JP2009249667A - Desulfurization refining method for molten - Google Patents
Desulfurization refining method for molten Download PDFInfo
- Publication number
- JP2009249667A JP2009249667A JP2008097214A JP2008097214A JP2009249667A JP 2009249667 A JP2009249667 A JP 2009249667A JP 2008097214 A JP2008097214 A JP 2008097214A JP 2008097214 A JP2008097214 A JP 2008097214A JP 2009249667 A JP2009249667 A JP 2009249667A
- Authority
- JP
- Japan
- Prior art keywords
- desulfurization
- slag
- gas
- molten iron
- refining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
【課題】 本発明は、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、高効率でかつ安定して脱硫処理する精錬方法を提供する。
【解決手段】 溶鉄を脱硫精錬するに際し、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程で生成した脱硫スラグの一部あるいは全部を残し、水素ガスまたは水素ガスを1体積%以上含むアルゴンガスをプラズマガスとして該スラグ上面に照射する。また、脱硫剤として実質的にフッ素を含まないフラックスを使用する。さらに、発生したスラグを、再度脱硫剤として用いる。
【選択図】 なしPROBLEM TO BE SOLVED: To provide a refining process for desulfurization treatment more easily, efficiently and stably without using an LF apparatus or a vacuum degassing apparatus having a high equipment cost and processing cost and without adversely affecting the environment. Provide a method.
When desulfurizing and refining molten iron, a desulfurizing agent is added as a first step to perform desulfurization, and a part or all of the desulfurized slag generated in the first step covering the surface of the molten iron is left as a second step, The upper surface of the slag is irradiated as a plasma gas with hydrogen gas or argon gas containing 1% by volume or more of hydrogen gas. Further, a flux substantially free of fluorine is used as a desulfurizing agent. Furthermore, the generated slag is used again as a desulfurizing agent.
[Selection figure] None
Description
本発明は、極低硫鋼を溶製するための溶鉄の脱硫精錬方法に関する。 The present invention relates to a method for desulfurizing and refining molten iron for melting ultra-low sulfur steel.
一般に、炭素鋼で極低硫鋼(溶鋼の硫黄濃度で[S]≦14ppm)を製造するには、まず溶銑の段階で、ソーダ灰、金属Mg系あるいは石灰系の脱硫剤を用い、強力に予備脱硫を行ない、溶銑の硫黄濃度を20〜50ppm程度に低下させる。そして、該溶銑を転炉等で脱炭精錬を行なった後、得られた溶鋼に対し更に二次精錬を行って脱硫し、最終目標の硫黄濃度にする。その二次精錬で行う脱硫には、下記のような方法が利用される。
(1)取鍋、蓋及び加熱用電極からなる所謂「LF装置」を用い、電気エネルギーによる昇熱とスラグ−メタル精錬とを行い脱硫する方法
(2)取鍋に保持した溶鋼に、ガス吹き込みノズルを介して脱硫剤を大気下で吹き込み脱硫する方法
(3)取鍋に保持した溶鋼をRH等の真空脱ガス槽内で環流させ、上方より脱硫剤を吹き付け、脱硫する方法
(4)取鍋に保持した溶鋼をVOD真空脱ガス槽内にセットし、強撹拌して脱硫する方法
In general, in order to produce extremely low sulfur steel ([S] ≦ 14ppm in the molten steel sulfur concentration) with carbon steel, first, at the hot metal stage, soda ash, metallic Mg-based or lime-based desulfurizing agent is used to Pre-desulfurization is performed to reduce the sulfur concentration of the hot metal to about 20 to 50 ppm. Then, after the hot metal is decarburized and refined in a converter or the like, the obtained molten steel is further subjected to secondary refining to desulfurize to a final target sulfur concentration. The following methods are used for desulfurization performed in the secondary refining.
(1) A method of desulfurization using a so-called “LF device” consisting of a ladle, a lid, and a heating electrode, and performing desulfurization by heating with electric energy and slag-metal refining (2) Gas blowing into the molten steel held in the ladle A method of desulfurization by blowing a desulfurizing agent in the atmosphere through a nozzle (3) A method of desulfurizing the molten steel held in the ladle in a vacuum degassing tank such as RH and spraying the desulfurizing agent from above (4) A method in which molten steel held in a pan is set in a VOD vacuum degassing tank and desulfurized by vigorous stirring.
LF装置やVOD真空脱ガス槽を用いない方法としては、予め溶銑の予備処理段階で硫黄濃度を10〜35ppmに低下させた後、プリメルトフラックスの利用と溶鋼中Al濃度の制御により、2ppm以下の硫黄濃度を安定して溶製する方法も提案されている(特許文献1)。 As a method that does not use an LF device or a VOD vacuum degassing tank, the sulfur concentration is reduced to 10 to 35 ppm in advance in the hot metal pretreatment stage, and then 2 ppm or less by using premelt flux and controlling the Al concentration in the molten steel. There has also been proposed a method for producing a stable sulfur concentration (Patent Document 1).
また、簡便に極低硫鋼を製造する方法として、フリーボード内の酸素濃度を低く制御しつつCaO系フラックスとAlを添加する方法も提案されている(特許文献2)。 In addition, as a method for easily producing ultra-low sulfur steel, a method of adding CaO-based flux and Al while controlling the oxygen concentration in the free board low has been proposed (Patent Document 2).
また、特許文献3には、平衡酸素分圧を0.2〜0.8気圧に制御したガスをスラグに吹き付けることで、溶鉄からスラグへの脱硫に併せてスラグからの気化脱硫を進行させる方法が提案されている。 Patent Document 3 discloses a method in which vaporized desulfurization from slag proceeds in conjunction with desulfurization from molten iron to slag by blowing a gas whose equilibrium oxygen partial pressure is controlled to 0.2 to 0.8 atm to slag. Has been proposed.
なお、極低硫鋼を製造する場合には、スラグの脱硫能を高めるために、蛍石などのフッ素を含む脱硫剤を使用するのが一般的となっている。 When producing ultra-low sulfur steel, it is common to use a desulfurization agent containing fluorine such as fluorite in order to enhance the desulfurization ability of slag.
LF装置を用いる方法は、電力エネルギーで精錬用フラックスを溶かし、溶鋼浴面を覆い、保温に有効な技術である。また、溶融し難い精錬用フラックスでも利用でき、スラグの硫黄保持能力(サルファイドキャパシティ)を高めることができるので、脱硫反応効率が高いという利点がある。しかしながら、LF装置を用いる場合は、多大な電力エネルギーを使うために、製造コストが高くなるばかりでなく、溶製時間が長く、生産性も低いという問題点があった。 The method using the LF apparatus is a technique effective for heat insulation by melting the refining flux with electric power energy and covering the molten steel bath surface. In addition, it can be used even in refining fluxes that are difficult to melt, and the sulfur retention capacity (sulfide capacity) of slag can be increased, which has the advantage of high desulfurization reaction efficiency. However, when the LF apparatus is used, there is a problem in that not only the manufacturing cost increases because of the use of a large amount of electric energy, but also the melting time is long and the productivity is low.
また、VOD真空脱ガス槽を用いる方法は、撹拌力が大きいので、脱硫反応効率は大きいが、溶製時間が長く、処理コストが高いという問題があった。また、溶鋼の強撹拌により、取鍋の内張り耐火物の溶損が著しく大きくなるという問題も生じていた。 In addition, the method using a VOD vacuum degassing tank has a problem that the desulfurization reaction efficiency is large because the stirring force is large, but the melting time is long and the processing cost is high. Moreover, the problem that the melting loss of the refractory lining the ladle becomes remarkably large due to the strong stirring of the molten steel has occurred.
特許文献1に記載の方法では、溶銑予備処理と二次精錬での二段精錬が必須となるため、溶銑予備処理に要する時間と費用が莫大になる。また、目標達成が不十分の時には、RH真空脱ガス槽を用いたさらなる脱硫処理、つまり二次精錬だけで2段階の脱硫処理が必要とされるという課題があった。 In the method described in Patent Document 1, since two-stage refining in hot metal pretreatment and secondary refining is essential, the time and cost required for hot metal pretreatment are enormous. Further, when the achievement of the target is insufficient, there is a problem that further desulfurization treatment using the RH vacuum degassing tank, that is, two-stage desulfurization treatment is required only by secondary refining.
また、特許文献2に記載の方法では、硫黄濃度5ppm以下の極低硫鋼の溶製は不可能であり、またAlを使用するため、材質上Al濃度規制がある鋼種やアルミナ系介在物の存在が許されない鋼種には適用できないという課題もあった。 In addition, in the method described in Patent Document 2, it is impossible to melt extremely low-sulfur steel with a sulfur concentration of 5 ppm or less, and since Al is used, the steel type and alumina inclusions that have Al concentration restrictions on the material are used. There was also a problem that it could not be applied to steel types that were not allowed to exist.
特許文献3に記載の方法では、脱硫と同時に脱珪や脱りん精錬も行うため、脱硫能力に限界があり、硫黄濃度30ppm未満の低硫鋼には適用できないという課題があった。 In the method described in Patent Document 3, since desiliconization and dephosphorization are performed simultaneously with desulfurization, there is a limit in desulfurization capability, and there is a problem that it cannot be applied to low-sulfur steel with a sulfur concentration of less than 30 ppm.
さらに、極低硫鋼製造時に一般的に使用されるフッ素を含有するフラックスで脱硫処理を行うと、処理後のスラグにもフッ素が残留する。そのため、スラグ中のフッ素が環境に及ぼす影響を考慮し、鋼の精錬においてもフッ素源の使用を抑えることが要請されている。 Furthermore, when the desulfurization process is performed with a flux containing fluorine that is generally used when manufacturing ultra-low sulfur steel, fluorine remains in the slag after the process. Therefore, in consideration of the influence of fluorine in the slag on the environment, it is required to suppress the use of a fluorine source in steel refining.
本発明は、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、高効率でかつ安定して脱硫処理する精錬方法を提供することを課題とする。 The present invention provides a refining method for performing a desulfurization process more simply, efficiently and stably without using an LF apparatus or a vacuum degassing apparatus with high equipment costs and processing costs and without adversely affecting the environment. The task is to do.
かかる課題を解決するため、本発明の要旨とするところは、以下の通りである。
(1)溶鉄を脱硫精錬するに際し、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程で生成した脱硫スラグの一部あるいは全部を残し、水素ガスまたは水素ガスを1体積%以上含むアルゴンガスをプラズマガスとして該スラグ上面に照射することを特徴とする溶鉄の脱硫精錬方法。
(2)脱硫剤として実質的にフッ素を含まないフラックスを使用することを特徴とする上記(1)記載の溶鉄の脱硫精錬方法。
(3)上記(1)又は(2)記載の溶鉄の脱硫精練方法で発生したスラグを、上記脱硫剤として用いることを特徴とする上記(1)又は(2)記載の溶鉄の脱硫精練方法。
In order to solve this problem, the gist of the present invention is as follows.
(1) When desulfurizing and refining molten iron, desulfurization is performed by adding a desulfurizing agent as the first step, and part or all of the desulfurization slag produced in the first step covering the surface of the molten iron is left as the second step. A method for desulfurizing and refining molten iron, comprising irradiating an upper surface of the slag with argon gas containing 1% by volume or more of gas or hydrogen gas as plasma gas.
(2) The method for desulfurizing and refining molten iron according to (1) above, wherein a flux containing substantially no fluorine is used as a desulfurizing agent.
(3) The method for desulfurizing and refining molten iron according to (1) or (2), wherein the slag generated by the method for desulfurizing and refining molten iron according to (1) or (2) is used as the desulfurizing agent.
本発明により、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、かつ高効率で、安定した極低硫鋼を製造することが可能となった。 According to the present invention, a stable ultra-low-sulfur steel is manufactured more easily, efficiently, and stably without using an LF apparatus or a vacuum degassing apparatus with high equipment costs and processing costs, and without adversely affecting the environment. It became possible.
通常の脱硫処理においては、CaO源を添加し、下記(A)式で脱硫反応を進行させる。
CaO+S→CaS+O (A)
In a normal desulfurization treatment, a CaO source is added, and the desulfurization reaction proceeds according to the following formula (A).
CaO + S → CaS + O (A)
フラックスとの反応性を向上させるために、またスラグの脱硫能を高めるために、アルミナ源やフッ素源をCaOに混合したり、鉄中の酸素活量を下げるために金属Al等を添加して脱酸したり、雰囲気を減圧化、不活性ガス化したり、という工夫がなされている。溶銑段階では金属Mgを添加して脱酸しつつMgSの形で脱硫する場合もあるが、MgSは不安定であり、最終的にCaSの形でスラグ中に固定される。 In order to improve the reactivity with the flux and to improve the desulfurization ability of the slag, an alumina source or a fluorine source is mixed with CaO, or metal Al or the like is added to lower the oxygen activity in iron. Ingenuity has been made such as deoxidation, decompression of the atmosphere, and inert gas. In the hot metal stage, Mg may be desulfurized in the form of MgS while adding metal Mg, but MgS is unstable and is finally fixed in the slag in the form of CaS.
いずれにしても、平衡硫黄濃度はスラグの硫黄保持能力(サルファイドキャパシティ)と鉄中の酸素活量に依存し、フラックス(スラグ)のみでの脱硫能力には限界があった。 In any case, the equilibrium sulfur concentration depends on the sulfur retention capacity (sulfide capacity) of slag and the oxygen activity in iron, and the desulfurization capacity with flux (slag) alone is limited.
これに対し、本発明者らは、種々の脱硫実験を行う中で、脱硫処理後の硫黄を含むスラグに水素を含有するガスを吹き付けると、雰囲気の酸素分圧の低減により溶鉄の酸素活量も低下して上記(A)式が促進されると同時に、下記(B)式で示される反応により極めて高い気化脱硫能力を有することを知見した。
(S)+H2→H2S↑ (B)
On the other hand, when the present inventors conducted various desulfurization experiments and sprayed a gas containing hydrogen on the slag containing sulfur after the desulfurization treatment, the oxygen activity of the molten iron was reduced by reducing the oxygen partial pressure of the atmosphere. And the above formula (A) was promoted, and at the same time, it was found that the reaction represented by the following formula (B) has an extremely high vaporization desulfurization ability.
(S) + H 2 → H 2 S ↑ (B)
さらに、水素を1万℃とも言われる極めて高温のプラズマガスとして使用すると、下記(C)式のように水素が単原子化されてスラグ中Sと反応し、より低濃度の水素ガスでも気化脱硫が大幅に進行することも知見した。
(S)+2H→H2S↑ (C)
本発明は、その水素によるスラグからの気化脱硫反応を活用したものである。
Furthermore, when hydrogen is used as an extremely high temperature plasma gas, which is said to be 10,000 ° C., hydrogen is converted into a single atom as shown in the following formula (C) and reacted with S in the slag, and even a low concentration hydrogen gas is vaporized and desulfurized. It has also been found that progresses significantly.
(S) + 2H → H 2 S ↑ (C)
The present invention utilizes the vaporization desulfurization reaction from slag by hydrogen.
以下、本発明の詳細と好ましい実施形態について説明する。 Hereinafter, details and preferred embodiments of the present invention will be described.
本発明では、脱硫処理を施していない、またはある程度事前脱硫処理を施した溶銑や溶鋼を精錬容器に装入する。精錬容器は、トーピードカーでも転炉でも取鍋でも良いが、本発明は転炉のように大きなフリーボードを必須としないことから、トーピードカーや取鍋で実施できる点が特徴である。更に、取鍋は浸漬方式の蓋(浸漬管)をかぶせて脱硫に有利なアルゴンガス雰囲気にし易い利点がある。また、プラズマアークにより水素含有ガスを吹き付けるため、設備的な構造上、取鍋であることが望ましい。 In the present invention, hot metal or molten steel that has not undergone desulfurization treatment or has undergone some degree of preliminary desulfurization treatment is charged into a refining vessel. The smelting vessel may be a torpedo car, a converter, or a ladle. However, the present invention does not require a large free board as in the converter, and is characterized in that it can be implemented with a torpedo car or a ladle. Furthermore, the ladle has an advantage that it can be easily put into an argon gas atmosphere that is advantageous for desulfurization by covering with a dipping-type lid (immersion tube). Moreover, since a hydrogen-containing gas is sprayed by a plasma arc, it is desirable that it is a ladle in terms of equipment structure.
上記溶銑や溶鋼の精錬容器への装入後、処理段階(溶銑もしくは溶鋼)や鋼種に応じて適宜選択した生石灰、生石灰とアルミナ源の混合物、生石灰と金属Mgの混合物、生石灰と蛍石の混合物等の脱硫剤を添加し、底吹きガスによる攪拌や機械式攪拌により脱硫剤と溶鉄を混合しつつ第一工程である脱硫処理を施す。なお第一工程の脱硫は、上記の通り脱硫処理によりSが溶鉄上のスラグに含まれるものであれば特に脱硫方法や形態は問わない。 After charging the hot metal or molten steel into the refining vessel, quick lime, a mixture of quick lime and alumina source, a mixture of quick lime and metal Mg, a mixture of quick lime and metal Mg, a mixture of quick lime and fluorite A desulfurization treatment as the first step is performed while mixing the desulfurization agent and the molten iron by bottom blowing gas or mechanical stirring. The desulfurization in the first step is not particularly limited as long as S is contained in the slag on the molten iron by the desulfurization treatment as described above.
次に、第二工程として、第一工程で生成した脱硫スラグの一部あるいは全部を残し、水素ガスまたは水素ガスを含むアルゴンガスをプラズマガスとして該スラグ上面に照射する。ここで、脱硫スラグの一部だけを残す場合は、少なくとも溶鉄表面の全面をスラグが覆っていれば良い。 Next, as the second step, a part or all of the desulfurized slag generated in the first step is left, and the upper surface of the slag is irradiated with hydrogen gas or argon gas containing hydrogen gas as a plasma gas. Here, when only a part of the desulfurized slag is left, it is sufficient that the slag covers at least the entire surface of the molten iron.
溶鉄中の硫黄は鉄との親和力が強いため、水素ガスを吹き付けても気化脱硫が進行しないが、スラグ中の硫黄は上記(B)式の反応により迅速に気化する。更に、水素ガスまたは水素含有ガスをプラズマガスとしてスラグに照射すると、上記(C)式の反応により気化脱硫反応がさらに促進され、極低硫鋼製造が可能となる。また、この気化脱硫反応により、溶鉄中のS濃度は第一工程後よりも第二工程後で更に低減する。第二工程後の溶鉄中S濃度を第一工程後のS濃度の50%以下とすることが、本発明の効果が大きく発揮される好適な条件である。 Since sulfur in molten iron has a strong affinity with iron, vapor desulfurization does not proceed even when hydrogen gas is blown, but sulfur in slag is rapidly vaporized by the reaction of the above formula (B). Further, when slag is irradiated with hydrogen gas or hydrogen-containing gas as plasma gas, the vaporization desulfurization reaction is further accelerated by the reaction of the above formula (C), and extremely low sulfur steel can be produced. In addition, due to this vaporization desulfurization reaction, the S concentration in the molten iron is further reduced after the second step than after the first step. Setting the S concentration in the molten iron after the second step to 50% or less of the S concentration after the first step is a suitable condition for greatly exerting the effect of the present invention.
本発明者らは種々のプラズマ脱硫実験から、水素濃度1体積%以上で気化脱硫速度が大幅に向上することを知見した。気化脱硫速度の観点からは水素濃度が高い方が望ましく、また、水素濃度が高いほどプラズマの出力を増加させることが可能となるため、溶鉄の昇熱能力が増大するため、純水素ガスが最良の実施の形態である。一方で、ガスコスト、電力コストの点からは水素濃度が低い方が望ましく、必要なプラズマ容量も低減できるため、処理後の目標硫黄濃度と要求処理時間、プラズマ電源容量に応じて1〜100体積%の間で水素濃度は適宜選択可能である。 The present inventors have found from various plasma desulfurization experiments that the vaporization desulfurization rate is greatly improved at a hydrogen concentration of 1% by volume or more. From the viewpoint of the vaporization desulfurization rate, it is desirable that the hydrogen concentration is high, and the higher the hydrogen concentration is, the more the plasma output can be increased. It is an embodiment. On the other hand, from the viewpoint of gas cost and power cost, it is desirable that the hydrogen concentration is low, and the necessary plasma capacity can be reduced, so that the target sulfur concentration after processing, the required processing time, and the plasma power source capacity are 1 to 100 volumes. %, The hydrogen concentration can be selected as appropriate.
また、第二工程処理は、溶鉄中のS量(質量%)が処理前S量(質量%)の20〜70%に低減した後に実施することが望ましい。この理由は以下の2点である。1点目は、溶鉄中のS量が処理前S量の70%超、すなわち脱硫率が30%未満の段階では、未だスラグ中のS濃度が低いために気化脱硫率が低く、十分な気化脱硫効果が得られない、ということである。2点目は、溶鉄中のS量が処理前S量の20%未満、すなわち脱硫率が80%超の段階まで第一工程を続けると、脱硫の進行が緩慢もしくは停滞しているために、処理時間がかかり過ぎる、ということである。 Moreover, it is desirable to implement a 2nd process process, after the S amount (mass%) in molten iron reduces to 20 to 70% of S amount (mass%) before a process. There are two reasons for this. The first point is that when the amount of S in molten iron exceeds 70% of the amount of S before treatment, that is, when the desulfurization rate is less than 30%, the vaporization desulfurization rate is low because the S concentration in the slag is still low, and sufficient vaporization is achieved. This means that the desulfurization effect cannot be obtained. The second point is that when the first step is continued until the S amount in the molten iron is less than 20% of the pre-treatment S amount, that is, the desulfurization rate exceeds 80%, the progress of desulfurization is slow or stagnant. It takes too much processing time.
なお、プラズマ設備としては、水素が超高温のプラズマ気流中で単原子に解離すれば良いため、プラズマの方式としては移行型、非移行型いずれでも良く、移行型の場合はトーチ側が正極でも負極でも良い。移行型の場合、プラズマトーチと溶湯との間にアークが形成されるので、水素ガスまたは水素含有ガスをプラズマガスとしてこのプラズマアーク内に導入してスラグに照射する。非移行型の場合、水素ガスまたは水素含有ガスがプラズマトーチ内に形成されたプラズマアークを通過することによってプラズマガスとなり、このプラズマガスをスラグに照射する。また、水素含有ガスとしては、吸窒防止とガスコストの点からアルゴンガスを使用するのが好適である。 As the plasma equipment, hydrogen can be dissociated into single atoms in an ultra-high temperature plasma stream, so the plasma system may be either transitional or non-transitional. In the transitional type, the torch side is either positive or negative But it ’s okay. In the case of the transfer type, an arc is formed between the plasma torch and the molten metal. Therefore, hydrogen gas or a hydrogen-containing gas is introduced into the plasma arc as a plasma gas and irradiated to the slag. In the case of the non-migration type, hydrogen gas or hydrogen-containing gas passes through a plasma arc formed in the plasma torch to become plasma gas, and this plasma gas is irradiated onto the slag. In addition, as the hydrogen-containing gas, it is preferable to use argon gas from the viewpoint of preventing nitrogen absorption and gas cost.
さらに、本発明においては、大部分の硫黄は気化してスラグから抜けるため、脱硫精錬後のスラグは、次の脱硫精錬処理の脱硫剤として再利用することも可能となる。再利用が可能となることで、新しい脱硫剤を使用する量や、脱硫精練スラグの排出量を大幅に低減することができ、脱硫処理コストや脱硫精練スラグの処理コスト低減に顕著な効果が発揮できる。 Furthermore, in the present invention, most of the sulfur is vaporized and escapes from the slag, so that the slag after desulfurization refining can be reused as a desulfurization agent for the next desulfurization refining treatment. By reusing it, the amount of new desulfurizing agent used and the amount of desulfurized slag slag discharged can be greatly reduced, and it has a significant effect on reducing the desulfurization treatment cost and desulfurization slag treatment cost. it can.
本発明ではまた、フッ素を実質的に添加しなくても十分に高い脱硫能が得られることを特徴としている。実質的に添加しないこととは、脱硫精錬後のスラグからフッ素(F)の溶出が顕著には認められないことを指すもので、本発明者らの知見では精錬後のスラグ組成においてFが1質量%以下となる場合を指す。Fが0.5質量%以下であれば更に好ましい。 The present invention is also characterized in that a sufficiently high desulfurization ability can be obtained without substantially adding fluorine. The fact that it is not substantially added means that the elution of fluorine (F) is not recognized remarkably from the slag after desulfurization refining. According to the knowledge of the present inventors, F is 1 in the slag composition after refining. The case where it becomes below mass%. More preferably, F is 0.5% by mass or less.
(実施例1)
高炉から出銑した溶銑を溶銑鍋(350トン)に装入し、機械攪拌であるKR装置を用いて脱硫精錬処理を行った。脱硫精錬前の溶銑中S濃度は、0.021〜0.025質量%であった。第一工程において、脱硫精錬剤としては、粒径1mm以下の生石灰粉を溶銑1トン当り5kg使用した。生石灰粉の上方添加後10分間のインペラーによる機械攪拌を行った。その後、インペラーを引き上げ、第二工程として、KR装置に設置したプラズマトーチを挿入して、スラグ上面に水素濃度の異なる水素、アルゴン混合ガスを15Nm3/時の供給速度で5分間吹き付けた。プラズマ装置は電源容量2MWの直流移行型とし、トーチ側を負極とした。第二工程において、溶銑鍋底部に設置したポーラスプラグより100Nlのアルゴンガス攪拌を行った。
Example 1
The hot metal discharged from the blast furnace was charged into a hot metal ladle (350 tons) and subjected to desulfurization and refining treatment using a KR apparatus that was mechanical stirring. The S concentration in the hot metal before desulfurization refining was 0.021 to 0.025 mass%. In the first step, as the desulfurization refining agent, 5 kg of quick lime powder having a particle size of 1 mm or less was used per 1 ton of hot metal. Mechanical stirring with an impeller for 10 minutes after the upward addition of quicklime powder was performed. Thereafter, the impeller was pulled up, and as a second step, a plasma torch installed in the KR apparatus was inserted, and hydrogen and argon mixed gas having different hydrogen concentrations were sprayed on the slag upper surface at a supply rate of 15 Nm 3 / hour for 5 minutes. The plasma device was a direct current transfer type with a power capacity of 2 MW, and the torch side was a negative electrode. In the second step, 100 Nl of argon gas was stirred from a porous plug installed at the bottom of the hot metal pan.
各実施例の結果を、脱硫処理条件とともに表1に示す。なお、表1に示す各平均値は各条件での10〜20chの脱硫処理での値を平均したものである。いずれも本発明例である実施例では安定して処理後のS濃度0.002質量%未満となっており、処理後のスラグ中S濃度も再利用が可能な低濃度となっていることが確認された。 The results of each example are shown in Table 1 together with the desulfurization treatment conditions. In addition, each average value shown in Table 1 averages the value in 10-20ch desulfurization process in each condition. In each of the examples of the present invention, the S concentration after the treatment is stably less than 0.002% by mass, and the S concentration in the slag after the treatment is also a low concentration that can be reused. confirmed.
一方、比較例No.7、8はプラズマガス中の水素濃度が低すぎ、No.9はプラズマガス照射を行わなかったため、No.10はすべてのスラグを排出したため、処理後Sが十分に低減しなかった。 On the other hand, Comparative Example No. Nos. 7 and 8 indicate that the hydrogen concentration in the plasma gas is too low. No. 9 was not irradiated with plasma gas. Since 10 discharged all the slag, S was not sufficiently reduced after the treatment.
(実施例2)
転炉から出鋼した溶鋼を溶鋼鍋(350トン)に装入し、浸漬管を有するCAS装置を用いて脱硫精錬処理を行った。CAS装置とは、溶鋼鍋内の溶鋼上部から円筒形状の浸漬管を挿入し、浸漬管を溶鋼表面に浸漬し、取鍋底からアルゴンガスを吹き込み、アルゴンガスが円筒状の浸漬管内部に浮上することで浸漬管内部をアルゴンガス雰囲気とした上で、浸漬管内部の溶湯に合金添加等の二次精錬を行う装置である。脱硫精錬前の溶鋼中S濃度は、0.005〜0.010質量%であった。第一工程において、脱硫精錬剤としては、粒径1mm以下の生石灰粉とアルミナ粉を質量比6:4で混合したものを溶銑1トン当り5kg使用した。浸漬管内の雰囲気をアルゴンガスで置換した後、精錬剤を上方から浸漬管内部の溶湯上に添加し、溶鋼鍋底部に設置したポーラスプラグより100Nl/分のアルゴンガスで10分間攪拌した。その後、第二工程として、CAS装置に設置したプラズマトーチを挿入して、浸漬管内部のスラグ上面に水素濃度の異なる水素、アルゴン混合ガスを15Nm3/時の供給速度で5分間吹き付けた。プラズマ装置は電源容量2MWの直流移行型とし、トーチ側を負極とした。第二工程においてもアルゴンガス底吹きを継続した。
(Example 2)
The molten steel discharged from the converter was charged into a molten steel pan (350 tons), and desulfurization refining treatment was performed using a CAS apparatus having a dip tube. The CAS device is a cylindrical dip tube inserted from the top of the molten steel in the molten steel pan, the dip tube is immersed in the molten steel surface, argon gas is blown from the bottom of the ladle, and the argon gas floats inside the cylindrical dip tube. This is an apparatus for performing secondary refining such as addition of an alloy to the molten metal inside the dip tube after setting the inside of the dip tube to an argon gas atmosphere. The S concentration in the molten steel before desulfurization refining was 0.005 to 0.010 mass%. In the first step, as the desulfurization refining agent, a mixture of quick lime powder having a particle size of 1 mm or less and alumina powder in a mass ratio of 6: 4 was used at 5 kg per ton of hot metal. After substituting the atmosphere in the dip tube with argon gas, a refining agent was added onto the molten metal inside the dip tube from above and stirred for 10 minutes with argon gas at 100 Nl / min from a porous plug installed at the bottom of the molten steel pan. Thereafter, as a second step, a plasma torch installed in the CAS apparatus was inserted, and hydrogen and argon mixed gases having different hydrogen concentrations were sprayed on the upper surface of the slag inside the dip tube at a supply rate of 15 Nm 3 / hour for 5 minutes. The plasma device was a direct current transfer type with a power capacity of 2 MW, and the torch side was a negative electrode. Also in the second step, argon gas bottom blowing was continued.
各実施例の結果を、脱硫処理条件とともに表2に示す。なお、表2に示す各平均値は各条件での10〜20chの脱硫処理での値を平均したものである。いずれも本発明例である実施例では安定して処理後のS濃度0.001質量%未満となっており、極低硫鋼が製造可能なことが確認された。 The results of each example are shown in Table 2 together with the desulfurization treatment conditions. In addition, each average value shown in Table 2 averages the value in the desulfurization process of 10-20ch in each condition. In all of the examples which are examples of the present invention, the S concentration after the treatment was stably less than 0.001% by mass, and it was confirmed that an extremely low sulfur steel could be produced.
一方、比較例No.7、8はプラズマガス中の水素濃度が低すぎ、No.9はプラズマガス照射を行わなかったため、No.10はすべてのスラグを排出したため、処理後Sが十分に低減しなかった。 On the other hand, Comparative Example No. Nos. 7 and 8 indicate that the hydrogen concentration in the plasma gas is too low. No. 9 was not irradiated with plasma gas. Since 10 discharged all the slag, S was not sufficiently reduced after the treatment.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008097214A JP5272479B2 (en) | 2008-04-03 | 2008-04-03 | Method for desulfurizing and refining molten iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008097214A JP5272479B2 (en) | 2008-04-03 | 2008-04-03 | Method for desulfurizing and refining molten iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009249667A true JP2009249667A (en) | 2009-10-29 |
JP5272479B2 JP5272479B2 (en) | 2013-08-28 |
Family
ID=41310641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008097214A Active JP5272479B2 (en) | 2008-04-03 | 2008-04-03 | Method for desulfurizing and refining molten iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5272479B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011017047A (en) * | 2009-07-08 | 2011-01-27 | Nippon Steel Corp | Method for desulfurization refining molten iron |
WO2011030687A1 (en) | 2009-09-09 | 2011-03-17 | 日立コンシューマエレクトロニクス株式会社 | Content receiver apparatus |
JP2011140684A (en) * | 2010-01-06 | 2011-07-21 | Nippon Steel Corp | Method for desulfurizing and refining molten iron |
CN103031410A (en) * | 2011-11-29 | 2013-04-10 | 新疆八一钢铁股份有限公司 | Method for treating desulfuration residue by preparing efficient blocker with waste materials of steelmaking |
CN113151640A (en) * | 2021-02-23 | 2021-07-23 | 江苏省沙钢钢铁研究院有限公司 | Process method for producing high-sulfur steel by recycling slag |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840607A (en) * | 1971-09-30 | 1973-06-14 | ||
JPS5452611A (en) * | 1977-10-05 | 1979-04-25 | Nippon Steel Corp | Hot iron desulfurization method including regeneration of desulfurizing agent by gasification desulfurization |
JPS58221220A (en) * | 1982-06-17 | 1983-12-22 | Nippon Steel Corp | Method for heating and refining molten steel in a ladle |
JPH01165710A (en) * | 1987-12-23 | 1989-06-29 | Nippon Steel Corp | Hot metal desulfurization method |
JPH11293327A (en) * | 1998-04-14 | 1999-10-26 | Nippon Steel Corp | DC electric furnace steelmaking method |
JP2007254844A (en) * | 2006-03-24 | 2007-10-04 | Jfe Steel Kk | Desulfurization method for molten steel |
-
2008
- 2008-04-03 JP JP2008097214A patent/JP5272479B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4840607A (en) * | 1971-09-30 | 1973-06-14 | ||
JPS5452611A (en) * | 1977-10-05 | 1979-04-25 | Nippon Steel Corp | Hot iron desulfurization method including regeneration of desulfurizing agent by gasification desulfurization |
JPS58221220A (en) * | 1982-06-17 | 1983-12-22 | Nippon Steel Corp | Method for heating and refining molten steel in a ladle |
JPH01165710A (en) * | 1987-12-23 | 1989-06-29 | Nippon Steel Corp | Hot metal desulfurization method |
JPH11293327A (en) * | 1998-04-14 | 1999-10-26 | Nippon Steel Corp | DC electric furnace steelmaking method |
JP2007254844A (en) * | 2006-03-24 | 2007-10-04 | Jfe Steel Kk | Desulfurization method for molten steel |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011017047A (en) * | 2009-07-08 | 2011-01-27 | Nippon Steel Corp | Method for desulfurization refining molten iron |
WO2011030687A1 (en) | 2009-09-09 | 2011-03-17 | 日立コンシューマエレクトロニクス株式会社 | Content receiver apparatus |
JP2011140684A (en) * | 2010-01-06 | 2011-07-21 | Nippon Steel Corp | Method for desulfurizing and refining molten iron |
CN103031410A (en) * | 2011-11-29 | 2013-04-10 | 新疆八一钢铁股份有限公司 | Method for treating desulfuration residue by preparing efficient blocker with waste materials of steelmaking |
CN113151640A (en) * | 2021-02-23 | 2021-07-23 | 江苏省沙钢钢铁研究院有限公司 | Process method for producing high-sulfur steel by recycling slag |
Also Published As
Publication number | Publication date |
---|---|
JP5272479B2 (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0159180B1 (en) | Steelmaking method | |
JP5272479B2 (en) | Method for desulfurizing and refining molten iron | |
JP3918568B2 (en) | Method for producing ultra-low sulfur steel | |
JP5200324B2 (en) | Desulfurization method for molten steel | |
JP5458706B2 (en) | Method for desulfurizing and refining molten iron | |
JP5338124B2 (en) | Method for desulfurizing and refining molten iron | |
CN108165705A (en) | A kind of method of producing ultra-low phosphoretic steel by molten steel dephosphorising outside furnace | |
JP5200380B2 (en) | Desulfurization method for molten steel | |
JP4534734B2 (en) | Melting method of low carbon high manganese steel | |
WO2022270226A1 (en) | Method for refining molten steel | |
JP5272480B2 (en) | Method for desulfurizing and refining molten iron | |
CN117441032A (en) | Secondary refining method of molten steel and manufacturing method of steel | |
JP3002593B2 (en) | Melting method of ultra low carbon steel | |
JP5493878B2 (en) | Method for desulfurizing and refining molten iron | |
RU2836118C2 (en) | Method for dephosphorization of molten iron-containing raw material | |
TWI817507B (en) | Refining method of molten iron | |
TWI823400B (en) | Dephosphorization method of molten iron | |
JP3918695B2 (en) | Method for producing ultra-low sulfur steel | |
JP4360239B2 (en) | Method for desulfurization of molten steel in vacuum degassing equipment | |
WO2022270225A1 (en) | Method for refining molten steel | |
RU2735536C1 (en) | Method for dephosphorization of fused iron and a refining additive | |
CN117925946A (en) | Ultralow-sulfur steel RH desulfurizing agent and application method thereof | |
WO2022259806A1 (en) | Molten steel denitrification method and steel production method | |
JP2023003384A (en) | Denitrification treatment method of molten steel | |
JP2009203491A (en) | Method for producing dephosphorized molten iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100810 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130429 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5272479 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |