[go: up one dir, main page]

JP2009255233A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2009255233A
JP2009255233A JP2008108082A JP2008108082A JP2009255233A JP 2009255233 A JP2009255233 A JP 2009255233A JP 2008108082 A JP2008108082 A JP 2008108082A JP 2008108082 A JP2008108082 A JP 2008108082A JP 2009255233 A JP2009255233 A JP 2009255233A
Authority
JP
Japan
Prior art keywords
layer
hard coating
cutting
adhesion
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008108082A
Other languages
Japanese (ja)
Inventor
Toru Hasegawa
亨 長谷川
Tetsuhiko Honma
哲彦 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008108082A priority Critical patent/JP2009255233A/en
Publication of JP2009255233A publication Critical patent/JP2009255233A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer exhibiting superior chipping resistance in high-speed intermittent cutting of stainless steel, heat resisting steel or the like. <P>SOLUTION: As the hard coating layer, an innermost layer consisting of TiN, an inner layer consisting of high nitrogen TiCN, an internal adhesive layer consisting of TiCO, TiCNO, an intermediate layer consisting of α-type Al<SB>2</SB>O<SB>3</SB>, an external adhesive layer consisting of TiCO, TiCNO, and an outer layer consisting of a single layer or a lamination of ZrN, ZrCN and ZrC are formed by vapor deposition on the surface of a tool base body. Further, dry- or wet-blast treatment is applied to the surface of the hard coating layer to smoothen the surface of the hard coating layer and reduce residual stress. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、ステンレス鋼、耐熱鋼等の被削材の切削加工を、高熱発生を伴い、かつ、切刃に対して、断続的かつ衝撃的な高負荷がかかる高速断続切削条件で行った場合であっても、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is when cutting a work material such as stainless steel, heat-resistant steel, etc. under high-speed intermittent cutting conditions that involve high heat generation and an intermittent and impactful high load on the cutting edge. Even so, the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) in which the hard coating layer exhibits excellent chipping resistance.

従来、炭化タングステン基(WC基)超硬合金または炭窒化チタン基(TiCN基)サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、内層として3μmのTiC層、中間層として1μmのAl層、外層として2μmのZrN層、ZrCN層の硬質被覆層を蒸着形成した被覆工具(以下、従来被覆工具1という)が知られており、そして、この被覆工具は、合金鋼の切削加工ですぐれた耐摩耗性を発揮することが知られている。
また、工具基体の表面に、内層としてTiC層、TiN層、TiCN層の内のいずれか一層または二層以上、中間層としてAl層、外層(但し、刃先部以外の領域)としてZrC層、ZrN層、ZrCN層のいずれかからなるZr化合物膜を蒸着した後、刃先部をラバー砥石を用いて研磨することにより中間層であるAl層を露出させ、同時に平滑性を高め、一方、刃先部以外の領域にはZr化合物膜からなる外層を形成し、硬度、摺動性を高めた被覆工具(以下、従来被覆工具2という)が知られており、そして、この被覆工具は、Al層が露出した刃先部が耐溶着性に優れ、また、Zr化合物膜からなる外層は高高温硬度を有し、耐衝撃性にも優れていることから、合金鋼の切削加工で、すぐれた工具特性を長期に亘って発揮することが知られている。
特開昭54−28316号公報 特開2001−47305号公報
Conventionally, a 3 μm TiC layer as an inner layer is formed on the surface of a substrate composed of tungsten carbide group (WC group) cemented carbide or titanium carbonitride group (TiCN group) cermet (hereinafter collectively referred to as a tool substrate), A coating tool (hereinafter referred to as a conventional coating tool 1) is known in which a hard coating layer of 1 μm Al 2 O 3 layer as an intermediate layer, 2 μm ZrN layer and ZrCN layer as an outer layer is vapor-deposited, and this coating tool Is known to exhibit excellent wear resistance in cutting of alloy steel.
Further, on the surface of the tool base, one or more of a TiC layer, a TiN layer, and a TiCN layer as an inner layer, an Al 2 O 3 layer as an intermediate layer, and ZrC as an outer layer (however, a region other than the cutting edge portion) After vapor-depositing a Zr compound film consisting of any one of layer, ZrN layer, and ZrCN layer, the blade edge is polished with a rubber grindstone to expose the Al 2 O 3 layer, which is an intermediate layer, and at the same time improve smoothness On the other hand, there is known a coated tool (hereinafter referred to as a conventional coated tool 2) in which an outer layer made of a Zr compound film is formed in a region other than the blade edge portion, and hardness and slidability are improved. The cutting edge of the alloy steel has a cutting edge where the Al 2 O 3 layer is exposed has excellent welding resistance, and the outer layer made of a Zr compound film has high-temperature hardness and excellent impact resistance. Excellent tool characteristics in machining It is known that to exert over.
JP 54-28316 A JP 2001-47305 A

近年の切削加工の省力化および省エネ化に対する要求は強く、これに伴い、加工条件は一段と高速化し、高能率加工が求められている。ところで、上記の従来被覆工具1、2を用い、ステンレス鋼、耐熱鋼等の被削材を、通常の切削速度(200m/分以下程度)で断続切削を行なった場合には、特段の問題は見られなかったが、例えば、切削速度が250m/分以上の高速切削条件下で断続切削加工を行なった場合には、切刃部にチッピング等の異常損傷が発生しやすくなり、その結果、比較的短時間で使用寿命に至るのが現状である。 In recent years, there has been a strong demand for labor saving and energy saving in cutting work, and accordingly, machining conditions have been further increased and high-efficiency machining has been demanded. By the way, when the above-described conventional coated tools 1 and 2 are used and intermittent cutting is performed on a work material such as stainless steel and heat-resistant steel at a normal cutting speed (about 200 m / min or less), the special problem is Although not seen, for example, when performing intermittent cutting under high-speed cutting conditions with a cutting speed of 250 m / min or more, abnormal damage such as chipping is likely to occur in the cutting edge, and as a result, comparison At present, the service life is reached in a short time.

そこで、本発明者等は、上述のような観点から、ステンレス鋼、耐熱鋼等の被削材を高速断続条件下で切削加工した場合の硬質被覆層の耐チッピング性の向上を図るべく、硬質被覆層の内部応力とチッピング発生との関連に着目し鋭意研究を行った結果、以下の知見を得た。   In view of the above, the inventors of the present invention have developed a hard coating layer in order to improve the chipping resistance of a hard coating layer when a work material such as stainless steel or heat-resistant steel is cut under high-speed intermittent conditions. As a result of diligent research focusing on the relationship between the internal stress of the coating layer and the occurrence of chipping, the following findings were obtained.

(a)まず、本発明者らは、ステンレス鋼、耐熱鋼等の被削材を高速断続条件で切削加工した場合の被覆工具の刃先損傷状態を観察した結果、チッピングは、硬質被覆層表面に存在する亀裂を起点として進行していることを見出した。そして、この硬質被覆層表面に存在する亀裂は、工具基体表面に硬質層を被覆した後、硬質被覆層の平滑化および硬質被覆層中に残留する引張応力を開放する目的で行ったバレル処理やショットブラスと処理によって導入された亀裂であることも突き止めた。
通常、800〜1000℃の高温下で、化学蒸着法により蒸着形成された硬質被覆層には、工具基体と硬質被覆層を構成する材料の熱膨張の度合いの違いから、冷却工程で硬質被覆層に発生した引張応力が残留し、あるいは、その引張残留応力に耐え切れなくなり、硬質被覆層の一部には亀裂が発生・存在するようになる(以下、このようにして形成された亀裂を「冷却亀裂」とよぶ)。また、バレル処理やショットブラスト処理等の機械的処理は、硬質被覆層内に存在する残留応力の緩和・開放を一つの目的として行われるが、この機械的処理を施すことによって、冷却亀裂が拡大したり、硬質被覆層内に存在する亀裂の密度が増加することになる(以下、機械的処理によって形成されたこのような亀裂を、上記冷却亀裂と区別するために、「2次亀裂」とよぶ)。
そして、ステンレス鋼、耐熱鋼等の被削材を、高熱発生を伴い、かつ、切刃に対して、断続的にかつ衝撃的負荷がかかる高速断続切削条件で切削加工を行った場合には、上記の2次亀裂の存在により硬質被覆層の強度が低下し、チッピング等の異常損傷の原因となることを見出した。
(A) First, as a result of observing the damaged state of the cutting edge of a coated tool when a work material such as stainless steel or heat-resistant steel is machined under high-speed intermittent conditions, the present inventors have observed chipping on the surface of the hard coating layer. It was found that the process progressed from an existing crack. The crack existing on the surface of the hard coating layer is formed by, for example, barrel treatment performed for the purpose of smoothing the hard coating layer and releasing the tensile stress remaining in the hard coating layer after coating the hard layer on the tool base surface. It was also found that the crack was introduced by shot brass and processing.
Usually, a hard coating layer formed by chemical vapor deposition at a high temperature of 800 to 1000 ° C. has a hard coating layer in the cooling process due to a difference in the degree of thermal expansion between the material constituting the tool base and the hard coating layer. The tensile stress generated in the film remains or cannot withstand the tensile residual stress, and cracks are generated and exist in a part of the hard coating layer (hereinafter referred to as “ Called cooling cracks). In addition, mechanical treatment such as barrel treatment and shot blast treatment is performed for the purpose of alleviating and releasing residual stress existing in the hard coating layer. By applying this mechanical treatment, cooling cracks are expanded. Or the density of cracks existing in the hard coating layer is increased (hereinafter referred to as “secondary cracks” in order to distinguish such cracks formed by mechanical treatment from the above-mentioned cooling cracks). Called).
And, when cutting the work material such as stainless steel, heat-resistant steel, etc. under high-speed intermittent cutting conditions with high heat generation and intermittent and impact load on the cutting edge, It has been found that the presence of the secondary crack reduces the strength of the hard coating layer and causes abnormal damage such as chipping.

(b)そこで、本発明者らは、上記従来被覆工具1、2でいう内層を、最内層、内層および内側密着層とからなる層構造で構成し、同じく上記従来被覆工具1、2でいう外層を、外側密着層と外層とからなる層構造で構成し、特に、本発明では、内層を高窒素含有割合のTiCN層(以下、単に高窒素TiCN層で示す)、外層を、窒化ジルコニウム(以下、ZrNで示す)層、炭窒化ジルコニウム(以下、ZrCNで示す)層および炭化ジルコニウム(以下、ZrCで示す)層のうちのいずれかからなる単層あるいは複層で構成し、最内層−内層−内側密着層−中間層−外側密着層−外層という特定な層構造の硬質被覆層を有する被覆工具を作製し、これをステンレス鋼、耐熱鋼等の高速断続切削加工に供したところ、このように特定な層構造を有する被覆工具は、チッピング等の異常損傷を発生することもなく、長期の使用に亘って、すぐれた工具特性を発揮することを見出したのである。 (B) Therefore, the present inventors configured the inner layer referred to in the above-described conventional coated tools 1 and 2 to have a layer structure including the innermost layer, the inner layer, and the inner adhesion layer, and also referred to as the above-described conventional coated tools 1 and 2. The outer layer is composed of a layer structure composed of an outer adhesion layer and an outer layer. In particular, in the present invention, the inner layer is a TiCN layer having a high nitrogen content (hereinafter, simply referred to as a high nitrogen TiCN layer), and the outer layer is zirconium nitride ( Hereinafter, it is composed of a single layer or a multilayer composed of any one of a ZrN layer, a zirconium carbonitride (hereinafter referred to as ZrCN) layer, and a zirconium carbide (hereinafter referred to as ZrC) layer. -A coated tool having a hard coating layer with a specific layer structure of-inner adhesion layer-intermediate layer-outer adhesion layer-outer layer was prepared and subjected to high-speed intermittent cutting of stainless steel, heat-resistant steel, etc. Specific layer Coated tool having a forming, it without that cause abnormal damage such as chipping, over a long period of use, it was found that exhibited excellent tool characteristics.

(c)上記最内層−内層−内側密着層−中間層−外側密着層−外層という特定な層構造からなる硬質被覆層が、すぐれた耐チッピング性を発揮するようになるのは、次のような理由によるものと推定される。
即ち、上記最内層−内層−内側密着層−中間層−外側密着層−外層という構造からなる硬質被覆層は、硬質被覆層を蒸着形成した後の引張残留応力が、最内層側から外層側へ向かうにしたがって低下する応力分布となっている(図1参照)。そして、上記層構造(応力分布)の硬質被覆層を形成した後、外層表面に対して乾式もしくは湿式ブラスト処理を行うと、外層は残留応力の十分な開放が図られる。しかし、最内層は工具基体に、また、内層は内側密着層に、それぞれ強固に密着接合しており、しかも、最内層あるいは内層は、もともと大きな引張の残留応力がかかっているため、最内層側あるいは内層側では完全な残留応力の開放は行われ得ない。そうすると、最内層あるいは内層に残る引張残留応力、即ち、上記ブラスト処理では開放することができなかった最内層、内層に残る引張残留応力は、外層に対しては、中間層、外側密着層を介して、圧縮応力として作用する(図2参照)ことになり、結果として、外層に存在している冷却亀裂の拡大を抑制し、さらに、上記ブラスト処理による過多な2次亀裂の導入を抑制することになる。したがって、切刃に対して高温条件下で断続的・衝撃的高負荷がかかるステンレス鋼、耐熱鋼等の高速断続切削加工においても、前記硬質被覆層はすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた性能を発揮するようになる。
(C) The hard coating layer having the specific layer structure of the innermost layer-inner layer-inner adhesion layer-intermediate layer-outer adhesion layer-outer layer exhibits excellent chipping resistance as follows. This is presumably due to various reasons.
That is, in the hard coating layer having the structure of the innermost layer-inner layer-inner adhesion layer-intermediate layer-outer adhesion layer-outer layer, the tensile residual stress after vapor deposition of the hard coating layer is changed from the innermost layer side to the outer layer side. The stress distribution decreases as it goes (see FIG. 1). Then, after the hard coating layer having the above layer structure (stress distribution) is formed, when the outer layer surface is subjected to dry or wet blasting, the outer layer is sufficiently released of residual stress. However, the innermost layer is tightly bonded to the tool base and the inner layer to the inner adhesive layer, and the innermost layer or inner layer is originally subjected to a large tensile residual stress. Alternatively, complete release of residual stress cannot be performed on the inner layer side. Then, the tensile residual stress remaining in the innermost layer or the inner layer, that is, the tensile residual stress remaining in the innermost layer and the inner layer, which could not be released by the blasting process, passes through the intermediate layer and the outer adhesive layer to the outer layer. Thus, it acts as a compressive stress (see FIG. 2). As a result, the expansion of cooling cracks existing in the outer layer is suppressed, and further, the introduction of excessive secondary cracks due to the blast treatment is suppressed. become. Therefore, even in high-speed intermittent cutting such as stainless steel and heat-resistant steel, where the cutting blade is subjected to intermittent and shocking high loads under high temperature conditions, the hard coating layer exhibits excellent chipping resistance and can be used for a long time. Excellent performance will be exhibited.

この発明は、上記の知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
(a)最内層として、0.1〜0.5μmの平均層厚を有する窒化チタン層、
(b)内層として、
組成式:Ti(C1−X
で表した場合、Xが0.2〜0.5(但し、原子比)を満足し、1〜3μmの平均層厚を有する炭窒化チタン層、
(c)内層と中間層の密着層として、0.1〜1μmの合計平均層厚を有し、炭酸化チタン層または炭窒酸化チタン層の1層以上からなる内側密着層、
(d)中間層として、1〜5μmの平均層厚を有するα型酸化アルミニウム層、
(e)中間層と外層の密着層として、0.1〜1μmの合計平均層厚を有し、炭酸化チタン層または炭窒酸化チタン層の1層以上からなる外側密着層、
(f)外層として、3〜10μmの合計平均層厚を有し、かつ、窒化ジルコニウム層、炭窒化ジルコニウム層および炭化ジルコニウム層のうちのいずれか一種の層からなる単層あるいは二種以上の層の組み合わせからなる複層、
上記(a)〜(f)の各層で構成された硬質被覆層の表面に、乾式もしくは湿式ブラストが施された表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) a titanium nitride layer having an average layer thickness of 0.1 to 0.5 μm as the innermost layer;
(B) As an inner layer,
Composition formula: Ti (C X N 1-X )
X represents 0.2 to 0.5 (provided that the atomic ratio), and a titanium carbonitride layer having an average layer thickness of 1 to 3 μm,
(C) As an adhesion layer between the inner layer and the intermediate layer, an inner adhesion layer having a total average layer thickness of 0.1 to 1 μm and comprising one or more of a titanium carbonate layer or a titanium carbonitride oxide layer,
(D) an α-type aluminum oxide layer having an average layer thickness of 1 to 5 μm as an intermediate layer;
(E) As an adhesion layer between the intermediate layer and the outer layer, an outer adhesion layer having a total average layer thickness of 0.1 to 1 μm and comprising one or more of a titanium carbonate layer or a titanium carbonitride oxide layer,
(F) The outer layer has a total average layer thickness of 3 to 10 μm, and is a single layer or two or more layers made of any one of a zirconium nitride layer, a zirconium carbonitride layer, and a zirconium carbide layer A multi-layer consisting of a combination of
A surface-coated cutting tool in which a dry or wet blast is applied to the surface of a hard coating layer composed of the layers (a) to (f). "
It has the characteristics.

この発明の被覆工具の硬質被覆層の構成層について、上記の通りに限定した理由を以下に説明する。 The reason why the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described below.

(a)最内層(TiN層)
最内層のTiN層は、所定の高温硬さを有し、工具基体からのバインダー成分が硬質被覆層中へと拡散するのを抑止し、硬質被覆層と工具基体との密着強度向上に寄与するが、その平均層厚が0.1μm未満では、所望の効果を発揮することができず、一方、0.5μmを超えると、内層の残留応力の値に影響を与えてしまい、外層側に向かって引張残留応力が次第に減少する応力分布を形成し難くなるので、その平均層厚を0.1〜0.5μmと定めた。
(a) Innermost layer (TiN layer)
The innermost TiN layer has a predetermined high-temperature hardness, prevents the binder component from the tool base from diffusing into the hard coating layer, and contributes to improving the adhesion strength between the hard coating layer and the tool base. However, if the average layer thickness is less than 0.1 μm, the desired effect cannot be exerted. On the other hand, if the average layer thickness exceeds 0.5 μm, the residual stress value of the inner layer is affected, and the outer layer side is moved toward. Therefore, it becomes difficult to form a stress distribution in which the tensile residual stress gradually decreases, so the average layer thickness was determined to be 0.1 to 0.5 μm.

(b)内層
炭窒化チタン層(TiCN層)からなる内層は、最内層(TiN層)および内側密着層(TiCO層、TiCNO層)のいずれに対してもすぐれた密着強度を有する。
内層のTiCN層を、
組成式:Ti(C1−X
で表した場合、Xが0.2〜0.5(但し、原子比)を満足する必要があるが、その理由は次のとおりである。
即ち、中間層であるα型酸化アルミニウム層(α型Al層)の熱膨張係数は8.2×10−6/℃前後であるから、外層側に向かって残留引張応力が小さくなるようにするためには、内層の熱膨張係数が中間層のそれより大であることが必要であり、そのためには、上記組成式:Ti(C1−X)において、Xの値を0.5以下としなければならない。ただ、Xの値が0.2より小さくなると、内層に発生する残留引張応力が大きくなりすぎて、内層自体の強度が低下し、チッピング等の異常損傷を発生しやすくなるので、Xの値を0.2〜0.5と定めた。また、内層の平均層厚が1μm未満では、外層側に向かって引張残留応力が次第に減少する応力分布を形成することが困難であり、その平均層厚が3μmを超えると、ダクタイル鋳鉄の高速高送り切削で異常損傷が発生しやすくなることから、内層の平均層厚を1〜3μmと定めた。
(b) The inner layer composed of the inner titanium carbonitride layer (TiCN layer) has excellent adhesion strength with respect to both the innermost layer (TiN layer) and the inner adhesion layer (TiCO layer, TiCNO layer).
The inner TiCN layer,
Composition formula: Ti (C X N 1-X )
In this case, X needs to satisfy 0.2 to 0.5 (atomic ratio) for the following reason.
That is, the thermal expansion coefficient of the α-type aluminum oxide layer (α-type Al 2 O 3 layer) that is the intermediate layer is around 8.2 × 10 −6 / ° C., so that the residual tensile stress decreases toward the outer layer side. In order to achieve this, it is necessary that the thermal expansion coefficient of the inner layer be larger than that of the intermediate layer. For that purpose, in the composition formula: Ti (C X N 1-X ), the value of X is set to Must be 0.5 or less. However, if the value of X is smaller than 0.2, the residual tensile stress generated in the inner layer becomes too large, the strength of the inner layer itself is reduced, and abnormal damage such as chipping is likely to occur. It was determined to be 0.2 to 0.5. Moreover, if the average layer thickness of the inner layer is less than 1 μm, it is difficult to form a stress distribution in which the tensile residual stress gradually decreases toward the outer layer side. Since abnormal damage is likely to occur during feed cutting, the average inner layer thickness was set to 1 to 3 μm.

(c)内側密着層(TiCO層、TiCNO層)
炭酸化チタン層(TiCO層)または炭窒酸化チタン層(TiCNO層)の1層以上からなる内側密着層は、内層と中間層(α型Al層)との密着強度を増し、硬質被覆層の耐チッピング性を向上させる効果があるが、その合計平均層厚が0.1μm未満では密着強度向上効果がみられず、一方、その層厚が1μmを超えると、本来TiCO層、TiCNO層の強度が、TiCN層やα型Al層に比べて劣るものであるため、チッピングなどの異常損傷が起き易くなることから、その合計平均層厚は0.1〜1μmと定めた。
(c) Inner adhesion layer (TiCO layer, TiCNO layer)
The inner adhesion layer consisting of one or more of a titanium carbonate layer (TiCO layer) or a titanium carbonitride oxide layer (TiCNO layer) increases the adhesion strength between the inner layer and the intermediate layer (α-type Al 2 O 3 layer) and is hard There is an effect of improving the chipping resistance of the coating layer. However, when the total average layer thickness is less than 0.1 μm, the effect of improving the adhesion strength is not observed. On the other hand, when the layer thickness exceeds 1 μm, the original TiCO layer, TiCNO Since the strength of the layer is inferior to that of the TiCN layer or α-type Al 2 O 3 layer, abnormal damage such as chipping is likely to occur, so the total average layer thickness is determined to be 0.1 to 1 μm. .

(d)中間層(α型Al層)
中間層であるα型Al層は、熱的および化学的に非常に安定した層であって、すぐれた高温硬さと耐熱性を有し、被覆工具の耐摩耗性を担保するが、その平均層厚が1μm未満では所望の性能を発揮することができず、一方、その平均層厚が5μmを超えるとするが、ステンレス鋼、耐熱鋼等の高速断続切削時に異常損傷が発生しやすくなることから、中間層の平均層厚を1〜5μmと定めた。
(D) Intermediate layer (α-type Al 2 O 3 layer)
The α-type Al 2 O 3 layer, which is an intermediate layer, is a thermally and chemically very stable layer and has excellent high-temperature hardness and heat resistance to ensure the wear resistance of the coated tool. If the average layer thickness is less than 1 μm, the desired performance cannot be achieved. On the other hand, if the average layer thickness exceeds 5 μm, abnormal damage is likely to occur during high-speed intermittent cutting of stainless steel, heat-resistant steel, etc. Therefore, the average layer thickness of the intermediate layer was determined to be 1 to 5 μm.

(e)外側密着層(TiCO層、TiCNO層)
内側密着層の場合と同様に、炭酸化チタン層(TiCO層)または炭窒酸化チタン層(TiCNO層)の1層以上からなる外側密着層は、中間層(α型Al層)と外層との密着強度を増し、硬質被覆層の耐チッピング性を向上させる効果があるが、その合計平均層厚が0.1μm未満では密着強度向上効果がみられず、一方、その層厚が1μmを超えると、本来TiCO層、TiCNO層の強度が、TiCN層やα型Al層に比べて劣るものであるため、チッピングなどの異常損傷が起き易くなることから、その合計平均層厚は0.1〜1μmと定めた。
(e) Outer adhesion layer (TiCO layer, TiCNO layer)
As in the case of the inner adhesion layer, the outer adhesion layer composed of one or more of a titanium carbonate layer (TiCO layer) or a titanium carbonitride oxide layer (TiCNO layer) is an intermediate layer (α-type Al 2 O 3 layer). Although it has the effect of increasing the adhesion strength with the outer layer and improving the chipping resistance of the hard coating layer, if the total average layer thickness is less than 0.1 μm, the effect of improving the adhesion strength is not seen, while the layer thickness is 1 μm. Exceeds the above, the strength of the TiCO layer and TiCNO layer is inherently inferior to that of the TiCN layer and α-type Al 2 O 3 layer, and abnormal damage such as chipping is likely to occur. Was determined to be 0.1 to 1 μm.

(f)外層
外層は、窒化ジルコニウム層(ZrN層)、炭窒化ジルコニウム層(ZrCN層)および炭化ジルコニウム層(ZrC層)のうちのいずれか一種の層からなる単層あるいは二種以上の層の組み合わせからなる複層から構成され、外側密着層(TiCO層、TiCNO層)に対してすぐれた密着強度を有する。
外層を、ZrN層、ZrCN層、ZrC層の単層あるいは複層として構成する理由は次のとおりである。
まず、中間層であるα型酸化アルミニウム層(α型Al層)の熱膨張係数は8.2×10−6/℃前後であるから、外層側に向かって残留引張応力が小さくなるようにするためには、外層の熱膨張係数を中間層のそれより小さくすることが必要であるが、上記ZrN層、ZrCN層、ZrC層の熱膨張係数は、いずれも中間層のそれより小さいため、外層の残留引張応力が小さくなり、しかも、上記ZrN層、ZrCN層、ZrC層は、いずれも耐熱性に優れ、高温強度が大で高温硬度も高いため、ステンレス鋼、耐熱鋼等の被削材を、高熱発生を伴い、かつ、切刃に対して、断続的にかつ衝撃的負荷がかかる高速断続切削条件で切削加工した場合にも、すぐれた耐チッピング性を発揮するようになるという理由による。
ただ、外層の合計平均層厚が3μm未満では、外層側に向かって引張残留応力が次第に減少する応力分布を形成することが困難であり、一方、その合計平均層厚が10μmを超えると、高速断続切削で異常損傷が発生しやすくなることから、外層の合計平均層厚を3〜10μmと定めた。
(f) The outer layer is a single layer composed of any one of a zirconium nitride layer (ZrN layer), a zirconium carbonitride layer (ZrCN layer) and a zirconium carbide layer (ZrC layer), or two or more layers. It is composed of a combination of multiple layers, and has excellent adhesion strength to the outer adhesion layer (TiCO layer, TiCNO layer).
The reason for configuring the outer layer as a single layer or multiple layers of a ZrN layer, a ZrCN layer, and a ZrC layer is as follows.
First, since the thermal expansion coefficient of the α-type aluminum oxide layer (α-type Al 2 O 3 layer), which is an intermediate layer, is around 8.2 × 10 −6 / ° C., the residual tensile stress decreases toward the outer layer side. In order to achieve this, it is necessary to make the thermal expansion coefficient of the outer layer smaller than that of the intermediate layer, but the thermal expansion coefficients of the ZrN layer, ZrCN layer, and ZrC layer are all smaller than that of the intermediate layer. Therefore, the residual tensile stress of the outer layer is reduced, and the ZrN layer, ZrCN layer, and ZrC layer are all excellent in heat resistance, high temperature strength, and high temperature hardness. It also demonstrates excellent chipping resistance even when the cutting material is subjected to high-temperature intermittent cutting with high heat generation and intermittent and impact load on the cutting edge. Depending on the reason.
However, if the total average layer thickness of the outer layer is less than 3 μm, it is difficult to form a stress distribution in which the tensile residual stress gradually decreases toward the outer layer side. On the other hand, if the total average layer thickness exceeds 10 μm, high speed Since abnormal damage is likely to occur during intermittent cutting, the total average layer thickness of the outer layers was determined to be 3 to 10 μm.

本発明では、上記した最内層−内層−内側密着層−中間層−外側密着層−外層という構造からなる硬質被覆層を蒸着形成した後、硬質被覆層の表面平滑化、残留応力低減のために、Al粒子やSiC粒子を圧縮空気や水圧などを用いた乾式もしくは湿式ブラスト処理を施すが、処理後の硬質被覆層最表面の表面粗さが準拠規格JIS・B0601−1994に従う測定において、Raが0.3μm以下、好ましくは0.2μm以下となるように処理を行うことにより、高速断続切削加工時の硬質被覆層の異常損傷の発生を効果的に抑制することができる。 In the present invention, after the hard coating layer having the structure of innermost layer-inner layer-inner adhesion layer-intermediate layer-outer adhesion layer-outer layer is formed by vapor deposition, the surface of the hard coating layer is smoothed and the residual stress is reduced. In addition, Al 2 O 3 particles and SiC particles are subjected to dry or wet blast treatment using compressed air or water pressure, but the surface roughness of the hard coating layer outer surface after the treatment is measured in accordance with the compliant standard JIS B0601-1994. By performing the treatment so that Ra is 0.3 μm or less, preferably 0.2 μm or less, it is possible to effectively suppress the occurrence of abnormal damage to the hard coating layer during high-speed intermittent cutting.

この発明の被覆工具は、最内層側から外層側へと向かって、引張残留応力が次第に減少するように、最内層−内層−内側密着層−中間層−外側密着層−外層という層構造で硬質被覆層を蒸着形成した後、耐熱性、高温強度、高温硬度にすぐれた外層の表面にブラスト処理を施すことによって、外層に対して圧縮応力を作用させ、また、外層に存在している冷却亀裂の拡大を抑制し、かつ、過多な2次亀裂の形成をも抑制することにより、高熱発生を伴い、切刃に対して、断続的かつ衝撃的負荷がかかる高速断続切削加工においても、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものである。   The coated tool of the present invention has a layer structure of innermost layer-inner layer-inner adhesion layer-intermediate layer-outer adhesion layer-outer layer so that the tensile residual stress gradually decreases from the innermost layer side to the outer layer side. After the coating layer is formed by vapor deposition, a compressive stress is applied to the outer layer by blasting the surface of the outer layer having excellent heat resistance, high temperature strength, and high temperature hardness, and cooling cracks existing in the outer layer. Suppresses the expansion of the secondary cracks and suppresses the formation of excessive secondary cracks, resulting in high heat generation and excellent high-speed intermittent cutting with intermittent and impact loads on the cutting edge. It exhibits chipping resistance and exhibits excellent cutting performance over a long period of time.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を準備し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアルコール中で10時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で、ISO・CNMG120408(超硬基体A〜D)およびISO・SEEN1203AFTN1(超硬基体E、F)の所定の形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、超硬基体A〜Dについては、R:0.07mmのホーニング加工を、また、超硬基体E、Fについては、切刃部に幅0.15mm、角度20度のチャンフォーホーニング加工することにより、WC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm were prepared. After blending to the composition shown, adding wax, ball mill mixing in alcohol for 10 hours and drying under reduced pressure, ISO · CNMG120408 (Carbide substrate AD) and ISO · SEEN1203AFTN1 (Carbide) at 98 MPa pressure The green compact is pressed into a green compact of a predetermined shape of the substrates E and F), and the green compact is vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. After the sintering, R: 0.07 mm honing is performed for the carbide substrates A to D, and for the carbide substrates E and F, the cutting edge has a width of 0.15 mm and an angle of 2 The tool bases A to F made of WC-based cemented carbide were manufactured by performing 0 degree Chamfor Honing.

ついで、これらの工具基体A〜F表面に、まず、表2、表3に示される条件で、最内層、内層、内側密着層、中間層、外側密着層および外層を、それぞれ表4に示される目標(合計)平均層厚となるように化学蒸着して硬質被覆層を形成し、ついで、硬質層表面(外層)に、Al砥粒を15mass%含んだ研磨液を、投射圧力0.2MPaの条件でブラスト処理し、表4に示される表面粗さの本発明被覆工具1〜18を製造した。 Next, the innermost layer, the inner layer, the inner adhesion layer, the intermediate layer, the outer adhesion layer, and the outer layer are respectively shown in Table 4 on the surfaces of these tool bases A to F under the conditions shown in Tables 2 and 3. A hard coating layer is formed by chemical vapor deposition so as to achieve a target (total) average layer thickness, and then a polishing liquid containing 15 mass% of Al 2 O 3 abrasive grains on the hard layer surface (outer layer) is projected at a projection pressure of 0. The coated tools 1-18 of the present invention having the surface roughness shown in Table 4 were produced by blasting under the condition of 2 MPa.

比較の目的で、工具基体A〜F表面に、表2、表3に示される条件で硬質被覆層を化学蒸着して被覆工具を製造(従来被覆工具1に相当する層構造)し、ついで、硬質被覆層表面を、本発明被覆工具1〜18の場合と同じ条件でブラスト処理を施すことにより、表5に示される層構造、目標合計(平均)層厚および表面粗さの比較被覆工具1〜9を製造した。   For the purpose of comparison, a hard coating layer is chemically vapor-deposited on the surfaces of the tool bases A to F under the conditions shown in Tables 2 and 3 to produce a coated tool (layer structure corresponding to the conventional coated tool 1). By subjecting the surface of the hard coating layer to blasting under the same conditions as those of the coated tools 1 to 18 of the present invention, the comparative coated tool 1 having the layer structure, target total (average) layer thickness, and surface roughness shown in Table 5 ~ 9 were produced.

さらに、比較の目的で、工具基体A〜F表面に、表2、表3に示される条件で硬質被覆層を化学蒸着し、ついで、切刃部の硬質層表面を、本発明被覆工具1〜18の場合と同じ条件でブラスト処理を施してAl層を露出させ、あるいは、ラバー砥石を用いた研磨でAl層を露出させ、切刃部以外の領域の外層はZrN層、ZrCN層あるいはZrC層で構成した、表5に示す層構造、目標合計(平均)層厚(但し、切刃部以外の領域の層厚)および表面粗さ(但し、表面粗さは、切刃部に露出するAl層の表面粗さ)の比較被覆工具10〜18(従来被覆工具2に相当する層構造)を製造した。 Furthermore, for the purpose of comparison, a hard coating layer is chemically vapor-deposited on the surfaces of the tool bases A to F under the conditions shown in Tables 2 and 3, and then the hard layer surface of the cutting edge portion is coated with the present coated tool 1 to 1. The Al 2 O 3 layer is exposed by blasting under the same conditions as in No. 18, or the Al 2 O 3 layer is exposed by polishing with a rubber grindstone, and the outer layer in the region other than the cutting edge is a ZrN layer The layer structure shown in Table 5 composed of a ZrCN layer or a ZrC layer, the target total (average) layer thickness (however, the layer thickness of the region other than the cutting edge portion) and the surface roughness (however, the surface roughness is the Comparative coated tools 10 to 18 (layer structure corresponding to the conventional coated tool 2) of the surface roughness of the Al 2 O 3 layer exposed to the blade portion were manufactured.

さらに、上記の本発明被覆工具1〜18および比較被覆工具1〜18について、これらの硬質被覆層の構成層をオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、目標組成と実質的に同じ組成を有することが確認され、また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Further, for the above-described inventive coated tools 1-18 and comparative coated tools 1-18, the constituent layers of these hard coating layers were observed using an Auger spectroscopic analyzer (observation of the longitudinal section of the layers). And the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (same longitudinal section measurement). The average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness was shown.

まず、上記の本発明被覆工具1〜5、10〜14および比較被覆工具1〜5、10〜14について、次の切削条件A、Bにより、ターニング加工評価を実施した。
[切削条件A]
被削材: JIS・SUS304の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 300 m/min、
切り込み: 2 mm、
送り量: 0.3 mm/rev.、
切削時間: 5 分、
の条件でのステンレス鋼の湿式高速断続切削試験(通常の切削速度は、200m/min)、
[切削条件B]
被削材: JIS・SUH310の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 250 m/min、
切り込み: 1.5 mm、
送り量: 0.2 mm/rev.、
切削時間: 5 分、
の条件での耐熱鋼の湿式高速断続切削試験(通常の切削速度は、150m/min)、
First, turning process evaluation was implemented by the following cutting conditions A and B about said this invention coated tool 1-5, 10-14 and comparative coated tool 1-5, 10-14.
[Cutting conditions A]
Work material: JIS / SUS304 lengthwise equally spaced 4 round bars with grooves,
Cutting speed: 300 m / min,
Incision: 2 mm,
Feed amount: 0.3 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed intermittent cutting test of stainless steel under the conditions (normal cutting speed is 200 m / min),
[Cutting conditions B]
Work material: JIS / SUH310, 4 longitudinally spaced round bars with equal intervals in the length direction,
Cutting speed: 250 m / min,
Cutting depth: 1.5 mm,
Feed amount: 0.2 mm / rev. ,
Cutting time: 5 minutes,
Wet high-speed intermittent cutting test of heat-resistant steel under the conditions (normal cutting speed is 150 m / min),

次に、上記の本発明被覆工具6〜9、15〜18および比較被覆工具6〜9、15〜18について、次の切削条件C、Dにより、ミーリング加工評価を実施した。
[切削条件C]
被削材: JIS・SUS304のブロック材、
切削速度: 250 m/min、
切り込み: 2 mm、
一刃送り量: 0.20 mm/刃、
切削時間: 5 分、
の条件でのステンレス鋼の湿式高速断続切削試験(通常の切削速度は、150m/min)、
[切削条件D]
被削材: JIS・SUH310のブロック材、
切削速度: 250 m/min、
切り込み: 1.5 mm、
一刃送り量: 0.30 mm/刃、
切削時間: 5 分、
の条件での耐熱鋼の湿式高速断続切削試験(通常の切削速度は、200m/min)、
そして、上記の各切削試験A〜Dにおける切刃の逃げ面摩耗幅を測定し、この測定結果を表6に示した。
Next, milling process evaluation was implemented by the following cutting conditions C and D about said this invention coated tool 6-9, 15-18 and comparative coated tool 6-9, 15-18.
[Cutting conditions C]
Work material: Block material of JIS / SUS304,
Cutting speed: 250 m / min,
Incision: 2 mm,
Single blade feed amount: 0.20 mm / tooth,
Cutting time: 5 minutes,
Wet high-speed intermittent cutting test of stainless steel under the conditions (normal cutting speed is 150 m / min),
[Cutting conditions D]
Work material: Block material of JIS / SUH310,
Cutting speed: 250 m / min,
Cutting depth: 1.5 mm,
Single blade feed amount: 0.30 mm / tooth,
Cutting time: 5 minutes,
Wet high-speed intermittent cutting test of heat-resistant steel under the conditions (normal cutting speed is 200 m / min),
Then, the flank wear width of the cutting edge in each of the above cutting tests A to D was measured, and the measurement results are shown in Table 6.

Figure 2009255233
Figure 2009255233

Figure 2009255233
Figure 2009255233

Figure 2009255233
Figure 2009255233

Figure 2009255233
Figure 2009255233

Figure 2009255233
Figure 2009255233

Figure 2009255233
Figure 2009255233

表4〜6に示される結果から、本発明被覆工具1〜18においては、最内層側から外層側へと向かって、引張残留応力が次第に減少するように、最内層−内層−内側密着層−中間層−外側密着層−外層という層構造で硬質被覆層を構成し、しかも、耐熱性、高温強度、高温硬度にすぐれた外層の表面にブラスト処理を施すことによって、外層に対して圧縮応力を作用させ、また、外層に存在している冷却亀裂の拡大を抑制し、かつ、過多な2次亀裂の形成をも抑制することにより、高熱発生を伴い、切刃に対して、断続的かつ衝撃的負荷がかかるステンレス鋼、耐熱鋼等の高速断続切削加工においても、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、最内層側から外層側へと向かって、引張残留応力が次第に減少するように構成されていない層構造の比較被覆工具1〜9、あるいは、引張残留応力が次第に減少するように構成されていない層構造であるばかりか切刃部に耐熱性、硬度、強度に優れたZrN層、ZrCN層、ZrC層が形成されていない比較被覆工具10〜18においては、高速断続切削加工に際し、高温条件下で切刃にかかる断続的・衝撃的高負荷に耐えられず、硬質被覆層にはチッピング、欠損、層間剥離が発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4-6, in the present invention coated tools 1-18, the innermost layer-inner layer-inner adhesion layer- so that the tensile residual stress gradually decreases from the innermost layer side toward the outer layer side. By forming a hard coating layer with a layer structure of intermediate layer-outer adhesion layer-outer layer, and applying blasting to the outer layer surface with excellent heat resistance, high temperature strength, and high temperature hardness, compressive stress is applied to the outer layer. By acting, and by suppressing the expansion of cooling cracks existing in the outer layer, and also suppressing the formation of excessive secondary cracks, it is accompanied by high heat generation and intermittent and impact on the cutting edge. Even in high-speed interrupted cutting of stainless steel, heat-resistant steel, etc., which has a heavy load, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time, whereas from the innermost layer side to the outer layer side Toward the tensile residual stress Comparatively coated tools 1 to 9 having a layer structure that is not configured to gradually decrease, or a layer structure that is not configured to gradually decrease the tensile residual stress, as well as heat resistance, hardness, and strength to the cutting edge portion In the comparative coated tools 10-18, in which the ZrN layer, the ZrCN layer, and the ZrC layer, which are excellent in resistance, are not formed, they cannot withstand intermittent / impact high loads applied to the cutting edge under high temperature conditions during high-speed intermittent cutting. It is clear that chipping, chipping, and delamination occur in the hard coating layer, and this leads to a service life in a relatively short time.

上述のように、この発明の被覆工具は、各種の鋼、ステンレス鋼および鋳鉄などの通常の条件での切削加工は勿論のこと、特に、高い熱発生を伴うとともに、切刃部に断続的かつ衝撃的負荷がかかるステンレス鋼、耐熱鋼等の高速断続切削条件でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化ならびに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only cut under normal conditions such as various types of steel, stainless steel, and cast iron, and in particular, is accompanied by high heat generation and is intermittently applied to the cutting edge. It shows excellent chipping resistance even under high-speed intermittent cutting conditions such as stainless steel and heat-resistant steel that are subjected to shock loads, and exhibits excellent cutting performance over a long period of time. It can cope with labor saving, energy saving and cost reduction of processing sufficiently satisfactorily.

ブラスト処理を施す前の、本発明被覆工具の硬質被覆層の残留応力の分布状況を示す概要説明図である。It is a general | schematic explanatory drawing which shows the distribution condition of the residual stress of the hard coating layer of this invention coating tool before performing a blast process. ブラスト処理を施した後の、本発明被覆工具の硬質被覆層の残留応力の分布状況を示す概要説明図である。It is a schematic explanatory drawing which shows the distribution state of the residual stress of the hard coating layer of this invention coated tool after performing a blast process.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、硬質被覆層が蒸着形成された表面被覆切削工具において、
(a)最内層として、0.1〜0.5μmの平均層厚を有する窒化チタン層、
(b)内層として、
組成式:Ti(C1−X
で表した場合、Xが0.2〜0.5(但し、原子比)を満足し、1〜3μmの平均層厚を有する炭窒化チタン層、
(c)内層と中間層の密着層として、0.1〜1μmの合計平均層厚を有し、炭酸化チタン層または炭窒酸化チタン層の1層以上からなる内側密着層、
(d)中間層として、1〜5μmの平均層厚を有するα型酸化アルミニウム層、
(e)中間層と外層の密着層として、0.1〜1μmの合計平均層厚を有し、炭酸化チタン層または炭窒酸化チタン層の1層以上からなる外側密着層、
(f)外層として、3〜10μmの合計平均層厚を有し、かつ、窒化ジルコニウム層、炭窒化ジルコニウム層および炭化ジルコニウム層のうちのいずれか一種の層からなる単層あるいは二種以上の層の組み合わせからなる複層、
上記(a)〜(f)の各層で構成された硬質被覆層の表面に、乾式もしくは湿式ブラストが施された表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) a titanium nitride layer having an average layer thickness of 0.1 to 0.5 μm as the innermost layer;
(B) As an inner layer,
Composition formula: Ti (C X N 1-X )
X represents 0.2 to 0.5 (provided that the atomic ratio), and a titanium carbonitride layer having an average layer thickness of 1 to 3 μm,
(C) As an adhesion layer between the inner layer and the intermediate layer, an inner adhesion layer having a total average layer thickness of 0.1 to 1 μm and comprising one or more of a titanium carbonate layer or a titanium carbonitride oxide layer,
(D) an α-type aluminum oxide layer having an average layer thickness of 1 to 5 μm as an intermediate layer;
(E) As an adhesion layer between the intermediate layer and the outer layer, an outer adhesion layer having a total average layer thickness of 0.1 to 1 μm and comprising one or more of a titanium carbonate layer or a titanium carbonitride oxide layer,
(F) The outer layer has a total average layer thickness of 3 to 10 μm, and is a single layer or two or more layers made of any one of a zirconium nitride layer, a zirconium carbonitride layer, and a zirconium carbide layer A multi-layer consisting of a combination of
A surface-coated cutting tool in which a dry or wet blast is applied to the surface of a hard coating layer composed of the layers (a) to (f).
JP2008108082A 2008-04-17 2008-04-17 Surface coated cutting tool Withdrawn JP2009255233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008108082A JP2009255233A (en) 2008-04-17 2008-04-17 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108082A JP2009255233A (en) 2008-04-17 2008-04-17 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2009255233A true JP2009255233A (en) 2009-11-05

Family

ID=41383327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008108082A Withdrawn JP2009255233A (en) 2008-04-17 2008-04-17 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2009255233A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060021A2 (en) 2009-11-10 2011-05-19 Kennametal Inc. Coated cutting insert and method for making the same
JP2012106297A (en) * 2010-11-16 2012-06-07 Mitsubishi Materials Corp Surface-coated cutting tool
JP2012106299A (en) * 2010-11-16 2012-06-07 Mitsubishi Materials Corp Surface-coated cutting tool
CN103121115A (en) * 2011-11-18 2013-05-29 钴碳化钨硬质合金公司 Coated cutting empiecement and method for manufacturing the same
US8668982B2 (en) 2009-11-10 2014-03-11 Kennametal Inc. Coated cutting insert and method for making the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060021A2 (en) 2009-11-10 2011-05-19 Kennametal Inc. Coated cutting insert and method for making the same
CN102612570A (en) * 2009-11-10 2012-07-25 钴碳化钨硬质合金公司 Coated cutting insert and method for making the same
US8323783B2 (en) * 2009-11-10 2012-12-04 Kennametal Inc. Coated cutting insert and method for making the same
US8668982B2 (en) 2009-11-10 2014-03-11 Kennametal Inc. Coated cutting insert and method for making the same
EP2499273A4 (en) * 2009-11-10 2015-11-18 Kennametal Inc COATED CUTTING PAD AND METHOD FOR MANUFACTURING THE SAME
JP2012106297A (en) * 2010-11-16 2012-06-07 Mitsubishi Materials Corp Surface-coated cutting tool
JP2012106299A (en) * 2010-11-16 2012-06-07 Mitsubishi Materials Corp Surface-coated cutting tool
CN103121115A (en) * 2011-11-18 2013-05-29 钴碳化钨硬质合金公司 Coated cutting empiecement and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6139058B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
WO2017170687A1 (en) Surface coated cutting tool
JP5013261B2 (en) Surface coated cutting tool
JP2009255233A (en) Surface coated cutting tool
JP6614446B2 (en) Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
WO2018030329A1 (en) Surface-coated cutting tool with excellent adhesion-induced chipping resistance and peel resistance
JP6245432B2 (en) Surface coated cutting tool
JP2009255234A (en) Surface coated cutting tool
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2010207977A (en) Surface coated cutting tool
JP2008296292A (en) Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2007331033A (en) Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping and abrasion resistance in high-speed intermittent cutting processing
JP6614447B2 (en) Surface coated cutting tool with excellent chipping and peeling resistance with excellent hard coating layer
JP2009255232A (en) Surface-coated cutting tool
JP5257184B2 (en) Surface coated cutting tool
JP3859658B2 (en) Surface-coated throw-away tip
JP5158560B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP2016187847A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance in mill scale uneven thickness cutting work
JP2010089220A (en) Surface-coated cutting tool
JP2009090398A (en) Diamond-coated cutting tool having excellent lubricity and machining accuracy
JP2009101463A (en) Surface-coated cutting tool
JP2006315154A (en) SURFACE COATED CERMET CUTTING TOOL IN WHICH THICK FILM alpha-TYPE ALUMINUM OXIDE LAYER EXHIBITS EXCELLENT CHIPPING RESISTANCE
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP5257178B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2007118157A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705