[go: up one dir, main page]

JP2009256748A - Fe-BASED ALLOY-MADE CLIP AND METHOD FOR MANUFACTURING THE SAME - Google Patents

Fe-BASED ALLOY-MADE CLIP AND METHOD FOR MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2009256748A
JP2009256748A JP2008109085A JP2008109085A JP2009256748A JP 2009256748 A JP2009256748 A JP 2009256748A JP 2008109085 A JP2008109085 A JP 2008109085A JP 2008109085 A JP2008109085 A JP 2008109085A JP 2009256748 A JP2009256748 A JP 2009256748A
Authority
JP
Japan
Prior art keywords
clip
based alloy
heat treatment
present
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008109085A
Other languages
Japanese (ja)
Other versions
JP4702900B2 (en
Inventor
Naoki Nakamura
直樹 中村
Hidefumi Tane
秀文 種
Tetsuya Nakajima
哲也 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Proterial Precision Ltd
Original Assignee
Hitachi Metals Precision Ltd
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Precision Ltd, Hitachi Metals Ltd filed Critical Hitachi Metals Precision Ltd
Priority to JP2008109085A priority Critical patent/JP4702900B2/en
Publication of JP2009256748A publication Critical patent/JP2009256748A/en
Application granted granted Critical
Publication of JP4702900B2 publication Critical patent/JP4702900B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Clamps And Clips (AREA)
  • Heat Treatment Of Articles (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Fe-based alloy-made clip which hardly rusts despite repetitive use at a high temperature and is excellent in corrosion resistance (rust-prevention), and to provide a method for manufacturing the same. <P>SOLUTION: The Fe-based alloy-made clip comprises an Fe-based alloy containing, by mass%, 0.01 to 0.10% C, 20.0 to 35.0% Ni. 10.0 to 20.0% Cr, 0.05 to 5.0% Mo, 0.10 to 1.0% V, 0.05 to 3.0% Al, 1.5 to 4.0% Ti, 0.001 to 0.010% B, ≤1.0% Si, ≤2.0% Mn, and the balance Fe with inevitable impurities, wherein the Cr concentration from at least 0.1 μm to 1 μm of the depth from the surface of the clip is ≥80% of the matrix. For example, the Fe-based alloy-made clip can be obtained by a manufacturing method using the non-oxidizing and non-nitriding atmosphere in the temperature range of at least ≥450°C in heat treatment after plastic working of a metal sheet comprising the Fe-based alloy to a clip shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は被加熱部材を固定保持するFe基合金製クリップおよびその製造方法に関する。   The present invention relates to an Fe-based alloy clip for fixing and holding a member to be heated and a method for manufacturing the same.

例えば、プラズマディスプレイパネル(以下、PDPと記す)等の画像表示装置を製造する場合、第1の硝子板と第2の硝子板とを重ね合わせて加熱・封止する工程がある。この時に、重ね合わせた前記第1の硝子板と第2の硝子板(被加熱部材)とを固定保持するために、重ね合わさる方向に押さえ付けるために挟み型のクリップが用いられる。
このクリップは、例えば特許文献1、2に提案されるように、インコネル(R)718合金、X−750合金及びNi−Cr合金等のNi基の耐熱合金が使用される。しかしながら、Ni基の耐熱合金製のクリップは、多量のNiを含有するため非常に高価なものとなり、また、クリップの形状とする冷間での高精度な加工が容易ではない。
For example, in the case of manufacturing an image display device such as a plasma display panel (hereinafter referred to as PDP), there is a step of heating and sealing by superposing a first glass plate and a second glass plate. At this time, in order to fix and hold the first glass plate and the second glass plate (heated member) that are overlapped with each other, a pinch-type clip is used for pressing in the overlapping direction.
As this clip, for example, as proposed in Patent Documents 1 and 2, Ni-based heat-resistant alloys such as Inconel (R) 718 alloy, X-750 alloy and Ni-Cr alloy are used. However, a Ni-based heat-resistant alloy clip is very expensive because it contains a large amount of Ni, and it is not easy to perform high-precision cold processing in the form of a clip.

そこで、本願出願人は、MoとWの1種または2種を含み、金属組織中に分散した平均粒径100nm以下の金属間化合物粒子を有するFe基合金製であって、高価なNi基合金製のクリップと同等以上の特性を有した安価なクリップを特許文献3に提案した。
特開2004−55488号公報(〔0014〕欄参照) 特開平11−190311号公報(〔0010〕欄参照) 特開2006−242320号公報
Therefore, the applicant of the present application is an expensive Ni-based alloy made of Fe-based alloy having intermetallic compound particles having an average particle diameter of 100 nm or less, which is dispersed in a metal structure, including one or two of Mo and W. An inexpensive clip having characteristics equivalent to or better than a manufactured clip was proposed in Patent Document 3.
JP 2004-55488 A (see column [0014]) Japanese Patent Laid-Open No. 11-190311 (see column [0010]) JP 2006-242320 A

本願出願人が提案した上述のFe基合金製のクリップは、耐熱性に優れ、弾性力も高く、クリップに求められる諸特性を十分に満足するものである。しかしながら、被加熱部材の固定保持を繰り返すうちにクリップの表面が発錆し、被加熱部材の表面に錆が付着して表面品位を損ねることがあった。
本発明の目的は、高温で繰り返し使用しても発錆し難い、耐食性(防錆性)に優れたFe基合金製クリップおよびその製造方法を提供することである。
The above-described Fe-based alloy clip proposed by the applicant of the present application is excellent in heat resistance and high in elasticity, and sufficiently satisfies various characteristics required for the clip. However, the surface of the clip rusted while repeating the fixing and holding of the member to be heated, and rust adhered to the surface of the member to be heated, which sometimes deteriorated the surface quality.
An object of the present invention is to provide a clip made of an Fe-based alloy that hardly rusts even when used repeatedly at high temperatures and has excellent corrosion resistance (rust prevention) and a method for producing the same.

本発明は上述した問題に鑑みてなされたものである。すなわち、本発明は、質量%でC:0.01〜0.10%、Ni:20.0〜35.0%、Cr:10.0〜20.0%、Mo:0.05〜5.0%、V:0.10〜1.0%、Al:0.05〜3.0%、Ti:1.5〜4.0%、B:0.001〜0.010%、Si:1.0%以下、Mn:2.0%以下、残部はFeおよび不可避的不純物を含むFe基合金でなるクリップであって、該クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上であるFe基合金製クリップである。   The present invention has been made in view of the above-described problems. That is, in the present invention, C: 0.01-0.10%, Ni: 20.0-35.0%, Cr: 10.0-20.0%, Mo: 0.05-5. 0%, V: 0.10 to 1.0%, Al: 0.05 to 3.0%, Ti: 1.5 to 4.0%, B: 0.001 to 0.010%, Si: 1 0.0% or less, Mn: 2.0% or less, and the balance is a clip made of an Fe-based alloy containing Fe and inevitable impurities, and a Cr concentration of at least a depth of 0.1 μm to 1 μm on the surface of the clip. It is a clip made of Fe-based alloy that is 80% or more of the phase.

本発明のクリップは、例えば、上述したFe基合金でなる金属板をクリップ形状に塑性加工した後の熱処理において、少なくとも450℃以上の温度域における雰囲気を非酸化性かつ非窒化性とする、製造方法を適用して得ることができる。
望ましくは、前記熱処理における少なくとも450℃以上の温度域において、水素ガス、希ガス、若しくは水素ガスおよび希ガスを熱処理炉内に導入することである。
また、望ましくは、前記熱処理は600〜800℃に加熱する時効工程を含み、該時効工程の最終冷却において、450℃以下の温度域で前記熱処理炉内に冷却媒体となる窒素ガスを導入することである。
The clip of the present invention is manufactured by, for example, making the atmosphere in a temperature range of at least 450 ° C. at least 450 ° C. non-oxidizing and non-nitriding in the heat treatment after plastic processing the metal plate made of the above-described Fe-based alloy into a clip shape. It can be obtained by applying the method.
Desirably, hydrogen gas, rare gas, or hydrogen gas and rare gas are introduced into the heat treatment furnace in a temperature range of at least 450 ° C. in the heat treatment.
Desirably, the heat treatment includes an aging step of heating to 600 to 800 ° C., and nitrogen gas serving as a cooling medium is introduced into the heat treatment furnace in a temperature range of 450 ° C. or lower in the final cooling of the aging step. It is.

本発明のFe基合金製クリップは、安価なFe基合金でなり、防錆性(耐食性)が優れているため、高温で繰り返し使用しても発錆し難く、これを用いて固定保持する被加熱部材の表面品質を維持でき、PDP等の硝子を固定保持して製造される画像表示装置の品質安定化に効果を奏するものである。   The clip made of Fe-based alloy according to the present invention is an inexpensive Fe-based alloy and has excellent rust prevention (corrosion resistance). Therefore, it does not easily rust even when used repeatedly at high temperatures. The surface quality of the heating member can be maintained, and it is effective for stabilizing the quality of an image display device manufactured by fixing and holding a glass such as PDP.

上述したように、本発明の重要な特徴は、クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上であるようにしたことにある。Cr濃度が母相の80%以上であることは、すなわち、Cr濃度が母相の20%未満となる著しいCr欠乏域を有さないことを意味する。   As described above, an important feature of the present invention is that the Cr concentration at least 0.1 μm to 1 μm deep on the surface of the clip is 80% or more of the parent phase. That the Cr concentration is 80% or more of the parent phase means that there is no significant Cr deficiency region where the Cr concentration is less than 20% of the parent phase.

上述したCrを多く含むFe基合金製の従来のクリップでは、金属板などをクリップ形状に形成後、クリップ力源となるバネ性を付与するために時効処理が施される。この時効処理を経ると、クリップの表面側にはCrを多く含む化合物がCr濃化域として生成され、これにより該Cr濃化域に続く表面から少なくとも深さ1μmまでの層において、Cr濃度が母相の80%未満となるようなCr量が著しく低下したCr欠乏域が生成されていた。このようなCr欠乏域を有するクリップだからこそ、高温で繰り返して使用するうちにクリップの表面側のCr濃化域が摩滅することによって上述したCr欠乏域がクリップの表面に曝露され、曝露したCr欠乏域が発錆の起点となってクリップに錆を生じさせていた。   In the above-described conventional clip made of Fe-based alloy containing a large amount of Cr, an aging treatment is applied to form a metal plate or the like into a clip shape and then to provide spring properties as a clip force source. After this aging treatment, a compound containing a large amount of Cr is generated on the surface side of the clip as a Cr-concentrated region, whereby the Cr concentration is at least 1 μm deep from the surface following the Cr-concentrated region. A Cr-deficient region in which the amount of Cr was significantly reduced to be less than 80% of the matrix was generated. Because of the clip having such a Cr-deficient region, the Cr-dense region on the surface side of the clip is worn away during repeated use at a high temperature, so that the Cr-deficient region described above is exposed to the surface of the clip, and the exposed Cr-deficient region. The area became the starting point of rusting, and the clip was rusted.

それ故に、本発明のクリップは、クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上であるものとし、上述した著しくCr量が低下したCr欠乏域を有さないものとする。よって、従来のFe基合金製クリップに存在していたようなCr欠乏域を有さない、本発明のFe基合金製クリップは、発錆の起点となる著しくCr量が低下したCr欠乏域の如くの金属組織を有さないので、高温で繰り返して使用するうちにクリップの表面が摩滅したとしても発錆することはない。なお、Cr濃度を規定するにおいて、クリップの表面から少なくとも深さ0.1μmからとしたのは、Cr量を測定するにおいて、表面から深さ0.1μm未満では正確な測定値が得られないからである。一方、上限値として深さ1μmとしたのは、クリップ表面の発錆メカニズムを思考したとき、クリップの表面から深さ1μmまでの極表面における金属組織の構成が重要と考えるからである。   Therefore, the clip of the present invention has a Cr-deficient region in which the Cr concentration at least 0.1 μm to 1 μm at the depth of the clip surface is 80% or more of the parent phase, and the Cr amount is significantly reduced as described above. Make it not exist. Therefore, the Fe-based alloy clip of the present invention, which does not have a Cr-deficient region that existed in conventional Fe-based alloy clips, is a Cr-deficient region in which the amount of Cr markedly decreases as a starting point of rusting. Since it does not have such a metal structure, it does not rust even if the surface of the clip is worn out during repeated use at high temperatures. In defining the Cr concentration, the reason why the depth is at least 0.1 μm from the surface of the clip is that when the Cr amount is measured, if the depth from the surface is less than 0.1 μm, an accurate measured value cannot be obtained. It is. On the other hand, the reason why the depth is set to 1 μm as the upper limit value is that when considering the rusting mechanism on the clip surface, the structure of the metal structure on the extreme surface from the clip surface to the depth of 1 μm is considered important.

本発明のFe基合金製クリップにつき、具体例を挙げて図を用いて説明する。
図1は、本発明のFe基合金製クリップの一例を模式的に示す模式図である。クリップ1は、Fe基合金でなる金属板からなり、底辺部2と、該底辺部の両端から延びた第一の側面部3と第二の側面部4とを有することができる。そして、前記第一の側面部3と第二の側面部4とは弾性力によって互いが近接し、例えばPDPを製造する場合、被加熱部材である硝子板を挟み固定保持することができる。また、クリップ1においては、第一の側面部3と第二の側面部4の先端付近に、前記硝子板との接触面積を増やすようにクランプ部5を形成することもできる。
The Fe-based alloy clip of the present invention will be described with reference to a specific example.
FIG. 1 is a schematic view schematically showing an example of an Fe-based alloy clip of the present invention. The clip 1 is made of a metal plate made of an Fe-based alloy, and can have a bottom part 2, a first side part 3 and a second side part 4 extending from both ends of the bottom part. The first side surface portion 3 and the second side surface portion 4 are close to each other by an elastic force. For example, when manufacturing a PDP, a glass plate that is a member to be heated can be sandwiched and held. Moreover, in the clip 1, the clamp part 5 can also be formed so that the contact area with the said glass plate may be increased near the front-end | tip of the 1st side part 3 and the 2nd side part 4. As shown in FIG.

本発明のFe基合金製クリップは、上述したようにFe基合金でなる。該Fe基合金は、質量%でC:0.01〜0.10%、Ni:20.0〜35.0%、Cr:10.0〜20.0%、Mo:0.05〜5.0%、V:0.10〜1.0%、Al:0.05〜3.0%、Ti:1.5〜4.0%、B:0.001〜0.010%、Si:1.0%以下、Mn:2.0%以下、残部はFeおよび不可避的不純物を含む。   The Fe-based alloy clip of the present invention is made of an Fe-based alloy as described above. The Fe-based alloy is C: 0.01-0.10%, Ni: 20.0-35.0%, Cr: 10.0-20.0%, Mo: 0.05-5. 0%, V: 0.10 to 1.0%, Al: 0.05 to 3.0%, Ti: 1.5 to 4.0%, B: 0.001 to 0.010%, Si: 1 0.0% or less, Mn: 2.0% or less, and the balance contains Fe and inevitable impurities.

本発明においては、各添加元素を適量添加し、残部をFeにて成分調整する合金をFe基合金といい、以下の範囲で各化学組成を規定した理由は以下の通りである。なお、特に記載のない限り質量%として記す。
本発明では、C:0.01〜0.10%とする。C(炭素)は、TiおよびVとMC型炭化物を生成し、結晶粒を微細化することで常温および高温での強度を向上させる効果を有するため、少量添加する必要がある。しかし、0.10%を超えて添加すると粗大なMC型炭化物を生じて延性を低下させたり、時効硬化に必要なTi量を減少させる。よって、Cを0.10%以下とした。また、上述したCの欠点をさらに考慮すれば、C:0.01〜0.08%とすることが好ましい。
In the present invention, an alloy in which an appropriate amount of each additive element is added and the balance is adjusted with Fe is referred to as an Fe-based alloy, and the reason why each chemical composition is defined in the following ranges is as follows. Unless otherwise specified, the mass% is indicated.
In the present invention, C: 0.01 to 0.10%. C (carbon) has the effect of improving the strength at normal temperature and high temperature by producing Ti and V and MC type carbides and refining the crystal grains, so it is necessary to add a small amount. However, if added in excess of 0.10%, coarse MC type carbides are formed and ductility is lowered, or the amount of Ti required for age hardening is reduced. Therefore, C is set to 0.10% or less. Further, if the above-mentioned defects of C are further taken into consideration, C: 0.01 to 0.08% is preferable.

また、本発明では、Ni:20.0〜35.0%とする。NI(ニッケル)は、合金の基地のオーステナイト相を安定化するのに必須の元素である。また、時効析出相であるγ’相の構成元素でもあるので、常温および高温強度を高める重要な元素である。Niが20.0%未満であるとき、オーステナイト相が不安定となるだけでなく、γ’相の析出が不十分となり、常温および高温強度が低下するため、Niの下限を20%とした。一方、Niが35.0%を超えると、クリップの形状とする冷間での高精度な加工が難しくなったり、本発明のクリップの特性のより一層の向上効果が得られ難いだけでなく、価格が大幅に高くなることから、Niの上限を35.0%とした。Niの好ましい範囲は、価格と特性のバランスから考慮すると、より高温での強度を得ようとするのであれば20.0〜30.0%の範囲が好ましく、25.0〜30.0%の範囲であっても良い。また、強度を向上させることができる範囲として、30.0〜35%の範囲で有っても良い。   In the present invention, Ni: 20.0 to 35.0%. NI (nickel) is an essential element for stabilizing the austenite phase of the base of the alloy. Moreover, since it is also a constituent element of the γ 'phase that is an aging precipitation phase, it is an important element for increasing the normal temperature and high temperature strength. When Ni is less than 20.0%, not only the austenite phase becomes unstable, but also the precipitation of the γ 'phase becomes insufficient, and the normal temperature and high temperature strength are lowered. Therefore, the lower limit of Ni is set to 20%. On the other hand, if Ni exceeds 35.0%, not only is it difficult to perform high-precision processing in the cold in the shape of the clip, it is difficult to obtain a further improvement effect of the characteristics of the clip of the present invention, Since the price is significantly increased, the upper limit of Ni is set to 35.0%. A preferable range of Ni is preferably 20.0 to 30.0% in order to obtain strength at higher temperatures, considering the balance between price and characteristics, and preferably 25.0 to 30.0%. It may be a range. Moreover, as a range which can improve an intensity | strength, you may exist in 30.0-35% of range.

本発明では、Cr(クロム)を適量添加することで得られる作用効果は重要であり、Cr:10.0〜20.0%とする。Crは、本発明のクリップの耐酸化性を維持するのに必要な元素である。Crが10.0%未満であるとき、本発明のクリップに必要な耐酸化性が得られない。一方、Crが20.0%を超えると、合金の基地のオーステナイト相が不安定となり、長時間使用中にα’相やσ相などの有害脆化相を生成してクリップの強度や延性を低下させる。よって、Crを10.0〜20.0%とした。また、Moを例えば3.0%以上含む場合は、Crの上限を17.0%以下としても良く、さらには15.0%以下であっても良い。   In the present invention, the effect obtained by adding an appropriate amount of Cr (chromium) is important, and Cr is set to 10.0 to 20.0%. Cr is an element necessary for maintaining the oxidation resistance of the clip of the present invention. When Cr is less than 10.0%, the oxidation resistance necessary for the clip of the present invention cannot be obtained. On the other hand, if Cr exceeds 20.0%, the austenite phase of the base of the alloy becomes unstable, and harmful brittle phases such as α 'phase and σ phase are generated during long-term use, and the strength and ductility of the clip are increased. Reduce. Therefore, Cr was made 10.0 to 20.0%. For example, when Mo is included in an amount of 3.0% or more, the upper limit of Cr may be 17.0% or less, and further may be 15.0% or less.

また、本発明では、Mo:0.05〜5.0%とする。Mo(モリブデン)は、本発明のクリップに用いるFe基合金においては、オーステナイト相に固溶強化して常温および高温強度を高めるのに有効な元素である。特に、クリップの使用中に、転位との相互作用によって高温での変形を抑制する作用をもたらすため、必要かつ重要な元素である。Moが0.05%未満であるときは高温強度向上効果が低下する。一方、Moが5.0%を超えると、Laves相等の脆化相が生成する恐れがある。よって、Moを0.05〜5.0%とした。なお、クリップに必要とされる強度に応じて、他の添加元素とのバランスで上記範囲内の好ましい添加量の範囲を選択できる。例えば、Tiを例えば3.0%以下で含む場合は、Moは1.0〜2.0%が好ましい。また、Tiを例えば3.0%を超えて含む場合は、Moは0.05%〜1.0%が好ましい。   In the present invention, Mo: 0.05 to 5.0%. Mo (molybdenum) is an element effective in increasing the normal temperature and high temperature strength by solid solution strengthening in the austenite phase in the Fe-based alloy used in the clip of the present invention. In particular, it is a necessary and important element because it provides an effect of suppressing deformation at a high temperature by the interaction with dislocation during use of the clip. When Mo is less than 0.05%, the high-temperature strength improvement effect decreases. On the other hand, when Mo exceeds 5.0%, an embrittled phase such as a Laves phase may be generated. Therefore, Mo is set to 0.05 to 5.0%. In addition, according to the intensity | strength required for a clip, the range of the preferable addition amount in the said range can be selected by balance with another additive element. For example, when Ti is contained at, for example, 3.0% or less, Mo is preferably 1.0 to 2.0%. Moreover, when Ti is contained exceeding 3.0%, for example, Mo is preferably 0.05% to 1.0%.

また、本発明では、V:0.10〜1.0%とする。V(バナジウム)は、CとMC型炭化物を生成することでオーステナイト結晶粒を微細化し、常温および高温での強度を向上させる効果を有するため添加する。Vが0.10%未満では強度向上効果が小さく、一方、Vが1.0%を超えると粗大な炭化物を形成して延性を低下させたり、高温で不安定な酸化被膜を形成して耐酸化性を害する可能性がある。よって、Vを0.10〜1.0%とした。また、上述したVの欠点をさらに考慮すれば、V:0.10〜0.50%とすることが好ましい。   In the present invention, V: 0.10 to 1.0%. V (vanadium) is added because it has the effect of refining austenite crystal grains by generating C and MC type carbides and improving the strength at room temperature and high temperature. If V is less than 0.10%, the effect of improving the strength is small. On the other hand, if V exceeds 1.0%, coarse carbides are formed and ductility is lowered, or an unstable oxide film is formed at high temperatures to prevent acid resistance. There is a possibility of harming. Therefore, V is set to 0.10 to 1.0%. Moreover, if further considering the above-mentioned defects of V, it is preferable to set V: 0.10 to 0.50%.

また、本発明では、Al:0.05〜3.0%とする。Al(アルミニウム)は、時効析出する金属間化合物であるγ’相の主要な構成元素の一つであり、常温および高温強度を高めるのに必要な元素である。γ’相を析出させて強化に寄与するには、0.05%以上の添加が必要であり、一方、3.0%を超えて添加すると熱間加工性が低下する。よって、Alを0.05〜3.0%とした。なお、Alは他のγ’相を構成する主要元素であるTi量との兼ね合いで、上記範囲内の好ましい範囲を適宜選択することができる。   In the present invention, Al: 0.05-3.0%. Al (aluminum) is one of the main constituent elements of the γ 'phase, which is an intermetallic compound that undergoes aging precipitation, and is an element necessary for increasing the normal temperature and high temperature strength. In order to contribute to strengthening by precipitating the γ 'phase, addition of 0.05% or more is necessary. On the other hand, when it exceeds 3.0%, hot workability is lowered. Therefore, Al was made 0.05 to 3.0%. In addition, Al can select suitably the preferable range within the said range in consideration of the amount of Ti which is the main element which comprises other (gamma) 'phases.

また、本発明では、Ti:1.5〜4.0%とする。Ti(チタン)は、時効析出する金属間化合物であるγ’相の主要な構成元素の一つであり、常温および高温強度を高めるのに必要な元素である。γ’相を析出させて強化に寄与するには、1.5%以上の添加が必要であり、一方、4.0%を超えて添加すると高温加熱時に粗大な金属間化合物であるη(イータ)相が生成しやすくなり、高温での強度や延性が低下する。よって、Tiを1.5〜4.0%とした。なお、Tiは他のγ’相を構成する主要元素であるAl量との兼ね合いで、上記範囲内の好ましい範囲を適宜選択することができる。   In the present invention, Ti: 1.5 to 4.0%. Ti (titanium) is one of the main constituent elements of the γ ′ phase, which is an intermetallic compound that undergoes aging precipitation, and is an element necessary for increasing the normal temperature and high temperature strength. In order to contribute to strengthening by precipitating the γ 'phase, addition of 1.5% or more is necessary. On the other hand, when it exceeds 4.0%, it is a coarse intermetallic compound η (eta) when heated at a high temperature. ) Phase is easily formed, and the strength and ductility at high temperatures are reduced. Therefore, Ti is set to 1.5 to 4.0%. Note that Ti can be appropriately selected within a preferable range within the above range in consideration of the amount of Al as a main element constituting the other γ ′ phase.

そして、上述したAl量およびTi量の好ましい組合せは、適宜選択することができ、その一つは、Al:0.05〜0.35%およびTi:1.5〜2.5%であり、また、Al:0.70〜2.0%およびTi:2.5〜4.0%である。   And the preferable combination of the amount of Al and Ti described above can be selected as appropriate, one of which is Al: 0.05 to 0.35% and Ti: 1.5 to 2.5%, Further, Al: 0.70 to 2.0% and Ti: 2.5 to 4.0%.

また、本発明では、B:0.001〜0.010%とする。B(ボロン)は、少量添加するとTiとともに粒界強化作用を呈し、高温での強度と延性を高めるのに有効な元素である。Bが0.001%未満のときは上述の粒界強化作用を得難く、一方、Bが0.010%を超えると加熱時の初期溶融温度が低下して熱間加工性が低下することがある。よって、Bを0.001〜0.010%とした。   In the present invention, B: 0.001 to 0.010%. B (boron), when added in a small amount, exhibits a grain boundary strengthening effect together with Ti, and is an effective element for increasing the strength and ductility at high temperatures. When B is less than 0.001%, it is difficult to obtain the above-described grain boundary strengthening effect. On the other hand, when B exceeds 0.010%, the initial melting temperature during heating is lowered and hot workability is lowered. is there. Therefore, B is set to 0.001 to 0.010%.

また、本発明では、SiとMnをSi:1.0%以下およびMn:2.0%以下に制限した。Si(珪素)およびMn(マンガン)は、本発明のクリップに用いる合金においては脱酸元素として添加されが、過度の添加は高温強度を低下させる恐れがある。よって、Siを1.0%以下、および、Mnを2.0%以下に制限した。より好ましくは、Siを0.5%以下とし、Mnを1.5%以下とすることである。   In the present invention, Si and Mn are limited to Si: 1.0% or less and Mn: 2.0% or less. Si (silicon) and Mn (manganese) are added as deoxidizing elements in the alloy used in the clip of the present invention, but excessive addition may reduce high temperature strength. Therefore, Si is limited to 1.0% or less and Mn is limited to 2.0% or less. More preferably, Si is 0.5% or less and Mn is 1.5% or less.

本発明におけるFe基合金は、上述した添加元素以外の残部はFeおよび不可避的不純物である。Fe(鉄)は、本発明のクリップ用の安価な合金を得るために、基地を構成するオーステナイト相の安価な主要元素として必要である。また、該Fe基合金はFeを基地としてなる合金であることから、上述した添加元素以外の残部は実質的にFeでなるといえるが、残部には不純物が不可避的に含まれてしまう。例えば、P(燐)やS(硫黄)は、本発明のクリップ用の合金においては不純物元素であり、含まれないか、または、できる限り少ない方が好ましく、添加はしないが、原料等から混入する場合がある。混入した場合、Pは0.04%以下、Sは0.03%以下であれば、本発明のクリップの特性にほとんど有害な影響を与えることはなく、実質的な影響は少ないため、含まれてもよい。   In the Fe-based alloy in the present invention, the balance other than the additive elements described above is Fe and inevitable impurities. Fe (iron) is necessary as an inexpensive main element of the austenite phase constituting the base in order to obtain an inexpensive alloy for the clip of the present invention. Further, since the Fe-based alloy is an alloy based on Fe, it can be said that the remainder other than the additive elements described above is substantially made of Fe, but the remainder inevitably contains impurities. For example, P (phosphorus) and S (sulfur) are impurity elements in the clip alloy of the present invention, and are not contained or preferably contained as little as possible. There is a case. If mixed, if P is 0.04% or less and S is 0.03% or less, it has almost no detrimental effect on the characteristics of the clip of the present invention, and there is little substantial influence. May be.

本発明のFe基合金製クリップは、例えば、上述したFe基合金でなる金属板をクリップ形状に塑性加工した後の熱処理において、少なくとも450℃以上の温度域における雰囲気を非酸化性かつ非窒化性とする、製造方法を適用して得ることができる。これにより、クリップ形状の表面近傍におけるCrの活性を抑え、Crが表面近傍に引き寄せられて濃化する挙動を抑制することができる。   The Fe-based alloy clip of the present invention is, for example, non-oxidizing and non-nitriding in an atmosphere in a temperature range of at least 450 ° C. in heat treatment after plastic processing of the metal plate made of the Fe-based alloy described above into a clip shape And can be obtained by applying a manufacturing method. Thereby, the activity of Cr in the vicinity of the clip-shaped surface can be suppressed, and the behavior of Cr being attracted and concentrated near the surface can be suppressed.

また、上述の製造方法では、前記熱処理における少なくとも450℃以上の温度域において、水素ガス、希ガス、若しくは水素ガスおよび希ガスを熱処理炉内に導入することが望ましい。これにより、少なくとも450℃以上の温度域における雰囲気を簡易に非酸化性かつ非窒化性とすることができる。希ガスとは、He、Ne、Ar等の同族元素からなるガスをいう。また、前記熱処理は600〜800℃に加熱する時効工程を含み、該時効工程の最終冷却において、450℃以下の温度域で前記熱処理炉内に冷却媒体となる窒素ガスを前記熱処理炉内に導入することが望ましい。これにより、自然冷却よりも冷却時間を短縮できて生産効率や製造コストの向上に寄与できる。より望ましくは、熱処理炉内の温度を200℃以下とした後に冷却媒体を導入することであり、該温度であれば冷却中のクリップは、実質的にCrの活性による影響を受けることがない。   In the manufacturing method described above, it is desirable that hydrogen gas, a rare gas, or a hydrogen gas and a rare gas are introduced into a heat treatment furnace in a temperature range of at least 450 ° C. in the heat treatment. Thereby, the atmosphere in the temperature range of at least 450 ° C. can be easily made non-oxidizing and non-nitriding. The rare gas refers to a gas composed of a homogenous element such as He, Ne, or Ar. The heat treatment includes an aging step of heating to 600 to 800 ° C., and in the final cooling of the aging step, nitrogen gas serving as a cooling medium is introduced into the heat treatment furnace in a temperature range of 450 ° C. or lower. It is desirable to do. Thereby, cooling time can be shortened rather than natural cooling, and it can contribute to the improvement of production efficiency or manufacturing cost. More desirably, the cooling medium is introduced after the temperature in the heat treatment furnace is set to 200 ° C. or less, and at this temperature, the clip being cooled is not substantially affected by the activity of Cr.

水素ガスや希ガスでなる冷却媒体は、冷却中にクリップの表面に多量のCrを含む化合物層を形成することがないので著しくCr量が低下したCr欠乏域が生成されることがない。また、窒素ガスは、高温下ではクリップの表面近傍にCrを引き寄せて濃化させるように作用するが、熱処理炉内の温度が450℃以下であれば、冷却中にクリップの表面近傍にCr濃化域が生成されないので著しくCr量が低下したCr欠乏域が生成されることはない。そして、窒素ガスは、水素ガスや希ガスに比べ、安価で環境負荷が少ないので好適である。   Since the cooling medium made of hydrogen gas or rare gas does not form a compound layer containing a large amount of Cr on the surface of the clip during cooling, a Cr-deficient region in which the Cr amount is remarkably reduced is not generated. Nitrogen gas acts to attract and concentrate Cr near the surface of the clip at a high temperature. However, if the temperature in the heat treatment furnace is 450 ° C. or lower, the Cr gas is concentrated near the surface of the clip during cooling. Since no conversion region is generated, a Cr-deficient region in which the amount of Cr is remarkably reduced is not generated. Nitrogen gas is preferable because it is cheaper and has less environmental burden than hydrogen gas or rare gas.

よって、上述した本発明の製造方法で得た本発明のFe基合金製クリップは、該クリップの表面近傍へのCrの濃化が抑制されるが故に、従来はCr濃化域に続いて生成されていたCr量が著しく低下したCr欠乏域が生成されないので、該クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上を有することができる。すなわち、母相の20%未満となるCr欠乏域を有することがない。   Therefore, the Fe-based alloy clip of the present invention obtained by the manufacturing method of the present invention described above is conventionally produced following the Cr concentration region because the concentration of Cr near the surface of the clip is suppressed. Since a Cr-deficient region in which the amount of Cr that has been significantly reduced is not generated, a Cr concentration of at least a depth of 0.1 μm to 1 μm on the surface of the clip can have 80% or more of the parent phase. That is, it does not have a Cr-depleted region that is less than 20% of the parent phase.

本発明のFe基合金製クリップを製造するにおいて、例えば、上述した時効工程を含むことにより、クリップ用の合金の金属組織中に平均粒径100nm以下の金属間化合物粒子を分散させることができ、クリップの常温および高温強度を高めることができる。ここで用いる時効処理は、例えば900〜1100℃で固溶化処理の後に、600〜800℃で時効処理を施す製造方法であって良い。あるいは、前記固溶化処理の後に、700〜800℃で1段目の時効処理を施し、この後に600〜700℃で2段目の時効処理を施す製造方法であって良い。時効処理はクリップ形状に加工した後に行うが、固溶化処理はクリップ形状への加工前後のいずれで施しても良い。また、熱処理雰囲気は厚い酸化膜が形成されない程度の低酸素雰囲気が望ましい。また、クリップ形状への加工は塑性加工によるが、加工手段は冷間加工、温間加工等、必要に応じて適宜選択することができる。   In producing the Fe-based alloy clip of the present invention, for example, by including the aging step described above, intermetallic compound particles having an average particle size of 100 nm or less can be dispersed in the metal structure of the alloy for the clip, The normal temperature and high temperature strength of the clip can be increased. The aging treatment used here may be, for example, a manufacturing method in which an aging treatment is performed at 600 to 800 ° C. after a solution treatment at 900 to 1100 ° C. Alternatively, after the solution treatment, a first-stage aging treatment may be performed at 700 to 800 ° C., and then a second-stage aging treatment may be performed at 600 to 700 ° C. The aging treatment is performed after processing into the clip shape, but the solution treatment may be performed either before or after the processing into the clip shape. The heat treatment atmosphere is preferably a low oxygen atmosphere that does not form a thick oxide film. Further, although the processing to the clip shape is based on plastic processing, the processing means can be appropriately selected as necessary, such as cold processing and warm processing.

以下の実施例で本発明を更に詳しく説明する。
図1に示す形状を有するクリップ1(板厚0.8mm、クランプ幅60mm、奥行50mm)は、表1に示すそれぞれの化学成分を有する予め固溶化処理を施したFe基合金でなる金属板を用いて製作した。具体的には、プレス加工によってクリップ形状を成形後、得られた成形体に対して時効処理を施すことによって得た。この時効処理は、熱処理炉内の雰囲気を非酸化性かつ非窒化性にするため水素ガスを導入し、少なくとも450℃以上の温度域では確実に熱処理炉内の雰囲気を非酸化性かつ非窒化性とし、同時に0.01〜0.20kPa程度の減圧状態を維持して加熱後に最終冷却を行った。図2に上述したヒートパターンを模式的に示す。なお、図2に示すように時効工程の最終冷却では、熱処理炉内の温度を630℃から降下し、200℃に達した状態から窒素ガスでなる冷却媒体を熱処理炉内に導入して常温まで冷却した。なお、本発明の実施例がNo.1〜No.10であり、比較例がNo.11〜No.13である。
The following examples further illustrate the present invention.
A clip 1 having a shape shown in FIG. 1 (plate thickness 0.8 mm, clamp width 60 mm, depth 50 mm) is a metal plate made of an Fe-based alloy having the respective chemical components shown in Table 1 and subjected to solution treatment in advance. Made using. Specifically, it was obtained by subjecting the obtained molded body to an aging treatment after forming a clip shape by press working. This aging treatment introduces hydrogen gas to make the atmosphere in the heat treatment furnace non-oxidizing and non-nitriding, and ensures that the atmosphere in the heat treatment furnace is non-oxidizing and non-nitriding in a temperature range of at least 450 ° C. At the same time, the final cooling was performed after heating while maintaining a reduced pressure state of about 0.01 to 0.20 kPa. FIG. 2 schematically shows the heat pattern described above. As shown in FIG. 2, in the final cooling of the aging step, the temperature in the heat treatment furnace is lowered from 630 ° C., and a cooling medium made of nitrogen gas is introduced into the heat treatment furnace from the state of reaching 200 ° C. to the room temperature. Cooled down. In addition, the Example of this invention is No. 1-No. 10 and the comparative example is No. 10. 11-No. 13.

また、本発明のFe基合金製クリップ(以下、本発明クリップという)No.1〜10の作用効果を比較検証するため、上述した本発明クリップと同じ寸法形状を有するFe基合金製クリップ(以下、従来クリップという)No.11〜13を併せて製造した。なお、従来クリップの製造においては、本発明クリップと同じ化学成分を有して同条件で固溶化処理が施された金属板を用いたが、クリップ形状とした成形体に施す時効処理の条件を相違させた。具体的には、従来クリップは、図3に示すヒートパターンで加熱および冷却し、時効工程の最終冷却において熱処理炉内が630℃の温度である状態から窒素ガスでなる冷却媒体を熱処理炉内に導入し、常温まで冷却して得たものである。   In addition, a clip made of an Fe-based alloy of the present invention (hereinafter referred to as a clip of the present invention) No. In order to compare and verify the effects of 1 to 10, an Fe-based alloy clip (hereinafter referred to as a conventional clip) No. 1 having the same size and shape as the above-described clip of the present invention is used. 11-13 were manufactured together. In addition, in the manufacture of the conventional clip, a metal plate having the same chemical composition as the clip of the present invention and subjected to the solution treatment under the same conditions was used. However, the conditions for the aging treatment applied to the clip-shaped molded body were set. I made a difference. Specifically, the conventional clip is heated and cooled with the heat pattern shown in FIG. 3, and a cooling medium made of nitrogen gas is introduced into the heat treatment furnace from the state where the heat treatment furnace is at a temperature of 630 ° C. in the final cooling of the aging process. It was introduced and cooled to room temperature.

次に、上述した製造方法で得た本発明クリップおよび従来クリップを用いて塩水噴霧試験(JIS−Z2371)を実施し、本発明クリップの防錆性能(耐食性)を評価した。なお、塩水噴霧試験は、容器中に静置した被試験体に対し、温度35℃とした5%塩化ナトリウム水溶液を噴霧しながら20時間放置する条件で実施した。
本発明クリップおよび従来クリップに対して上述の塩水噴霧試験を実施後、目視によって発錆の有無を確認した。発錆有無を表1に示す。塩水噴霧試験の結果、従来クリップNo.11〜13においてはクリップ表面のほぼ全面に発錆が認められたが、本発明クリップNo.1〜10においてはクリップ表面に発錆は認められなかった。
Next, a salt spray test (JIS-Z2371) was performed using the clip of the present invention and the conventional clip obtained by the manufacturing method described above, and the rust prevention performance (corrosion resistance) of the clip of the present invention was evaluated. In addition, the salt spray test was implemented on the to-be-tested object left still in the container on the conditions which leave it to stand for 20 hours, spraying 5% sodium chloride aqueous solution which was 35 degreeC.
After the above-described salt spray test was performed on the clip of the present invention and the conventional clip, the presence or absence of rusting was visually confirmed. Table 1 shows the presence or absence of rusting. As a result of the salt spray test, the conventional clip no. In Nos. 11 to 13, rusting was observed on almost the entire surface of the clip. In 1 to 10, no rusting was observed on the clip surface.

次に、上述の塩水噴霧試験後の本発明クリップNo.1および従来クリップNo.11を用い、クリップの表層から深さ方向に向かって化学成分の分布状態をGD−OES(堀場製作所製JY5000RF)によって測定した。GD−OES(Glow Discharge Optical Emission Spectrometry)とはグロー放電発光表面分析装置であり、予め指定した元素の含有量を測定する試料の表層から深さ方向に向かって順次分析する機器である。アルゴン雰囲気下において、陰極に置いた試料と陽極との間に高周波電圧を印加してグロー放電させると、このグロー放電によってアルゴンがイオン化され、加速しながら試料に衝突する。この衝突によって試料の表面がスパッタリングされ、これにより励起された原子の発光スペクトルを計測することで元素の種類および濃度を測定することができる。なお、試料の表面からおよそ0.05μm程度の極表層ではスパッタリングが不安定であって、測定値の信頼性は著しく低下する。しかしながら、スパッタリングが安定となる表面から0.05μmを超えてくると測定値の信頼性は十分なものとなる。   Next, the clip No. 1 of the present invention after the salt spray test described above. 1 and conventional clip no. 11, the distribution state of chemical components from the surface layer of the clip toward the depth direction was measured by GD-OES (JY5000RF manufactured by Horiba, Ltd.). A GD-OES (Glow Discharge Optical Emission Spectrometry) is a glow discharge luminescence surface analyzer, which is an instrument that sequentially analyzes the content of a specified element from the surface layer of a sample to the depth direction. When a high frequency voltage is applied between the sample placed on the cathode and the anode in an argon atmosphere to cause glow discharge, argon is ionized by the glow discharge and collides with the sample while accelerating. The surface of the sample is sputtered by this collision, and the type and concentration of the element can be measured by measuring the emission spectrum of the atoms excited thereby. Note that sputtering is unstable in the extreme surface layer of about 0.05 μm from the surface of the sample, and the reliability of the measured value is significantly reduced. However, if the thickness exceeds 0.05 μm from the surface where the sputtering becomes stable, the reliability of the measured value becomes sufficient.

本発明クリップのGD−OESによって得られたCr濃度の測定値を図4に示す。以下、Cr濃度は特に記載しない限り質量%で示す。
図4において、本発明クリップの母相のCr濃度(表1に示す14.7%)の80%(11.7%)相当値を直線cで示す。この直線cに対し、本発明クリップのCr濃度を示す曲線aは、試料の表面からの深さ0.1μmから1.0μmまで、常に直線cすなわち母相の80%相当値を超える19%から17%で推移していることが確認できた。なお、試料の表面から0.1μm未満の領域においても測定値を示しているが、上述したように表面から0.05μm程度の領域では測定自体が不安定であって信頼性が十分ではない故に、正確なCr濃度ではないと推定される。これは図5に示す従来クリップの場合も同様である。
The measured value of the Cr concentration obtained by GD-OES of the clip of the present invention is shown in FIG. Hereinafter, the Cr concentration is expressed in mass% unless otherwise specified.
In FIG. 4, a value corresponding to 80% (11.7%) of the Cr concentration (14.7% shown in Table 1) of the parent phase of the clip of the present invention is indicated by a straight line c. With respect to this straight line c, the curve a showing the Cr concentration of the clip of the present invention is from a depth of 0.1 μm to 1.0 μm from the surface of the sample, always from the straight line c, ie 19% exceeding the value corresponding to 80% of the parent phase. It was confirmed that the rate was 17%. Although the measured values are also shown in the region less than 0.1 μm from the surface of the sample, as described above, the measurement itself is unstable in the region of about 0.05 μm from the surface and the reliability is not sufficient. It is estimated that the Cr concentration is not accurate. The same applies to the conventional clip shown in FIG.

一方、従来クリップのGD−OESによって得られたCr濃度の測定値を図5に示す。
図5において、従来クリップの母相のCr濃度(表1に示す14.7%)の80%(11.7%)相当値を図4と同様に直線cで示す。この直線cに対し、従来クリップのCr濃度を示す曲線bは、試料の表面からの深さ0.05μmから0.13μm辺りまで多量のCrが存在し、つまり、Cr濃化域が生成されていることが確認できた。そして、生成されたCr濃化域に続いて直線cに達しないCr量が低いCr欠乏域が存在し、深さ1μmに到るまでにCr濃度が母相の80%に到らない領域が認められた。特に、表面から深さ0.15μmから0.45μmまでにはCr濃度が母相の70%に満たないCr量が8〜10%程度の著しく低下した領域が確認できた。
On the other hand, the measured value of the Cr concentration obtained by GD-OES of the conventional clip is shown in FIG.
In FIG. 5, the value corresponding to 80% (11.7%) of the Cr concentration (14.7% shown in Table 1) of the parent phase of the conventional clip is indicated by a straight line c as in FIG. In contrast to this straight line c, the curve b indicating the Cr concentration of the conventional clip has a large amount of Cr from a depth of 0.05 μm to about 0.13 μm from the surface of the sample, that is, a Cr concentrated region is generated. It was confirmed that Then, following the generated Cr enriched region, there is a Cr-deficient region where the amount of Cr that does not reach the straight line c is low, and there is a region where the Cr concentration does not reach 80% of the parent phase until the depth reaches 1 μm. Admitted. In particular, from the surface depth of 0.15 μm to 0.45 μm, it was confirmed that the Cr concentration had a remarkably reduced Cr content of less than 70% of the parent phase and about 8-10%.

以上より、上述したように塩水噴霧試験によってクリップ全面に発錆した従来クリップの場合、該クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%に到らない金属組織を有することによって発錆してしまったと考えられる。
一方、上述したように塩水噴霧試験によっても発錆することがなかった本発明クリップの場合、曲線aにおける深さ0.1μm以上のCr濃度の変化傾向をもってすれば、試料の表面においてCr濃度の急激な減少を生じるといった結論には到底ならないと考えられるので、該クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上である金属組織を有することによって発錆し難くなったと考えられる。
As described above, in the case of the conventional clip rusted on the entire surface of the clip by the salt spray test as described above, the metal structure in which the Cr concentration of at least 0.1 μm to 1 μm on the surface of the clip does not reach 80% of the parent phase. It is thought that it was rusted by having.
On the other hand, in the case of the clip of the present invention that did not rust even in the salt spray test as described above, the Cr concentration on the surface of the sample has a tendency to change in the Cr concentration at a depth of 0.1 μm or more in the curve a. Since it is considered that the conclusion of causing a rapid decrease is not reached, rusting occurs due to having a metal structure in which the Cr concentration at least 0.1 μm to 1 μm deep on the surface of the clip is 80% or more of the parent phase. It seems that it became difficult.

よって、本発明のFe基合金製クリップは、上述したFe基合金でなるクリップであって、該クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上であることによって発錆し難く、優れた耐食性(防錆性)を有するクリップであることが確認できた。   Therefore, the Fe-based alloy clip of the present invention is a clip made of the Fe-based alloy described above, and the Cr concentration at least 0.1 μm to 1 μm deep on the surface of the clip is 80% or more of the parent phase. Thus, it was confirmed that the clip was not easily rusted and had excellent corrosion resistance (rust resistance).

本発明の一例を示す構成図である。It is a block diagram which shows an example of this invention. 本発明の製造方法における時効処理の一例を示す模式図である。It is a schematic diagram which shows an example of the aging treatment in the manufacturing method of this invention. 従来の製造方法における時効処理の一例を示す模式図である。It is a schematic diagram which shows an example of the aging treatment in the conventional manufacturing method. 本発明クリップを試料としたGD−OES測定結果を示す模式図であるIt is a schematic diagram which shows the GD-OES measurement result which used this invention clip as a sample. 従来クリップを試料としたGD−OES測定結果を示す模式図であるIt is a schematic diagram which shows the GD-OES measurement result which used the conventional clip as a sample.

符号の説明Explanation of symbols

1.クリップ、2.底辺部、3.第一の側面部、4.第二の側面部、5.クランプ部
a.本発明クリップのCr濃度を示す曲線、
b.従来クリップのCr濃度を示す曲線、
c.母相の80%相当のCr濃度を示す直線
1. Clip, 2. Base, 3. 1. First side surface part Second side surface part, 5. Clamp part a. A curve showing the Cr concentration of the clip of the present invention,
b. A curve showing the Cr concentration of a conventional clip,
c. A straight line showing the Cr concentration equivalent to 80% of the matrix

Claims (4)

質量%でC:0.01〜0.10%、Ni:20.0〜35.0%、Cr:10.0〜20.0%、Mo:0.05〜5.0%、V:0.10〜1.0%、Al:0.05〜3.0%、Ti:1.5〜4.0%、B:0.001〜0.010%、Si:1.0%以下、Mn:2.0%以下、残部はFeおよび不可避的不純物を含むFe基合金でなるクリップであって、該クリップの表面の少なくとも深さ0.1μmから1μmのCr濃度が母相の80%以上であることを特徴とするFe基合金製クリップ。   C: 0.01 to 0.10% in mass%, Ni: 20.0 to 35.0%, Cr: 10.0 to 20.0%, Mo: 0.05 to 5.0%, V: 0 .10 to 1.0%, Al: 0.05 to 3.0%, Ti: 1.5 to 4.0%, B: 0.001 to 0.010%, Si: 1.0% or less, Mn : 2.0% or less, the balance being a clip made of an Fe-based alloy containing Fe and inevitable impurities, the Cr concentration at least 0.1 μm to 1 μm deep on the surface of the clip is 80% or more of the parent phase An Fe-based alloy clip characterized by being. 請求項1に記載のFe基合金でなる金属板をクリップ形状に塑性加工した後の熱処理において、少なくとも450℃以上の温度域における雰囲気を非酸化性かつ非窒化性とすることを特徴とするFe基合金製クリップの製造方法。   A heat treatment after plastic processing the metal plate made of the Fe-based alloy according to claim 1 into a clip shape, wherein the atmosphere in a temperature range of at least 450 ° C. is made non-oxidizing and non-nitriding. Manufacturing method of base alloy clip. 前記熱処理における少なくとも450℃以上の温度域において、水素ガス、希ガス、若しくは水素ガスおよび希ガスを熱処理炉内に導入することを特徴とする請求項2に記載のFe基合金製クリップの製造方法。   The method for producing an Fe-based alloy clip according to claim 2, wherein hydrogen gas, rare gas, or hydrogen gas and rare gas are introduced into a heat treatment furnace in a temperature range of at least 450 ° C in the heat treatment. . 前記熱処理は600〜800℃に加熱する時効工程を含み、該時効工程の最終冷却において、450℃以下の温度域で前記熱処理炉内に冷却媒体となる窒素ガスを導入することを特徴とする請求項2または3に記載のFe基合金製クリップの製造方法。   The heat treatment includes an aging step of heating to 600 to 800 ° C, and nitrogen gas serving as a cooling medium is introduced into the heat treatment furnace in a temperature range of 450 ° C or lower in the final cooling of the aging step. Item 4. A method for producing an Fe-based alloy clip according to Item 2 or 3.
JP2008109085A 2008-04-18 2008-04-18 Fe-base alloy clip and manufacturing method thereof Expired - Fee Related JP4702900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008109085A JP4702900B2 (en) 2008-04-18 2008-04-18 Fe-base alloy clip and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008109085A JP4702900B2 (en) 2008-04-18 2008-04-18 Fe-base alloy clip and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009256748A true JP2009256748A (en) 2009-11-05
JP4702900B2 JP4702900B2 (en) 2011-06-15

Family

ID=41384527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008109085A Expired - Fee Related JP4702900B2 (en) 2008-04-18 2008-04-18 Fe-base alloy clip and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4702900B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846587A (en) * 2019-12-10 2020-02-28 国网河南省电力公司西峡县供电公司 Preparation method of novel wire clamp
WO2023061673A1 (en) * 2021-10-15 2023-04-20 Siemens Energy Global GmbH & Co. KG Austenite alloy, blank and component, and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011584A (en) * 1999-04-30 2001-01-16 Kawasaki Steel Corp Stainless steel excellent in antibacterial property and its production
JP2006242320A (en) * 2005-03-04 2006-09-14 Hitachi Metals Ltd Clip
JP2008045212A (en) * 2006-08-18 2008-02-28 Federal Mogul Corp Metal gasket and its manufacturing method
JP2008208451A (en) * 2007-01-31 2008-09-11 National Institute Of Advanced Industrial & Technology Austenitic stainless steel and its hydrogen removal method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011584A (en) * 1999-04-30 2001-01-16 Kawasaki Steel Corp Stainless steel excellent in antibacterial property and its production
JP2006242320A (en) * 2005-03-04 2006-09-14 Hitachi Metals Ltd Clip
JP2008045212A (en) * 2006-08-18 2008-02-28 Federal Mogul Corp Metal gasket and its manufacturing method
JP2008208451A (en) * 2007-01-31 2008-09-11 National Institute Of Advanced Industrial & Technology Austenitic stainless steel and its hydrogen removal method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110846587A (en) * 2019-12-10 2020-02-28 国网河南省电力公司西峡县供电公司 Preparation method of novel wire clamp
WO2023061673A1 (en) * 2021-10-15 2023-04-20 Siemens Energy Global GmbH & Co. KG Austenite alloy, blank and component, and method

Also Published As

Publication number Publication date
JP4702900B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP5988008B2 (en) Austenitic stainless steel sheet
EP2826877A2 (en) Hot-forgeable Nickel-based superalloy excellent in high temperature strength
KR101692660B1 (en) Ferritic stainless steel sheet having excellent heat resistance
CN108884529A (en) Cr-based two-phase alloy and its manufacture
JP6376218B2 (en) Austenitic stainless steel sheet that is difficult to diffuse and bond
CN101578911A (en) Use of an iron-chromium-aluminium alloy with long service life and minor changes in heat resistance
CN1954087B (en) Titanium alloy and manufacturing method of titanium alloy material
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP2007277701A (en) High-strength steel excellent in weldability and process for production thereof
JP4702900B2 (en) Fe-base alloy clip and manufacturing method thereof
JP2018150606A (en) Austenitic stainless steel sheet and gasket
TW586127B (en) Electric resistance material
HUP0302350A2 (en) Co-mn-fe soft magnetic alloys
JP7341016B2 (en) Ferritic stainless cold rolled steel sheet
EP2940174A1 (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
JP2019151901A (en) Stainless steel
JP4614333B2 (en) clip
JP5014257B2 (en) High strength and high toughness martensitic steel
JP2007009279A (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP7233195B2 (en) Ferritic stainless steel, manufacturing method thereof, and fuel cell member
EP3252180A1 (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CREEP CHARACTERISTICS, AND GAS TURBINE MEMBER USING SAME
JP2009168203A (en) Clip
JP2014218687A (en) HIGH Mn AUSTENITIC STAINLESS STEEL AND METHOD FOR PRODUCING THE SAME
CN118541502A (en) Austenitic stainless steel and method for producing austenitic stainless steel
KR100996984B1 (en) Clip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110304

R150 Certificate of patent or registration of utility model

Ref document number: 4702900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees