[go: up one dir, main page]

JP2009252463A - Miniature electric-mechanical switch - Google Patents

Miniature electric-mechanical switch Download PDF

Info

Publication number
JP2009252463A
JP2009252463A JP2008097564A JP2008097564A JP2009252463A JP 2009252463 A JP2009252463 A JP 2009252463A JP 2008097564 A JP2008097564 A JP 2008097564A JP 2008097564 A JP2008097564 A JP 2008097564A JP 2009252463 A JP2009252463 A JP 2009252463A
Authority
JP
Japan
Prior art keywords
contact portion
contact
movable contact
movable
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008097564A
Other languages
Japanese (ja)
Inventor
Yoshiki Hayazaki
嘉城 早崎
Takaaki Yoshihara
孝明 吉原
Takeo Shirai
健雄 白井
Chomei Matsushima
朝明 松嶋
Hiroshi Kawada
裕志 河田
Yosuke Hagiwara
洋右 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008097564A priority Critical patent/JP2009252463A/en
Publication of JP2009252463A publication Critical patent/JP2009252463A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

【課題】可動接点部と固定接点部との接触信頼性を向上することができる微小電気機械スイッチを提供することにある。
【解決手段】微小電気機械スイッチは、ベース基板1の一表面1a側に形成された固定接点部2と、ベース基板1の一表面1a側において固定接点部2に対向配置された可動接点部3とを備え、可動接点部3は、ベース基板1の一表面1aの法線方向を中心軸O方向とし、中心軸O方向に直交する直交面内における外周形状が正円形状に形成され、固定接点部2は、上記直交面内において中心軸Oを中心とする円の径方向に沿った方向において、可動接点部3の外周面3aに弾接される接触面20aを有した3つの接触部20を有してなり、各接触部20それぞれは、上記直交面内において、3回回転対称となる形に配置される。
【選択図】図1
An object of the present invention is to provide a micro electromechanical switch capable of improving the contact reliability between a movable contact portion and a fixed contact portion.
A microelectromechanical switch includes a fixed contact portion 2 formed on one surface 1a side of a base substrate 1 and a movable contact portion 3 disposed opposite to the fixed contact portion 2 on the one surface 1a side of the base substrate 1. The movable contact portion 3 is fixed so that the normal direction of the one surface 1a of the base substrate 1 is the central axis O direction, and the outer peripheral shape in a plane orthogonal to the central axis O direction is formed in a perfect circle shape. The contact portion 2 has three contact portions each having a contact surface 20a that is elastically contacted with the outer peripheral surface 3a of the movable contact portion 3 in a direction along a radial direction of a circle centering on the central axis O in the orthogonal plane. 20, each contact portion 20 is arranged in a shape that is rotationally symmetric three times within the orthogonal plane.
[Selection] Figure 1

Description

本発明は、MEMSスイッチやNEMSスイッチなどの微小電気機械スイッチに関するものである。   The present invention relates to a microelectromechanical switch such as a MEMS switch or a NEMS switch.

従来から、MEMSスイッチや、NEMSスイッチなどの微小電気機械スイッチが種々提案されている。この種の微小電気機械スイッチとしては、例えば特許文献1に示すようなRF用マイクロリレーが挙げられる。特許文献1に示すものは、図12(a)に示すように、一対の接点(固定接点部)100と、一対の固定接点部100間を短絡する短絡接点(可動接点部)200と、可動接点部200を各固定接点部100と接触あるいは各固定接点部100から離間するように移動させるアクチュエータ300とがハウジング400に収納される。各固定接点部100それぞれにおける可動接点部200との対向面には、複数本(図示例では4本)の台形台状(底面が長方形の角錐台状)の歯部110が形成される。一方、可動接点部200における各固定接点部100それぞれとの対向面には、台形台状の短絡歯部210が複数本ずつ(図示例では3本ずつ)形成される。   Conventionally, various micro electromechanical switches such as MEMS switches and NEMS switches have been proposed. An example of this type of microelectromechanical switch is an RF microrelay as shown in Patent Document 1. As shown in FIG. 12A, a device disclosed in Patent Document 1 includes a pair of contacts (fixed contact portions) 100, a short-circuit contact (movable contact portion) 200 that short-circuits between the pair of fixed contact portions 100, and a movable An actuator 300 that moves the contact portion 200 so as to contact with or separate from each fixed contact portion 100 is housed in the housing 400. A plurality of (in the illustrated example, four) trapezoidal trapezoidal trapezoidal (bottom-shaped truncated pyramid-shaped) tooth portions 110 are formed on the surface of each fixed contact portion 100 facing the movable contact portion 200. On the other hand, a plurality of trapezoid trapezoidal short-circuit tooth portions 210 (three in the illustrated example) are formed on the surface of the movable contact portion 200 facing each fixed contact portion 100.

特許文献1に示すものでは、アクチュエータ300を駆動することで、可動接点部200が各固定接点部100側に移動する。可動接点部200が固定接点部100側に移動した際には、図12(b)に示すように、可動接点部200の短絡歯部210と、固定接点部100の歯部110とが、各固定接点部100の隣接する歯部110間の隙間に、可動接点部200の各短絡歯部210が入り込む形(すなわち、噛合する形)で接触して、一対の固定接点部100同士が可動接点部200により電気的に接続される。
特表2004−513496号公報
In what is shown in Patent Document 1, by driving the actuator 300, the movable contact portion 200 moves to each fixed contact portion 100 side. When the movable contact portion 200 moves to the fixed contact portion 100 side, as shown in FIG. 12B, the short-circuit tooth portion 210 of the movable contact portion 200 and the tooth portion 110 of the fixed contact portion 100 are Each short-circuited tooth portion 210 of the movable contact portion 200 comes into contact with a gap between adjacent tooth portions 110 of the fixed contact portion 100 (that is, meshes), and the pair of fixed contact portions 100 are movable contacts. It is electrically connected by the unit 200.
Japanese translation of PCT publication No. 2004-513696

しかしながら、上述した特許文献1に示すものでは、一つの短絡歯部210が2つの歯部110と接触するので、短絡歯部210と2つの歯部110それぞれとの間の接圧に偏りが生じやすく、一方の歯部110と短絡歯部210とが過剰な接圧で接触することがあり、この場合、オン抵抗の悪化や、スティッキングが生じることがある。そのため、特許文献1に示すものでは、可動接点部200と固定接点部100との接触信頼性が悪いという問題があった。また、接触信頼性を向上するために、短絡歯部210を4つの歯部110で囲み、短絡歯部210の4つの側面それぞれを4つの歯部110それぞれに接触させることが考えられる。この場合には、可動接点部200と固定接点部100とを安定して接触させるために、4つの歯部110を、一対の歯部110の対向方向が互いに直交する形に配置することが好ましい。しかしながら、一対の歯部110の対向方向が互いに直交していては、一の歯部110が短絡歯部210を押圧する力は、当該一の歯部110に対向する他の歯部110でしか受けることができない。そうすると、短絡歯部210を4つの歯部110で囲むようにした場合には、可動接点部200と固定接点部100との接触面積を増やすことはできるが、接触信頼性は、一つの短絡歯部210が2つの歯部110と接触するものとほとんど差異がなく、接触信頼性が悪いという問題は依然として残ったままであった。   However, in the above-described Patent Document 1, since one short-circuit tooth portion 210 is in contact with two tooth portions 110, the contact pressure between the short-circuit tooth portion 210 and each of the two tooth portions 110 is biased. The one tooth portion 110 and the short-circuit tooth portion 210 may be contacted with excessive contact pressure, and in this case, deterioration of on-resistance or sticking may occur. Therefore, in the thing shown in patent document 1, there existed a problem that the contact reliability of the movable contact part 200 and the fixed contact part 100 was bad. In order to improve contact reliability, it is conceivable that the short-circuit tooth portion 210 is surrounded by the four tooth portions 110 and the four side surfaces of the short-circuit tooth portion 210 are brought into contact with the four tooth portions 110, respectively. In this case, in order to stably contact the movable contact portion 200 and the fixed contact portion 100, it is preferable to arrange the four tooth portions 110 so that the opposing directions of the pair of tooth portions 110 are orthogonal to each other. . However, if the opposing directions of the pair of tooth portions 110 are orthogonal to each other, the force with which one tooth portion 110 presses the short-circuit tooth portion 210 can be applied only to the other tooth portions 110 facing the one tooth portion 110. I can't receive it. Then, when the short-circuit tooth portion 210 is surrounded by the four tooth portions 110, the contact area between the movable contact portion 200 and the fixed contact portion 100 can be increased, but the contact reliability is one short-circuit tooth. There was little difference from what the part 210 was in contact with the two teeth 110 and the problem of poor contact reliability still remained.

本発明は上述の点に鑑みて為されたもので、その目的は、可動接点部と固定接点部との接触信頼性を向上することができる微小電気機械スイッチを提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a micro electromechanical switch capable of improving the contact reliability between a movable contact portion and a fixed contact portion.

上述の課題を解決するために、請求項1の発明では、ベース基板の一表面側に形成された固定接点部と、ベース基板の上記一表面側において固定接点部に対向する部位に可動接点部が形成された可撓部を有しベース基板の上記一表面側に固定された可動接点支持部と、可動接点部が固定接点部に接触するように可動接点支持部の可撓部を変形させるアクチュエータとを備え、可動接点部は、ベース基板の上記一表面の法線方向を中心軸の方向とし、固定接点部は、上記中心軸の方向に直交する直交面内において上記中心軸を中心とする円の径方向に沿った方向において、可動接点部の外周面に弾接される接触面を有した複数の接触部を有してなり、接触部の数は3の整数倍の数であり、各接触部それぞれは、上記直交面内において、上記中心軸を回転軸とし接触部の数だけ回転位置を有する回転対称となる形に配置されていることを特徴とする。   In order to solve the above-described problem, in the invention of claim 1, a fixed contact portion formed on one surface side of the base substrate, and a movable contact portion at a portion facing the fixed contact portion on the one surface side of the base substrate. And a movable contact support portion fixed to the one surface side of the base substrate, and the flexible portion of the movable contact support portion is deformed so that the movable contact portion contacts the fixed contact portion. The movable contact portion has a normal direction of the one surface of the base substrate as a central axis direction, and the fixed contact portion is centered on the central axis in an orthogonal plane perpendicular to the central axis direction. A plurality of contact portions having contact surfaces that are elastically contacted with the outer peripheral surface of the movable contact portion in a direction along a radial direction of the circle, and the number of contact portions is an integer multiple of 3 , Each contact portion has the center in the orthogonal plane Characterized in that it is arranged to form a rotationally symmetric with only rotational position number of the contact portion and the rotation axis.

請求項1の発明によれば、接触部が可動接点部を押圧する力の向きは、可動接点部の中心軸方向に交差する方向であり、各接触部それぞれは、上記直交面内において、可動接点部の中心軸を回転軸とし接触部の数だけ回転位置を有する回転対称となる形に配置されているので、接触部が可動接点部を押圧する力の大きさが等しければ、各接触部それぞれと可動接点部との間の接圧はいずれも等しくなり、また、接触部の数を3の整数倍の数としているので、一の接触部が可動接点部を押圧する力を、複数の他の接触部で受けることができて、接触部が可動接点部を押圧する力に偏りがある場合であっても、接触部の数が2つや4つであるような場合に比べれば、可動接点部に各接触部を均等な接圧で接触させることができるから、可動接点部と固定接点部との接触状態が安定し、その結果、オン抵抗の悪化や、スティッキングの発生などを抑制することができるようになり、可動接点部と固定接点部との接触信頼性を向上することができる。   According to the first aspect of the present invention, the direction of the force with which the contact portion presses the movable contact portion is a direction intersecting the central axis direction of the movable contact portion, and each contact portion is movable within the orthogonal plane. Since the central axis of the contact part is a rotational axis and the rotational position is the same as the number of contact parts, the contact parts are arranged in a rotationally symmetric shape. Since the contact pressure between each and the movable contact portion is equal, and the number of contact portions is an integer multiple of 3, the force with which one contact portion presses the movable contact portion is set to a plurality of contact points. Even if there is a bias in the force that can be received by other contact parts and the contact part presses the movable contact part, it is movable compared to the case where the number of contact parts is two or four. Since each contact part can be brought into contact with the contact part with uniform contact pressure, the movable contact part The contact state with the fixed contact portion is stabilized, and as a result, deterioration of on-resistance and occurrence of sticking can be suppressed, and the contact reliability between the movable contact portion and the fixed contact portion is improved. Can do.

請求項2の発明では、請求項1の発明において、上記可動接点部の上記外周面は、上記ベース基板の上記一表面から離れるにつれて上記中心軸から離れる形に傾斜していることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the outer peripheral surface of the movable contact portion is inclined so as to move away from the central axis as the distance from the one surface of the base substrate increases. .

請求項2の発明によれば、可動接点部の外周面が接触面上を滑りやすくなるから、アクチュエータの消費電力を低減することができ、また、可動接点部の外周面と接触部の接触面との接触部分の面積を増やすことができるから、接触抵抗を低くすることができて、オン抵抗の悪化や、スティッキングの発生などを抑制することができる。   According to the invention of claim 2, since the outer peripheral surface of the movable contact portion easily slides on the contact surface, the power consumption of the actuator can be reduced, and the outer peripheral surface of the movable contact portion and the contact surface of the contact portion. Therefore, the contact resistance can be reduced, and deterioration of on-resistance and occurrence of sticking can be suppressed.

請求項3の発明では、請求項1または2の発明において、上記各接触部それぞれの上記接触面は、上記ベース基板の上記一表面から離れるにつれて上記中心軸から離れる形に傾斜していることを特徴とする。   According to a third aspect of the invention, in the first or second aspect of the invention, the contact surface of each of the contact portions is inclined so as to move away from the central axis as the distance from the one surface of the base substrate increases. Features.

請求項3の発明によれば、可動接点部の外周面が接触面上を滑りやすくなるから、アクチュエータの消費電力を低減することができ、また、可動接点部の外周面と接触部の接触面との接触部分の面積を増やすことができるから、接触抵抗を低くすることができて、オン抵抗の悪化や、スティッキングの発生などを抑制することができる。   According to the invention of claim 3, since the outer peripheral surface of the movable contact portion becomes easy to slide on the contact surface, the power consumption of the actuator can be reduced, and the outer peripheral surface of the movable contact portion and the contact surface of the contact portion. Therefore, the contact resistance can be reduced, and deterioration of on-resistance and occurrence of sticking can be suppressed.

請求項4の発明では、請求項1〜3のうちいずれか1項の発明において、上記固定接点部は、上記接触部の上記接触面を上記可動接点部の上記外周面に弾接させる接圧バネ部を、上記各接触部それぞれに対して複数備えてなることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the fixed contact portion is a contact pressure that elastically contacts the contact surface of the contact portion with the outer peripheral surface of the movable contact portion. A plurality of spring portions are provided for each of the contact portions.

請求項4の発明によれば、接触部に対して1つの接圧バネ部を設ける場合に比べれば、接触部の接触面が可動接点部の外周面に、可動接点部の中心軸に直交する直交面内において中心軸を中心とする円の径方向に沿った方向で弾接し易くなるから、接触信頼性が向上する。   According to the invention of claim 4, the contact surface of the contact portion is perpendicular to the central axis of the movable contact portion, compared to the case where one contact pressure spring portion is provided for the contact portion. In the orthogonal plane, it is easy to make elastic contact in the direction along the radial direction of the circle centered on the central axis, so that the contact reliability is improved.

請求項5の発明では、請求項1〜4のうちいずれか1項の発明において、上記固定接点部は、上記直交面内において上記径方向に直交する方向において上記接触部を挟み込むガイド部を備えることを特徴とする。   The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein the fixed contact portion includes a guide portion that sandwiches the contact portion in a direction perpendicular to the radial direction in the orthogonal plane. It is characterized by that.

請求項5の発明によれば、接触部が、可動接点部の中心軸に直交する直交面内において中心軸を中心とする円の径方向に沿った方向以外の方向に変位し難くなるので、接触部の接触面が可動接点部の外周面に、上記径方向に沿った方向で弾接し易くなるから、接触信頼性が向上する。   According to the invention of claim 5, the contact portion is difficult to be displaced in a direction other than the direction along the radial direction of the circle centering on the central axis in an orthogonal plane orthogonal to the central axis of the movable contact portion. Since the contact surface of the contact portion is easily elastically contacted with the outer peripheral surface of the movable contact portion in the direction along the radial direction, the contact reliability is improved.

本発明は、可動接点部に固定接点部の各接触部を均等な接圧で接触させることができるから、可動接点部と固定接点部との接触状態が安定し、その結果、オン抵抗の悪化や、スティッキングの発生などを抑制することができるようになり、可動接点部と固定接点部との接触信頼性を向上することができるという効果を奏する。   In the present invention, each contact portion of the fixed contact portion can be brought into contact with the movable contact portion with equal contact pressure, so that the contact state between the movable contact portion and the fixed contact portion is stabilized, and as a result, the on-resistance is deteriorated. In addition, the occurrence of sticking can be suppressed, and the contact reliability between the movable contact portion and the fixed contact portion can be improved.

(実施形態1)
本実施形態の微小電気機械スイッチは、例えば、高周波信号の伝送に使用されるMEMSスイッチであり、図1および図2に示すように、ガラスなどの絶縁材料により形成されたベース基板1の一表面1a側(図1(b)における上面側)に形成された固定接点部2と、ベース基板1の一表面1a側において固定接点部2に対向する部位に可動接点部3が形成された可撓部40を有しベース基板1の一表面1a側に固定された可動接点支持部4と、可動接点部3が固定接点部2に接触するように可動接点支持部4の可撓部40を変形させる駆動手段となるアクチュエータ5を備える。なお、図1(b)では可動接点支持部4の図示を省略している。
(Embodiment 1)
The microelectromechanical switch of this embodiment is a MEMS switch used for transmission of a high-frequency signal, for example, and as shown in FIGS. 1 and 2, one surface of a base substrate 1 formed of an insulating material such as glass. A flexible contact portion 2 formed on the 1a side (the upper surface side in FIG. 1B) and a flexible contact portion 3 formed on a portion of the one surface 1a side of the base substrate 1 facing the fixed contact portion 2. The movable contact support portion 4 having the portion 40 and fixed to the one surface 1a side of the base substrate 1 and the flexible portion 40 of the movable contact support portion 4 are deformed so that the movable contact portion 3 contacts the fixed contact portion 2. An actuator 5 serving as a driving means is provided. In addition, illustration of the movable contact support part 4 is abbreviate | omitted in FIG.1 (b).

ベース基板1の一表面1aは平坦な面に形成されており、当該一表面1a側には、図2に示すように、一対の信号線6が形成される。一方の信号線6(以下、必要に応じて符号6Aで表す)は、固定接点部2に接続され、他方の信号線6(以下、必要に応じて符号6Bで表す)は、可動接点部3に電気的に接続される。したがって、可動接点部3が固定接点部2に接触することによって、信号線6A,6B間が電気的に接続される。また、信号線6Bには、上記の可動接点支持部4が接合される接合部6aが形成される。なお、ベース基板1は、ガラスに限らず、セラミックスなどにより形成されたものであってもよい。   One surface 1a of the base substrate 1 is formed on a flat surface, and a pair of signal lines 6 are formed on the one surface 1a side as shown in FIG. One signal line 6 (hereinafter referred to as reference numeral 6A as required) is connected to the fixed contact portion 2, and the other signal line 6 (hereinafter referred to as reference numeral 6B as required) is connected to the movable contact portion 3. Is electrically connected. Therefore, when the movable contact portion 3 contacts the fixed contact portion 2, the signal lines 6A and 6B are electrically connected. The signal line 6B is formed with a joint portion 6a to which the movable contact support portion 4 is joined. The base substrate 1 is not limited to glass but may be formed of ceramics or the like.

可撓部40は、例えばシリコン基板よりなる基部40aを備える。基部40aは、可撓性が得られるように、厚みが薄い矩形の帯状に形成される。可撓部40の長手方向の寸法(本実施形態の場合、基部40aの長手方向の寸法に等しい)は、その一端部が接合部6aに、他端部が固定接点部2にそれぞれ対向可能な長さに設定される。   The flexible portion 40 includes a base portion 40a made of, for example, a silicon substrate. The base 40a is formed in a rectangular strip shape with a small thickness so that flexibility can be obtained. The dimension of the flexible part 40 in the longitudinal direction (in the case of this embodiment, equal to the dimension in the longitudinal direction of the base part 40a) can be opposed to the joint part 6a at one end and to the fixed contact part 2 at the other end. Set to length.

基部40aの厚み方向の一面(図2における下面)の全面には、金属薄膜(例えばAu薄膜)よりなる導体部40bが形成される。導体部40bにおける基部40a側とは反対側(図2における下面側)の長手方向の一端側(図2における左側)には、金属材料(例えばAu)よりなる角柱状の支持部41が形成され、長手方向の他端側(図2における右側)には可動接点部3が設けられる。   A conductor portion 40b made of a metal thin film (for example, an Au thin film) is formed on the entire surface of one surface (the lower surface in FIG. 2) in the thickness direction of the base portion 40a. A prismatic support portion 41 made of a metal material (for example, Au) is formed on one end side (left side in FIG. 2) in the longitudinal direction of the conductor portion 40b opposite to the base portion 40a side (the lower surface side in FIG. 2). The movable contact portion 3 is provided on the other end side in the longitudinal direction (the right side in FIG. 2).

支持部41は、可撓部40とベース基板1との間に所定の隙間が形成されるように、可撓部40をベース基板1の一表面1a側において支持するものである。上述した可動接点支持部4は、可撓部40と支持部41とを有した断面L字形に形成されており、支持部41の先端面(図2における下端面)を、信号線6Bの接合部6aの表面(図2における上面)に接合することで、ベース基板1の一表面1a側に固定される。これによって、可撓部40は、導体部40bをベース基板1側に向けるとともに、厚み方向がベース基板1の厚み方向と同方向となる形で、ベース基板1の一表面1a側に配置される。また、可動接点部3と信号線6Bとが、導体部40bおよび支持部41を通じて電気的に接続される。   The support portion 41 supports the flexible portion 40 on the one surface 1 a side of the base substrate 1 so that a predetermined gap is formed between the flexible portion 40 and the base substrate 1. The movable contact support portion 4 described above is formed in an L-shaped cross section having a flexible portion 40 and a support portion 41, and the front end surface (lower end surface in FIG. 2) of the support portion 41 is joined to the signal line 6B. By bonding to the surface of the portion 6a (upper surface in FIG. 2), the base substrate 1 is fixed to the one surface 1a side. Thus, the flexible portion 40 is disposed on the one surface 1a side of the base substrate 1 such that the conductor portion 40b faces the base substrate 1 and the thickness direction is the same as the thickness direction of the base substrate 1. . In addition, the movable contact portion 3 and the signal line 6B are electrically connected through the conductor portion 40b and the support portion 41.

なお、支持部41と可動接点部3との距離は、可撓部40の変形時に、可動接点部3がその中心軸O方向に沿って移動するとみなせるように、可動接点部3と固定接点部2との距離よりも十分に長くしている。   The distance between the support portion 41 and the movable contact portion 3 is such that when the flexible portion 40 is deformed, the movable contact portion 3 can be regarded as moving along the central axis O direction. 2 is sufficiently longer than the distance to 2.

アクチュエータ5は、静電引力(クーロン力)を利用して可撓部40を変形させるものであり、ベース基板1の一表面1a側において、固定接点部2と信号線6Bとの間に形成された固定電極50を備える。本実施形態の微小電気機械スイッチでは、可動接点支持部4の導体部40bを、固定電極50に対応する可動電極として用いる。したがって、導体部40bと固定電極50との間に所定の駆動電圧を印加することで、導体部40bが固定電極50側に移動し、これによって、可撓部40を、その先端部(長手方向の他端部)が固定接点部2に近付くように変形させる。   The actuator 5 deforms the flexible portion 40 using electrostatic attraction (Coulomb force), and is formed between the fixed contact portion 2 and the signal line 6B on the one surface 1a side of the base substrate 1. The fixed electrode 50 is provided. In the micro electromechanical switch of the present embodiment, the conductor portion 40 b of the movable contact support portion 4 is used as a movable electrode corresponding to the fixed electrode 50. Therefore, by applying a predetermined driving voltage between the conductor portion 40b and the fixed electrode 50, the conductor portion 40b moves to the fixed electrode 50 side, and thereby the flexible portion 40 is moved to the tip portion (longitudinal direction). The other end portion of the contact portion 2 is deformed so as to approach the fixed contact portion 2.

可動接点部3は、図1(b)および図2に示すように、ベース基板1の一表面1aの法線方向(本実施形態の場合、ベース基板1の厚み方向に等しい)を中心軸O方向とする円錐台状に形成される。したがって、本実施形態における可動接点部3は、中心軸Oに直交する直交面内における外周形状が正円形状である。また、可動接点部3は、直径が大きいほうの一底面(図2における上底面)が可撓部40側、直径が小さいほうの他底面(図2における下底面)がベース基板1側となる形で、可撓部40に固定される。そのため、可動接点部3の外周面3aは、ベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜している。   As shown in FIGS. 1B and 2, the movable contact portion 3 has a normal axis direction of one surface 1a of the base substrate 1 (in the present embodiment, equal to the thickness direction of the base substrate 1) as a central axis O. It is formed in a truncated cone shape. Therefore, the movable contact portion 3 according to the present embodiment has a perfect circular outer peripheral shape in an orthogonal plane orthogonal to the central axis O. In the movable contact portion 3, one bottom surface (upper bottom surface in FIG. 2) having a larger diameter is on the flexible portion 40 side, and the other bottom surface (lower bottom surface in FIG. 2) is on the base substrate 1 side. In form, it is fixed to the flexible part 40. Therefore, the outer peripheral surface 3 a of the movable contact portion 3 is inclined so as to be separated from the central axis O as the distance from the one surface 1 a of the base substrate 1 is increased.

上述した可動接点部3および可動接点支持部4の形成方法について図3を参照して説明する。なお、以下の説明では、導体部40b、支持部41、および可動接点部3の材料としてAuを用いた例について説明する。   A method of forming the movable contact portion 3 and the movable contact support portion 4 described above will be described with reference to FIG. In the following description, an example in which Au is used as a material for the conductor portion 40b, the support portion 41, and the movable contact portion 3 will be described.

まず、基部40aの基礎となるシリコン基板70の厚み方向の一面側に、導体部40bの基礎となる導体層71をスパッタ法により形成する。導体層71を形成した後には、導体層71上にレジスト層72を形成する。レジスト層72には、可動接点部3を形成するための開口72aが形成される。この開口72aは、導体層71から離れるにつれて内径が小さく形成される(開口72aの内側面が逆テーパ状に形成される)。また、レジスト層72には、支持部41を形成するための矩形状の開口(図示せず)が形成される。このようにレジスト層72を形成した後には、導体層71をシード層として用いてAuを、電気メッキ法により、可動接点部3用の開口72aおよび支持部41用の上記開口それぞれの内部が隙間なく埋め込まれるように析出させて、可動接点部3および支持部41を形成する。その後に、レジスト層72の除去し、シリコン基板70および導体層71を所望の形状に加工することにより、可動接点部3が可撓部40に形成された可動接点支持部4が得られる。   First, the conductor layer 71 serving as the basis of the conductor portion 40b is formed by sputtering on one surface side in the thickness direction of the silicon substrate 70 serving as the basis of the base portion 40a. After the conductor layer 71 is formed, a resist layer 72 is formed on the conductor layer 71. An opening 72 a for forming the movable contact portion 3 is formed in the resist layer 72. The opening 72a is formed to have a smaller inner diameter as the distance from the conductor layer 71 increases (the inner surface of the opening 72a is formed in a reverse taper shape). In addition, a rectangular opening (not shown) for forming the support portion 41 is formed in the resist layer 72. After the resist layer 72 is formed in this way, the inside of each of the opening 72a for the movable contact portion 3 and the opening for the support portion 41 is a gap by electroplating using Au using the conductor layer 71 as a seed layer. The movable contact portion 3 and the support portion 41 are formed by being deposited so as to be embedded without being formed. Thereafter, the resist layer 72 is removed, and the silicon substrate 70 and the conductor layer 71 are processed into desired shapes, whereby the movable contact support portion 4 in which the movable contact portion 3 is formed on the flexible portion 40 is obtained.

固定接点部2は、図1(a)に示すように、上記直交面内において上記径方向に沿った方向において、可動接点部3の外周面3aに弾接される後述の接触面20aを有した複数(本実施形態では3つ)の接触部20を備える。各接触部20は、ベース基板1の一表面1aへの可動接点部3の投影領域Pを囲う空洞部21aを有した枠体部21に支持される。なお、図示例では枠体部21の外周形状は正方形状であるが、これは枠体部21を外周形状が正方形状のものに限定する趣旨ではない。   As shown in FIG. 1A, the fixed contact portion 2 has a contact surface 20a described later that is elastically contacted with the outer peripheral surface 3a of the movable contact portion 3 in the direction along the radial direction in the orthogonal plane. A plurality of (three in this embodiment) contact portions 20 are provided. Each contact portion 20 is supported by a frame body portion 21 having a hollow portion 21 a that surrounds the projection region P of the movable contact portion 3 onto one surface 1 a of the base substrate 1. In the illustrated example, the outer peripheral shape of the frame body portion 21 is a square shape, but this does not mean that the frame body portion 21 is limited to a square outer peripheral shape.

空洞部21aは、上記直交面内において中心軸Oを中心とする円の径方向を長手方向とする長方形状の複数(図示例では3つ)の第1空間部21bと、複数の第1空間部21bを相互に連通させる第2空間部21cとで構成される。第2空間部21cは中心軸Oを中心とし可動接点部3の外径(可撓部40側の底面の外径)より大きい内径を有する円形状に形成される。この空洞部21aにおいて、上記直交面内における隣接する第1空間部21bの中心線間の角度は何れも等しい(本実施形態の場合、第1空間部21bの数が3つであるから、120度)。したがって、上記直交面内における空洞部21aの形状は、3回回転対称となっている。   The hollow portion 21a includes a plurality of (three in the illustrated example) first space portions 21b and a plurality of first spaces having a longitudinal direction in the radial direction of a circle centered on the central axis O in the orthogonal plane. It is comprised with the 2nd space part 21c which connects the part 21b mutually. The second space portion 21 c is formed in a circular shape having an inner diameter larger than the outer diameter of the movable contact portion 3 (the outer diameter of the bottom surface on the flexible portion 40 side) with the central axis O as the center. In the hollow portion 21a, the angles between the center lines of the adjacent first space portions 21b in the orthogonal plane are all equal (in the present embodiment, the number of the first space portions 21b is three, so that 120 Every time). Therefore, the shape of the cavity 21a in the orthogonal plane is three-fold rotationally symmetric.

接触部20は、直方体状に形成されており、図1(a)に示すように、長手方向を第1空間部21bの長手方向(すなわち、上記直交面内において中心軸Oを中心とする円の径方向)に沿わせ、かつ長手方向の一端側が第2空間部21cに長手方向の他端側が第1空間部21bに存在する形で、空洞部21の内側に配置される。すなわち、各接触部20それぞれは、上記直交面内において、中心軸Oを回転軸とし接触部20の数だけ回転位置を有する回転対称(すなわち、本実施形態では接触部20の数が3であるから、3回回転対称)となる形に配置されている。   The contact portion 20 is formed in a rectangular parallelepiped shape, and as shown in FIG. 1A, the longitudinal direction is a circle centered on the central axis O in the longitudinal direction of the first space portion 21b (that is, in the orthogonal plane). ) And one end side in the longitudinal direction exists in the second space portion 21c, and the other end side in the longitudinal direction exists in the first space portion 21b. That is, each contact portion 20 is rotationally symmetric with the center axis O as the rotation axis and the rotational positions as many as the contact portions 20 in the orthogonal plane (that is, the number of the contact portions 20 is 3 in this embodiment). To three-fold rotational symmetry).

この接触部20は、その長手方向の一端側(すなわち中心軸O側)の側面が上述の接触面20aとして用いられる。当該接触面20aは、図1(b)に示すように、ベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜している。この接触面20aの傾斜角度θ(図1(b)参照)は、可動接点部3の外周面3aの傾斜角度φ(図1(b)参照)と略等しくすることが好ましい。また、上記直交面内における接触面20aの曲率は、上記直交面内における外周面3aの曲率よりやや大きい値とすることが好ましい。このようにすれば、接触面20aが外周面3aに弾接した際の接触面積を増やすことができる。一方、接触部20の幅寸法(上記直交面内において上記径方向に直交する方向における寸法)は、第1空間部21bの幅寸法(上記直交面内において上記径方向に直交する方向における寸法)よりやや小さくなっている。これによって、第1空間部21bの幅方向における両内側面が、接触部20を挟み込むガイド部を構成する。当該ガイド部によれば、接触部20が上記径方向以外の方向に移動しようとしても、接触部20がガイド部に当たることで、接触部20の規定方向(上記径方向)以外への移動が阻害され、接触部20は、上記径方向に沿った方向へ移動させられる。   As for this contact part 20, the side surface of the one end side (namely, central axis O side) of the longitudinal direction is used as the above-mentioned contact surface 20a. As shown in FIG. 1B, the contact surface 20 a is inclined so as to be separated from the central axis O as it is away from the one surface 1 a of the base substrate 1. The inclination angle θ (see FIG. 1B) of the contact surface 20a is preferably substantially equal to the inclination angle φ (see FIG. 1B) of the outer peripheral surface 3a of the movable contact portion 3. Moreover, it is preferable that the curvature of the contact surface 20a in the said orthogonal surface is a value a little larger than the curvature of the outer peripheral surface 3a in the said orthogonal surface. If it does in this way, the contact area at the time of the contact surface 20a elastically contacting the outer peripheral surface 3a can be increased. On the other hand, the width dimension of the contact portion 20 (the dimension in the direction orthogonal to the radial direction in the orthogonal plane) is the width dimension of the first space portion 21b (the dimension in the direction orthogonal to the radial direction in the orthogonal plane). A little smaller. As a result, both inner side surfaces in the width direction of the first space portion 21 b constitute a guide portion that sandwiches the contact portion 20. According to the guide part, even if the contact part 20 tries to move in a direction other than the radial direction, the contact part 20 hits the guide part, and the movement of the contact part 20 in a direction other than the specified direction (the radial direction) is obstructed. Then, the contact part 20 is moved in a direction along the radial direction.

上述した接触部20の長手方向の他端側の側面と、当該側面に対向する第1収納部21bの内面との間は、接圧バネ部22によって一体に連結される。   A contact pressure spring portion 22 integrally connects the side surface on the other end side in the longitudinal direction of the contact portion 20 and the inner surface of the first storage portion 21b facing the side surface.

接圧バネ部22は、上記径方向に沿った方向において伸縮可能な形(弾性を有する形)に形成される。そのため、接触部20は、上記径方向に沿った方向に進退可能な形で枠体部21に支持される。また、接圧バネ部22の自然長(接圧バネ部22に負荷がかけられていないときの上記径方向に沿った方向の長さ)は、中心軸O方向において接触部20の接触面20aと可動接点部3の外周面3aとが重なる位置に、接触部20を配置できる長さに設定される。   The contact pressure spring part 22 is formed in a shape (elastic shape) that can be expanded and contracted in a direction along the radial direction. Therefore, the contact portion 20 is supported by the frame body portion 21 so as to be able to advance and retreat in the direction along the radial direction. The natural length of the contact pressure spring portion 22 (the length in the direction along the radial direction when no load is applied to the contact pressure spring portion 22) is the contact surface 20a of the contact portion 20 in the central axis O direction. And a length at which the contact portion 20 can be disposed at a position where the outer peripheral surface 3a of the movable contact portion 3 overlaps.

ところで、本実施形態における固定接点部2では、図1(a)に示すように、一つの接触部20に対して接圧バネ部22が2つずつ設けられる。2つの接圧バネ部22同士は、上記直交面内において、上記径方向に直交する方向に離間しており、これによって、接触部20が、上記径方向以外の方向に移動し難くしている。なお、本実施形態における接圧バネ部22は、上記直交面内において、上記径方向に直交する方向に凸となった弧状(弓状)に形成されているが、この形状に限定されず、上記径方向に沿った方向において伸縮可能な形に形成されていればよい。   By the way, in the fixed contact part 2 in this embodiment, as shown to Fig.1 (a), two contact pressure spring parts 22 are provided with respect to the one contact part 20, respectively. The two contact pressure spring portions 22 are separated from each other in the direction orthogonal to the radial direction in the orthogonal plane, thereby making it difficult for the contact portion 20 to move in a direction other than the radial direction. . In addition, although the contact pressure spring part 22 in this embodiment is formed in the arc shape (bow shape) which became convex in the direction orthogonal to the said radial direction in the said orthogonal plane, it is not limited to this shape, What is necessary is just to be formed in the form which can be expanded-contracted in the direction along the said radial direction.

上述した固定接点部2では、接触部20を上記径方向に沿った方向に移動可能とするために、図1(b)に示すように、接触部20および接圧バネ部22とベース基板1の一表面1aとの間に隙間Sを形成する必要がある。   In the fixed contact portion 2 described above, in order to make the contact portion 20 movable in the direction along the radial direction, as shown in FIG. It is necessary to form a gap S between the first surface 1a.

以下、ベース基板1の一表面1aとの間に隙間Sを有するような固定接点部2の形成方法について図4を参照して説明する。なお、以下の説明では、ベース基板1としてガラス基板、固定接点部2の材料としてAuを用いた例について説明する。   Hereinafter, a method for forming the fixed contact portion 2 having the gap S with the one surface 1a of the base substrate 1 will be described with reference to FIG. In the following description, an example in which a glass substrate is used as the base substrate 1 and Au is used as the material of the fixed contact portion 2 will be described.

まず、ベース基板1の一表面1a側に、CVD法などを用いて犠牲層80を形成する(図4(a)参照)。なお、犠牲層80の材料としては、Cuなどを用いることができる。次に、CVD法などを用いて、犠牲層80を覆う形でAuよりなるシード層81を形成し、図4(b)に示す構造を得る。シード層81を形成した後には、シード層81上にレジスト層82を形成し、このレジスト層82を、フォトリソグラフィ技術を利用して、所望の形状にパターニングした(所望の固定接点部2の形状が得られるようにパターニングした)後に、電気メッキ法によりAuをシード層81に析出させることによりAuよりなるメッキ層83を形成し、図4(c)に示す構造を得る。メッキ層83を形成した後には、エッチング技術を利用して、レジスト層82を除去してから、シード層81の不要部分(メッキ層83より露出するシード層81の部分)81aを除去して、犠牲層80を露出させる(図4(d)参照)。最後に、犠牲層81を除去することで、図4(e)に示すように、ベース基板1の一表面1aとの間に隙間Sを有した固定接点部2が得られる。なお、固定接点部2の形成と同時に、信号線6や、固定電極50を形成するようにしてもよい。   First, a sacrificial layer 80 is formed on one surface 1a side of the base substrate 1 by using a CVD method or the like (see FIG. 4A). As a material for the sacrificial layer 80, Cu or the like can be used. Next, a seed layer 81 made of Au is formed so as to cover the sacrificial layer 80 by using a CVD method or the like, and the structure shown in FIG. 4B is obtained. After the seed layer 81 is formed, a resist layer 82 is formed on the seed layer 81, and this resist layer 82 is patterned into a desired shape using a photolithography technique (the shape of the desired fixed contact portion 2). After that, the plating layer 83 made of Au is formed by depositing Au on the seed layer 81 by electroplating to obtain the structure shown in FIG. After the plating layer 83 is formed, the resist layer 82 is removed using an etching technique, and then an unnecessary portion of the seed layer 81 (a portion of the seed layer 81 exposed from the plating layer 83) 81a is removed. The sacrificial layer 80 is exposed (see FIG. 4D). Finally, by removing the sacrificial layer 81, as shown in FIG. 4E, the fixed contact portion 2 having a gap S between the surface 1a of the base substrate 1 is obtained. Note that the signal line 6 and the fixed electrode 50 may be formed simultaneously with the formation of the fixed contact portion 2.

また、固定接点部2の形成方法の他例について図5を参照して説明する。まず、ベース基板1aの一表面1a側に、サンドブラスト技術やエッチング技術などを用いて、凹部1bを形成する(図5(a)参照)。その後に、ベース基板1の凹部1b内にCVD法などを用いて犠牲層80を形成し、続いて犠牲層80の表面(図5(b)における上面)がベース基板1の一表面1aと同一平面上に位置するようにCMPによる平坦化処理を行い、図5(b)に示す構造を得る。その後に、上述した方法と同様の方法にて、シード層81を形成し(図5(c)参照)、レジスト層82およびメッキ層83を形成し(図5(d)参照)、レジスト層82およびシード層81の不要部分81aを除去し(図5(e)参照)、犠牲層81を除去することで、図5(f)に示すように、ベース基板1の一表面との間に隙間Sを有した固定接点部2が得られる。なお、このような固定接点部2は、上述した方法に限定されず、周知のマイクロマシニング技術(例えばバルクマイクロマシニング技術)を利用して形成することができる。   Another example of the method for forming the fixed contact portion 2 will be described with reference to FIG. First, the concave portion 1b is formed on one surface 1a side of the base substrate 1a by using a sand blast technique or an etching technique (see FIG. 5A). Thereafter, a sacrificial layer 80 is formed in the recess 1b of the base substrate 1 by using a CVD method or the like, and then the surface of the sacrificial layer 80 (the upper surface in FIG. 5B) is the same as the one surface 1a of the base substrate 1. A planarization process by CMP is performed so as to be positioned on a plane, and a structure shown in FIG. 5B is obtained. Thereafter, a seed layer 81 is formed by the same method as described above (see FIG. 5C), a resist layer 82 and a plating layer 83 are formed (see FIG. 5D), and the resist layer 82 is formed. Then, unnecessary portions 81a of the seed layer 81 are removed (see FIG. 5E), and the sacrificial layer 81 is removed, so that a gap is formed between the surface of the base substrate 1 and the surface of the base substrate 1, as shown in FIG. A fixed contact portion 2 having S is obtained. Such a fixed contact portion 2 is not limited to the above-described method, and can be formed using a known micromachining technique (for example, a bulk micromachining technique).

上述した本実施形態の微小電気機械スイッチは、アクチュエータ5を駆動していない常時は、可動接点部3と固定接点部2とが離間しており、一対の信号線6A,6B間は遮断される(オフ状態)。そして、アクチュエータ5を駆動すると、上述したように可撓部40が変形させられて、可動接点部3が固定接点部2側(図1(b)における下側)に移動する。これによって、可動接点部3は、各接触部20それぞれの接触面20aで囲まれた空間部に入り込む。接触部20の接触面20aは、中心軸O方向において可動接点部3の外周面3aと重なっているから、可動接点部3の外周面3aは、各接触部20の接触面20aそれぞれに当接する。   In the micro electromechanical switch of the present embodiment described above, the movable contact portion 3 and the fixed contact portion 2 are separated from each other when the actuator 5 is not driven, and the pair of signal lines 6A and 6B is cut off. (Off state). When the actuator 5 is driven, the flexible portion 40 is deformed as described above, and the movable contact portion 3 moves to the fixed contact portion 2 side (the lower side in FIG. 1B). Thereby, the movable contact portion 3 enters a space portion surrounded by the contact surface 20a of each contact portion 20. Since the contact surface 20a of the contact portion 20 overlaps the outer peripheral surface 3a of the movable contact portion 3 in the direction of the central axis O, the outer peripheral surface 3a of the movable contact portion 3 abuts on the contact surface 20a of each contact portion 20 respectively. .

この状態からさらに可動接点部3が移動すると(図1(b)における下側に移動すると)、可動接点部3の外周面3aが接触面20a上を摺動するのであるが、可動接点部3の外周面3aおよび接触面20aそれぞれはベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜しているから、可動接点部3がベース基板1側に移動するにつれて、接触部20は、投影領域Pより退出するように(第1空間部21b側に)移動させられる。このように接触部20が第1空間部21b側に移動することによって、接圧バネ部22が圧縮されるから、接触部20は、接圧バネ部22の復元力に応じた力が可動接点部3を押圧する。   When the movable contact portion 3 further moves from this state (moves downward in FIG. 1B), the outer peripheral surface 3a of the movable contact portion 3 slides on the contact surface 20a. Since each of the outer peripheral surface 3a and the contact surface 20a is inclined away from the central axis O as the distance from the one surface 1a of the base substrate 1 increases, the contact portion 20 moves as the movable contact portion 3 moves toward the base substrate 1 side. Is moved away from the projection area P (to the first space portion 21b side). As the contact portion 20 moves to the first space portion 21b in this way, the contact pressure spring portion 22 is compressed. Therefore, the contact portion 20 has a force corresponding to the restoring force of the contact pressure spring portion 22 as a movable contact. Press the part 3.

ここで、接触部20が可動接点部3を押圧する力の向きは、上記直交面内において中心軸Oを中心とする円の径方向に沿った方向(可動接点部3の中心軸O方向に交差する方向)になる。また、各接触部20それぞれは、上記直交面内において、可動接点部3の中心軸Oを回転軸とし接触部20の数だけ回転位置を有する回転対称(本実施形態では3回回転対称)となる形に配置されているので、接触部20が可動接点部3を押圧する力の単位方向ベクトルの総和はゼロベクトルとなり、接触部20が可動接点部3を押圧する力の大きさが等しければ、各接触部20それぞれと可動接点部3との間の接圧はいずれも等しくなる。また、接触部20の数は3つであるから、一の接触部20が可動接点部3を押圧する力を、2つの他の接触部20で受けることができて、接触部20が可動接点部3を押圧する力に偏りがある場合であっても、接触部20の数が2つや4つであるような場合に比べれば、可動接点部3に各接触部20を均等な接圧で接触させることができる。   Here, the direction of the force with which the contact portion 20 presses the movable contact portion 3 is a direction along the radial direction of a circle centering on the central axis O in the orthogonal plane (in the direction of the central axis O of the movable contact portion 3). Crossing direction). In addition, each contact portion 20 has a rotational symmetry (three-fold rotational symmetry in the present embodiment) having rotational positions as many as the number of the contact portions 20 with the central axis O of the movable contact portion 3 as a rotation axis in the orthogonal plane. Therefore, if the sum of the unit direction vectors of the force with which the contact portion 20 presses the movable contact portion 3 is a zero vector, and the magnitude of the force with which the contact portion 20 presses the movable contact portion 3 is equal. The contact pressure between each contact portion 20 and the movable contact portion 3 is equal. Moreover, since the number of the contact parts 20 is three, the force which the one contact part 20 presses the movable contact part 3 can be received in the two other contact parts 20, and the contact part 20 becomes a movable contact. Even when there is a bias in the force that presses the portion 3, compared to the case where the number of the contact portions 20 is two or four, each contact portion 20 is applied to the movable contact portion 3 with equal contact pressure. Can be contacted.

上述したようにして、可動接点部3の外周面3aに各接触部20それぞれの接触面20aが弾接することによって、可動接点部3と固定接点部2との間が導通し、これによって、信号線6A,6B間が、固定接点部2、可動接点部3、導体部40b、および支持部41により電気的に接続される(オン状態)。   As described above, when the contact surface 20a of each contact portion 20 is elastically contacted with the outer peripheral surface 3a of the movable contact portion 3, the movable contact portion 3 and the fixed contact portion 2 are electrically connected. The wires 6A and 6B are electrically connected by the fixed contact portion 2, the movable contact portion 3, the conductor portion 40b, and the support portion 41 (ON state).

この後に、アクチュエータ5の駆動を停止すると、可撓部40が変形前の形状に復帰し(図2参照)、可動接点部3が固定接点部2から離れる方向に移動し、その結果、可動接点部3が固定接点部2より離間して、一対の信号線6A,6B間が遮断される(オフ状態)。   Thereafter, when the drive of the actuator 5 is stopped, the flexible portion 40 returns to the shape before deformation (see FIG. 2), and the movable contact portion 3 moves in a direction away from the fixed contact portion 2. As a result, the movable contact portion is moved. The part 3 is separated from the fixed contact part 2, and the pair of signal lines 6A and 6B is disconnected (OFF state).

以上述べたように、本実施形態の微小電気機械スイッチによれば、接触部20が可動接点部3を押圧する力の大きさが等しければ、各接触部20それぞれと可動接点部3との間の接圧はいずれも等しくなり、また、接触部20が可動接点部3を押圧する力に偏りがある場合であっても、接触部20の数が2つや4つであるような場合に比べれば、可動接点部3に各接触部20を均等な接圧で接触させることができるから、可動接点部3と固定接点部2との接触状態が安定し、その結果、オン抵抗の悪化や、スティッキングの発生などを抑制することができるようになり、可動接点部3と固定接点部2との接触信頼性を向上することができる。   As described above, according to the microelectromechanical switch of the present embodiment, if the magnitude of the force with which the contact portion 20 presses the movable contact portion 3 is equal, the contact portion 20 is moved between each contact portion 20 and the movable contact portion 3. The contact pressures of the contact portions 20 are equal to each other, and even when the force that the contact portion 20 presses the movable contact portion 3 is biased, the number of contact portions 20 is two or four. For example, each contact portion 20 can be brought into contact with the movable contact portion 3 with an equal contact pressure, so that the contact state between the movable contact portion 3 and the fixed contact portion 2 is stabilized. The occurrence of sticking can be suppressed, and the contact reliability between the movable contact portion 3 and the fixed contact portion 2 can be improved.

ところで、可動接点部3の移動方向と、可動接点部3と固定接点部2との接触方向とが略同方向である場合には、可動接点部3と固定接点部2との接圧は、可動接点部3を固定接点部2側に移動させる力(アクチュエータ5の駆動力)の大きさに依存し、接圧を高くするためには、駆動力を大きくする必要があり、例えば、本実施形態のようにアクチュエータ5として静電引力を利用したものを採用した場合には、比較的高い駆動電圧を印加する必要があり、比較的消費電力が大きいという問題があった。かかる問題に対して、本実施形態の微小電気機械スイッチでは、可動接点部3の移動方向と、可動接点部3に固定接点部2の接触部20が接触する方向とが略直交(交差)しているので、可動接点部3と接触部20との接圧は、接圧バネ部の復元力によってのみ決まり、この復元力は、可動接点部3の位置によって決まる。そのため、可動接点部3を所定位置まで移動させることができれば、所望の接圧を得ることが可能であるから、可動接点部3の移動方向と、可動接点部3と固定接点部2との接触方向とが略同方向である場合に比べれば、低消費電力化を図ることができる。また、可動接点部3の外周面3aと接触部20の接触面20aとの間の摩擦力が小さくすれば、可動接点部3を所定位置まで移動させるために必要な駆動力をより小さくすることができるから、さらなる低消費電力化を図ることができる。   By the way, when the moving direction of the movable contact portion 3 and the contact direction of the movable contact portion 3 and the fixed contact portion 2 are substantially the same direction, the contact pressure between the movable contact portion 3 and the fixed contact portion 2 is Depending on the magnitude of the force that moves the movable contact portion 3 toward the fixed contact portion 2 (driving force of the actuator 5), it is necessary to increase the driving force in order to increase the contact pressure. When an actuator using electrostatic attraction is employed as the actuator 5 as in the embodiment, it is necessary to apply a relatively high drive voltage, and there is a problem that power consumption is relatively large. With respect to such a problem, in the micro electromechanical switch of the present embodiment, the moving direction of the movable contact portion 3 and the direction in which the contact portion 20 of the fixed contact portion 2 contacts the movable contact portion 3 are substantially orthogonal (crossed). Therefore, the contact pressure between the movable contact portion 3 and the contact portion 20 is determined only by the restoring force of the contact pressure spring portion, and this restoring force is determined by the position of the movable contact portion 3. Therefore, if the movable contact portion 3 can be moved to a predetermined position, a desired contact pressure can be obtained. Therefore, the moving direction of the movable contact portion 3 and the contact between the movable contact portion 3 and the fixed contact portion 2 can be obtained. Compared with the case where the direction is substantially the same, the power consumption can be reduced. Further, if the frictional force between the outer peripheral surface 3a of the movable contact portion 3 and the contact surface 20a of the contact portion 20 is reduced, the driving force required to move the movable contact portion 3 to a predetermined position is further reduced. Therefore, further reduction in power consumption can be achieved.

さらに、本実施形態の微小電気機械スイッチでは、可動接点部3の外周面3aは、ベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜しており、また各接触部20それぞれの接触面20aも、ベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜している。そのため、可動接点部3が固定接点部2において接触部20で囲まれた空間部に入り込み易くなり、また外周面3aが接触面20a上を滑りやすくなる(摺動性が向上する)から、アクチュエータ5の消費電力を低減することができる。しかも、微視的には、可動接点部3の外周面3aと接触部20の接触面20aとが平行しているので、可動接点部3の外周面3aと接触部20の接触面20aとの接触部分の面積を増やすことができるから、接触抵抗を低くすることができ、オン抵抗の悪化や、スティッキングの発生などを抑制することができる。なお、このような効果は、可動接点部3の外周面3aと接触部20それぞれの接触面20aとのいずれか一方を、ベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜させることで得ることができるが、両方を上記のように傾斜させたほうがより有効である。   Furthermore, in the micro electromechanical switch of the present embodiment, the outer peripheral surface 3a of the movable contact portion 3 is inclined so as to move away from the central axis O as the distance from the one surface 1a of the base substrate 1 increases. The contact surface 20a is also inclined so as to be away from the central axis O as the distance from the one surface 1a of the base substrate 1 increases. Therefore, the movable contact portion 3 can easily enter the space surrounded by the contact portion 20 in the fixed contact portion 2, and the outer peripheral surface 3a can easily slide on the contact surface 20a (improves slidability). 5 power consumption can be reduced. In addition, microscopically, since the outer peripheral surface 3a of the movable contact portion 3 and the contact surface 20a of the contact portion 20 are parallel, the outer peripheral surface 3a of the movable contact portion 3 and the contact surface 20a of the contact portion 20 are Since the area of the contact portion can be increased, the contact resistance can be lowered, and deterioration of on-resistance and occurrence of sticking can be suppressed. Such an effect is such that either one of the outer peripheral surface 3a of the movable contact portion 3 and the contact surface 20a of each contact portion 20 is inclined so as to move away from the central axis O as the distance from the one surface 1a of the base substrate 1 increases. It is more effective to incline both as described above.

また、本実施形態では、外周面3aの傾斜角度と、接触面20aの傾斜角度とを等しい角度としているので、外周面3aが接触面20a上をさらに滑りやすくなり、また、可動接点部3の外周面3aと接触部20の接触面20aとの接触部分の面積をさらに増やすことができる。なお、可動接点部3における固定接点部2との対向面側の角部を、面取り、あるいはR状に形成することで、可動接点部3が固定接点部2において接触部20で囲まれた空間部にさらに入り込み易くなり、また、上記角部が接触面20aに当たることによって可動接点部3の移動が阻害されてしまうことを抑制することができる。   In the present embodiment, since the inclination angle of the outer peripheral surface 3a and the inclination angle of the contact surface 20a are the same angle, the outer peripheral surface 3a can be more easily slid on the contact surface 20a. The area of the contact portion between the outer peripheral surface 3a and the contact surface 20a of the contact portion 20 can be further increased. A space in which the movable contact portion 3 is surrounded by the contact portion 20 in the fixed contact portion 2 by forming a corner portion of the movable contact portion 3 facing the fixed contact portion 2 in a chamfered shape or an R shape. Further, it is possible to prevent the movement of the movable contact portion 3 from being hindered by the corner portion hitting the contact surface 20a.

また、本実施形態の微小電気機械スイッチでは、固定接点部2は、接触部20の接触面20aを可動接点部3の外周面3aに弾接させる接圧バネ部22を、各接触部20それぞれに対して複数備えて(本実施形態では2つ備えて)なるので、接触部20に対して1つの接圧バネ部22だけを設ける場合に比べれば、接触部20の接触面20aが可動接点部3の外周面3aに、上記直交面内において上記径方向に沿った方向で弾接し易くなるから、接触信頼性が向上する。さらに、上記のガイド部を設けたことによって、接触部20が、上記直交面内において上記径方向に沿った方向以外の方向に変位し難くなるので(上記径方向に沿って移動させられるので)、接触部20の接触面20aが可動接点部3の外周面3aに、上記径方向に沿った方向で弾接し易くなるから、接触信頼性が向上する。   Further, in the micro electromechanical switch of the present embodiment, the fixed contact portion 2 has the contact pressure spring portion 22 that elastically contacts the contact surface 20a of the contact portion 20 with the outer peripheral surface 3a of the movable contact portion 3, respectively. Therefore, the contact surface 20a of the contact portion 20 is a movable contact as compared with the case where only one contact pressure spring portion 22 is provided for the contact portion 20. Since it becomes easy to elastically contact the outer peripheral surface 3a of the portion 3 in the direction along the radial direction in the orthogonal plane, the contact reliability is improved. Furthermore, since the guide portion is provided, the contact portion 20 is hardly displaced in a direction other than the direction along the radial direction in the orthogonal plane (because it is moved along the radial direction). Since the contact surface 20a of the contact portion 20 is easily elastically contacted with the outer peripheral surface 3a of the movable contact portion 3 in the direction along the radial direction, the contact reliability is improved.

なお、本実施形態の微小電気機械スイッチは、あくまでも本発明の一実施形態に過ぎないものであって、本発明の技術的範囲を本実施形態のものに限定する趣旨ではなく、本発明の趣旨を逸脱しない範囲での変更は当然に行える。例えば、接触部20の数は3つに限定されず、3の整数倍(3n;ただしnは1以上の整数)の本数であってもよい。この場合、各接触部20それぞれが、上記直交面内において、中心軸Oを回転軸とし接触部20の数(すなわち3n)だけ回転位置を有する回転対称(すなわち3n回回転対称)となる形に配置されていれば、同様の効果が得られる。また、可動接点部3の外周形状は、接触部20の数の等倍、あるいは整数倍の数の辺を有する正多角形状(例えば、本実施形態のように接触部20の数が3であれば、正三角形状、正六角形状など)であってもよい。   Note that the microelectromechanical switch of this embodiment is merely an embodiment of the present invention, and is not intended to limit the technical scope of the present invention to that of this embodiment, but to the spirit of the present invention. Changes can be made without departing from the scope. For example, the number of contact portions 20 is not limited to three, and may be an integer multiple of 3 (3n; where n is an integer of 1 or more). In this case, each contact portion 20 has a rotational symmetry (that is, 3n-fold rotational symmetry) in which the center axis O is the rotational axis and the number of contact portions 20 (ie, 3n) has rotational positions within the orthogonal plane. If they are arranged, the same effect can be obtained. Further, the outer peripheral shape of the movable contact portion 3 is a regular polygonal shape having sides equal to or an integral multiple of the number of the contact portions 20 (for example, the number of the contact portions 20 is 3 as in the present embodiment). For example, a regular triangular shape or a regular hexagonal shape).

また、本実施形態の微小電気機械スイッチでは、アクチュエータ5として静電引力を利用したものを例示しているが、アクチュエータ5としては、圧電効果を利用したものを採用することもできる。圧電効果を利用したアクチュエータ5は、可撓部40に、下部電極(図示せず)と、圧電材料部(図示せず)と、上部電極(図示せず)とを順次積層することで形成することができ、上部電極と下部電極との間に所定の駆動電圧を印加することによって、可撓部40を変形させる。このような圧電効果を利用したアクチュエータ5は従来周知のものを採用できるから詳細な説明は省略する。   Further, in the micro electromechanical switch of the present embodiment, the actuator 5 using an electrostatic attraction is illustrated, but the actuator 5 using a piezoelectric effect can also be adopted. The actuator 5 using the piezoelectric effect is formed by sequentially laminating a lower electrode (not shown), a piezoelectric material part (not shown), and an upper electrode (not shown) on the flexible portion 40. The flexible portion 40 is deformed by applying a predetermined driving voltage between the upper electrode and the lower electrode. Since the actuator 5 using such a piezoelectric effect can employ a conventionally well-known actuator, detailed description thereof will be omitted.

このような圧電効果を利用するアクチュエータ5は、静電引力を利用するものに比べて、消費電力を低く抑えながらも可撓部40の変形量を大きくすることができる。例えば、静電引力を利用するものでは30V程度の電圧が必要である場合でも、圧電効果を利用するものでは、5〜10V程度の電圧で可撓部40を同程度に変形させることが可能になる。そのため、圧電効果を利用したアクチュエータ5を用いることで、消費電力を低く抑えながらも、可動接点部3と固定接点部2との間隔を広げて信号の漏れを低減することができ、アイソレーション特性の向上が図れる。なお、圧電材料部は、例えば、鉛系圧電材料であれば、PZTや、PZTに不純物を添加したもの、PMN−PZTなどを採用することができる。また、圧電材料部の材料は、鉛系圧電材料に限らず、例えば、KNN(ニオブ酸カリウムナトリウム)や、KN(KNbO)、NN(NaNbO)、KNNに不純物(例えば、Li、Nb、Ta、Sb、Cuなど)を添加したものなどの鉛フリーの圧電材料(無鉛圧電セラミックス)を採用することができる。ここで、上述の鉛系圧電材料や、KNN、KN、NNなどは、AlNやZnOなどに比べて圧電定数が大きい。そのため、圧電材料部の材料として、上述の鉛系圧電材料や、KNN、KN、NNなどを用いれば、駆動電圧の値が同じであっても、AlNやZnOなどを用いた場合に比べれば、可撓部40の変形量を大きくすることができる。また、圧電材料部の材料としてKNNなどの鉛フリーの圧電材料を用いれば、環境負荷を低減することができる。 The actuator 5 using such a piezoelectric effect can increase the amount of deformation of the flexible portion 40 while suppressing power consumption as compared with an actuator using electrostatic attraction. For example, even if a voltage of about 30V is required for a device using electrostatic attraction, the flexible portion 40 can be deformed to the same extent with a voltage of about 5 to 10V using a piezoelectric effect. Become. Therefore, by using the actuator 5 using the piezoelectric effect, it is possible to widen the distance between the movable contact portion 3 and the fixed contact portion 2 while reducing power consumption, and to reduce signal leakage. Can be improved. In addition, if a piezoelectric material part is a lead-type piezoelectric material, PZT, what added the impurity to PZT, PMN-PZT, etc. are employable, for example. In addition, the material of the piezoelectric material portion is not limited to the lead-based piezoelectric material, and for example, KNN (potassium sodium niobate), KN (KNbO 3 ), NN (NaNbO 3 ), and KNN have impurities (for example, Li, Nb, Lead-free piezoelectric materials (lead-free piezoelectric ceramics) such as those added with Ta, Sb, Cu, etc.) can be employed. Here, the above-described lead-based piezoelectric material, KNN, KN, NN, and the like have a larger piezoelectric constant than AlN, ZnO, and the like. Therefore, if the lead-based piezoelectric material described above, KNN, KN, NN, or the like is used as the material of the piezoelectric material portion, even if the drive voltage value is the same, compared to the case where AlN, ZnO, or the like is used, The deformation amount of the flexible portion 40 can be increased. If a lead-free piezoelectric material such as KNN is used as the material of the piezoelectric material portion, the environmental load can be reduced.

また、アクチュエータ5は、圧電効果を利用した主駆動手段(図示せず)と、静電引力を利用した副駆動手段(図示せず)とを有するハイブリッド型のものであってもよい。このようなアクチュエータ5を用いる場合、接点を閉じる際には、まず主駆動手段を駆動して、可動接点部3を固定接点部2側に移動させて、可動接点部3を固定接点部2に接触させた後に、副駆動手段を駆動し、可動接点部3の位置を調整することで、可動接点部3と接触部20との間の接圧を所望の値に調整することができる。   The actuator 5 may be of a hybrid type having a main drive means (not shown) using a piezoelectric effect and a sub drive means (not shown) using an electrostatic attractive force. When such an actuator 5 is used, when closing the contact, the main drive means is first driven to move the movable contact portion 3 to the fixed contact portion 2 side, so that the movable contact portion 3 becomes the fixed contact portion 2. After the contact, the auxiliary driving means is driven and the position of the movable contact portion 3 is adjusted, whereby the contact pressure between the movable contact portion 3 and the contact portion 20 can be adjusted to a desired value.

また、上記の例では、固定接点部2、可動接点部3、導体部40b、固定電極50、および信号線6の材料としてAuを例示しているが、Auの他に、Ni、Ag、Cu、Pd、Rh、Ru、Pt、Ir、Osや、これらのなかの少なくとも1種を含む合金を採用することができる。また、固定接点部2、可動接点部3、導体部40b、固定電極50、および信号線6は、複数の金属材料を用いて形成されたものであってもよい。この点は、後述する実施形態2、および参考例1,2においても同様である。   In the above example, Au is exemplified as the material of the fixed contact portion 2, the movable contact portion 3, the conductor portion 40b, the fixed electrode 50, and the signal line 6. However, in addition to Au, Ni, Ag, Cu , Pd, Rh, Ru, Pt, Ir, Os, and alloys containing at least one of them can be used. The fixed contact portion 2, the movable contact portion 3, the conductor portion 40b, the fixed electrode 50, and the signal line 6 may be formed using a plurality of metal materials. This also applies to Embodiment 2 and Reference Examples 1 and 2 described later.

(実施形態2)
本実施形態の微小電気機械スイッチは、図6および図7に示すように、主として固定接点部2の構成が実施形態1と異なっており、その他の構成は実施形態1と同様であるから、同様の構成については同一の符号を付して説明を省略する。なお、図7(b)では可動接点支持部4の図示を省略している。
(Embodiment 2)
As shown in FIGS. 6 and 7, the microelectromechanical switch of the present embodiment is mainly different from the first embodiment in the configuration of the fixed contact portion 2 and the other configurations are the same as those in the first embodiment. The same reference numerals are assigned to the configurations of and the description is omitted. In addition, illustration of the movable contact support part 4 is abbreviate | omitted in FIG.7 (b).

本実施形態における固定接点部2は、図6に示すように、ベース基板1の一表面1a側に形成された略正方形状の基台部23を備える。基台部23におけるベース基板1側とは反対側(図6における上面側)には、枠体部21が形成される。本実施形態における枠体部21は、円形状の空洞部21aを有しており、外周形状は基台部23の外周形状と同形状である。   As shown in FIG. 6, the fixed contact portion 2 in the present embodiment includes a substantially square base portion 23 formed on the one surface 1 a side of the base substrate 1. On the side opposite to the base substrate 1 side in the base portion 23 (upper surface side in FIG. 6), a frame body portion 21 is formed. The frame body portion 21 in the present embodiment has a circular cavity portion 21 a and the outer peripheral shape is the same as the outer peripheral shape of the base portion 23.

そして、図7(a),(b)に示すように、空洞部21a内に露出する基台部23の部位に、接触部20が複数(本実施形態では3つ)突設される。本実施形態における接触部20は、十分な可撓性(弾性)を有するように厚み(上記直交面内において上記径方向に沿った方向における寸法)が薄くされた壁状に形成されており、上記直交面に平行する面における断面形状は弧状(円弧状)である。各接触部20それぞれは、凹面を中心軸O側に向けるとともに、上記直交面内において、中心軸Oを回転軸とし接触部20の数だけ回転位置を有する回転対称(すなわち、本実施形態では接触部20の数が3であるから、3回回転対称)となる形に配置される。なお、このような固定接点部2は、例えば周知のマイクロマシニング技術(例えばバルクマイクロマシニング技術)などを利用して形成することができる。   Then, as shown in FIGS. 7A and 7B, a plurality of contact portions 20 (three in this embodiment) project from the portion of the base portion 23 exposed in the hollow portion 21a. The contact portion 20 in the present embodiment is formed in a wall shape in which the thickness (the dimension in the direction along the radial direction in the orthogonal plane) is reduced so as to have sufficient flexibility (elasticity), The cross-sectional shape in the plane parallel to the orthogonal plane is an arc (arc). Each contact portion 20 has a rotational symmetry with the concave surface facing the central axis O side, and having the rotational position as many as the number of the contact portions 20 with the central axis O as the rotation axis in the orthogonal plane (that is, contact in this embodiment). Since the number of the parts 20 is 3, they are arranged in a form that is three-fold rotationally symmetric). Such a fixed contact portion 2 can be formed by using, for example, a well-known micromachining technique (for example, bulk micromachining technique).

したがって、本実施形態における接触部20では、凹面が可動接点部3との接触面20aとなる。なお、接触部20の接触面(上記凹面)20aの上記直交面内における曲率は、可動接点部3の外周面3aの曲率に等しくしてあり、また、接触部20の接触面20aと中心軸Oとの距離は、可動接点部3の上記他底面の半径より大きく、上記一底面の半径より小さくしている。換言すれば、本実施形態における接触部20は、可動接点部3の上記他底面の直径より大きく、上記一底面の直径より小さい内径を有する円筒を、その周方向に3分割した形である。   Therefore, in the contact part 20 in this embodiment, a concave surface becomes the contact surface 20a with the movable contact part 3. FIG. In addition, the curvature in the said orthogonal surface of the contact surface (the said concave surface) 20a of the contact part 20 is equal to the curvature of the outer peripheral surface 3a of the movable contact part 3, and the contact surface 20a of the contact part 20 and a central axis The distance from O is larger than the radius of the other bottom surface of the movable contact portion 3 and smaller than the radius of the one bottom surface. In other words, the contact portion 20 in the present embodiment has a shape in which a cylinder having an inner diameter larger than the diameter of the other bottom surface of the movable contact portion 3 and smaller than the diameter of the one bottom surface is divided into three in the circumferential direction.

上述した本実施形態の微小電気機械スイッチは、アクチュエータ5を駆動していない常時は、可動接点部3と固定接点部2とが離間しており、一対の信号線6A,6B間は遮断される(オフ状態)。そして、アクチュエータ5を駆動すると、可動接点部3が固定接点部2側(図7(b)における下側)に移動するように可撓部40が変形する。その結果、可動接点部3は、各接触部20それぞれの接触面20aで囲まれた空間部に入り込む。   In the micro electromechanical switch of the present embodiment described above, the movable contact portion 3 and the fixed contact portion 2 are separated from each other when the actuator 5 is not driven, and the pair of signal lines 6A and 6B is cut off. (Off state). When the actuator 5 is driven, the flexible portion 40 is deformed so that the movable contact portion 3 moves to the fixed contact portion 2 side (the lower side in FIG. 7B). As a result, the movable contact portion 3 enters the space portion surrounded by the contact surface 20 a of each contact portion 20.

ここで、接触部20の凹面と中心軸Oとの距離は、可動接点部3の上記他底面の半径より大きく、上記一底面の半径より小さいから、各接触部20それぞれの接触面20aで囲まれた空間部の内径は、可動接点部3の上記他底面の直径より大きく、上記一底面の直径より小さい。そのため、可動接点部3がベース基板1側に移動するにつれて、接触部20は、中心軸O側とは反対側に倒れるように変形し、これによって、可動接点部3の外周面3aは、各接触部20の接触面20aそれぞれに当接する。このように接触部20が変形すると、接触部20は自身の復元力によって元の形に戻ろうとするから、この復元力に応じた接圧が、接触面20aと外周面3aとの間に生じる。したがって、接触部20の接触面20aは、上記直交面内において、上記径方向に沿った方向より、可動接点部3の外周面3aに弾接する。   Here, since the distance between the concave surface of the contact portion 20 and the central axis O is larger than the radius of the other bottom surface of the movable contact portion 3 and smaller than the radius of the one bottom surface, it is surrounded by the contact surface 20a of each contact portion 20. The inner diameter of the space portion is larger than the diameter of the other bottom surface of the movable contact portion 3 and smaller than the diameter of the one bottom surface. Therefore, as the movable contact portion 3 moves to the base substrate 1 side, the contact portion 20 is deformed so as to fall to the opposite side to the central axis O side, whereby the outer peripheral surface 3a of the movable contact portion 3 is It abuts on each contact surface 20a of the contact portion 20. When the contact portion 20 is deformed in this way, the contact portion 20 tries to return to its original shape by its own restoring force, and a contact pressure corresponding to this restoring force is generated between the contact surface 20a and the outer peripheral surface 3a. . Therefore, the contact surface 20a of the contact portion 20 is in elastic contact with the outer peripheral surface 3a of the movable contact portion 3 from the direction along the radial direction in the orthogonal plane.

このように、接触部20が可動接点部3を押圧する力の向きは、上記直交面内において中心軸Oを中心とする円の径方向に沿った方向(可動接点部3の中心軸O方向に交差する方向)になる。また、各接触部20それぞれは、上記直交面内において、可動接点部3の中心軸Oを回転軸とし接触部20の数だけ回転位置を有する回転対称(本実施形態では3回回転対称)となる形に配置されているので、接触部20が可動接点部3を押圧する力の単位方向ベクトルの総和はゼロベクトルとなり、接触部20が可動接点部3を押圧する力の大きさが等しければ、各接触部20それぞれと可動接点部3との間の接圧はいずれも等しくなる。また、接触部20の数は3つであるから、一の接触部20が可動接点部3を押圧する力を、2つの他の接触部20で受けることができて、接触部20が可動接点部3を押圧する力に偏りがある場合であっても、接触部20の数が2つや4つであるような場合に比べれば、可動接点部3に各接触部20を均等な接圧で接触させることができる。   Thus, the direction of the force with which the contact portion 20 presses the movable contact portion 3 is the direction along the radial direction of the circle centered on the central axis O in the orthogonal plane (the direction of the central axis O of the movable contact portion 3). In the direction that intersects). In addition, each contact portion 20 has a rotational symmetry (three-fold rotational symmetry in the present embodiment) having rotational positions as many as the number of the contact portions 20 with the central axis O of the movable contact portion 3 as a rotation axis in the orthogonal plane. Therefore, if the sum of the unit direction vectors of the force with which the contact portion 20 presses the movable contact portion 3 is a zero vector, and the magnitude of the force with which the contact portion 20 presses the movable contact portion 3 is equal. The contact pressure between each contact portion 20 and the movable contact portion 3 is equal. Moreover, since the number of the contact parts 20 is three, the force which the one contact part 20 presses the movable contact part 3 can be received in the two other contact parts 20, and the contact part 20 becomes a movable contact. Even when there is a bias in the force that presses the portion 3, compared to the case where the number of the contact portions 20 is two or four, each contact portion 20 is applied to the movable contact portion 3 with equal contact pressure. Can be contacted.

上述したようにして、可動接点部3の外周面3aに各接触部20それぞれの接触面20aが弾接することによって、可動接点部3と固定接点部2との間が導通し、これによって、信号線6A,6B間が、固定接点部2、可動接点部3、導体部40b、および支持部41により電気的に接続される(オン状態)。   As described above, when the contact surface 20a of each contact portion 20 is elastically contacted with the outer peripheral surface 3a of the movable contact portion 3, the movable contact portion 3 and the fixed contact portion 2 are electrically connected. The wires 6A and 6B are electrically connected by the fixed contact portion 2, the movable contact portion 3, the conductor portion 40b, and the support portion 41 (ON state).

この後に、アクチュエータ5の駆動を停止すると、可撓部40が変形前の形状に復帰し(図6参照)、可動接点部3が固定接点部2から離れる方向に移動し、その結果、可動接点部3が固定接点部2より離間して、一対の信号線6A,6B間が遮断される(オフ状態)。   Thereafter, when the driving of the actuator 5 is stopped, the flexible portion 40 returns to the shape before the deformation (see FIG. 6), and the movable contact portion 3 moves away from the fixed contact portion 2. As a result, the movable contact portion is moved. The part 3 is separated from the fixed contact part 2, and the pair of signal lines 6A and 6B is disconnected (OFF state).

以上述べたように、本実施形態の微小電気機械スイッチによれば、上記実施形態1と同様の効果が得られる。また、本実施形態では、接触部20が接圧バネ部22を兼ねているので、実施形態1のものに比べて固定接点部2を簡単な形状とすることができ、固定接点部2を容易に形成することが可能になる。   As described above, according to the micro electromechanical switch of the present embodiment, the same effect as in the first embodiment can be obtained. Further, in this embodiment, since the contact portion 20 also serves as the contact pressure spring portion 22, the fixed contact portion 2 can be made simpler than that of the first embodiment, and the fixed contact portion 2 can be easily formed. Can be formed.

(参考例1)
本参考例の微小電気機械スイッチは、図8および図9に示すように、主として固定接点部2の構成が実施形態1と異なっており、その他の構成は実施形態1と同様であるから、同様の構成については同一の符号を付して説明を省略する。なお、図9(b)では可動接点支持部4の図示を省略している。
(Reference Example 1)
As shown in FIGS. 8 and 9, the microelectromechanical switch of this reference example is mainly different from the first embodiment in the configuration of the fixed contact portion 2, and the other configurations are the same as those in the first embodiment. The same reference numerals are assigned to the configurations of and the description is omitted. In addition, illustration of the movable contact support part 4 is abbreviate | omitted in FIG.9 (b).

本参考例における固定接点部2は、図9(a)に示すように、上記直交面内において中心軸Oを中心とする円の径方向に沿った方向において、可動接点部3の外周面3aに弾接される接触面20aを有した複数(本参考例では2つ)の接触部20を備える。各接触部20は、ベース基板1の一表面1aへの可動接点部3の投影領域Pを囲う空洞部21aを有した枠体部21に支持される。なお、図示例では枠体部21の外周形状は正方形状であるが、これは枠体部21を外周形状が正方形状のものに限定する趣旨ではない。   As shown in FIG. 9A, the fixed contact portion 2 in the present reference example has an outer peripheral surface 3a of the movable contact portion 3 in a direction along the radial direction of a circle centered on the central axis O in the orthogonal plane. A plurality of (two in this reference example) contact portions 20 having contact surfaces 20a that are elastically contacted with each other are provided. Each contact portion 20 is supported by a frame body portion 21 having a hollow portion 21 a that surrounds the projection region P of the movable contact portion 3 onto one surface 1 a of the base substrate 1. In the illustrated example, the outer peripheral shape of the frame body portion 21 is a square shape, but this does not mean that the frame body portion 21 is limited to a square outer peripheral shape.

本参考例における空洞部21aは、上記直交面内において中心軸Oを中心とする略正方形状に形成される(すなわち枠体部21は正方形の枠よりなる)。   The hollow portion 21a in the present reference example is formed in a substantially square shape centering on the central axis O in the orthogonal plane (that is, the frame body portion 21 is formed of a square frame).

本参考例における接触部20は、直方体状に形成されており、短手方向(長さ方向、図9(a)における左右方向)を上記直交面内において中心軸Oを中心とする円の径方向に沿わせた形で、空洞部21aの内側に配置されており、その短手方向の一端側(すなわち中心軸O側)に接触面20aが形成される。また、2つの接触部20は、上記直交面内において中心軸Oに対して点対称となる位置に配置される。すなわち、各接触部20それぞれは、上記直交面内において、中心軸Oを回転軸とし接触部20の数だけ回転位置を有する回転対称(すなわち、本参考例では接触部20の数が2であるから、2回回転対称)となる形に配置される。   The contact portion 20 in the present reference example is formed in a rectangular parallelepiped shape, and the diameter of a circle centering on the central axis O in the short plane direction (length direction, left-right direction in FIG. 9A) in the orthogonal plane. The contact surface 20a is formed on one end side (that is, the central axis O side) in the short direction, and is disposed inside the hollow portion 21a in a shape along the direction. Further, the two contact portions 20 are arranged at positions that are point-symmetric with respect to the central axis O in the orthogonal plane. That is, each contact portion 20 is rotationally symmetric with the center axis O as the rotation axis and the rotational positions as many as the contact portions 20 in the orthogonal plane (that is, the number of the contact portions 20 is 2 in this reference example). To two-fold rotational symmetry).

また、接触部20の接触面20aは、図9(b)に示すように、ベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜している。この接触面20aの傾斜角度θは、可動接点部3の外周面3aの傾斜角度φと略等しい値とすることが好ましく、また、上記直交面内における接触面20aの曲率は、上記直交面内における外周面3aの曲率よりやや大きい値とすることが好ましい。このようにすれば、接触面20aが外周面3aに弾接した際の接触面積を増やすことができる。   Further, as shown in FIG. 9B, the contact surface 20 a of the contact portion 20 is inclined so as to be away from the central axis O as it is away from the one surface 1 a of the base substrate 1. The inclination angle θ of the contact surface 20a is preferably substantially equal to the inclination angle φ of the outer peripheral surface 3a of the movable contact portion 3, and the curvature of the contact surface 20a in the orthogonal plane is within the orthogonal plane. It is preferable to make the value slightly larger than the curvature of the outer peripheral surface 3a. If it does in this way, the contact area at the time of the contact surface 20a elastically contacting the outer peripheral surface 3a can be increased.

このような接触部20は、接圧バネ部22によって枠体部21に一体に連結される。接圧バネ部22は、上記直交面内において、上記径方向に直交する方向を長手方向とする帯状に形成されており、接触部20の短手方向の他端部における長手方向(幅方向、図9(a)における上下方向)の両側面それぞれと、当該側面それぞれに対向する空洞部21aの内側面との間を一体に連結する(図9(a)参照)。   Such a contact portion 20 is integrally connected to the frame body portion 21 by a contact pressure spring portion 22. The contact pressure spring portion 22 is formed in a belt shape having a longitudinal direction in a direction orthogonal to the radial direction in the orthogonal plane, and a longitudinal direction (width direction, Each side surface in the vertical direction in FIG. 9A and the inner side surface of the cavity 21a facing each side surface are integrally connected (see FIG. 9A).

したがって、本参考例における接触部20は、上記径方向に沿った方向に進退可能な形で枠体部21に支持される。また、接圧バネ部22の形状は、中心軸O方向において接触部20の接触面20aと可動接点部3の外周面3aとが重なる位置に、接触部20を配置できる形に設定される。上述した本参考例の固定接点部2は、実施形態1で述べた方法(図4,5に示す方法)の他、周知のマイクロマシニング技術(例えばバルクマイクロマシニング技術)を利用して形成することができる。   Therefore, the contact part 20 in the present reference example is supported by the frame body part 21 so as to be able to advance and retreat in the direction along the radial direction. Further, the shape of the contact pressure spring portion 22 is set such that the contact portion 20 can be disposed at a position where the contact surface 20a of the contact portion 20 and the outer peripheral surface 3a of the movable contact portion 3 overlap in the direction of the central axis O. The above-described fixed contact portion 2 of this reference example is formed using a known micromachining technique (for example, bulk micromachining technique) in addition to the method described in the first embodiment (the method shown in FIGS. 4 and 5). Can do.

上述した本参考例の微小電気機械スイッチは、アクチュエータ5を駆動していない常時は、可動接点部3と固定接点部2とが離間しており、一対の信号線6A,6B間は遮断される(オフ状態)。そして、アクチュエータ5を駆動すると、可動接点部3が固定接点部2側(図9(b)における下側)に移動するように可撓部40が変形する。これによって、可動接点部3は、各接触部20それぞれの接触面20aで囲まれた空間部に入り込む。接触部20の接触面20aは、中心軸O方向において可動接点部3の外周面3aと重なっているから、可動接点部3の外周面3aは、各接触部20の接触面20aそれぞれに当接する。   In the microelectromechanical switch of this reference example described above, the movable contact portion 3 and the fixed contact portion 2 are separated from each other when the actuator 5 is not driven, and the pair of signal lines 6A and 6B is blocked. (Off state). When the actuator 5 is driven, the flexible portion 40 is deformed so that the movable contact portion 3 moves to the fixed contact portion 2 side (the lower side in FIG. 9B). Thereby, the movable contact portion 3 enters a space portion surrounded by the contact surface 20a of each contact portion 20. Since the contact surface 20a of the contact portion 20 overlaps the outer peripheral surface 3a of the movable contact portion 3 in the direction of the central axis O, the outer peripheral surface 3a of the movable contact portion 3 abuts on the contact surface 20a of each contact portion 20 respectively. .

この状態からさらに可動接点部3が移動すると(図9(b)における下側に移動すると)、可動接点部3の外周面3aが接触面20a上を摺動する。このとき、可動接点部3の外周面3aおよび接触面20aそれぞれはベース基板1の一表面1aから離れるにつれて中心軸Oから離れる形に傾斜しているから、可動接点部3がベース基板1側に移動するにつれて、接触部20は、投影領域Pより退出するように移動させられるから、接圧バネ部22が変形する。そのため、接触部20は、接圧バネ部22の復元力に応じた力で可動接点部3を押圧する。   When the movable contact portion 3 further moves from this state (moves downward in FIG. 9B), the outer peripheral surface 3a of the movable contact portion 3 slides on the contact surface 20a. At this time, each of the outer peripheral surface 3a and the contact surface 20a of the movable contact portion 3 is inclined so as to move away from the central axis O as the distance from the one surface 1a of the base substrate 1 increases. As it moves, the contact portion 20 is moved so as to retreat from the projection region P, so that the contact pressure spring portion 22 is deformed. Therefore, the contact portion 20 presses the movable contact portion 3 with a force corresponding to the restoring force of the contact pressure spring portion 22.

ここで、接触部20が可動接点部3を押圧する力の向きは、上記直交面内において中心軸Oを中心とする円の径方向に沿った方向になる。また、各接触部20それぞれは、上記直交面内において、可動接点部3の中心軸Oを回転軸とし接触部20の数だけ回転位置を有する回転対称(本参考例では2回回転対称)となる形に配置されているので、接触部20が可動接点部3を押圧する力の単位方向ベクトルの総和はゼロベクトルとなり、接触部20が可動接点部3を押圧する力の大きさが等しければ、各接触部20それぞれと可動接点部3との間の接圧はいずれも等しくなり、可動接点部3に各接触部20を均等な接圧で接触させることができる。   Here, the direction of the force with which the contact portion 20 presses the movable contact portion 3 is a direction along the radial direction of a circle centered on the central axis O in the orthogonal plane. In addition, each contact portion 20 has a rotational symmetry (in this reference example, a two-fold rotational symmetry) having rotational positions as many as the number of the contact portions 20 with the central axis O of the movable contact portion 3 as the rotational axis in the orthogonal plane. Therefore, if the sum of the unit direction vectors of the force with which the contact portion 20 presses the movable contact portion 3 is a zero vector, and the magnitude of the force with which the contact portion 20 presses the movable contact portion 3 is equal. The contact pressures between the contact portions 20 and the movable contact portions 3 are all equal, and the contact portions 20 can be brought into contact with the movable contact portions 3 with an equal contact pressure.

上述したようにして、可動接点部3の外周面3aに各接触部20それぞれの接触面20aが弾接することによって、可動接点部3と固定接点部2との間が導通し、これによって、信号線6A,6B間が、固定接点部2、可動接点部3、導体部40b、および支持部41により電気的に接続される(オン状態)。   As described above, when the contact surface 20a of each contact portion 20 is elastically contacted with the outer peripheral surface 3a of the movable contact portion 3, the movable contact portion 3 and the fixed contact portion 2 are electrically connected. The wires 6A and 6B are electrically connected by the fixed contact portion 2, the movable contact portion 3, the conductor portion 40b, and the support portion 41 (ON state).

この後に、アクチュエータ5の駆動を停止すると、可撓部40が変形前の形状に復帰し(図8参照)、可動接点部3が固定接点部2から離れる方向に移動し、その結果、可動接点部3が固定接点部2より離間して、一対の信号線6A,6B間が遮断される(オフ状態)。   Thereafter, when the driving of the actuator 5 is stopped, the flexible portion 40 returns to the shape before the deformation (see FIG. 8), and the movable contact portion 3 moves away from the fixed contact portion 2. As a result, the movable contact point is moved. The part 3 is separated from the fixed contact part 2, and the pair of signal lines 6A and 6B is disconnected (OFF state).

以上述べたように、本参考例の微小電気機械スイッチによれば、接触部20が可動接点部3を押圧する力の大きさが等しければ、各接触部20それぞれと可動接点部3との間の接圧はいずれも等しくなり、可動接点部3に各接触部20を均等な接圧で接触させることができるから、可動接点部3と固定接点部2との接触状態が安定し、その結果、オン抵抗の悪化や、スティッキングの発生などを抑制することができるようになり、可動接点部3と固定接点部2との接触信頼性を向上することができる。   As described above, according to the microelectromechanical switch of the present reference example, if the magnitude of the force with which the contact portion 20 presses the movable contact portion 3 is equal, the contact portion 20 and the movable contact portion 3 can be Since the contact pressures of the movable contact portion 3 and the fixed contact portion 2 can be brought into contact with the movable contact portion 3 with equal contact pressure, the contact state between the movable contact portion 3 and the fixed contact portion 2 is stabilized. As a result, deterioration of on-resistance and occurrence of sticking can be suppressed, and contact reliability between the movable contact portion 3 and the fixed contact portion 2 can be improved.

また、本参考例においても、可動接点部3の移動方向と、接触部20が可動接点部3に接触する方向とが略直交(交差)しているので、可動接点部3の移動方向と、接触部20が可動接点部3に接触する方向とが略同方向である場合に比べれば、低消費電力化を図ることができる。また、可動接点部3の外周面3aと接触部20の接触面20aとの間の摩擦力が小さくすることで、さらなる低消費電力化を図ることができる。   Also in this reference example, since the moving direction of the movable contact portion 3 and the direction in which the contact portion 20 contacts the movable contact portion 3 are substantially orthogonal (crossing), the moving direction of the movable contact portion 3 and Compared with the case where the direction in which the contact portion 20 contacts the movable contact portion 3 is substantially the same direction, the power consumption can be reduced. Further, by reducing the frictional force between the outer peripheral surface 3a of the movable contact portion 3 and the contact surface 20a of the contact portion 20, further reduction in power consumption can be achieved.

また、本参考例の微小電気機械スイッチでは、固定接点部2は、接触部20の接触面20aを可動接点部3の外周面3aに弾接させる接圧バネ部22を、各接触部20それぞれに対して複数備えて(本参考例では2つ備えて)なるので、接触部20に対して1つの接圧バネ部22だけを設ける場合に比べれば、接触部20の接触面20aと可動接点部3の外周面3aとが、可動接点部3の中心軸Oに直交する直交面内において中心軸Oを中心とする円の径方向に沿った方向において接触し易くなり、接触安定性をより向上することができる。   Further, in the micro electromechanical switch of this reference example, the fixed contact portion 2 includes the contact pressure spring portion 22 that elastically contacts the contact surface 20a of the contact portion 20 with the outer peripheral surface 3a of the movable contact portion 3, respectively. The contact surface 20a of the contact portion 20 and the movable contact are compared with the case where only one contact pressure spring portion 22 is provided for the contact portion 20. The outer peripheral surface 3a of the portion 3 is easily contacted in a direction along the radial direction of a circle centered on the central axis O in an orthogonal plane orthogonal to the central axis O of the movable contact portion 3, thereby further improving contact stability. Can be improved.

(参考例2)
本参考例の微小電気機械スイッチは、図10および図11に示すように、主として固定接点部2の構成が実施形態1と異なっており、その他の構成は実施形態1と同様であるから、同様の構成については同一の符合を付して説明を省略する。なお、図11(b)では可動接点支持部4の図示を省略している。
(Reference Example 2)
As shown in FIGS. 10 and 11, the microelectromechanical switch of this reference example is mainly different from the first embodiment in the configuration of the fixed contact portion 2, and the other configurations are the same as those in the first embodiment. The same reference numerals are given to the configurations of and the description is omitted. In addition, illustration of the movable contact support part 4 is abbreviate | omitted in FIG.11 (b).

本参考例における固定接点部2は、ベース基板1の一表面1aの法線方向を中心軸方向とするコイル状(中心軸方向に沿った方向において、内径が一定な螺旋状、常螺旋状ともいう)に形成される。また、固定接点部2の内径は、図11(a),(b)に示すように、可動接点部3の上記一底面(図11(b)における上底面)の直径より大きく、上記他底面(図11(b)における下底面)の直径より小さい。そのため、固定接点部2の内周面2aが、可動接点部3との接触面となる。このような固定接点部2は、その中心軸が、可動接点部3の中心軸と一致するようにして、信号線6A上に形成される。なお、このような固定接点部2は、例えば周知のマイクロマシニング技術(例えばバルクマイクロマシニング技術)などを利用して形成することができる。   The fixed contact portion 2 in the present reference example has a coil shape having a normal direction of the one surface 1a of the base substrate 1 as a central axis direction (both a spiral shape and a constant spiral shape having a constant inner diameter in the direction along the central axis direction). Say). Further, as shown in FIGS. 11A and 11B, the inner diameter of the fixed contact portion 2 is larger than the diameter of the one bottom surface (the upper bottom surface in FIG. 11B) of the movable contact portion 3, and the other bottom surface. It is smaller than the diameter (lower bottom surface in FIG. 11B). Therefore, the inner peripheral surface 2 a of the fixed contact portion 2 becomes a contact surface with the movable contact portion 3. Such a fixed contact portion 2 is formed on the signal line 6 </ b> A so that the central axis thereof coincides with the central axis of the movable contact portion 3. Such a fixed contact portion 2 can be formed by using, for example, a well-known micromachining technique (for example, bulk micromachining technique).

上述した本参考例の微小電気機械スイッチは、アクチュエータ5を駆動していない常時は、可動接点部3と固定接点部2とが離間しており、一対の信号線6A,6B間は遮断される(オフ状態)。そして、アクチュエータ5を駆動すると、上述したように可撓部40が変形するため、可動接点部3は固定接点部2側(図11(b)における下側)に移動させられる。ここで、固定接点部2の中心軸は、可動接点部3の中心軸Oに一致しており、固定接点部2の内径は、可動接点部3の上記他底面の直径より大きく、上記一底面の直径より小さい。そのため、可動接点部3は、固定接点部2の内側に容易に入り込む。そして、可動接点部3の外周面3aが固定接点部2の内周面2aに当接することで、可動接点部3と固定接点部2とが接触し、ここからさらに可動接点部3をベース基板1側に移動させると、可動接点部3により固定接点部2が押し広げられ、これによって、可動接点部3の外周面3aに、固定接点部2の内周面2aが、その全周に亘って弾接する。   In the microelectromechanical switch of this reference example described above, the movable contact portion 3 and the fixed contact portion 2 are separated from each other when the actuator 5 is not driven, and the pair of signal lines 6A and 6B is blocked. (Off state). When the actuator 5 is driven, the flexible portion 40 is deformed as described above, so that the movable contact portion 3 is moved to the fixed contact portion 2 side (the lower side in FIG. 11B). Here, the central axis of the fixed contact portion 2 coincides with the central axis O of the movable contact portion 3, and the inner diameter of the fixed contact portion 2 is larger than the diameter of the other bottom surface of the movable contact portion 3, Smaller than the diameter of Therefore, the movable contact portion 3 easily enters the inside of the fixed contact portion 2. Then, the outer peripheral surface 3a of the movable contact portion 3 contacts the inner peripheral surface 2a of the fixed contact portion 2, so that the movable contact portion 3 and the fixed contact portion 2 come into contact with each other. When it is moved to the 1 side, the fixed contact portion 2 is expanded by the movable contact portion 3, whereby the outer peripheral surface 3 a of the movable contact portion 3 and the inner peripheral surface 2 a of the fixed contact portion 2 extend over the entire circumference. And hit it.

上述したようにして、可動接点部3の外周面3aに固定接点部2の内周面2aが弾接することによって、可動接点部3と固定接点部2との間が導通し、これによって、信号線6A,6B間が、固定接点部2、可動接点部3、導体部40b、および支持部41により電気的に接続される(オン状態)。   As described above, when the inner peripheral surface 2a of the fixed contact portion 2 is elastically contacted with the outer peripheral surface 3a of the movable contact portion 3, the movable contact portion 3 and the fixed contact portion 2 are electrically connected. The wires 6A and 6B are electrically connected by the fixed contact portion 2, the movable contact portion 3, the conductor portion 40b, and the support portion 41 (ON state).

この後に、アクチュエータ5の駆動を停止すると、可撓部40が変形前の形状に復帰し(図10参照)、可動接点部3が固定接点部2から離れる方向に移動し、その結果、可動接点部3が固定接点部2より離間して、一対の信号線6A,6B間が遮断される(オフ状態)。   Thereafter, when the driving of the actuator 5 is stopped, the flexible portion 40 returns to the shape before the deformation (see FIG. 10), and the movable contact portion 3 moves away from the fixed contact portion 2. As a result, the movable contact portion 3 moves. The part 3 is separated from the fixed contact part 2, and the pair of signal lines 6A and 6B is disconnected (OFF state).

以上述べたように、本参考例の微小電気機械スイッチによれば、固定接点部2は、コイル状に形成されており、可動接点部3が内側に位置した状態で、固定接点部2の内周面2aが可動接点部3の外周面3aに、全周に亘って当接するので、可動接点部3に固定接点部2を均等な接圧で接触させることができるから、可動接点部3と固定接点部2との接触状態が安定し、その結果、オン抵抗の悪化や、スティッキングの発生などを抑制することができるようになり、可動接点部3と固定接点部2との接触信頼性を向上することができる。また、本参考例では、実施形態1に比べて固定接点部2を簡単な形状とすることができ、固定接点部2を容易に形成することが可能になる。   As described above, according to the microelectromechanical switch of the present reference example, the fixed contact portion 2 is formed in a coil shape, and the movable contact portion 3 is located on the inner side of the fixed contact portion 2. Since the peripheral surface 2a contacts the outer peripheral surface 3a of the movable contact portion 3 over the entire circumference, the fixed contact portion 2 can be brought into contact with the movable contact portion 3 with an equal contact pressure. The contact state with the fixed contact portion 2 is stabilized, and as a result, deterioration of on-resistance and occurrence of sticking can be suppressed, and the contact reliability between the movable contact portion 3 and the fixed contact portion 2 is improved. Can be improved. Moreover, in this reference example, the fixed contact part 2 can be made into a simple shape compared with Embodiment 1, and it becomes possible to form the fixed contact part 2 easily.

また、本参考例の微小電気機械スイッチでは、可動接点部3の移動方向と、可動接点部3に固定接点部2の内周面2aが接触する方向とが略直交(交差)しているので、可動接点部3と固定接点部2との接圧は、固定接点部2の復元力によってのみ決まり、この復元力は、可動接点部3の位置によって決まる。そのため、可動接点部3を所定位置まで移動させることができれば、所望の接圧を得ることが可能であるから、可動接点部3の移動方向と、可動接点部3が固定接点部2に接触する方向とが略同方向である場合に比べれば、低消費電力化を図ることができる。また、可動接点部3の外周面3aと固定接点部2の内周面2aとの間の摩擦力が小さくすれば、可動接点部3を所定位置まで移動させるために必要な駆動力をより小さくすることができるから、さらなる低消費電力化を図ることができる。   Further, in the micro electromechanical switch of this reference example, the moving direction of the movable contact portion 3 and the direction in which the inner peripheral surface 2a of the fixed contact portion 2 contacts the movable contact portion 3 are substantially orthogonal (intersect). The contact pressure between the movable contact portion 3 and the fixed contact portion 2 is determined only by the restoring force of the fixed contact portion 2, and this restoring force is determined by the position of the movable contact portion 3. Therefore, if the movable contact portion 3 can be moved to a predetermined position, it is possible to obtain a desired contact pressure. Therefore, the moving direction of the movable contact portion 3 and the movable contact portion 3 come into contact with the fixed contact portion 2. Compared with the case where the direction is substantially the same, the power consumption can be reduced. Moreover, if the frictional force between the outer peripheral surface 3a of the movable contact portion 3 and the inner peripheral surface 2a of the fixed contact portion 2 is reduced, the driving force required to move the movable contact portion 3 to a predetermined position is further reduced. Therefore, further reduction in power consumption can be achieved.

ところで、本参考例における固定接点部2は、その中心軸方向に沿った方向において、内径が一定な螺旋状に形成されているが、固定接点部2の中心軸方向に沿った方向においてベース基板1側に近付くにつれて、内径が徐々に小さくなるような螺旋状に形成されていてもよい。このようにすれば、可動接点部3が固定接点部2の内側に入り込み易くなり、また外周面3aが内周面2a上を滑りやすくなるから、さらに接触信頼性が向上する。しかも、微視的には、可動接点部3の外周面3aと固定接点部2の内周面2aとが平行し、外周面3aと内周面2aとの接触面積を増やすことができるから、接触抵抗を低くすることができ、オン抵抗の悪化や、スティッキングの発生などを抑制することができる。この場合、可動接点部3の中心軸Oを含む平面においては、外周面3aの傾斜角度と、内周面2aの傾斜角度とを等しい角度とすることが好ましく、このようにすれば、外周面3aが内周面2a上をさらに滑りやすくなり、また、外周面3aと接触面20aとの接触面積をさらに増やすことができる。   By the way, the fixed contact portion 2 in the present reference example is formed in a spiral shape having a constant inner diameter in the direction along the central axis direction, but the base substrate in the direction along the central axis direction of the fixed contact portion 2. It may be formed in a spiral shape so that the inner diameter gradually decreases as it approaches one side. In this way, the movable contact portion 3 can easily enter the fixed contact portion 2, and the outer peripheral surface 3a can easily slide on the inner peripheral surface 2a, so that contact reliability is further improved. Moreover, microscopically, since the outer peripheral surface 3a of the movable contact portion 3 and the inner peripheral surface 2a of the fixed contact portion 2 are parallel, the contact area between the outer peripheral surface 3a and the inner peripheral surface 2a can be increased. Contact resistance can be lowered, and deterioration of on-resistance and occurrence of sticking can be suppressed. In this case, in the plane including the central axis O of the movable contact portion 3, it is preferable that the inclination angle of the outer peripheral surface 3a and the inclination angle of the inner peripheral surface 2a are equal to each other. 3a can further slip on the inner peripheral surface 2a, and the contact area between the outer peripheral surface 3a and the contact surface 20a can be further increased.

(a)は実施形態1の微小電気機械スイッチの要部の部分平面図、(b)は同図(a)のA−A線矢視断面図である。(A) is a fragmentary top view of the principal part of the micro electromechanical switch of Embodiment 1, (b) is the sectional view on the AA line of the figure (a). 同上の微小電気機械スイッチの分解斜視図である。It is a disassembled perspective view of a micro electromechanical switch same as the above. 同上における可動接点部の形成方法の説明図である。It is explanatory drawing of the formation method of the movable contact part in the same as the above. 同上における固定接点部の形成方法の説明図である。It is explanatory drawing of the formation method of the fixed contact part in the same as the above. 同上における固定接点部の形成方法の説明図である。It is explanatory drawing of the formation method of the fixed contact part in the same as the above. 実施形態2の微小電気機械スイッチの分解斜視図である。It is a disassembled perspective view of the micro electromechanical switch of Embodiment 2. (a)は同上の要部の部分平面図、(b)は同図(a)のB−B線矢視断面図である。(A) is a fragmentary top view of the principal part same as the above, (b) is a BB arrow directional cross-sectional view of the figure (a). 参考例1の微小電気機械スイッチの分解斜視図である。3 is an exploded perspective view of a micro electromechanical switch of Reference Example 1. FIG. (a)は同上の要部の部分平面図、(b)は同図(a)のC−C線矢視断面図である。(A) is the fragmentary top view of the principal part same as the above, (b) is CC sectional view taken on the line of FIG. 参考例2の微小電気機械スイッチの分解斜視図である。10 is an exploded perspective view of a micro electromechanical switch of Reference Example 2. FIG. (a)は同上の要部の部分平面図、(b)は側面図である。(A) is a fragmentary top view of the principal part same as the above, (b) is a side view. 従来例の微小電気機械スイッチの概略断面図である。It is a schematic sectional drawing of the micro electromechanical switch of a prior art example.

符号の説明Explanation of symbols

1 ベース基板
1a 一表面
2 固定接点部
3 可動接点部
3a 外周面
4 可動接点支持部
5 アクチュエータ
20 接触部
20a 接触面
22 接圧バネ部
40 可撓部
O 中心軸
DESCRIPTION OF SYMBOLS 1 Base substrate 1a One surface 2 Fixed contact part 3 Movable contact part 3a Outer peripheral surface 4 Movable contact support part 5 Actuator 20 Contact part 20a Contact surface 22 Contact pressure spring part 40 Flexible part O Center axis

Claims (5)

ベース基板の一表面側に形成された固定接点部と、ベース基板の上記一表面側において固定接点部に対向する部位に可動接点部が形成された可撓部を有しベース基板の上記一表面側に固定された可動接点支持部と、可動接点部が固定接点部に接触するように可動接点支持部の可撓部を変形させるアクチュエータとを備え、
可動接点部は、ベース基板の上記一表面の法線方向を中心軸の方向とし、
固定接点部は、上記中心軸の方向に直交する直交面内において上記中心軸を中心とする円の径方向に沿った方向において、可動接点部の外周面に弾接される接触面を有した複数の接触部を有してなり、
接触部の数は3の整数倍の数であり、
各接触部それぞれは、上記直交面内において、上記中心軸を回転軸とし接触部の数だけ回転位置を有する回転対称となる形に配置されていることを特徴とする微小電気機械スイッチ。
The one surface of the base substrate having a fixed contact portion formed on one surface side of the base substrate and a flexible portion having a movable contact portion formed on a portion facing the fixed contact portion on the one surface side of the base substrate. A movable contact support portion fixed to the side, and an actuator for deforming the flexible portion of the movable contact support portion so that the movable contact portion contacts the fixed contact portion,
The movable contact portion has the normal direction of the one surface of the base substrate as the direction of the central axis,
The fixed contact portion has a contact surface that is elastically contacted with the outer peripheral surface of the movable contact portion in a direction along a radial direction of a circle centering on the central axis in an orthogonal plane orthogonal to the direction of the central axis. Having a plurality of contact portions,
The number of contact parts is an integer multiple of 3,
Each of the contact portions is arranged in a rotationally symmetric manner having the rotational axis as many as the number of contact portions with the central axis as a rotation axis in the orthogonal plane.
上記可動接点部の上記外周面は、上記ベース基板の上記一表面から離れるにつれて上記中心軸から離れる形に傾斜していることを特徴とする請求項1記載の微小電気機械スイッチ。   2. The micro electro mechanical switch according to claim 1, wherein the outer peripheral surface of the movable contact portion is inclined so as to be separated from the central axis as the distance from the one surface of the base substrate is increased. 上記各接触部それぞれの上記接触面は、上記ベース基板の上記一表面から離れるにつれて上記中心軸から離れる形に傾斜していることを特徴とする請求項1または2記載の微小電気機械スイッチ。   3. The microelectromechanical switch according to claim 1, wherein the contact surface of each of the contact portions is inclined so as to be separated from the central axis as the distance from the one surface of the base substrate is increased. 上記固定接点部は、上記接触部の上記接触面を上記可動接点部の上記外周面に弾接させる接圧バネ部を、上記各接触部それぞれに対して複数備えてなることを特徴とする請求項1〜3のうちいずれか1項記載の微小電気機械スイッチ。   The fixed contact portion is provided with a plurality of contact pressure spring portions for elastically contacting the contact surface of the contact portion with the outer peripheral surface of the movable contact portion for each of the contact portions. Item 4. The microelectromechanical switch according to any one of Items 1 to 3. 上記固定接点部は、上記直交面内において上記径方向に直交する方向において上記接触部を挟み込むガイド部を備えることを特徴とする請求項1〜4のうちいずれか1項記載の微小電気機械スイッチ。   The micro electromechanical switch according to any one of claims 1 to 4, wherein the fixed contact portion includes a guide portion that sandwiches the contact portion in a direction orthogonal to the radial direction in the orthogonal plane. .
JP2008097564A 2008-04-03 2008-04-03 Miniature electric-mechanical switch Withdrawn JP2009252463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008097564A JP2009252463A (en) 2008-04-03 2008-04-03 Miniature electric-mechanical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008097564A JP2009252463A (en) 2008-04-03 2008-04-03 Miniature electric-mechanical switch

Publications (1)

Publication Number Publication Date
JP2009252463A true JP2009252463A (en) 2009-10-29

Family

ID=41312994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008097564A Withdrawn JP2009252463A (en) 2008-04-03 2008-04-03 Miniature electric-mechanical switch

Country Status (1)

Country Link
JP (1) JP2009252463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149489B2 (en) 2005-01-05 2012-04-03 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149489B2 (en) 2005-01-05 2012-04-03 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method
US8462410B2 (en) 2005-01-05 2013-06-11 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method
US8582189B2 (en) 2005-01-05 2013-11-12 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method
US8634121B2 (en) 2005-01-05 2014-01-21 Nippon Telegraph And Telephone Corporation Mirror device, mirror array, optical switch, mirror device manufacturing method, and mirror substrate manufacturing method

Similar Documents

Publication Publication Date Title
US7728703B2 (en) RF MEMS switch and method for fabricating the same
JP4316590B2 (en) Piezoelectric drive MEMS actuator
JP4402682B2 (en) Manufacturing method of downward MEMS switch and downward MEMS switch
JP5081038B2 (en) MEMS switch and manufacturing method thereof
JP4816762B2 (en) Structure of spring and actuator using the spring
US8564176B2 (en) Piezoelectric MEMS switch and method of manufacturing piezoelectric MEMS switch
CN102362330B (en) MEMS structure with a flexible membrane and improved electric actuation means
JP2007035640A (en) MEMS switch
CN101000842B (en) Mems switch
JP2007006696A (en) Electrostatic actuator, device having electrostatic actuator, microsystem having such device, and method for manufacturing such actuator
JP2007273451A (en) Piezoelectric MEMS switch and manufacturing method thereof
JP2007035635A (en) MEMS switch and manufacturing method thereof
JP2008091167A (en) Micromechanical device
JP2002216606A (en) Micromini electromechanical switch
JP2010026147A (en) Movable structure and optical scanning mirror using the same
JP2009252463A (en) Miniature electric-mechanical switch
US12071338B2 (en) Micromechanical structure and method of providing the same
US20160351366A1 (en) Micro-electro-mechanical system and method for producing the same
JP5039431B2 (en) Movable structure, optical scanning mirror element using the same, and method for manufacturing movable structure
JP2009238546A (en) Micro electric machine switch
JP2009252378A (en) Mems switch
JP2009252598A (en) Mems switch
JP5033032B2 (en) Micro electromechanical switch
KR100421222B1 (en) Micro switching device actuated by low voltage
US20070103843A1 (en) Electrostatic mems components permitting a large vertical displacement

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607