JP2009246136A - Organic electrolyte capacitor - Google Patents
Organic electrolyte capacitor Download PDFInfo
- Publication number
- JP2009246136A JP2009246136A JP2008090844A JP2008090844A JP2009246136A JP 2009246136 A JP2009246136 A JP 2009246136A JP 2008090844 A JP2008090844 A JP 2008090844A JP 2008090844 A JP2008090844 A JP 2008090844A JP 2009246136 A JP2009246136 A JP 2009246136A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- organic electrolyte
- current collector
- electrolyte capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005486 organic electrolyte Substances 0.000 title claims abstract description 57
- 239000003990 capacitor Substances 0.000 title claims abstract description 54
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 41
- 239000011888 foil Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 29
- 239000002184 metal Substances 0.000 claims abstract description 29
- 238000004080 punching Methods 0.000 claims abstract description 21
- 230000000149 penetrating effect Effects 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 9
- 239000011149 active material Substances 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 3
- 238000009776 industrial production Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 description 23
- 239000011248 coating agent Substances 0.000 description 21
- 238000000576 coating method Methods 0.000 description 21
- 238000012545 processing Methods 0.000 description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 229910052744 lithium Inorganic materials 0.000 description 12
- 239000007774 positive electrode material Substances 0.000 description 12
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 239000010408 film Substances 0.000 description 11
- 239000007773 negative electrode material Substances 0.000 description 11
- 239000003973 paint Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000002002 slurry Substances 0.000 description 9
- 239000006258 conductive agent Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- -1 tetrafluoroborate Chemical compound 0.000 description 6
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 3
- 229920003026 Acene Polymers 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 229920000459 Nitrile rubber Polymers 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000001768 carboxy methyl cellulose Substances 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229920002313 fluoropolymer Polymers 0.000 description 2
- 239000004811 fluoropolymer Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- AJDIZQLSFPQPEY-UHFFFAOYSA-N 1,1,2-Trichlorotrifluoroethane Chemical compound FC(F)(Cl)C(F)(Cl)Cl AJDIZQLSFPQPEY-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical class C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910015013 LiAsF Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical group NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- CQLZEWXXRJJDKG-UHFFFAOYSA-N azanium;2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-nonadecafluorodecanoate Chemical compound [NH4+].[O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F CQLZEWXXRJJDKG-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 239000004202 carbamide Chemical group 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- LEGITHRSIRNTQV-UHFFFAOYSA-N carbonic acid;3,3,3-trifluoroprop-1-ene Chemical compound OC(O)=O.FC(F)(F)C=C LEGITHRSIRNTQV-UHFFFAOYSA-N 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- DKAGJZJALZXOOV-UHFFFAOYSA-N hydrate;hydrochloride Chemical compound O.Cl DKAGJZJALZXOOV-UHFFFAOYSA-N 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical group NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- BWJUFXUULUEGMA-UHFFFAOYSA-N propan-2-yl propan-2-yloxycarbonyloxy carbonate Chemical compound CC(C)OC(=O)OOC(=O)OC(C)C BWJUFXUULUEGMA-UHFFFAOYSA-N 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 125000002256 xylenyl group Chemical class C1(C(C=CC=C1)C)(C)* 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、有機電解質キャパシタに関し、更に詳しくは、正極、負極およびリチウムイオンを移送可能な有機電解質を備えた有機電解質キャパシタに関する。 The present invention relates to an organic electrolyte capacitor, and more particularly to an organic electrolyte capacitor including an organic electrolyte capable of transporting a positive electrode, a negative electrode, and lithium ions.
従来、有機電解質キャパシタとしては、正極と負極とがセパレータを介して巻回または交互に積層されてなる構成の電気デバイス要素と有機電解液とを備えてなる構成のものが提案されているが、このような構成の有機電解質キャパシタは、高性能が期待されるものの、負極に、例えば負極または正極に対向するように、例えばリチウム箔などよりなるリチウムイオン供給源(金属イオン供給源)を配置することによって予めリチウムイオン(金属イオン)をドーピングさせる必要があり、このドーピング処理に極めて長時間を要することや負極全体にリチウムイオンを均一に担持させることが容易ではないため、実用化が困難とされていた。 Conventionally, as an organic electrolyte capacitor, a positive electrode and a negative electrode have been proposed that have an electric device element and an organic electrolyte solution that are wound or alternately stacked via a separator, Although the organic electrolyte capacitor having such a configuration is expected to have high performance, a lithium ion supply source (metal ion supply source) made of, for example, lithium foil is disposed on the negative electrode so as to face the negative electrode or the positive electrode, for example. Therefore, it is necessary to dope lithium ions (metal ions) in advance, and this doping process takes a very long time, and it is not easy to uniformly carry lithium ions on the entire negative electrode, so that practical application is difficult. It was.
而して、近年、有機電解質キャパシタとして、正極と負極とがセパレータを介して巻回または交互に積層されてなる構成の電気デバイス要素と有機電解液とを備え、当該正極および負極として、各々、表裏面を貫通する貫通孔を有する集電体を備えてなる構成のものが提案されている(特許文献1および特許文献2参照。)。 Thus, in recent years, as an organic electrolyte capacitor, comprising an electric device element and an organic electrolyte having a configuration in which a positive electrode and a negative electrode are wound or alternately stacked via a separator, the positive electrode and the negative electrode, The thing of the structure provided with the electrical power collector which has a through-hole which penetrates front and back is proposed (refer patent document 1 and patent document 2).
このような構成の有機電解質キャパシタにおいては、正極および負極を構成する集電体に表裏面を貫通する貫通孔が設けられているため、リチウムイオンが当該集電体に遮断されることなく、正極および負極の表裏間を移動することができることから、電気デバイス要素が、正極と負極とがセパレータを介して巻回または交互に積層されてなる構成を有するものであっても、貫通孔を通じて、リチウムイオン供給源の近傍に位置する負極だけでなく当該リチウムイオン供給源から離れた場所に位置する負極にもリチウムイオンを電気化学的に担持させることが可能となる。 In the organic electrolyte capacitor having such a configuration, since the current collector constituting the positive electrode and the negative electrode is provided with a through-hole penetrating the front and back surfaces, the lithium ion is not blocked by the current collector. Since the electric device element has a configuration in which the positive electrode and the negative electrode are wound or alternately stacked via a separator, the lithium can pass through the through hole. Lithium ions can be electrochemically supported not only on the negative electrode located in the vicinity of the ion supply source but also on the negative electrode located at a location distant from the lithium ion supply source.
しかしながら、正極および負極を構成する集電体としては、例えば金属箔に千鳥配列の切れ目を入れ、この切れ目を押し広げながら網目を形成することによって得られるエキスパンドメタルなどのような、原材料としての金属箔などの平板状の金属材料に対して貫通孔を形成する際に、当該金属材料に変形を伴う加工がなされているものが用いられているため、その加工過程において金属ストレスが生じ、その金属ストレスに起因して、得られる集電体の金属強度が低下し、その結果、塗工速度を高くすることが難しく、薄膜化を図ることも困難となり、さらに高いエネルギー密度設計を行うことが困難である、という問題がある。 However, the current collector constituting the positive electrode and the negative electrode is, for example, a metal as a raw material, such as expanded metal obtained by making a staggered cut in a metal foil and forming a mesh while spreading the cut. When a through-hole is formed in a flat metal material such as a foil, since the metal material is processed with deformation, metal stress occurs in the processing process, and the metal Due to stress, the metal strength of the resulting current collector decreases, and as a result, it is difficult to increase the coating speed, it is difficult to reduce the thickness, and it is difficult to design a higher energy density. There is a problem that.
本発明は、以上の事情に基づいてなされたものであって、その目的は、負極に対して均一かつ容易にリチウムイオンを担持させることができると共に、高エネルギー密度、高出力および低抵抗が得られ、工業生産が可能な有機電解質キャパシタを提供することにある。 The present invention has been made based on the above circumstances, and the object thereof is to uniformly and easily carry lithium ions on the negative electrode, and to obtain high energy density, high output and low resistance. And providing an organic electrolyte capacitor capable of industrial production.
本発明の有機電解質キャパシタは、活物質としてリチウムイオンおよび/またはアニオンを可逆的に担持可能な物質を含有する正極と、活物質としてリチウムイオンを可逆的に担持可能な物質を含有する負極と、リチウムイオンを移送可能な有機電解質とを備え、
前記正極および負極がそれぞれ表裏面を貫通する貫通孔を有する集電体を備えており、当該負極に、正極または負極に対向して配置されたリチウムイオン供給源と、負極および/または正極との電気化学的接触により、正極および負極の各々を構成する集電体に設けられた貫通孔を介してリチウムイオンを移動させることによって予めリチウムイオンが担持されてなる構成の有機電解質キャパシタであって、
前記正極を構成する集電体および負極を構成する集電体の少なくとも一方が、機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることを特徴とする。
The organic electrolyte capacitor of the present invention includes a positive electrode containing a material capable of reversibly supporting lithium ions and / or anions as an active material, a negative electrode containing a material capable of reversibly supporting lithium ions as an active material, An organic electrolyte capable of transporting lithium ions,
The positive electrode and the negative electrode each include a current collector having a through-hole penetrating the front and back surfaces, and the negative electrode includes a lithium ion supply source disposed opposite the positive electrode or the negative electrode, and the negative electrode and / or the positive electrode An organic electrolyte capacitor having a structure in which lithium ions are supported in advance by moving lithium ions through a through-hole provided in a current collector constituting each of a positive electrode and a negative electrode by electrochemical contact,
At least one of the current collector that constitutes the positive electrode and the current collector that constitutes the negative electrode is made of a metal foil in which through holes are formed by mechanical punching.
本発明の有機電解質キャパシタにおいては、正極と負極とがセパレータを介して交互に積層されてなる構造を有することが好ましい。 The organic electrolyte capacitor of the present invention preferably has a structure in which positive electrodes and negative electrodes are alternately stacked via separators.
本発明の有機電解知るキャパシタにおいては、正極と負極とがセパレータを介して捲回されてなる構造を有することが好ましい。 In the capacitor for knowing organic electrolysis of the present invention, it is preferable to have a structure in which a positive electrode and a negative electrode are wound through a separator.
本発明の有機電解質キャパシタよれば、正極および負極を構成する集電体がそれぞれ表裏面を貫通する貫通孔を有する集電体を備えており、当該集電体が、機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることから、当該貫通孔を通じて、リチウムイオン供給源から負極に対して確実にリチウムイオンを電気化学的に担持させることができ、しかも貫通孔を形成するための加工に伴って金属箔に変形が加えられることがないため、その作製過程において金属ストレスが生じることがなく、その結果、集電体自体に、貫通孔を形成するための加工に供する前の原材料としての金属箔の有する金属強度を保持させることができることから、集電体の薄膜化が可能となり、高エネルギー密度、高出力および低抵抗が得られ、しかも高い塗工速度が可能で生産性が高い工業生産が可能となる。 According to the organic electrolyte capacitor of the present invention, the current collectors constituting the positive electrode and the negative electrode are each provided with a current collector having through holes penetrating the front and back surfaces, and the current collector is through-holed by mechanical punching. Therefore, the lithium ion can be reliably supported electrochemically from the lithium ion supply source to the negative electrode through the through hole, and the through hole is formed. The metal foil is not deformed with the processing for the purpose, so that metal stress does not occur in the manufacturing process, and as a result, before being subjected to processing for forming a through hole in the current collector itself. Since the metal strength of the metal foil as the raw material can be maintained, the current collector can be made thin, and high energy density, high output, and low resistance can be obtained. Moreover possible productivity is high coating speed is capable of high industrial production.
以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
図1は、本発明の有機電解質キャパシタの構成の一例を説明するための組立斜視図である。
この有機電解質キャパシタ10は、有機電解質キャパシタの一種であるリチウムイオンキャパシタである。
有機電解質キャパシタ10を構成する電気デバイス要素11は、セパレータを介して複数の平板状の正極および平板状の負極が交互に積層され、さらにその上にセパレータを介してリチウム箔を金属製支持体上に貼り付けたリチウム極(リチウムイオン供給源)が積層され、これらの複数の正極が共通の正極リード部材としての、例えばアルミニウム製の正極端子12Aに電気的に接続されると共に、複数の負極とリチウム極とが共通の負極リード部材としての、例えば銅製の負極端子12Bに電気的に接続されてなる構成を有しており、正極端子12Aおよび負極端子12Bの各々の先端部が突出した状態で、上部外装フィルム22Aおよび下部外装フィルム22Bにより挟まれ、周縁部全周を熱融着されることで、外装容器に収容されている。
外装容器の内部の電気デバイス要素収容用気密空間に有機電解質を注入することによって、リチウム極と、負極および/または正極との間に電気化学的接触が生じ、正極および負極の各々を構成する集電体に設けられた貫通孔を介してリチウムイオンを移動し、負極および/または正極にリチウムイオンが担持されることにより、有機電解質キャパシタ10を作製することができる。
FIG. 1 is an assembled perspective view for explaining an example of the configuration of the organic electrolyte capacitor of the present invention.
This
In the
By injecting the organic electrolyte into the airtight space for accommodating the electric device elements inside the outer container, electrochemical contact is generated between the lithium electrode and the negative electrode and / or the positive electrode, and the positive electrode and the negative electrode. The lithium ion is moved through the through-hole provided in the electric body, and the lithium ion is supported on the negative electrode and / or the positive electrode, whereby the
〔電解質〕
有機電解質キャパシタを構成する有機電解液としては、リチウムイオンを移送可能なものであれば特に限定されず、適宜の溶媒中に電解質が溶解されてなるものであり、溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、1−フルオロエチレンカーボネート、1−(トリフルオロメチル)エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等の非プロトン性有機溶媒が挙げられ、これらは単独でも、2種類以上を組み合わせて用いることもできる。また、電解質としては、リチウムイオンを生成しうる、例えばLiI、LiCIO4 、LiAsF4 、LiBF4 、LiPF6 、LiN(C2 F5 SO2 )2 、LiN(CF3 SO2 )2 、LiN(FSO2 )2 などが挙げられる。
〔Electrolytes〕
The organic electrolyte that constitutes the organic electrolyte capacitor is not particularly limited as long as it can transfer lithium ions, and the electrolyte is dissolved in an appropriate solvent. Examples of the solvent include ethylene carbonate, Non-protons such as propylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxyethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane Organic solvents may be mentioned, and these may be used alone or in combination of two or more. Further, as the electrolyte, for example, LiI, LiCIO 4 , LiAsF 4 , LiBF 4 , LiPF 6 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN ( FSO 2 ) 2 and the like.
〔正極活物質〕
本発明の有機電解質キャパシタを構成する正極活物質は、リチウムイオンおよび/または、例えばテトラフルオロボレートのようなアニオンを可逆的に担持できる物質である。
このような正極活物質としては、種々のものが挙げられるが、活性炭、および芳香族系縮合ポリマーの熱処理物であって水素原子/炭素原子の原子比が0.50〜0.05であるポリアセン系骨格構造を有するポリアセン系有機半導体(PAS)などが好ましく挙げられ、特に活性炭が好ましい。
[Positive electrode active material]
The positive electrode active material constituting the organic electrolyte capacitor of the present invention is a material that can reversibly carry lithium ions and / or anions such as tetrafluoroborate.
As such a positive electrode active material, various materials can be cited, and polyacene having a hydrogen atom / carbon atom ratio of 0.50 to 0.05, which is a heat-treated product of activated carbon and an aromatic condensation polymer. Preferred examples include polyacenic organic semiconductors (PAS) having a skeleton structure, and activated carbon is particularly preferable.
PASはアモルファス構造を有することから、リチウムイオンの挿入・脱離に対して膨潤・収縮といった構造変化を伴わず、このために得られるリチウムイオンキャパシタが優れたサイクル特性を有するものとなる。また、リチウムイオンの挿入・脱離に対して等方的な分子構造(高次構造)であるために、得られるリチウムイオンキャパシタが急速充電および急速放電の実現されたものとなる。
PASの前駆体である芳香族系縮合ポリマーは、芳香族炭化水素化合物とアルデヒド類との縮合物であり、芳香族炭化水素化合物としては、例えばフェノール、クレゾール、キシレノールなどのフェノール類;下記一般式(1)で表されるメチレン・ビスフェノール類;ヒドロキシ・ビフェニル類;ヒドロキシナフタレン類などを挙げることができ、これらのうち、特にフェノール類を好適に用いることができる。
Since PAS has an amorphous structure, it does not undergo structural changes such as swelling / shrinkage with respect to insertion / extraction of lithium ions, and the obtained lithium ion capacitor has excellent cycle characteristics. In addition, since the molecular structure is isotropic with respect to insertion / extraction of lithium ions (higher order structure), the obtained lithium ion capacitor can be rapidly charged and rapidly discharged.
The aromatic condensation polymer that is a precursor of PAS is a condensate of an aromatic hydrocarbon compound and an aldehyde. Examples of the aromatic hydrocarbon compound include phenols such as phenol, cresol, and xylenol; Examples thereof include methylene and bisphenols represented by (1); hydroxy and biphenyls; hydroxynaphthalenes, and among these, phenols can be particularly preferably used.
〔上記一般式(1)中、xおよびyは、それぞれ独立に0〜2の整数である。〕 [In said general formula (1), x and y are the integers of 0-2 each independently. ]
また、芳香族系縮合ポリマ−としては、上記のフェノール性水酸基を有する芳香族炭化水素化合物の1部をフェノール性水酸基を有さない芳香族炭化水素化合物、例えばキシレン、トルエン、アニリンなどで置換した変成芳香族系縮合ポリマー、具体的には例えばフェノールとキシレンとホルムアルデヒドとの縮合物や、メラミン、尿素で置換した変成芳香族系ポリマーなどを用いることもできる。また、フラン樹脂も好適に用いることができる。 As the aromatic condensed polymer, a part of the aromatic hydrocarbon compound having a phenolic hydroxyl group is substituted with an aromatic hydrocarbon compound having no phenolic hydroxyl group, such as xylene, toluene, aniline, etc. A modified aromatic condensation polymer, specifically, a condensate of phenol, xylene and formaldehyde, a modified aromatic polymer substituted with melamine or urea, and the like can also be used. Moreover, furan resin can also be used suitably.
このようなPASは以下のように製造することができる。すなわち、芳香族系縮合ポリマーを、非酸化性雰囲気下(真空も含む)中で400〜800℃の適当な温度まで徐々に加熱することにより、水素原子/炭素原子の原子比(以下、「H/C」と記す。)が0.5〜0.05、好ましくは0.35〜0.10の不溶不融性基体とし、この不溶不融性基体を、非酸化性雰囲気下(真空も含む)中で、350〜800℃の温度まで、好ましくは400〜750℃の適当な温度まで徐々に加熱した後、水あるいは希塩酸などによって充分に洗浄することにより、H/Cが上記範囲にあり、かつ、BET比表面積が例えば600m2 /g以上であるPASを得ることができる。
上記のように得られたPASは、X線回折(CuKα)によって、メイン・ピークの位置は2θで表して24°以下に存在し、また当該メイン・ピークの他に41〜46°の間にブロードな他のピークが存在することが検出されるものである。すなわち、当該PASは、芳香族系多環構造が適度に発達したポリアセン系骨格構造を有し、かつアモルファス構造を有するものであり、これにより、リチウムイオンを安定にドーピングすることができると考えられる。
Such a PAS can be manufactured as follows. That is, the aromatic condensation polymer is gradually heated to a suitable temperature of 400 to 800 ° C. in a non-oxidizing atmosphere (including a vacuum), whereby a hydrogen atom / carbon atom ratio (hereinafter referred to as “H”). / C ") is an insoluble and infusible substrate having a thickness of 0.5 to 0.05, preferably 0.35 to 0.10, and this insoluble and infusible substrate is subjected to a non-oxidizing atmosphere (including vacuum). ), Gradually heated to an appropriate temperature of 350 to 800 ° C., preferably 400 to 750 ° C., and then thoroughly washed with water or dilute hydrochloric acid, so that H / C is in the above range, And PAS whose BET specific surface area is 600 m < 2 > / g or more can be obtained, for example.
In the PAS obtained as described above, the position of the main peak is present at 24 ° or less expressed by 2θ by X-ray diffraction (CuKα), and between 41 to 46 ° in addition to the main peak. It is detected that other broad peaks are present. That is, the PAS has a polyacene-based skeleton structure in which an aromatic polycyclic structure is appropriately developed and has an amorphous structure, and thus it is considered that lithium ions can be stably doped. .
正極活物質としては、広い粒度分布を有するものが好ましく使用され、例えば、50%体積累積径(D50)が2μm以上であるものが好ましく、より好ましくは2〜50μm、特に好ましくは2〜20μmである。
また、正極活物質としては、平均細孔径が10nm以下であるものが好ましく、比表面積が600〜3000m2 /gであるものが好ましく、より好ましくは1300〜2500m2 /gである。
As the positive electrode active material, those having a wide particle size distribution are preferably used. For example, those having a 50% volume cumulative diameter (D 50 ) of 2 μm or more are preferable, more preferably 2 to 50 μm, and particularly preferably 2 to 20 μm. It is.
Moreover, as a positive electrode active material, that whose average pore diameter is 10 nm or less is preferable, that whose specific surface area is 600-3000 m < 2 > / g is preferable, More preferably, it is 1300-2500 m < 2 > / g.
〔正極の製造方法〕
本発明の有機電解質キャパシタを構成する正極は、正極活物質およびバインダー、並びに必要に応じて使用される導電剤から製造される。
具体的には、例えば、正極活物質、バインダー、および必要に応じて使用される導電剤を、水系媒体中に分散させてスラリーとし、当該スラリーを集電体に塗布する方法や、上記のスラリーを予めシート状に成形し、これを好ましくは導電性接着剤を使用して集電体に貼り付ける方法などを挙げることができる。
[Method for producing positive electrode]
The positive electrode constituting the organic electrolyte capacitor of the present invention is manufactured from a positive electrode active material, a binder, and a conductive agent used as necessary.
Specifically, for example, a positive electrode active material, a binder, and a conductive agent used as necessary are dispersed in an aqueous medium to form a slurry, and the slurry is applied to a current collector, or the above slurry Can be formed in advance into a sheet shape, which is preferably attached to a current collector using a conductive adhesive.
バインダーの使用量は、正極活物質の電気伝導度、形成すべき正極の形状などによっても異なるが、正極活物質に対して1〜20質量%で含有させることが好ましく、より好ましくは2〜10質量%である。 The amount of the binder used varies depending on the electrical conductivity of the positive electrode active material, the shape of the positive electrode to be formed, etc., but it is preferably 1 to 20% by mass, more preferably 2 to 10%, based on the positive electrode active material. % By mass.
正極を形成するために必要に応じて使用される導電剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、ランプブラック、グラファイト、金属粉末などが挙げられる。
導電剤の使用量は、正極活物質の電気伝導度、形成すべき正極の形状などによっても異なるが、正極活物質100質量部に対して好ましくは1〜20質量部、より好ましくは2〜20質量部とされる。
Examples of the conductive agent used as necessary to form the positive electrode include acetylene black, ketjen black, furnace black, channel black, lamp black, graphite, and metal powder.
The amount of the conductive agent used varies depending on the electrical conductivity of the positive electrode active material, the shape of the positive electrode to be formed, etc., but is preferably 1 to 20 parts by mass, more preferably 2 to 20 parts per 100 parts by mass of the positive electrode active material. The mass part.
〔負極活物質〕
本発明の有機電解質キャパシタを構成する負極活物質は、リチウムイオンを可逆的に担持できる物質である。
このような負極活物質としては、黒鉛、難黒鉛化炭素、ハードカーボン、コークスなどの炭素材料や、上記に正極活物質として記載したポリアセン系有機半導体(PAS)などを挙げることができる。負極活物質としては、具体的には、フェノール樹脂などを炭化させ、必要に応じて賦活され、次いで粉砕したものを用いることができる。
[Negative electrode active material]
The negative electrode active material constituting the organic electrolyte capacitor of the present invention is a material that can reversibly carry lithium ions.
Examples of such negative electrode active materials include carbon materials such as graphite, non-graphitizable carbon, hard carbon, and coke, and polyacene organic semiconductors (PAS) described above as positive electrode active materials. As the negative electrode active material, specifically, a carbonized phenol resin or the like, activated as necessary, and then pulverized can be used.
負極活物質としては、50%体積累積径(D50)が例えば0.5〜30μmであるものが好ましく、より好ましくは0.5〜15μm、特に好ましくは0.5〜6μmである。
また、負極活物質としては、比表面積が0.1〜2000m2 /gであるものが好ましく、より好ましくは0.1〜1000m2 /g、更により好ましくは0.1〜600m2 /gである。
The negative electrode active material preferably has a 50% volume cumulative diameter (D 50 ) of, for example, 0.5 to 30 μm, more preferably 0.5 to 15 μm, and particularly preferably 0.5 to 6 μm.
As the negative electrode active material preferably has a specific surface area of 0.1~2000m 2 / g, more preferably 0.1~1000m 2 / g, even more preferably at 0.1~600m 2 / g is there.
〔負極の製造方法〕
本発明の有機電解質キャパシタを構成する負極は、負極活物質およびバインダー、並びに必要に応じて使用される導電剤から製造される。
具体的には、前述した正極と同様に、その手段は上記正極における場合と同様な手段が使用できる。すなわち、例えば、負極活物質、バインダー、および必要に応じて使用される導電剤を、水系媒体中に分散させてスラリーとし、当該スラリーを集電体に塗布する方法や、上記のスラリーを予めシート状に成形し、これを好ましくは導電性接着剤を使用して集電体に貼り付ける方法などを挙げることができる。
[Method for producing negative electrode]
The negative electrode constituting the organic electrolyte capacitor of the present invention is manufactured from a negative electrode active material, a binder, and a conductive agent used as necessary.
Specifically, as in the positive electrode described above, the same means as in the positive electrode can be used. That is, for example, a negative electrode active material, a binder, and a conductive agent that is used as necessary are dispersed in an aqueous medium to form a slurry, and the slurry is applied to a current collector, or the above slurry is preliminarily sheeted. Examples of the method include forming the film into a shape and sticking it to a current collector, preferably using a conductive adhesive.
負極を形成するためのバインダーとしては、例えば、スチレン−ブタジエンゴム(SBR)、ニトリルゴム(NBR)などのゴム系バインダー;ポリ四フッ化エチレン、ポリフッ化ビニリデンなどの含フッ素系樹脂;ポリプロピレン、ポリエチレン、ポリアクリレートなどの熱可塑性樹脂などを用いることができる。
バインダーの使用量は、負極活物質の電気伝導度、形成すべき負極の形状などによっても異なるが、負極活物質100質量部に対して1〜20質量部の割合で添加することが好ましい。
Examples of the binder for forming the negative electrode include rubber binders such as styrene-butadiene rubber (SBR) and nitrile rubber (NBR); fluorine-containing resins such as polytetrafluoroethylene and polyvinylidene fluoride; polypropylene and polyethylene A thermoplastic resin such as polyacrylate can be used.
Although the usage-amount of a binder changes also with the electrical conductivity of a negative electrode active material, the shape of the negative electrode to form, etc., it is preferable to add in the ratio of 1-20 mass parts with respect to 100 mass parts of negative electrode active materials.
負極を形成するために必要に応じて使用される導電剤としては、前述の正極を形成するために必要に応じて使用される導電剤と同様のものを挙げることができ、その使用量も同様の範囲とすることができる。 Examples of the conductive agent used as necessary to form the negative electrode include the same conductive agents used as necessary to form the positive electrode, and the amount used is also the same. Range.
〔集電体〕
本発明の有機電解質キャパシタを構成する正極集電体および負極集電体としては、少なくともそのいずれか一方が機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることが必要とされる。
ここに、正極および負極を構成する集電体は、いずれか一方が機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであればよいが、より一層高い効果が得られることから、両方が機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることが好ましい。
[Current collector]
As the positive electrode current collector and the negative electrode current collector constituting the organic electrolyte capacitor of the present invention, it is necessary that at least one of them is made of a metal foil in which through holes are formed by mechanical punching. Is done.
Here, the current collector constituting the positive electrode and the negative electrode may be made of a metal foil in which one of the holes is formed by mechanical punching, but a higher effect can be obtained. Both are preferably made of a metal foil in which through holes are formed by mechanical punching.
集電体の原材料としての金属箔に対して機械的な打抜きによって貫通孔を形成するための手法としては、例えばピンの往復運動により穴をあけるパンチング方式やプレス方式などの手法、表面上に多数のピンを立てたロールに沿って金属箔を通過させることにより穴をあける回転ロールパンチング方式などの手法が挙げられる。 As a method for forming a through-hole by mechanical punching of a metal foil as a raw material of a current collector, for example, a punching method or a pressing method for making a hole by reciprocating a pin, a number of methods on the surface A method such as a rotary roll punching method in which a hole is made by allowing a metal foil to pass through a roll having a pin placed thereon may be used.
正極を構成する集電体は、例えばアルミニウム、ステンレスなどよりなり、その厚みが5〜50μmであることが好ましく、特に7〜35μmであることが好ましい。
正極の集電体の厚みが5μm未満である場合には、集電体自体の強度が不足し、その取扱が困難なものとなるおそれがあり、一方、その厚みが50μmを超える場合には、集電体自体の重量が大きくなることに伴って正極の重量が大きくなり、エネルギー密度が低下する傾向にある。
The current collector constituting the positive electrode is made of, for example, aluminum or stainless steel, and the thickness is preferably 5 to 50 μm, and particularly preferably 7 to 35 μm.
When the thickness of the current collector of the positive electrode is less than 5 μm, the current collector itself is insufficient in strength and may be difficult to handle, whereas when the thickness exceeds 50 μm, As the weight of the current collector itself increases, the weight of the positive electrode increases and the energy density tends to decrease.
また、負極を構成する集電体は、例えば銅、ステンレス、ニッケルなどよりなり、その厚みが5〜40μmであることが好ましく、特に7〜25μmであることが好ましい。
負極の集電体の厚みが5μm未満である場合には、集電体自体の強度が不足し、その取扱が困難なものとなるおそれがあり、一方、その厚みが50μmを超える場合には、集電体自体の重量が大きくなることに伴って負極の重量が大きくなり、エネルギー密度が低下する傾向にある。
The current collector constituting the negative electrode is made of, for example, copper, stainless steel, nickel, etc., and the thickness is preferably 5 to 40 μm, and particularly preferably 7 to 25 μm.
When the thickness of the current collector of the negative electrode is less than 5 μm, the current collector itself is insufficient in strength and may be difficult to handle, whereas when the thickness exceeds 50 μm, As the weight of the current collector itself increases, the weight of the negative electrode increases and the energy density tends to decrease.
集電体に形成されている貫通孔は、どのような形状を有するものであってもよく、例えば円形状、十文字状、三角形状、角を丸めた三角形状、ひし形状、正方形状、角を丸めた正方形状、長方形状、角を丸めた長方形状、六角形状、楕円形状、円形状などであることが好ましく、特に円形状であることが好ましい。 The through hole formed in the current collector may have any shape, for example, a circular shape, a cross shape, a triangular shape, a triangular shape with rounded corners, a rhombus shape, a square shape, and a corner. A rounded square shape, a rectangular shape, a rectangular shape with rounded corners, a hexagonal shape, an elliptical shape, a circular shape, and the like are preferable, and a circular shape is particularly preferable.
また、集電体には、複数の貫通孔が形成されていることが好ましく、それらの複数の貫通孔の配置位置に特に制限はないが、千鳥配列であることが好ましい。
ここに、集電体においては、円形状の貫通孔が千鳥配列で配置されてなる構成のものが好ましい。
Further, the current collector is preferably formed with a plurality of through holes, and the arrangement position of the plurality of through holes is not particularly limited, but is preferably a staggered arrangement.
Here, the current collector preferably has a configuration in which circular through holes are arranged in a staggered arrangement.
集電体における貫通孔の寸法は、その開口面積が4mm2 以下であることが好ましく、2mm2 以下であることが更に好ましく、特に1mm2 以下であることが好ましい。
貫通孔の開口面積が4mm2 を超える場合には、集電体上に形成した活物質層の保持性が低下し、長期信頼性が低下する傾向にある。
Regarding the size of the through hole in the current collector, the opening area is preferably 4 mm 2 or less, more preferably 2 mm 2 or less, and particularly preferably 1 mm 2 or less.
When the opening area of the through hole exceeds 4 mm 2 , the retention of the active material layer formed on the current collector is lowered, and the long-term reliability tends to be lowered.
また、集電体における開口率は、10%以上であることが好ましく、30%以上であることが更に好ましく、特に40%以上であることが好ましい。
開口率が10%未満である場合には、プレドープ性が低下し、生産性が低下する傾向にある。
The aperture ratio of the current collector is preferably 10% or more, more preferably 30% or more, and particularly preferably 40% or more.
When the aperture ratio is less than 10%, the pre-doping property is lowered and the productivity tends to be lowered.
〔有機電解質キャパシタ〕
本発明の有機電解質キャパシタは、特に、板状の正極と負極とがセパレータを介して各々3層以上積層された積層型セル、帯状に構成した正極と負極とがセパレータを介して積層された積層体を、隣接する正極と負極とが互いに接触しないようセパレータを介して捲回された捲回型セル、または、積層型セルが外装フィルム内に封入されたフィルム型セルなどの大容量を実現するセル構造よりなるものとすることができる。これらのセル構造は、国際公開WO00/07255号公報、国際公開WO03/003395号公報、特開2004−266091号公報などに開示されている。
[Organic electrolyte capacitor]
In particular, the organic electrolyte capacitor of the present invention is a stacked cell in which three or more layers of a plate-like positive electrode and a negative electrode are laminated via a separator, and a laminate in which a positive electrode and a negative electrode configured in a strip shape are laminated via a separator. A large-capacity body such as a wound cell wound through a separator so that adjacent positive and negative electrodes do not contact each other, or a film type cell in which a laminated cell is enclosed in an exterior film is realized. It can consist of a cell structure. These cell structures are disclosed in International Publication WO00 / 07255, International Publication WO03 / 003395, Japanese Patent Application Laid-Open No. 2004-266091, and the like.
以上のような有機電解質キャパシタによれば、負極および/または正極にリチウムイオンが可逆的に担持(ドーピング)されたものであることにより、特に高容量が得られ、高エネルギー密度、高出力、低抵抗が得られると共に、高い耐電圧が得られて高い耐久性が得られ、高い信頼性が得られる。 According to the organic electrolyte capacitor as described above, the lithium ion is reversibly supported (doping) on the negative electrode and / or the positive electrode, so that a particularly high capacity is obtained, a high energy density, a high output, and a low In addition to obtaining resistance, high withstand voltage is obtained, high durability is obtained, and high reliability is obtained.
そして、集電体が、機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることから、貫通孔を形成するための加工に伴って金属箔に変形が加えられることがないため、その作製過程において金属ストレスが生じることがなく、その結果、集電体自体に、貫通孔を形成するための加工に供する前の原材料としての金属箔の有する金属強度を保持させることができる。そのため、集電体に対する活物質層の塗工速度を高くすることができ、生産性が高まる。さらに薄膜加工も可能となり、高エネルギー密度の設計が可能となる。
従って、本発明の有機電解質キャパシタによれば、負極に対して均一かつ容易にリチウムイオンを担持させることができると共に、高エネルギー密度、高出力および低抵抗が得られ、しかも工業生産が可能となる。
Since the current collector is made of a metal foil in which through holes are formed by mechanical punching, the metal foil is not deformed along with the processing for forming the through holes. Therefore, metal stress does not occur in the manufacturing process, and as a result, the current collector itself can maintain the metal strength of the metal foil as a raw material before being subjected to processing for forming a through hole. . Therefore, the coating speed of the active material layer on the current collector can be increased, and productivity is increased. Furthermore, thin film processing becomes possible, and high energy density design becomes possible.
Therefore, according to the organic electrolyte capacitor of the present invention, lithium ions can be uniformly and easily supported on the negative electrode, high energy density, high output, and low resistance can be obtained, and industrial production becomes possible. .
以上、本発明の有機電解質キャパシタについて具体的に説明したが、本発明は以上の例に限定されるものではなく、種々の変更を加えることができる。
例えば、電気デバイス要素は、正極と負極とがセパレータを介して捲回されてなる構造を有するものであってもよい。
Although the organic electrolyte capacitor of the present invention has been specifically described above, the present invention is not limited to the above examples, and various modifications can be made.
For example, the electric device element may have a structure in which a positive electrode and a negative electrode are wound through a separator.
以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。 Hereinafter, specific examples of the present invention will be described, but the present invention is not limited thereto.
〔バインダー合成例〕
電磁式撹拌機を備えた内容積約6リットルのオートクレーブの内部を十分に窒素置換した後、脱酸素した純水2.5リットル、および乳化剤としてパーフルオロデカン酸アンモニウム15gを仕込み、350rpmで撹拌しながら60℃まで昇温した。次いで、フッ化ビニリデン(VDF)44.2%、および六フッ化プロピレン(HFP)55.8%からなる混合ガスを、内圧が20kg/cm2 Gに達するまで仕込んだ。その後、重合開始剤としてジイソプロピルパーオキシジカーボネートを20%含有するフロン113溶液25gを窒素ガスを使用して圧入し、重合を開始させた。重合中は内圧が20kg/cm2 Gに維持されるようVDF60.2%およびHFP39.8%からなる混合ガスを逐次圧入した。また、重合が進行するに従って重合速度が低下するため、3時間経過後に、先と同量の重合開始剤を窒素ガスを使用して圧入し、さらに3時間反応を継続させた。その後、反応液を冷却すると共に撹拌を停止し、未反応の単量体を放出して反応を停止させ、含フッ素重合体よりなる微粒子〔D〕を含有するラテックス〔D〕を得た。含フッ素重合体よりなる微粒子〔D〕の平均粒子径は200nmであった。また、19F−NMRから求めた各単量体の質量組成比はVdF/HFP=85/15であった。
(Binder synthesis example)
The interior of an autoclave with an internal volume of about 6 liters equipped with an electromagnetic stirrer was thoroughly purged with nitrogen, then charged with 2.5 liters of deoxygenated pure water and 15 g of ammonium perfluorodecanoate as an emulsifier, and stirred at 350 rpm The temperature was raised to 60 ° C. Next, a mixed gas consisting of 44.2% vinylidene fluoride (VDF) and 55.8% propylene hexafluoride (HFP) was charged until the internal pressure reached 20 kg / cm 2 G. Thereafter, 25 g of Freon 113 solution containing 20% of diisopropyl peroxydicarbonate as a polymerization initiator was injected using nitrogen gas to initiate polymerization. During the polymerization, a mixed gas consisting of 60.2% VDF and 39.8% HFP was successively injected so that the internal pressure was maintained at 20 kg / cm 2 G. Further, since the polymerization rate decreased as the polymerization progressed, after 3 hours, the same amount of polymerization initiator as that of the previous one was injected using nitrogen gas, and the reaction was further continued for 3 hours. Thereafter, the reaction solution was cooled and the stirring was stopped, the unreacted monomer was released to stop the reaction, and latex [D] containing fine particles [D] made of a fluoropolymer was obtained. The average particle size of the fine particles [D] made of the fluoropolymer was 200 nm. Further, the mass composition ratio of each monomer determined from 19 F-NMR was VdF / HFP = 85/15.
容量7リットルのセパラブルフラスコの内部を十分に窒素置換した後、得られたラテックス〔D〕11部(固形分換算)、重合性乳化剤「アデカリアソープSR1025」(旭電化社製)0.1部、メタクリル酸メチル10部、アクリル酸0.5部および水170部を仕込み、重合開始剤として過硫酸カリウム0.3部および亜硫酸ナトリウム0.1部を投入し、50℃にて2時間反応させた。
一方、別の容器に水80部、「アデカリアソープSR1025」(旭電化社製)0.5部、アクリル酸2−エチルヘキシル60部、メタクリル酸メチル19部、スチレン10部およびアクリル酸0.5部を投入して混合し、均一に乳化させて乳化液を得た。この乳化液を先のセパラブルフラスコに投入し、50℃で3時間、さらに80℃で1時間反応させた。その後、冷却して反応を停止させ、水酸化ナトリウム水溶液でpH7に調節し、消泡剤として「ノプコNXZ」(サンノプコ社製)0.05部を投入することにより、バインダー粒子〔1〕が含有された水系分散体〔1〕を得た。
得られた水系分散体〔1〕中のバインダー粒子〔1〕の数平均粒子径は350nmであった。
After fully replacing the inside of a 7-liter separable flask with nitrogen, 11 parts of the latex [D] obtained (in terms of solid content), a polymerizable emulsifier “ADEKA rear soap SR1025” (manufactured by Asahi Denka) 0.1 1 part, 10 parts of methyl methacrylate, 0.5 part of acrylic acid and 170 parts of water were added, 0.3 parts of potassium persulfate and 0.1 part of sodium sulfite were added as polymerization initiators, and the reaction was carried out at 50 ° C. for 2 hours. I let you.
On the other hand, in another container, 80 parts of water, 0.5 part of “ADEKA rear soap SR1025” (manufactured by Asahi Denka), 60 parts of 2-ethylhexyl acrylate, 19 parts of methyl methacrylate, 10 parts of styrene and 0.5 parts of acrylic acid Part was added and mixed, and uniformly emulsified to obtain an emulsion. This emulsion was put into the separable flask and reacted at 50 ° C. for 3 hours and further at 80 ° C. for 1 hour. Thereafter, the reaction is stopped by cooling, the pH is adjusted to 7 with an aqueous sodium hydroxide solution, and 0.05 part of “Nopco NXZ” (manufactured by San Nopco) is added as an antifoaming agent, whereby binder particles [1] are contained. An aqueous dispersion [1] was obtained.
The number average particle diameter of the binder particles [1] in the obtained aqueous dispersion [1] was 350 nm.
<正極の作製例1>
(導電塗料の調製例1)
炭素粉末(平均粒子径4.5μm)95重量部およびカルボキシメチルセルロース5重量部にイオン交換水を加えて混合し、固形分濃度30%のスラリー(以下、「導電塗料(1)」ともいう。)を作製した。
得られた導電塗料(1)について、B型粘度計で粘度測定をしたところ、510mPa・s(50rpm、20.3℃)であった。
<Production Example 1 of Positive Electrode>
(Preparation Example 1 of conductive paint)
Ion exchange water is added to and mixed with 95 parts by weight of carbon powder (average particle size: 4.5 μm) and 5 parts by weight of carboxymethyl cellulose, and a slurry having a solid content concentration of 30% (hereinafter also referred to as “conductive paint (1)”). Was made.
The viscosity of the obtained conductive paint (1) was measured with a B-type viscometer and found to be 510 mPa · s (50 rpm, 20.3 ° C.).
(正極塗料の調製例1)
活性炭(比表面積2030m2 /g、平均粒径4μmのフェノール系活性炭)87重量部、アセチレンブラック粉体4重量部、バインダー粒子〔1〕6重量部およびカルボキシメチルセルロース3重量部にイオン交換水を加えて混合し、固形分濃度35%のスラリー(以下、「正極塗料(1)」ともいう。)を作製した。
得られた正極塗料(1)について、B型粘度計で粘度測定をしたところ、2850mPa・s(50rpm、19.2℃)であった。
(Preparation example 1 of positive electrode paint)
Add ion-exchanged water to 87 parts by weight of activated carbon (phenolic activated carbon having a specific surface area of 2030 m 2 / g and an average particle diameter of 4 μm), 4 parts by weight of acetylene black powder, 6 parts by weight of binder particles [1] and 3 parts by weight of carboxymethyl cellulose. To prepare a slurry having a solid content concentration of 35% (hereinafter also referred to as “positive electrode paint (1)”).
When the viscosity of the obtained positive electrode paint (1) was measured with a B-type viscometer, it was 2850 mPa · s (50 rpm, 19.2 ° C.).
(正極用集電体に対する塗工例1)
幅200mm、厚み15μmの帯状のアルミニウム箔に、パンチング方式により開口面積0.79mm2 の円形状の貫通孔の複数が千鳥配列されてなる構成を有する、開口率42%の集電体を得た。この集電体の一部分に、導電塗料(1)を、縦型ダイ方式の両面塗工機を用い、塗工幅130mm、塗工速度8m/minの塗工条件により、両側合わせた塗布厚み目標値を20μmとして両面塗工した後、200℃で24時間減圧乾燥させ、集電体の表裏面に導電層を形成した。
その後、集電体の表裏面に形成された導電層の上に、正極塗料(1)を、縦型ダイ方式の両面塗工機を用い、塗工速度8m/minの塗工条件により、両側合わせた塗布厚み目標値を150μmとして両面塗工をした後、200℃で24時間減圧乾燥させ、集電体上に形成された導電層上に正極層を形成した。
帯状の集電体の一部分に導電層および正極層が積層されてなる材料を、導電層および正極層が積層されてなる部分(以下、「塗工部」ともいう。)が98×128mm、いずれの層も形成されてない部分(以下、「未塗工部」ともいう。)が98×15mmになるように、98×143mmの大きさに切断し、これを正極(以下、「正極(1)」ともいう。)とした。
(Coating Example 1 for Current Collector for Positive Electrode)
A current collector having an aperture ratio of 42%, having a configuration in which a plurality of circular through-holes having an opening area of 0.79 mm 2 are arranged in a staggered manner on a band-shaped aluminum foil having a width of 200 mm and a thickness of 15 μm by a punching method, was obtained. . Applying the conductive paint (1) to a part of the current collector using a vertical die type double-side coating machine and applying the coating width of 130 mm and coating speed of 8 m / min on both sides. After coating on both sides with a value of 20 μm, it was dried under reduced pressure at 200 ° C. for 24 hours to form a conductive layer on the front and back surfaces of the current collector.
Thereafter, on the conductive layers formed on the front and back surfaces of the current collector, the positive electrode paint (1) is applied to both sides under a coating condition of a coating speed of 8 m / min using a vertical die type double-side coating machine. After the double-side coating was performed with the combined coating thickness target value being 150 μm, it was dried under reduced pressure at 200 ° C. for 24 hours to form a positive electrode layer on the conductive layer formed on the current collector.
A material in which a conductive layer and a positive electrode layer are laminated on a part of a strip-shaped current collector, and a portion in which the conductive layer and the positive electrode layer are laminated (hereinafter also referred to as “coating portion”) is 98 × 128 mm. The portion (hereinafter also referred to as “uncoated portion”) where no layer is formed is cut into a size of 98 × 143 mm so that it becomes 98 × 15 mm, and this is cut into a positive electrode (hereinafter “positive electrode (1 ) ").
<正極の作製例2および3>
正極の作製例1において、帯状のアルミニウム箔に対して表1に示す加工を行なうことによって集電体を得たこと以外は当該正極の作製例1と同様にして正極(以下、これらを、各々、「正極(2)」および「正極(3)」ともいう。)を作製した。
<Preparation Examples 2 and 3 of the positive electrode>
In the positive electrode production example 1, the positive electrode (hereinafter referred to as “the positive electrode” in the same manner as in the positive electrode production example 1 except that the current collector was obtained by performing the processing shown in Table 1 on the strip-shaped aluminum foil. , Also referred to as “positive electrode (2)” and “positive electrode (3)”).
<正極の作製例4>
正極の作製例1において、帯状のアルミニウム箔に対して表1に示す加工(本発明に係る機械的な打抜き加工ではない加工)を行なうことによって集電体を得たこと以外は当該正極の作製例1と同様にして正極の作製を行なったが、その工程途中、具体的には、集電体に対して塗工を行なっている途中において、当該集電体が切れてしまったため、正極を作製することができなかった。
<Production Example 4 of Positive Electrode>
In the positive electrode production example 1, the positive electrode was produced except that the current collector was obtained by performing the processing shown in Table 1 (processing not mechanical punching processing according to the present invention) on the strip-shaped aluminum foil. The positive electrode was produced in the same manner as in Example 1. However, since the current collector was cut off during the process, specifically, during the application to the current collector, the positive electrode was It could not be produced.
<正極の作製例5>
正極の作製例1において、帯状のアルミニウム箔に対して表1に示す加工(本発明に係る機械的な打抜き加工ではない加工)を行なうことによって集電体を得たこと、導電層および正極層の形成に係る塗工速度を2m/minとしたこと以外は当該正極の作製例1と同様にして正極(以下、「正極(5)」ともいう。)を作製した。
<Fabrication Example 5>
In the positive electrode production example 1, the current collector was obtained by performing the processing shown in Table 1 (processing not mechanical punching processing according to the present invention) on the strip-shaped aluminum foil, the conductive layer, and the positive electrode layer A positive electrode (hereinafter, also referred to as “positive electrode (5)”) was produced in the same manner as in Production Example 1 of the positive electrode except that the coating speed related to the formation was 2 m / min.
<負極の作製例1>
(負極塗料の調製例1)
カーボン粉末(比表面積16m2 /g、平均粒径4μm)87重量部、アセチレンブラック粉体4重量部、SBR系バインダー(JSR製「TRD2001」)6重量部およびカルボキシメチルセルロース3重量部にイオン交換水を加えて混合し、固形分濃度35%のスラリー(以下、「負極塗料(1)」ともいう。)を作製した。
<Negative electrode production example 1>
(Preparation example 1 of negative electrode paint)
Carbon ion (specific surface area 16 m 2 / g, average particle diameter 4 μm) 87 parts by weight, acetylene black powder 4 parts by weight, SBR binder (JSR “TRD2001”) 6 parts by weight and carboxymethyl cellulose 3 parts by weight ion-exchanged water Were added and mixed to prepare a slurry having a solid concentration of 35% (hereinafter also referred to as “negative electrode paint (1)”).
(負極用集電体に対する塗工例1)
幅200mm、厚み10μmの帯状の銅箔に、パンチング方式により開口面積0.79mm2 の円形状の貫通孔の複数が千鳥配列されてなる構成を有する、開口率42%の集電体を得た。この集電体の一部分に、負極塗料(1)を、縦型ダイ方式の両面塗工機を用い、塗工幅130mm、塗工速度8m/minの塗工条件により、両側合わせた目付量80μmで両面塗工した後、200℃で24時間減圧乾燥させ、集電体の表裏面に負極層を形成した。
集電体の一部分に負極層が形成されてなる材料を、負極層が形成されてなる部分(塗工部)が1010×138mm、負極層が形成されてない部分(未塗工部)が100×15mmになるように、100×145mmの大きさに切断し、これを負極(以下、「負極(1)」ともいう。)とした。
(Coating Example 1 for Current Collector for Negative Electrode)
A current collector having an aperture ratio of 42%, having a configuration in which a plurality of circular through-holes having an opening area of 0.79 mm 2 are arranged in a staggered manner on a strip-like copper foil having a width of 200 mm and a thickness of 10 μm by a punching method, was obtained. . Part of this current collector was coated with negative electrode paint (1) using a vertical die-type double-side coating machine, with a coating width of 130 mm and a coating speed of 8 m / min. After coating on both sides, the film was dried under reduced pressure at 200 ° C. for 24 hours to form negative electrode layers on the front and back surfaces of the current collector.
The material in which the negative electrode layer is formed on a part of the current collector is 1010 × 138 mm where the negative electrode layer is formed (coated part), and the part where the negative electrode layer is not formed (uncoated part) is 100. It cut | disconnected to the magnitude | size of 100x145 mm so that it might become * 15mm, and this was made into the negative electrode (henceforth "negative electrode (1)").
<負極の作製例2および3>
負極の作製例1において、帯状の銅箔に対して表1に示す加工を行なうことによって集電体を得たこと以外は当該負極の作製例1と同様にして負極(以下、これらを、各々、「負極(2)」および「負極(3)ともいう。)を作製した。
<Negative electrode production examples 2 and 3>
In the negative electrode production example 1, a negative electrode (hereinafter referred to as “respectively”) was prepared in the same manner as in the negative electrode production example 1 except that a current collector was obtained by performing the processing shown in Table 1 on the strip-shaped copper foil. , “Negative electrode (2)” and “Negative electrode (3)” were prepared.
<負極の作製例4>
負極の作製例1において、帯状の銅箔に対して表1に示す加工(本発明に係る機械的な打抜き加工ではない加工)を行なうことによって集電体を得たこと以外は当該負極の作製例1と同様にして正極の作製を行なったが、その工程途中、具体的には、集電体に対して塗工を行なっている途中において、当該集電体が切れてしまったため、負極を作製することができなかった。
<Negative electrode production example 4>
In the production example 1 of the negative electrode, the production of the negative electrode was performed except that the current collector was obtained by performing the processing shown in Table 1 on the strip-shaped copper foil (processing not mechanical punching processing according to the present invention). A positive electrode was produced in the same manner as in Example 1. However, during the process, specifically, during the application to the current collector, the current collector was cut off. It could not be produced.
<負極の作製例5>
負極の作製例1において、帯状の銅箔に対して表1に示す加工(本発明に係る機械的な打抜き加工ではない加工)を行なうことによって集電体を得たこと、負極層の形成に係る塗工速度を2m/minとしたこと以外は当該負極の作製例1と同様にして負極(以下、「負極(5)」ともいう。)を作製した。
<Negative electrode fabrication example 5>
In the negative electrode production example 1, the current collector was obtained by performing the processing shown in Table 1 (processing that is not mechanical punching processing according to the present invention) on the strip-shaped copper foil, and formation of the negative electrode layer A negative electrode (hereinafter also referred to as “negative electrode (5)”) was produced in the same manner as in Production Example 1 of the negative electrode except that the coating speed was 2 m / min.
〔実施例1〕
(有機電解質キャパシタの作製例1)
先ず、正極(1)と負極(5)とを、塗工部は重なるがそれぞれの未塗工部は反対側になり重ならないような配置で、セパレータ(厚み50μm)、負極、セパレータ、正極の順番に、セパレータを合計22枚、負極(5)を合計11枚、そして正極(1)を合計10枚用い、両方の最外層がセパレータによって形成され、その下層が共に負極となるよう積層し、積層体の4辺をテープ止めして電極積層ユニットを作製した。
次いで、厚み260μmのリチウム箔を用意し、電極積層体ユニットを構成する各負極活物質当り550mAh/gになるようにしてリチウム箔を切断し、厚さ40μmのステンレス網に圧着した後、このリチウムイオン供給源を電極積層ユニットの上側に負極と対向するように配置した。
[Example 1]
(Production Example 1 of Organic Electrolyte Capacitor)
First, the positive electrode (1) and the negative electrode (5) are arranged such that the coated portions overlap but the uncoated portions are on the opposite side and do not overlap, and the separator (thickness 50 μm), negative electrode, separator, positive electrode In order, using a total of 22 separators, a total of 11 negative electrodes (5), and a total of 10 positive electrodes (1), both outermost layers are formed of separators and laminated so that both lower layers are negative electrodes. An electrode laminate unit was prepared by tape-fastening the four sides of the laminate.
Next, a lithium foil having a thickness of 260 μm was prepared, the lithium foil was cut so as to be 550 mAh / g for each negative electrode active material constituting the electrode laminate unit, and this lithium foil was pressure-bonded to a stainless steel net having a thickness of 40 μm. The ion supply source was disposed on the upper side of the electrode stacking unit so as to face the negative electrode.
そして、作製した電極積層ユニットの正極に係る未塗工部(10枚)に、予めシール部分にシーラントフィルムを熱融着した幅50mm、長さ50mm、厚さ0.2mmのアルミニウム製の正極端子を重ねて超音波溶接した。また、前記電極積層ユニットの負極に係る未塗工部(11枚)と、リチウム箔貼付ステンレス網(1枚)とに、予めシール部分にシーラントフィルムを熱融着した幅50mm、長さ50mm、厚さ0.2mmの銅製の負極端子を重ねて抵抗溶接し、組立体を得た。その後、得られた組立体を、外装アルミラミネートフィルム2枚で挟み、当該外装アルミラミネートフィルムの端子部2辺と他の1辺を熱融着した後、有機電解液として、プロピレンカーボネート溶媒に、濃度1モル/LでLiPF6 が溶解されてなる混合溶液50gを注入し、真空含浸させた後、残り1辺を減圧下にて熱融着し、真空封止を行うことにより、図1に示すような構成を有する有機電解質キャパシタ(ラミネート型キャパシタ、以下、「有機電解質キャパシタ(1)」ともいう。)を2つ作製した。
作製した2つの有機電解質キャパシタ(1)のうちの一方を、10日後に分解し、リチウム箔貼付ステンレス網に係るリチウム箔が完全になくなっていることを確認した。
Then, a positive electrode terminal made of aluminum having a width of 50 mm, a length of 50 mm, and a thickness of 0.2 mm in which a sealant film is heat-sealed in advance to the uncoated portion (10 sheets) related to the positive electrode of the produced electrode laminate unit. And ultrasonic welding. In addition, the uncoated part (11 sheets) related to the negative electrode of the electrode laminate unit and the lithium foil-attached stainless steel net (one sheet) were previously sealed with a sealant film having a width of 50 mm, a length of 50 mm, A copper negative electrode terminal having a thickness of 0.2 mm was stacked and resistance welded to obtain an assembly. After that, the obtained assembly was sandwiched between two exterior aluminum laminate films, and the terminal portion 2 side and the other one side of the exterior aluminum laminate film were heat-sealed, and then the organic electrolyte was used as a propylene carbonate solvent. After injecting 50 g of a mixed solution in which LiPF 6 was dissolved at a concentration of 1 mol / L and impregnating with vacuum, the remaining one side was heat-sealed under reduced pressure and vacuum sealing was performed. Two organic electrolyte capacitors (laminated capacitors, hereinafter also referred to as “organic electrolyte capacitors (1)”) having the configuration as shown in the drawings were manufactured.
One of the two produced organic electrolyte capacitors (1) was decomposed after 10 days, and it was confirmed that the lithium foil related to the stainless steel net with a lithium foil was completely removed.
(容量・内部抵抗・エネルギー密度評価)
得られた有機電解質キャパシタ(1)について、5Aの定電流でセル電圧が3.8Vとなるまで充電し、その後3.8Vの定電圧を印加する定電流−定電圧充電を1時間行った。次いで、5Aの定電流でセル電圧が2.2Vになるまで放電した。この3.8V−2.2Vのサイクルを繰り返し、3回目の放電において、セル容量、放電開始前から0.1秒後の電圧降下に基づいて算出した内部抵抗値、およびエネルギー密度を測定した。結果を表2に示す。
(Capacity, internal resistance, energy density evaluation)
The obtained organic electrolyte capacitor (1) was charged with a constant current of 5 A until the cell voltage became 3.8 V, and then subjected to constant current-constant voltage charging in which a constant voltage of 3.8 V was applied for 1 hour. Next, the battery was discharged at a constant current of 5 A until the cell voltage reached 2.2V. This 3.8V-2.2V cycle was repeated, and in the third discharge, the cell capacity, the internal resistance value calculated based on the voltage drop 0.1 seconds after the start of discharge, and the energy density were measured. The results are shown in Table 2.
〔実施例2〜5および比較例1〕
実施例1において、表2に示された電極を用いたこと以外は、実施例1と同様にして有機電解質キャパシタを得、得られた有機電解質キャパシタについて、容量・内部抵抗・エネルギー密度の評価を行なった。結果を表2に示す。
[Examples 2 to 5 and Comparative Example 1]
In Example 1, except that the electrodes shown in Table 2 were used, an organic electrolyte capacitor was obtained in the same manner as in Example 1, and the obtained organic electrolyte capacitor was evaluated for capacity, internal resistance, and energy density. I did it. The results are shown in Table 2.
以上の実施例1〜実施例5および比較例1の結果から、正極および負極が表裏面を貫通する貫通孔を有する集電体を備え、これらの少なくともいずれか一方が機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることにより、エネルギー密度を高めることができることが確認された。
また、正極および負極の集電体の両方が機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものである実施例2〜実施例5に係る有機電解質キャパシタは、正極の集電体のみが機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものである実施例1に係る有機電解質キャパシタに比して、より一層高いエネルギー密度が得られることが確認された。
また、正極および負極を作製する過程において(表1参照)、集電体として、機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものを用いることにより、高い速度で塗工を行なうことができ、生産性を向上させることができる、ということが確認された。
From the results of Examples 1 to 5 and Comparative Example 1 described above, the positive electrode and the negative electrode include a current collector having a through hole penetrating the front and back surfaces, and at least one of these is a through hole by mechanical punching. It was confirmed that the energy density can be increased by being made of a metal foil in which is formed.
In addition, the organic electrolyte capacitors according to Examples 2 to 5 in which both the positive electrode and negative electrode current collectors are made of a metal foil in which through holes are formed by mechanical punching are provided as positive electrode current collectors. It was confirmed that a higher energy density can be obtained as compared with the organic electrolyte capacitor according to Example 1, which is made of a metal foil in which through holes are formed by mechanical punching.
Further, in the process of producing the positive electrode and the negative electrode (see Table 1), the current collector is applied at a high speed by using a current collector made of a metal foil having through holes formed by mechanical punching. It was confirmed that productivity could be improved.
10 有機電解質キャパシタ
11 電気デバイス要素
12A 正極端子
12B 負極端子
22A 上部外装フィルム
22B 下部外装フィルム
10 Organic
Claims (3)
前記正極および負極がそれぞれ表裏面を貫通する貫通孔を有する集電体を備えており、当該負極に、正極または負極に対向して配置されたリチウムイオン供給源と、負極および/または正極との電気化学的接触により、正極および負極の各々を構成する集電体に設けられた貫通孔を介してリチウムイオンを移動させることによって予めリチウムイオンが担持されてなる構成の有機電解質キャパシタであって、
前記正極を構成する集電体および負極を構成する集電体の少なくとも一方が、機械的な打抜きによって貫通孔が形成されてなる金属箔よりなるものであることを特徴とする有機電解質キャパシタ。 A positive electrode containing a material capable of reversibly supporting lithium ions and / or anions as an active material, a negative electrode containing a material capable of reversibly supporting lithium ions as an active material, and an organic electrolyte capable of transporting lithium ions And
The positive electrode and the negative electrode each include a current collector having a through-hole penetrating the front and back surfaces, and the negative electrode includes a lithium ion supply source disposed opposite the positive electrode or the negative electrode, and the negative electrode and / or the positive electrode An organic electrolyte capacitor having a structure in which lithium ions are supported in advance by moving lithium ions through a through-hole provided in a current collector constituting each of a positive electrode and a negative electrode by electrochemical contact,
An organic electrolyte capacitor, wherein at least one of the current collector constituting the positive electrode and the current collector constituting the negative electrode is made of a metal foil having a through hole formed by mechanical punching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008090844A JP2009246136A (en) | 2008-03-31 | 2008-03-31 | Organic electrolyte capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008090844A JP2009246136A (en) | 2008-03-31 | 2008-03-31 | Organic electrolyte capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009246136A true JP2009246136A (en) | 2009-10-22 |
Family
ID=41307703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008090844A Pending JP2009246136A (en) | 2008-03-31 | 2008-03-31 | Organic electrolyte capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009246136A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012015297A (en) * | 2010-06-30 | 2012-01-19 | Dynic Corp | Electrode for electrochemical element, and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035286A (en) * | 2004-07-29 | 2006-02-09 | Sharp Corp | Punching machine and thin display using punching metal |
JP2007173615A (en) * | 2005-12-22 | 2007-07-05 | Fuji Heavy Ind Ltd | Lithium metal foil for battery or capacitor |
JP2007251025A (en) * | 2006-03-17 | 2007-09-27 | Japan Gore Tex Inc | Electrode for electric double layer capacitor and electric double layer capacitor |
-
2008
- 2008-03-31 JP JP2008090844A patent/JP2009246136A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006035286A (en) * | 2004-07-29 | 2006-02-09 | Sharp Corp | Punching machine and thin display using punching metal |
JP2007173615A (en) * | 2005-12-22 | 2007-07-05 | Fuji Heavy Ind Ltd | Lithium metal foil for battery or capacitor |
JP2007251025A (en) * | 2006-03-17 | 2007-09-27 | Japan Gore Tex Inc | Electrode for electric double layer capacitor and electric double layer capacitor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012015297A (en) * | 2010-06-30 | 2012-01-19 | Dynic Corp | Electrode for electrochemical element, and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5954524B2 (en) | Negative electrode for power storage device and method for manufacturing power storage device | |
US8098480B2 (en) | Lithium ion capacitor | |
JP5133111B2 (en) | Lithium ion capacitor | |
US8456802B2 (en) | Conductive adhesive and electrode for electric double layer capacitor and electric double layer capacitor employing it | |
JP5488857B1 (en) | Composition and protective film for producing protective film, and power storage device | |
CN101310350A (en) | lithium ion capacitor | |
US20090135549A1 (en) | Lithium ion capacitor | |
JP2013055285A (en) | Power storage device | |
KR101883005B1 (en) | Electrode, method for preparing the same, and super capacitor using the same | |
JP5562688B2 (en) | Lithium ion capacitor manufacturing method and positive electrode manufacturing method | |
KR20130024123A (en) | Electrodes, and electrochemical capacitors comprising the same | |
JP2010238681A (en) | Electrode for electric storage device, method of manufacturing the same, and lithium ion capacitor | |
JP2010238680A (en) | Electrode for electric storage device, method of manufacturing the same, and lithium ion capacitor | |
JP2006338963A (en) | Lithium ion capacitor | |
JP6487841B2 (en) | Power storage device | |
JP2006286926A (en) | Lithium ion capacitor | |
KR20130049441A (en) | Composition of electrode active agent, method for preparing the same, and electrochemical capacitor using the same | |
JP2012142340A (en) | Lithium ion capacitor | |
JP2008091343A (en) | Solid electrolyte, lithium ion cell, and its manufacturing method | |
JP5828633B2 (en) | Lithium ion capacitor | |
JP2009246136A (en) | Organic electrolyte capacitor | |
JP4731974B2 (en) | Lithium ion capacitor | |
JP2007180429A (en) | Lithium ion capacitor | |
JP5206443B2 (en) | Electrode for electrochemical element and electrochemical element | |
JP2008060479A (en) | Lithium ion capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120215 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120424 |