と膜厚の積)を(Br・t)PMとして、
(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }
を満たすようにSp1と(Br・t)PMを調整すると、自由層1の磁区は安定化される。一方、自由層2に印加される反強磁性結合磁場をHAF2とし、自由層2に印加される磁区制御磁場をHbias2とすれば、HAF2>Hbias2を満たすようにSp2を調整すると自由層2の磁区が安定化される。次に上記のことを、シミュレーションの結果を基に定量的に説明する。
(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }
を満たすようにSp1と(Br・t)PMを調整すると、自由層1の磁区は安定化される。一方、自由層2に印加される反強磁性結合磁場をHAF2とし、自由層2に印加される磁区制御磁場をHbias2とすれば、HAF2>Hbias2を満たすようにSp2を調整すると自由層2の磁区が安定化される。次に上記のことを、シミュレーションの結果を基に定量的に説明する。
図2に磁区制御磁場Hbias(Hard Bias Field)の各自由層内での分布の計算結果を示す。図2に示すグラフの横軸の零点が自由層のトラック端部を表している。図2ではGs=36nm,Sp1=5nm,Sp2=10nm,(Br・t)PM=16Tnm,(Bs・t)1 =5Tnm,(Bs・t)2 =2Tnm、 ts=5nmと設定した。ここで、Gsは上部磁気シールド層と下部磁気シールド層との距離である。図2から、自由層1では、Hbiasはトラック端部において最大となり、トラック中心に近くなるにつれ減衰することがわかる。一方、自由層2ではトラック端部からやや内側でHbiasが最大となり、さらにトラック中心に近づくと減衰する。
次に、図2の結果を用いて、LLG(ランダウ−リフシッツ−ギルバート)方程式を用いたマイクロマグネティクスシミュレーションを行った。このシミュレーションではHAF2=1500 Oe(120kA/m)と設定した。その結果、自由層1,自由層2の磁化が安定動作することが分かった。なお、Sp2を10nm未満にして同様なマイクロマグネティクスシミュレーションを行ったが、自由層2の磁化が安定動作しないことがわかった。従って、今、HAF2=1500 Oe(120kA/m),Hbias2の最大値が1370 Oe(110kA/m)であるから、HAF2>Hbias2が満たされていることがわかる。更に、(Br・t)PMの最適値をトランスファ−曲線(電磁応答曲線)を計算し検討した。一般に自由層の磁区を安定化するのに必要な(Br・t)PM は、(Br・t)PM ≧F×{ (Bs・t)1-(Bs・t)2 }、F≧1で表される。Fは磁区制御の位置やヘッド構造に依存する形状因子である。Gsもしくはtsが十分大きく、Sp1=0 nm、非磁性中間層が十分小さい場合はF=1となる。この場合、自由層のトラック方向端部に誘起される磁荷と磁区制御膜によって完全に打ち消される。しかし、実際のヘッドでは自由層と磁区制御磁場が有限の距離だけ離れている。さらに、Gsもしくはtsが狭くなると、磁区制御磁場がシールドに吸収されてしまう。従って、(Br・t)PMを大きくする(F>1)必要がある。磁区制御磁場はSp1を小さくすると増加し、tsを狭くすると減少するので、自由層の磁区安定化に必要な(Br・t)PM は、(Br・t)PM>(G×Sp1/ts){ (Bs・t)1-(Bs・t)2 }と表すことができる。ここで係数GはFとG=F/(Sp1/ts)の関係にある。 図3に各Gの値に対するトランスファー曲線を示す。図3から分かるように、G <9のとき、トランスファ−曲線にヒステリシスが生じる。このようなヒステリシスは出力変動や装置動作不安定性の原因となる。一方、G ≧9ではトランスファー曲線に異常は見られない。以上の結果から、
(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }且つSp2>2×Sp1
であれば、自由層1と自由層2の磁化の動作が同時に安定することが分かる。
(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }且つSp2>2×Sp1
であれば、自由層1と自由層2の磁化の動作が同時に安定することが分かる。
このように積層フェリ自由層構造において、安定な動作が確認された。積層フェリ自由層では、自由層1と自由層2の磁化の差分を一定に維持しつつ、全体積もしくは全磁化量を大きくできる。このとき磁気揺らぎノイズの理論式は次式で与えられる。
<実施例1>
実施例1では、 (Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 }且つSp2>2×Sp1を満たすように磁区制御膜ならびに磁気抵抗効果膜を形成する。磁気抵抗効果膜として垂直電流印加型のTMR膜を採用した。磁区制御膜として永久磁石を、磁気抵抗効果膜のトラック幅方向両端部に配置した。
図4は、実施例1による再生ヘッドを記録媒体に対向する面から拡大して示した図である。再生ヘッド100は、図示しない基板上にベースアルミナを介して設けられた厚さ3μmのNiFe等からなる下部磁気シールド層1と、下部磁気シールド層1の上に設けられた下部電極層3と、下部電極層3の上に設けられたTMR膜10と、TMR膜10のトラック幅方向両端部に設けられた磁区制御膜41と、TMR膜10の上及び磁区制御膜41の上部に設けられた上部電極層4と、上部電極層4の上に設けられた厚さ2μmのNiFe等からなる上部磁気シールド層2を有する。上記構成において、下部電極層3と上部電極層4は、TMR膜10と電気的に接合されている。また、TMR膜10の周囲、及び磁区制御膜41と上部及び下部電極層3,4の間には、絶縁層30が設けられている。なお、上記構成において、下部磁気シールド1が下部電極層3を兼ねる構成、上部磁気シールド2が上部電極層4を兼ねる構成でも良い。
TMR膜10は、下部磁気シールド層1側から下地層12,厚さ15nmのMnPt等からなる反強磁性層13,厚さ2nmのNiFe等からなる第一の強磁性固定層14,厚さ1nmのRu等からなる非磁性分離層15,厚さ3nmのNiFe等からなる第二の強磁性固定層16,厚さ1nmのアルミナ等からなる障壁層17,厚さ5nmのNiFe等からなる自由層1(18),厚さ0.8nmのRu等からなる非磁性中間層19,厚さ2nmのNiFe等からなる自由層2(20),キャップ層21から構成される。第一の強磁性固定層14,非磁性分離層15,第二の強磁性固定層16で固定層が構成されている。なお、上記の例では、磁気抵抗効果膜としてTMR膜10を用いたが、TMR膜の代わりにCPP−GMR膜を用いても良い。また、場合によっては、反強磁性層13を省略することができる。
前記のTMR膜やCPP−GMR膜などを構成する薄膜は、高周波マグネトロンスパッタリング装置により以下のように作製した。1〜6ミリトールのArガス雰囲気中にて、厚さ1mmのセラミックス基板に以下の材料を順次積層して作製した。スパッタリングターゲットとしてTa,Ni−20at%Fe合金,Cu,Co,MnPt,Ru,アルミナ,NiMnの各ターゲットを用いた。Coターゲット上には、FeおよびNiの1センチ角のチップを適宜配置して組成を調整した。積層膜は、各ターゲットを配置したカソードに各々高周波電力を印加して装置内にプラズマを発生させておき、各カソードごとに配置されたシャッターを一つずつ開閉して順次各層を形成した。膜形成時には永久磁石を用いて基板に平行におよそ640A/mの磁場を印加して、一軸異方性をもたせた。形成した膜を、真空中、磁場中で、270°C,3時間の熱処理を行ってMnPt反強磁性膜13を相変態させ、室温での磁気抵抗を測定して評価した。
TMR膜10は、障壁層17のトラック幅方向の幅が所望の値になるようにパターニングして作成し、本実施例では80nmとした。パターニングは、所定の幅に形成したフォトレジストなどをパターニング前のTMR膜の上に配置し、これをマスクとして不要となる部分をエッチングした。その後、TMR膜10のトラック幅方向両端部には、厚さ40nm程度のCoCrPt等の磁区制御膜41となる硬磁性膜を形成した。ここで、Sp2=5nm,Sp1=10nmとなるように硬磁性膜の形状を調整した。硬磁性膜の形状は、レジストマスクの高さとイオンビームスパッタの際のスパッタされた粒子の入射方向を調整することによって実現した。もしくは、トラック幅方向の絶縁膜と硬磁性膜を形成した後、再度イオンビームによって所望の形状にエッチングしても良い。熱処理後に室温で硬磁性膜の着磁処理を行い、磁区制御膜41として永久磁石を形成した。TMR膜10が配置されている部分での上部磁気シールド層2と下部磁気シールド層1との間隔Gsは約36nmである。
上記実施例1においては、自由層1及び自由層2は、NiFe等の単層であるが、これらは、非磁性金属層を介した2層以上の強磁性層で構成され、各強磁性層の磁化が平行である多層膜であっても良い。また、前記非磁性中間層にはRuを使用したが、Ta,Cu,Ru,Cr,Ir及びRhからなる群から選択される少なくとも一種の元素であれば良い。
上記のようにして作製した再生ヘッド100と、垂直記録ヘッド150を組み合わせた垂直記録用磁気ヘッド180の媒体対向面から見た構成を図5に示す。垂直記録ヘッド150は、再生ヘッド100の上部に厚さ500nmのアルミナ等からなる非磁性分離層64を介して設けられた厚さ約2μmのNiFe合金等からなる副磁極72と、副磁極72の上部に磁気ギャップ73を介して設けられた厚さ200nmのFeCo合金等からなる主磁極71を有する。主磁極71と副磁極72の間には、コイル80(図6参照)が設けられている。主磁極71は、上部の幅が広く下部の幅が狭い逆台形に形成されており、上部の幅53は約130nmである。浮上面(ABS)における主磁極71と副磁極72との間の距離(磁気ギャップ73の厚さ)は、約5μmである。
図6に上記磁気ヘッド180を用いた垂直磁気記録の様子を模式的に示す。主磁極71と副磁極72の間のコイル80に、所望のパターンの記録電流を通電することで、記録磁界101を主磁極71と副磁極72との間の磁気ギャップに発生させ、所望のパターンで垂直磁気記録媒体200に印加し、記録層210上に磁化情報201を書き込む。主磁極71が発生する磁界をより効果的に垂直記録に用いるため、記録層210の下地には、厚さ5nm程度の非磁性分離膜230と、その下に厚さ200nm程度の軟磁性下地層220が形成されている。また、情報の再生は、記録層210に書かれた磁化情報201から漏洩する磁界を、TMR膜10で検出することで行う。
本実施例1の磁気ヘッド180を、垂直磁気記録媒体200との間の磁気的スペーシングが12nmとなるように浮上させ、その記録再生特性を評価した。再生動作の安定性を確認するため繰り返し記録再生動作を行い、再生出力の変化を測定した。繰り返し記録再生1000000回に対し、再生出力の変動は2.5%と良好であった。ここで再生出力変動を、再生出力の最大値と最小値の差分を、平均値で割った値として定義した。この結果から、安定な再生動作をしていることがわかった。次に、再生ヘッド100のSN比を測定したところ、約31dBと高い値を示した。ここで再生ヘッドのSN比の計算で用いたノイズは、トータルノイズから媒体ノイズを差し引いたものである。比較のために、同一磁気抵抗効果膜を用い、同一素子サイズで従来構造の磁気ヘッドを作製し、記録再生特性を評価した。その結果、再生ヘッドSN比は、約28dBと、本実施例の磁気ヘッドと比較して3dB低い値であった。このように、本実施例によれば、再生動作が安定で且つ高SN比を示す磁気ヘッドが得られる。
上記実施例1による磁気ヘッドの変形例を図7に示す。この磁気ヘッド180′は、主磁極71のまわりにラップアラウンドシールド74を有する構成であり、その他の構成は実施例1と同じである。ラップアラウンドシールド74とは、主磁極71のトレーリング側と両サイドに一体に設けられた磁気シールドのことである。ラップアラウンドシールド74を設けることにより、主磁極71からの記録磁界の磁界勾配を急峻にし、トラック幅方向の記録にじみを抑制することができる。勿論、トレーリングシールドと、サイドシールドとが別々に形成されても機能は同じである。ラップアラウンドシールド74は、主磁極71の上部及び両サイドにアルミナ等の非磁性層を介して、NiFe等からなる磁性層を形成することにより形成する。
<実施例2>
図8に実施例2による磁気ヘッドの概略斜視断面を示す。この磁気ヘッド300は、面内記録用磁気ヘッドであり、上記実施例1による再生ヘッド100と面内記録ヘッド310とを組み合わせたものである。面内記録ヘッド310は、再生ヘッド100の上部に厚さ500nmのアルミナ等からなる非磁性分離層54を介して設けられた下部コア50と、上部コア51と、これらのコア間に設けられた磁束を発生させるためのコイル52を有している。コイル52に所望のパターンの記録電流を通電することで、記録磁場を上下コア51,50の間の記録ギャップに発生させ、所望のパターンで磁気媒体に印加し、磁気媒体に所望の磁化方向を有する磁化情報を書き込む。また、磁気媒体に書かれた磁化情報から漏洩する磁場を、磁気抵抗効果膜10で検出することで、情報を再生する。この磁気ヘッドにおいても、再生動作が安定で且つ高SN比を示す。
<実施例2>
図8に実施例2による磁気ヘッドの概略斜視断面を示す。この磁気ヘッド300は、面内記録用磁気ヘッドであり、上記実施例1による再生ヘッド100と面内記録ヘッド310とを組み合わせたものである。面内記録ヘッド310は、再生ヘッド100の上部に厚さ500nmのアルミナ等からなる非磁性分離層54を介して設けられた下部コア50と、上部コア51と、これらのコア間に設けられた磁束を発生させるためのコイル52を有している。コイル52に所望のパターンの記録電流を通電することで、記録磁場を上下コア51,50の間の記録ギャップに発生させ、所望のパターンで磁気媒体に印加し、磁気媒体に所望の磁化方向を有する磁化情報を書き込む。また、磁気媒体に書かれた磁化情報から漏洩する磁場を、磁気抵抗効果膜10で検出することで、情報を再生する。この磁気ヘッドにおいても、再生動作が安定で且つ高SN比を示す。
図9は上記実施例1あるいはその変形例あるいは実施例2による磁気ヘッドを搭載した磁気ディスク装置の構成例である。磁気的に情報を記録する記録媒体96を保持するディスク95をスピンドルモータ93にて回転させ、アクチュエータ92によってヘッドスライダ90をディスク95のトラック上に誘導する。即ち磁気ディスク装置においては、ヘッドスライダ90上に形成された上記実施例1あるいはその変形例あるいは実施例2による磁気ヘッドが、アクチュエータ92に依ってディスク95上の所定の記録位置に近接して相対運動し、信号を順次書き込み、及び読み取るのである。アクチュエータ92はロータリーアクチュエータであることが望ましい。記録信号は信号処理系94を通じて記録ヘッドにて媒体上に記録し、再生ヘッドの出力を信号処理系94を経て信号として得る。さらに、ヘッドスライダ90を所望の記録トラック上へ移動せしめるに際して、再生ヘッドからの高感度な出力を用いてトラック上の位置を検出し、アクチュエータ92を制御して、ヘッドスライダ90の位置決めを行うことができる。図9においては、ヘッドスライダ90,ディスク95を各1個示したが、これらは複数であっても構わない。またディスク95は両面に記録媒体96を有して情報を記録してもよい。情報の記録がディスク両面の場合、ヘッドスライダ90はディスクの両面に配置する。この磁気ディスク装置は、上記各実施例による磁気ヘッドを搭載することにより、高記録密度を実現することができる。また、実施例1あるいは変形例による垂直磁気記録ヘッドと垂直磁気記録ディスクを搭載することにより、面記録密度が1平方センチあたり300ギガビットを上回る磁気ディスク装置を実現することができる。
1…下部磁気シールド層、2…上部磁気シールド層、3…下部電極層、4…上部電極層、10…磁気抵抗効果膜、12…下地層、13…反強磁性層、14…第一の強磁性固定層、15…非磁性分離層、16…第二の強磁性固定層、17…障壁層、18…自由層1、19…非磁性中間層、20…自由層2、21…キャップ層、30…絶縁層、41…磁区制御膜、50…下部コア、51…上部コア、52…コイル、54…非磁性分離層、64…非磁性分離層、71…主磁極、72…副磁極、73…磁気ギャップ層、74…ラップアラウンドシールド、80…コイル、100…再生ヘッド、101…記録磁界、150…垂直記録ヘッド、180,180′…垂直記録磁気ヘッド、200…磁気ディスク、201…磁化情報、210…記録層、220…軟磁性下地層、230…非磁性分離膜、300…面内記録磁気ヘッド、310…面内記録ヘッド。
Claims (16)
- 下部磁気シールド層と、
上部磁気シールド層と、
前記下部磁気シールド層と上部磁気シールド層の間に設けられた、固定層と中間層と自由層を有する磁気抵抗効果膜と、
前記磁気抵抗効果膜のトラック幅方向両端部に設けられた磁区制御膜と、を有し、
前記自由層は非磁性中間層を介して積層された自由層1と自由層2を有し、前記自由層1は前記固定層に前記中間層を介して積層されており、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、前記自由層1の磁化量は前記自由層2の磁化量よりも大きく、
さらに、前記自由層1と前記磁区制御膜との距離をSp1、前記自由層2と前記磁区制御膜との距離をSp2としたとき、Sp2>Sp1であることを特徴とする磁気ヘッド。 - 前記Sp1とSp2の関係が、Sp2>2×Sp1であることを特徴とする請求項1記載の磁気ヘッド。
- 前記Sp1は前記自由層1の膜厚方向の中心と前記磁区制御膜との間の距離であり、前記Sp2は前記自由層2の膜厚方向の中心と前記磁区制御膜との間の距離であることを特徴とする請求項1記載の磁気ヘッド。
- 前記下部磁気シールド層の上部に下部電極層を有し、前記上部磁気シールド層の下部に上部電極層を有することを特徴とする請求項1記載の磁気ヘッド。
- 前記自由層1及び自由層2は、非磁性金属層を介した2層以上の強磁性層で構成され、各強磁性層の磁化は平行であることを特徴とする請求項1記載の磁気ヘッド。
- 前記非磁性中間層は、Ta,Cu,Ru,Cr,Ir及びRhからなる群から選択される少なくとも一種の元素であることを特徴とする請求項1記載の磁気ヘッド。
- 前記上部磁気シールド層に隣接して記録ヘッドを有することを特徴とする請求項1記載の磁気ヘッド。
- 下部磁気シールド層と、
上部磁気シールド層と、
前記下部磁気シールド層と上部磁気シールド層の間に設けられた、固定層と中間層と自由層を有する磁気抵抗効果膜と、
前記磁気抵抗効果膜のトラック幅方向両端部に設けられた磁区制御膜と、を有し、
前記自由層は非磁性中間層を介して積層された自由層1と自由層2を有し、前記自由層1は前記固定層に前記中間層を介して積層されており、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、前記自由層1の飽和磁束密度と膜厚の積(Bs・t)1は前記自由層2の飽和磁束密度と膜厚の積(Bs・t)2よりも大きく、
さらに、前記自由層1と前記磁区制御膜との距離をSp1、前記自由層2と前記磁区制御膜との距離をSp2、前記自由層1と前記上部磁気シールドとの距離をts、前記磁区制御膜の残留磁束密度と膜厚との積を(Br・t)PM、前記自由層2に印加される反強磁性結合磁場をHAF2、前記自由層2に印加される磁区制御磁場をHbias2としたとき、(Br・t)PM ≧(9×Sp1/ts)×{ (Bs・t)1-(Bs・t)2 } 且つHAF2>Hbias2を満たすことを特徴とする磁気ヘッド。 - 前記HAF2>Hbias2を満たすために、前記Sp1とSp2の関係がSp2>Sp1であることを特徴とする請求項8記載の磁気ヘッド。
- 前記Sp1とSp2の関係が、Sp2>2×Sp1であることを特徴とする請求項9記載の磁気ヘッド。
- 前記Sp1は前記自由層1の膜厚方向の中心と前記磁区制御膜との間の距離であり、前記Sp2は前記自由層2の膜厚方向の中心と前記磁区制御膜との間の距離であることを特徴とする請求項8記載の磁気ヘッド。
- 前記下部磁気シールド層の上部に下部電極層を有し、前記上部磁気シールド層の下部に上部電極層を有することを特徴とする請求項8記載の磁気ヘッド。
- 前記上部磁気シールド層に隣接して記録ヘッドを有することを特徴とする請求項8記載の磁気ヘッド。
- 下部磁気シールド層を形成する工程と、
前記下部磁気シールド層の上部に固定層と中間層と自由層1と非磁性中間層と自由層2を積層して磁気抵抗効果膜を形成する工程であって、前記自由層1の磁化と前記自由層2の磁化は互いに反平行であり、且つ前記自由層1の磁化量が前記自由層2の磁化量よりも大きい磁気抵抗効果膜を形成する工程と、
前記磁気抵抗効果膜のトラック幅方向両端部に磁区制御膜を形成する工程であって、前記自由層1の膜厚方向の中心と前記磁区制御膜との間の距離をSp1、前記自由層2の膜厚方向の中心と前記磁区制御膜の間の距離をSp2としたとき、Sp2>Sp1を満たす磁区制御膜を形成する工程と、
前記磁気抵抗効果膜及び磁区制御膜の上部に上部磁気シールド層を形成する工程と、
を有することを特徴とする磁気ヘッドの製造方法。 - 前記磁区制御膜を形成する工程は、前記Sp2>Sp1を満たすようにスパッタされた磁性粒子の入射方向を調整する工程を含むことを特徴とする請求項14記載の磁気ヘッドの製造方法。
- 前記磁区制御膜を形成する工程は、硬磁性膜を形成する工程と、前記Sp2>Sp1を満たすように前記硬磁性膜をイオンミリングによりパターニングする工程とを含むことを特徴とする請求項14記載の磁気ヘッドの製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008108925A JP2009259354A (ja) | 2008-04-18 | 2008-04-18 | 磁気ヘッド及びその製造方法 |
US12/386,458 US8149548B2 (en) | 2008-04-18 | 2009-04-17 | Magnetic head and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008108925A JP2009259354A (ja) | 2008-04-18 | 2008-04-18 | 磁気ヘッド及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009259354A true JP2009259354A (ja) | 2009-11-05 |
Family
ID=41200926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008108925A Pending JP2009259354A (ja) | 2008-04-18 | 2008-04-18 | 磁気ヘッド及びその製造方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8149548B2 (ja) |
JP (1) | JP2009259354A (ja) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8077435B1 (en) * | 2008-11-20 | 2011-12-13 | Western Digital (Fremont), Llc | Current perpendicular-to-plane read sensor with back shield |
US8289660B2 (en) * | 2010-06-16 | 2012-10-16 | Seagate Technology Llc | Auxiliary magnetoresistive shield |
US8400738B2 (en) | 2011-04-25 | 2013-03-19 | Seagate Technology Llc | Magnetic element with dual magnetic moments |
US9036308B2 (en) | 2011-09-21 | 2015-05-19 | Seagate Technology Llc | Varyinig morphology in magnetic sensor sub-layers |
US8675318B1 (en) * | 2011-11-22 | 2014-03-18 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having a reduced shield-to-shield spacing |
US8879214B2 (en) * | 2011-12-21 | 2014-11-04 | HGST Netherlands B.V. | Half metal trilayer TMR reader with negative interlayer coupling |
US9269382B1 (en) | 2012-06-29 | 2016-02-23 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having improved pinning of the pinned layer at higher recording densities |
US8780508B2 (en) | 2012-06-29 | 2014-07-15 | Seagate Technology Llc | Magnetic element with biased side shield lamination |
US8837092B2 (en) | 2012-06-29 | 2014-09-16 | Seagate Technology Llc | Magnetic element with biasing structure distal the air bearing surface |
US8711528B1 (en) | 2012-06-29 | 2014-04-29 | Western Digital (Fremont), Llc | Tunnel magnetoresistance read head with narrow shield-to-shield spacing |
US8760822B1 (en) | 2012-11-28 | 2014-06-24 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having an extended pinned layer and soft magnetic bias structures with improved stability |
US8749926B1 (en) | 2012-11-30 | 2014-06-10 | HGST Netherlands B.V. | Scissor magnetic read head with wrap-around magnetic shield |
JP5697708B2 (ja) * | 2013-04-01 | 2015-04-08 | 株式会社東芝 | 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置及び磁気抵抗効果素子の製造方法 |
US9318130B1 (en) | 2013-07-02 | 2016-04-19 | Western Digital (Fremont), Llc | Method to fabricate tunneling magnetic recording heads with extended pinned layer |
US9214172B2 (en) | 2013-10-23 | 2015-12-15 | Western Digital (Fremont), Llc | Method of manufacturing a magnetic read head |
US9153258B2 (en) * | 2013-12-03 | 2015-10-06 | HGST Netherlands B.V. | Scissor magnetic read sensor with novel multi-layer bias structure for uniform free layer biasing |
US9349397B2 (en) * | 2014-03-26 | 2016-05-24 | HGST Netherlands B.V. | Higher stability read head utilizing a partial milling process |
JP6121943B2 (ja) * | 2014-05-16 | 2017-04-26 | 株式会社東芝 | 磁気ヘッドおよび磁気記録再生装置 |
US9147404B1 (en) | 2015-03-31 | 2015-09-29 | Western Digital (Fremont), Llc | Method and system for providing a read transducer having a dual free layer |
US9659586B1 (en) | 2015-11-12 | 2017-05-23 | Seagate Technology Llc | Reader with free layer experiencing opposite phase-shifted media torques |
CN113449834B (zh) * | 2020-03-26 | 2025-01-28 | 希捷科技有限公司 | 具有多层合成铁磁体自由层的读取器 |
US11393495B2 (en) * | 2020-03-26 | 2022-07-19 | Seagate Technology Llc | Reader with a multi-layer synthetic ferrimagnet free layer |
US11514933B1 (en) * | 2021-08-10 | 2022-11-29 | Western Digital Technologies, Inc. | Method to enhance magnetic strength and robustness of rear hard bias for dual free layer read |
US20240071413A1 (en) * | 2022-08-31 | 2024-02-29 | Western Digital Technologies, Inc. | Dual Free Layer TMR Reader With Shaped Rear Bias and Methods of Forming Thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5018037A (en) | 1989-10-10 | 1991-05-21 | Krounbi Mohamad T | Magnetoresistive read transducer having hard magnetic bias |
JPH11259824A (ja) | 1998-03-13 | 1999-09-24 | Hitachi Ltd | 磁気記録再生装置及びそれに用いる磁気抵抗効果型磁気ヘッド |
US6023395A (en) | 1998-05-29 | 2000-02-08 | International Business Machines Corporation | Magnetic tunnel junction magnetoresistive sensor with in-stack biasing |
JP2008186496A (ja) * | 2007-01-26 | 2008-08-14 | Hitachi Global Storage Technologies Netherlands Bv | 磁気ヘッド |
JP2009026400A (ja) * | 2007-07-20 | 2009-02-05 | Hitachi Global Storage Technologies Netherlands Bv | 差動磁気抵抗効果型磁気ヘッド |
JP2009301598A (ja) * | 2008-06-10 | 2009-12-24 | Hitachi Ltd | 磁気記録再生ヘッド |
US8659292B2 (en) * | 2010-03-05 | 2014-02-25 | Headway Technologies, Inc. | MR sensor with flux guide enhanced hard bias structure |
-
2008
- 2008-04-18 JP JP2008108925A patent/JP2009259354A/ja active Pending
-
2009
- 2009-04-17 US US12/386,458 patent/US8149548B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US8149548B2 (en) | 2012-04-03 |
US20090262465A1 (en) | 2009-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8149548B2 (en) | Magnetic head and manufacturing method thereof | |
US7599151B2 (en) | Magnetic head with laminated side shields | |
US8477461B2 (en) | Thin film magnetic head having a pair of magnetic layers whose magnetization is controlled by shield layers | |
JP4317717B2 (ja) | 垂直記録用薄膜磁気ヘッドを用いた磁気ディスク装置 | |
JP3291208B2 (ja) | 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド | |
US7330339B2 (en) | Structure providing enhanced self-pinning for CPP GMR and tunnel valve heads | |
JP2004199816A (ja) | 磁気ヘッド | |
JP2004178656A (ja) | 磁気記録ヘッド及び磁気記録再生装置 | |
US9514771B2 (en) | Magneto-resistive effect element with recessed antiferromagnetic layer | |
US9245548B2 (en) | Magnetic head using a synthetic ferri free structure | |
US20090080125A1 (en) | Magnetic head | |
JP2002009365A (ja) | スピンバルブ型薄膜磁気素子及びその製造方法並びにこのスピンバルブ型薄膜磁気素子を備えた薄膜磁気ヘッド | |
JP2008084430A (ja) | 磁気ヘッド及び磁気記録装置 | |
US7268979B2 (en) | Head with thin AFM with high positive magnetostrictive pinned layer | |
JP3984839B2 (ja) | 磁気抵抗効果ヘッド | |
JP4185528B2 (ja) | 薄膜磁気ヘッド | |
JP2008192269A (ja) | 磁気リード・ヘッド及びその製造方法 | |
JP2008243267A (ja) | 磁気再生ヘッド及び磁気ヘッド | |
US7270854B2 (en) | Method for forming a head having improved spin valve properties | |
JP2000276714A (ja) | 電流で磁化を固定するスピンバルブセンサー | |
JP3367488B2 (ja) | 磁気抵抗効果センサ、薄膜磁気ヘッド及び該薄膜磁気ヘッドを備えた薄膜ウエハ | |
JP2004006493A (ja) | 巨大磁気抵抗効果素子及びその製造方法 | |
JP2861714B2 (ja) | 磁気抵抗効果型ヘッド及び磁気ディスク装置 | |
US9691417B1 (en) | Magnetoresistive sensor having a synthetic antiferromagnetic bottom shield | |
JP2003006818A (ja) | 反平行に結合した2枚の強磁性膜を用いた磁気抵抗再生ヘッド |