[go: up one dir, main page]

JP2009242907A - Method for producing aluminum alloy blank for press forming - Google Patents

Method for producing aluminum alloy blank for press forming Download PDF

Info

Publication number
JP2009242907A
JP2009242907A JP2008092897A JP2008092897A JP2009242907A JP 2009242907 A JP2009242907 A JP 2009242907A JP 2008092897 A JP2008092897 A JP 2008092897A JP 2008092897 A JP2008092897 A JP 2008092897A JP 2009242907 A JP2009242907 A JP 2009242907A
Authority
JP
Japan
Prior art keywords
aluminum alloy
blank
press
blank material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008092897A
Other languages
Japanese (ja)
Inventor
Takeo Sakurai
健夫 櫻井
Kazuhide Matsumoto
和秀 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008092897A priority Critical patent/JP2009242907A/en
Publication of JP2009242907A publication Critical patent/JP2009242907A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Al-Mg-Si based aluminum alloy blank for press forming which has no need of preparing a special forming apparatus, has no generation of cracks and the generation of wrinkles upon press working, and can be stably press-formed while securing strength as the whole of a formed part. <P>SOLUTION: An Al-Mg-Si based aluminum alloy sheet which has been subjected to solution treatment and quenching treatment is heat-treated at 180 to 250°C for 3 to 20 h, and is thereafter cut into a prescribed shape, so as to be an aluminum alloy blank 1, and only the working schedule part 2 of the blank 1 is subjected to instantaneous heating at 480 to 550°C for 0.5 to 10 s. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用のパネル等の大型パネルをプレス成形する際に用いられるAl−Mg−Si系アルミニウム合金でなるブランク材の製造方法に関するものである。   The present invention relates to a method for producing a blank material made of an Al—Mg—Si based aluminum alloy used when press-molding a large panel such as a panel for an automobile.

近年の自動車は、安全性の向上や快適装備の充実といった背景から、モデルチェンジ毎に車体重量が増加する傾向にあり、燃費が劣化する原因となっている。また、自動車をはじめとする輸送機全体の車体分野では、排気ガス等による地球環境問題に対して、軽量化による燃費の向上も追求されている。そのため、従来から自動車などの輸送機の車体に用いられている鋼板に代えて、より軽量なアルミニウム合金板が、自動車などの輸送機の車体に用いられている圧延板や押出型材として採用されることが多くなってきている。   In recent years, automobiles have a tendency to increase in body weight with each model change due to the background of improvement in safety and enhancement of comfort equipment, which causes deterioration of fuel consumption. In addition, in the body field of the entire transportation equipment including automobiles, improvement of fuel efficiency by pursuing light weight is pursued for global environmental problems caused by exhaust gas and the like. Therefore, instead of the steel plate conventionally used for the body of a transport machine such as an automobile, a lighter aluminum alloy plate is adopted as a rolled plate or extrusion mold material used for the body of a transport machine such as an automobile. A lot is happening.

これらのうち、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどの、アウタパネル(外板)やインナパネル(内板)等のパネルには、Al−Mg−Si系アルミニウム合金板の使用が検討されている。   Of these, Al-Mg-Si based aluminum alloy plates are being considered for panels such as outer panels (outer plates) and inner panels (inner plates) such as automobile hoods, fenders, doors, roofs, and trunk lids. Has been.

Al−Mg−Si系アルミニウム合金板は、溶体化処理によって主添加元素のMgおよびSiを固溶させ、その後に行われる170〜200℃程度の時効処理で析出させることにより高強度を発揮する。Al−Mg−Si系アルミニウム合金板を自動車用のパネル材として使用する場合、溶体化直後の伸びの高い状態でプレス成形を行い、その後の塗装焼付処理が時効処理を兼ねることで高強度の部品を得ることができる。   The Al—Mg—Si based aluminum alloy plate exhibits high strength by solid solution of Mg and Si as main additive elements by solution treatment and precipitation by aging treatment at about 170 to 200 ° C. performed thereafter. When using Al-Mg-Si-based aluminum alloy sheets as automotive panel materials, high-strength parts are formed by press-molding in a state of high elongation immediately after solution forming, and the subsequent baking treatment also serves as an aging treatment. Can be obtained.

しかしながら、アルミニウム合金板は鋼板と比較すれば延性が乏しく成形性に劣る。そのため、鋼板と全く同じ条件でプレス成形しようとしても、難成形部位で、プレス成形時に割れが発生することがある。また、その割れの発生を回避するためにしわ押さえ力を低くすると、今度はしわが発生してしまう。   However, aluminum alloy sheets have poor ductility and inferior formability compared to steel sheets. Therefore, even if it is going to press-mold on the completely same conditions as a steel plate, a crack may generate | occur | produce at the time of press molding in a difficult-to-form part. Further, if the wrinkle holding force is lowered in order to avoid the occurrence of cracks, wrinkles will be generated this time.

特に、Al−Mg−Si系アルミニウム合金板は、室温時効して強度が増加するため、他のアルミニウム合金板と比べてもプレス成形時に割れやしわの発生が起こりやすくなるが、この現象に対する対応が難しいことも、Al−Mg−Si系アルミニウム合金板のプレス成形をより困難としていた。   In particular, Al-Mg-Si-based aluminum alloy sheets are aged at room temperature and increase in strength, so cracks and wrinkles are more likely to occur during press forming than other aluminum alloy sheets. This makes it difficult to press-form Al—Mg—Si based aluminum alloy sheets.

これまでも、Al−Mg−Si系アルミニウム合金板自体の成形性を改善するために、Mg、Si以外の合金元素を添加し、或いは、それら合金元素の添加に併せて、結晶粒径、晶析出物の分散状態、粒界析出物などのミクロ組織を制御する等の冶金的な改善が種々試みられてきた。   In the past, in order to improve the formability of the Al—Mg—Si based aluminum alloy plate itself, alloy elements other than Mg and Si have been added, or in addition to the addition of these alloy elements, the crystal grain size, Various metallurgical improvements such as controlling the microstructure of precipitate dispersion and grain boundary precipitates have been attempted.

一方、プレス成形の加工側からも、アルミニウム合金板の成形性を向上させる提案が多々なされている。特許文献1では、室温(常温)時効硬化が生じた6000系アルミニウム合金材(Al−Mg−Si系アルミニウム合金材)に対し、1%以上の加工歪みを与えた後に、50〜150℃の温度に加熱する回復処理を行って、ヘム加工などの成形を行う提案がなされている。   On the other hand, many proposals for improving the formability of an aluminum alloy plate have been made from the processing side of press forming. In Patent Document 1, a temperature of 50 to 150 ° C. is applied to a 6000 series aluminum alloy material (Al—Mg—Si based aluminum alloy material) that has undergone age hardening at room temperature (normal temperature) after being subjected to a work strain of 1% or more. Proposals have been made to perform molding such as hem processing by performing a recovery process of heating the steel.

また、特許文献2〜7では、プレス成形を行う装置自体に何らかの改善を施すことで、アルミニウム合金板の成形性を向上させる提案がなされている。特許文献2には、ブランクのフランジ部を挟着する板押さえとダイスを、夫々に設けた加熱ヒーターで加熱することで、成形時のブランクのフランジ部を加熱する技術が記載されている。特許文献3には、電気ヒーターが内部に設けられたしわ押さえと、電気ヒーターが内部に設けられたダイスで、板材を挟持すると共にこの挟持部分を加熱し、同時に加熱の影響を受けるパンチの端面が接触する板材の部分を、パンチの反対側に設けた冷却風供給装置からの冷却気体で冷却する技術が記載されている。特許文献4には、電気ヒーターが内部に設けられたしわ押さえと、電気ヒーターが内部に設けられたダイスで、板材を挟持すると共にこの挟持部分を加熱し、同時に加熱の影響を受けるパンチの端面が接触する板材の部分を、パンチの反対側に設けた非酸化性ガス供給装置から吹き出す非酸化性ガスで冷却する技術が記載されている。   In Patent Documents 2 to 7, proposals have been made to improve the formability of an aluminum alloy plate by making some improvements to the press forming apparatus itself. Patent Document 2 describes a technique for heating a blank flange portion during molding by heating a plate presser and a die for sandwiching the flange portion of the blank with respective heaters. In Patent Document 3, the end face of a punch that is affected by heating while holding a plate material with a wrinkle presser provided with an electric heater inside and a die provided with an electric heater inside, and heating the holding portion at the same time. Describes a technique for cooling a portion of a plate material in contact with a cooling gas from a cooling air supply device provided on the opposite side of the punch. In Patent Document 4, the end face of a punch that is affected by heating while sandwiching a plate material with a wrinkle presser provided with an electric heater inside and a die provided with an electric heater inside, and simultaneously heating the holding portion. Describes a technique for cooling a portion of a plate material in contact with a non-oxidizing gas blown from a non-oxidizing gas supply device provided on the opposite side of the punch.

また、特許文献5には、ダイスおよび/または板押さえの取り付け部に電熱ヒーター等の加熱媒体を設置すると共に、パンチに貫通路を穿孔して冷却水等の冷却媒体を還流させ、そのダイス、板押さえ、パンチを用いて金属薄板を深絞り加工する技術が記載されている。特許文献6には、5000系アルミニウム合金を対象とした温間プレス加工に関する技術として、ヒーターを埋め込んだダイス及びしわ押さえ金具と、冷媒を循環させる配管を埋め込んだポンチでアルミニウム合金板を温間成形する技術が記載されている。特許文献7には、6000系アルミニウム合金を対象とした温間成形に関する技術として、ヒーターを内蔵するパンチ、ダイス、及びしわ押さえを具備する成形装置を用いて、アルミニウム合金板を温間成形する技術が記載されている。   In addition, in Patent Document 5, a heating medium such as an electric heater is installed in the attachment portion of the die and / or the plate presser, and a cooling medium such as cooling water is refluxed by drilling a through passage in the punch. A technique for deep drawing a thin metal plate using a plate press and a punch is described. In Patent Document 6, as a technology related to warm press working for a 5000 series aluminum alloy, an aluminum alloy plate is warm-formed with a die embedded with a heater and a wrinkle holding metal fitting, and a punch embedded with piping for circulating a refrigerant. The technology to do is described. Patent Document 7 discloses a technique for warm forming an aluminum alloy plate using a forming apparatus having a punch, a die and a wrinkle presser with a built-in heater as a technique related to warm forming for a 6000 series aluminum alloy. Is described.

しかしながら、これらの技術では、ブランク材の加工予定部以外の部位までも熱伝達により高温にしてしまう可能性があるという問題や、プレス成形を行う装置自体にヒーター等の温度制御装置を内蔵するため、従来からの成形装置を用いることはできず、別に特別な成形装置を準備する必要があるという問題等、種々の問題があり、必ずしも有効な解決策とは言い切れるものではなかった。   However, in these techniques, there is a possibility that even a portion other than the blank processing scheduled portion may be heated to a high temperature due to heat transfer, and a temperature control device such as a heater is built in the press forming device itself. However, conventional molding apparatuses cannot be used, and there are various problems such as the necessity of preparing a special molding apparatus separately, and this cannot always be said to be an effective solution.

特開2005−240083号公報Japanese Patent Laid-Open No. 2005-240083 特開平4−351229号公報JP-A-4-351229 特開平5−237558号公報JP-A-5-237558 特開平5−309425号公報JP-A-5-309425 特開平11−309518号公報Japanese Patent Laid-Open No. 11-309518 特開2007−125601号公報JP 2007-125601 A 特開2006−205244号公報JP 2006-205244 A

本発明は、上記従来の問題を解決せんとしてなされたもので、プレス成形に用いるブランク材の加工予定部のみに対して、瞬間加熱を施すことで、特別な成形装置を準備する必要はなく、しかも、プレス加工時の割れの発生やしわの発生がなく、成形品全体としての強度を確保したまま、安定的にプレス成形することが可能なプレス成形加工用のAl−Mg−Si系アルミニウム合金ブランク材を提供することを課題とするものである。   The present invention was made as a solution to the above-described conventional problems, and it is not necessary to prepare a special molding device by applying instantaneous heating only to the processing scheduled portion of the blank material used for press molding, In addition, there is no generation of cracks or wrinkles during pressing, and Al-Mg-Si aluminum alloys for press forming that can be stably pressed while maintaining the strength of the entire molded product. It is an object to provide a blank material.

請求項1記載の発明は、溶体化処理、焼入れ処理を終えたAl−Mg−Si系アルミニウム合金板に、180〜250℃で3〜20時間の熱処理を行った後、所定形状に切断してアルミニウム合金ブランク材とし、そのブランク材の加工予定部のみに対して、480〜550℃の温度で、0.5〜10秒の瞬間加熱を行うことを特徴とするプレス成形加工用アルミニウム合金ブランク材の製造方法である。   According to the first aspect of the present invention, the Al—Mg—Si based aluminum alloy plate that has undergone solution treatment and quenching treatment is subjected to heat treatment at 180 to 250 ° C. for 3 to 20 hours, and then cut into a predetermined shape. An aluminum alloy blank material for press forming, which is an aluminum alloy blank material, and is subjected to instantaneous heating for 0.5 to 10 seconds at a temperature of 480 to 550 ° C. only on a planned processing portion of the blank material. It is a manufacturing method.

請求項2記載の発明は、瞬間加熱を行った前記ブランク材の加工予定部の引張強度と、前記ブランク材のその他の母材部分の引張強度の強度差が、80MPa超、140MPa以下である請求項1記載のプレス成形加工用アルミニウム合金ブランク材の製造方法である。   According to a second aspect of the present invention, the difference in strength between the tensile strength of the part to be processed of the blank material subjected to instantaneous heating and the tensile strength of the other base material part of the blank material is more than 80 MPa and not more than 140 MPa. Item 2. A method for producing an aluminum alloy blank for press forming according to Item 1.

本発明のプレス成形加工用アルミニウム合金ブランク材の製造方法によると、プレス成形に用いるブランク材の加工予定部のみに対して、瞬間加熱を施すことで、特別な成形装置を準備する必要はなく、しかも、プレス加工時の割れの発生やしわの発生がなく、成形品全体としての強度を確保したまま、安定的にプレス成形することが可能なプレス成形加工用のAl−Mg−Si系アルミニウム合金ブランク材を製造することができる。   According to the manufacturing method of the aluminum alloy blank material for press forming of the present invention, it is not necessary to prepare a special forming device by applying instantaneous heating only to the processing planned portion of the blank material used for press forming, In addition, there is no generation of cracks or wrinkles during pressing, and Al-Mg-Si aluminum alloys for press forming that can be stably pressed while maintaining the strength of the entire molded product. A blank material can be manufactured.

また、瞬間加熱を行ったブランク材の加工予定部の引張強度と、ブランク材のその他の部位の引張強度の強度差を、80MPa超、140MPa以下とすることで、プレス加工時の割れの発生やしわの発生がなく、成形品全体としての強度を確保したまま、安定的にプレス成形することが可能なプレス成形加工用のAl−Mg−Si系アルミニウム合金ブランク材を製造することができるという作用効果をより確実に達成することができる。   In addition, by setting the difference in tensile strength between the blank portion subjected to instantaneous heating and the tensile strength of other portions of the blank material to be more than 80 MPa and 140 MPa or less, occurrence of cracks during press working or There is no occurrence of wrinkles, and it is possible to produce an Al—Mg—Si based aluminum alloy blank for press forming that can be stably pressed while ensuring the strength of the entire molded product. The effect can be achieved more reliably.

以下、本発明を実施形態に基づいて更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on embodiments.

本発明の要点は、成形が困難なAl−Mg−Si系アルミニウム合金板の成形性を十分に向上させるために、瞬間加熱を施すことで、同じ一枚のアルミニウム合金ブランク材の中で、加工予定部の引張強度と、その他の母材部分の引張強度に、強度差を設けたことである。   The main point of the present invention is that, in order to sufficiently improve the formability of an Al—Mg—Si-based aluminum alloy plate that is difficult to form, instantaneous heating is performed, so that the same aluminum alloy blank material is processed. That is, a difference in strength is provided between the tensile strength of the planned portion and the tensile strength of the other base material portions.

加工予定部とは、プレス成形により変形する部位のことを示し、この加工予定部に、480〜550℃の温度で、0.5〜10秒の瞬間加熱を施すことで、他の部位(母材部分)が加熱されることなく、必要な部位だけを加熱して引張強度を低下させ、比較的耐力が低い部位とし、その他の部位(母材部分)を比較的耐力が高い部位とする。   The part to be processed indicates a part that is deformed by press molding. The part to be processed is instantaneously heated for 0.5 to 10 seconds at a temperature of 480 to 550 ° C. Without heating the material part), only the necessary part is heated to lower the tensile strength, making the part with relatively low proof stress, and making the other part (base material part) the part with relatively high proof stress.

本発明では、このように、同じ一枚のアルミニウム合金ブランク材の中で、比較的耐力が低い部位と、比較的耐力が高い部位を混在させることで、成形品全体としての強度を確保したまま、プレス加工時の割れの発生やしわの発生がなく、安定的にプレス成形を行うことができる。   In the present invention, as described above, the strength of the entire molded product is ensured by mixing a portion having a relatively low yield strength and a location having a relatively high yield strength in the same single aluminum alloy blank. In addition, there is no generation of cracks or wrinkles during pressing, and stable press molding can be performed.

尚、瞬間加熱する部位や面積を調整することで、様々な形状のプレス成形に対応することができる。   In addition, it can respond | correspond to press molding of various shapes by adjusting the site | part and area which are heated instantaneously.

本発明のプレス成形加工用アルミニウム合金ブランク材の製造方法に用いられるアルミニウム合金は、Al−Mg−Si系アルミニウム合金である。このAl−Mg−Si系アルミニウム合金の成分組成は特には限定しないが、次により好ましい成分範囲を例示する。   The aluminum alloy used in the method for producing an aluminum alloy blank for press forming according to the present invention is an Al—Mg—Si aluminum alloy. The component composition of this Al—Mg—Si-based aluminum alloy is not particularly limited, but a more preferable component range is exemplified below.

好ましい成分範囲のAl−Mg−Si系アルミニウム合金は、例えば、Mg:0.2〜1.2質量%、Si:0.4〜2.0質量%を含有し、残部がAlおよび不可避的不純物よりなるAl−Mg−Si系アルミニウム合金、或いは、Mg:0.2〜1.2質量%、Si:0.4〜2.0質量%、Cu:0.1〜1.0質量%を含有し、残部がAlおよび不可避的不純物よりなるAl−Mg−Si−Cu系アルミニウム合金である。   The Al—Mg—Si based aluminum alloy having a preferable component range contains, for example, Mg: 0.2 to 1.2 mass%, Si: 0.4 to 2.0 mass%, with the balance being Al and inevitable impurities. Al-Mg-Si-based aluminum alloy or Mg: 0.2-1.2% by mass, Si: 0.4-2.0% by mass, Cu: 0.1-1.0% by mass The balance is an Al—Mg—Si—Cu based aluminum alloy consisting of Al and inevitable impurities.

Mgは、Siと共に強度および成形性に寄与する元素で、0.2質量%より少ないと強度が必ずしも十分ではなくなり、成形性も劣るものとなる。一方、1.2質量%より多くなると圧延が困難となり、成形性が低下する。よって、Mgの含有量は、0.2〜1.2質量%とすることが好ましい。   Mg is an element that contributes to the strength and formability together with Si. If it is less than 0.2% by mass, the strength is not always sufficient, and the formability is poor. On the other hand, if it exceeds 1.2% by mass, rolling becomes difficult and the formability decreases. Therefore, the Mg content is preferably 0.2 to 1.2% by mass.

Siは、Mgと共に強度および成形性に寄与する元素で、0.4質量%より少ないと強度が必ずしも十分ではなくなり、成形性も劣るものとなる。一方、2.0質量%より多くなると粗大なSi単体の晶出により、成形が困難となる。よって、Siの含有量は、0.4〜2.0質量%とすることが好ましい。   Si is an element that contributes to strength and formability together with Mg. If it is less than 0.4% by mass, the strength is not always sufficient, and the formability is poor. On the other hand, if it exceeds 2.0 mass%, molding becomes difficult due to crystallization of coarse Si alone. Therefore, the Si content is preferably 0.4 to 2.0 mass%.

本発明においては、MgとSiを主添加元素とするAl−Mg−Si系アルミニウム合金を用いることで、十分な作用効果を奏することができるが、更に、成形性を向上させるために、MgとSiに加えて、Cuを主添加元素とするAl−Mg−Si−Cu系アルミニウム合金を用いることもできる。   In the present invention, by using an Al—Mg—Si-based aluminum alloy containing Mg and Si as main additive elements, a sufficient effect can be obtained. However, in order to improve formability, Mg and In addition to Si, an Al—Mg—Si—Cu-based aluminum alloy containing Cu as a main additive element can also be used.

このAl−Mg−Si−Cu系アルミニウム合金において、Cu含有量が、0.1質量%より少ないと成形性が十分ではなくなる。一方、1.0質量%より多くなると耐食性、特に耐糸錆性を著しく低下させる。よって、Cuの含有量は、0.1〜1.0質量%とすることが好ましい。   In this Al—Mg—Si—Cu-based aluminum alloy, if the Cu content is less than 0.1% by mass, formability becomes insufficient. On the other hand, if it exceeds 1.0% by mass, the corrosion resistance, particularly the yarn rust resistance, is significantly reduced. Therefore, the content of Cu is preferably 0.1 to 1.0% by mass.

上述した成分範囲のAl−Mg−Si系アルミニウム合金でなるアルミニウム合金板で、本発明の実施に係るプレス成形加工用アルミニウム合金ブランク材を製造するにあたっては、溶体化処理、焼入れ処理までは、従来から知られている常法によって製造することができる。常法とは、溶解・鋳造→均質化処理→熱間圧延→冷間圧延の順の工程で、Al−Mg−Si系アルミニウム合金板を所定の板厚とした後、連続焼鈍炉或いは熱処理炉、ソルトバス等を用いて溶体化処理を行い、更に、水(ミストを含む)或いは空気にて焼入れ処理を行い、その後、室温に放置してT4調質とする方法である。尚、必要により熱間圧延と冷間圧延の間に中間焼鈍を含んでいても良い。   In producing an aluminum alloy blank for press forming according to the practice of the present invention with an aluminum alloy plate made of an Al-Mg-Si-based aluminum alloy having the above-described composition range, until the solution treatment and quenching treatment, Can be produced by a conventional method known from US Pat. The ordinary method is a process of melting / casting → homogenization treatment → hot rolling → cold rolling, in which an Al—Mg—Si-based aluminum alloy sheet is made a predetermined thickness, and then a continuous annealing furnace or heat treatment furnace In this method, solution treatment is performed using a salt bath or the like, and further, quenching is performed with water (including mist) or air, and then left at room temperature to obtain T4 refining. If necessary, intermediate annealing may be included between hot rolling and cold rolling.

これまでに、自動車用パネル等の大型パネルを、プレス成形する際に用いられていたAl−Mg−Si系アルミニウム合金板はこのT4調質材である。このT4調質材は、室温放置によって素材強度(耐力)が向上していると共に、伸びが低下しており、これが、成形性や曲げ性の低下の原因となっている。   So far, the Al—Mg—Si-based aluminum alloy plate used when press-molding large panels such as automobile panels is this T4 tempered material. This T4 tempered material has improved material strength (yield strength) when allowed to stand at room temperature and has reduced elongation, which causes a decrease in formability and bendability.

そのため、まず、本発明では、このT4調質状態のAl−Mg−Si系アルミニウム合金板に対し、180〜250℃で3〜20時間の熱処理を行ってT6調質(ピ−ク時効処理)或いはT7調質(過時効処理)する。   Therefore, in the present invention, first, the Al-Mg-Si aluminum alloy plate in the T4 tempered state is subjected to a heat treatment at 180 to 250 ° C for 3 to 20 hours to obtain a T6 temper (peak aging treatment). Alternatively, T7 tempering (overaging treatment) is performed.

この熱処理(時効処理)において、熱処理温度が180℃より低い場合、高い強度を得ることができず、その強度を得るためには数十日程度を要することになり、工業製品の製造には向かない。一方、熱処理温度が250℃より高い場合は、焼鈍状態となり、この場合も十分な強度を得ることができない。よって、熱処理温度は、180〜250℃とする。   In this heat treatment (aging treatment), when the heat treatment temperature is lower than 180 ° C., high strength cannot be obtained, and it takes about several tens of days to obtain the strength, which is suitable for manufacturing industrial products. No. On the other hand, when the heat treatment temperature is higher than 250 ° C., it becomes an annealed state, and in this case, sufficient strength cannot be obtained. Therefore, the heat treatment temperature is 180 to 250 ° C.

また、熱処理時間が3時間より短いと、比較的低温で熱処理した場合、十分な強度を得ることができず、比較的高温で熱処理した場合、焼鈍状態となり十分な強度を得ることができない。一方、熱処理時間が20時間より長いと、熱処理温度に関わらず、処理時間が長くなりすぎ、焼鈍状態となり十分な強度を得ることができない。よって、熱処理時間は3〜20時間とする。   When the heat treatment time is shorter than 3 hours, sufficient strength cannot be obtained when heat treatment is performed at a relatively low temperature, and when heat treatment is performed at a relatively high temperature, an annealed state cannot be obtained and sufficient strength cannot be obtained. On the other hand, if the heat treatment time is longer than 20 hours, regardless of the heat treatment temperature, the treatment time becomes too long, and an annealing state is obtained and sufficient strength cannot be obtained. Therefore, the heat treatment time is 3 to 20 hours.

以降の工程は、図1に基づいて説明する。まず、図1(a)の状態から所定形状に切断して、図1(b)に示すアルミニウム合金ブランク材1とする。   Subsequent steps will be described with reference to FIG. First, it cuts into the predetermined shape from the state of Fig.1 (a), and it is set as the aluminum alloy blank material 1 shown in FIG.1 (b).

この切断で得られた所定形状のブランク材1に対し、次のプレス成形で変形する部位、すなわち加工予定部2のみに対して瞬間加熱を行う。深絞り成形でのプレス成形を行う場合の加工予定部2は、一般的にはブランク材の全周部2a(フランジ部)である。また、その全周部2a(フランジ部)で囲まれた部位の中の必要箇所(局部2b)にも加工が必要な場合は、その箇所も加工予定部2とする。瞬間加熱の温度は、480〜550℃、加熱時間は0.5〜10秒である。その後、図1(c)に示すように、冷却や急速冷却を行うことで、加工予定部2のみをT4調質程度の素材強度とする。   With respect to the blank material 1 having a predetermined shape obtained by this cutting, instantaneous heating is performed only on a portion that is deformed by the next press forming, that is, only the planned processing portion 2. The processing planned portion 2 in the case of performing press forming in deep drawing is generally the entire peripheral portion 2a (flange portion) of the blank material. In addition, when a necessary part (local part 2b) in a part surrounded by the entire peripheral part 2a (flange part) is also required to be processed, that part is also designated as a planned processing part 2. The instantaneous heating temperature is 480 to 550 ° C., and the heating time is 0.5 to 10 seconds. Then, as shown in FIG.1 (c), by carrying out cooling and rapid cooling, only the process planned part 2 is made into the raw material intensity | strength of about T4 refining.

この瞬間加熱において、熱処理温度が480℃より低い場合、瞬間加熱であるため、十分な熱処理が行われず、成形性が向上しない。一方、熱処理温度が550℃より高い場合、瞬間加熱した際の熱が加工予定部2以外の周辺部に伝わることになり、部分熱処理ができず、高い成形性を得ることができない。よって、瞬間加熱温度は、480〜550℃とする。   In this instantaneous heating, when the heat treatment temperature is lower than 480 ° C., since it is instantaneous heating, sufficient heat treatment is not performed and the moldability is not improved. On the other hand, when the heat treatment temperature is higher than 550 ° C., the heat at the time of instantaneous heating is transmitted to the peripheral portion other than the processing scheduled portion 2, and the partial heat treatment cannot be performed, and high moldability cannot be obtained. Therefore, instantaneous heating temperature shall be 480-550 degreeC.

また、瞬間加熱時間が、0.5秒より短いと、加熱処理の効果が殆ど得られず、成形性が向上しない。一方、瞬間加熱時間が、10秒より長いと、瞬間加熱した際の熱が加工予定部2以外の周辺部に伝わることになり、部分熱処理ができず、高い成形性を得ることができない。よって、瞬間加熱時間は、0.5〜10秒とする。   On the other hand, if the instantaneous heating time is shorter than 0.5 seconds, the effect of the heat treatment is hardly obtained and the moldability is not improved. On the other hand, if the instantaneous heating time is longer than 10 seconds, the heat at the time of instantaneous heating is transmitted to the peripheral portion other than the processing scheduled portion 2, and partial heat treatment cannot be performed, and high moldability cannot be obtained. Therefore, the instantaneous heating time is 0.5 to 10 seconds.

また、以上の製造方法で製造したプレス成形加工用アルミニウム合金ブランク材1の母材部分3(T6調質或いはT7調質のままで瞬間加熱していない部分)の引張強度(耐力)と、瞬間加熱した加工予定部2の引張強度(耐力)の強度差が、80MPa以下である場合は、成形性が十分に向上しない。一方、140MPaを超える場合は、瞬間加熱した加工予定部2の引張強度が低めになり、割れが発生する可能性がある。よって、ブランク材1の母材部分3と、瞬間加熱した加工予定部2の引張強度(耐力)の強度差は、80MPa超、140MPa以下とする。   Moreover, the tensile strength (proof stress) of the base material part 3 (the part which has not been instantaneously heated while being T6 tempered or T7 tempered) of the aluminum alloy blank for press forming 1 manufactured by the above manufacturing method, and the instantaneous When the strength difference in the tensile strength (yield strength) of the heated processing target portion 2 is 80 MPa or less, the moldability is not sufficiently improved. On the other hand, when it exceeds 140 MPa, the tensile strength of the processing scheduled part 2 heated instantaneously becomes low, and a crack may occur. Therefore, the strength difference between the tensile strength (proof stress) between the base material portion 3 of the blank material 1 and the instantaneously heated processing portion 2 is set to be more than 80 MPa and 140 MPa or less.

以上のように、同じ一枚のブランク材1の中でも、プレス成形の際に、変形を伴う加工予定部2を軟質部、残る母材部分3を硬質部とすることで、プレス成形時に割れの発生やしわの発生がなく、成形品全体としての強度を確保したまま、図1(d)に示すように、安定的にプレス成形することができる。   As described above, among the same blank material 1, in the press molding, the processing scheduled portion 2 accompanied by deformation is the soft portion, and the remaining base material portion 3 is the hard portion, so that the crack is generated during the press molding. As shown in FIG. 1 (d), it is possible to stably press-mold as shown in FIG.

尚、図2に示すように、深絞り成形でブランク材1のプレス成形を行う場合は、前記した軟質部と硬質部のブランク材1中での境界が、ブランク材1の縦壁部1aを超えたフランジ1b側にあると、ダイ肩R1cが起点となり割れが発生することとなる。逆に、この軟質部と硬質部の境界が、縦壁部1aよりブランク材1の中心側にあると、ポンチ肩R1dで割れが発生することとなる。よって、深絞り成形でブランク材1のプレス成形を行う場合は軟質部と硬質部のブランク材1中での境界は、縦壁部1aの途中にあれば良く、その縦壁部1aの深さの1/2程度にあることが望ましい。   As shown in FIG. 2, when the blank material 1 is press-formed by deep drawing, the boundary between the soft portion and the hard portion in the blank material 1 is the vertical wall portion 1 a of the blank material 1. If it is on the flange 1b side that exceeds, the die shoulder R1c will be the starting point and cracking will occur. Conversely, if the boundary between the soft part and the hard part is closer to the center side of the blank 1 than the vertical wall part 1a, a crack occurs in the punch shoulder R1d. Therefore, when the blank material 1 is press-formed by deep drawing, the boundary between the soft portion and the hard portion in the blank material 1 may be in the middle of the vertical wall portion 1a, and the depth of the vertical wall portion 1a. It is desirable that it is about 1/2 of that.

板厚1.0mmの自動車パネル用の6000系アルミニウム合金(Al−1.0質量%Mg−0.6質量%Si)T4調質材を、処理温度180〜250℃、処理時間3〜20時間の範囲を基本として、その処理温度、処理時間を種々ずらせることで熱処理(人工時効処理)を行い、その後、図3に示すサイズ(縦200mm×横200mmの正方形)に切断して供試材とした。   A 6000 series aluminum alloy (Al-1.0 mass% Mg-0.6 mass% Si) T4 tempered material for automobile panels having a plate thickness of 1.0 mm is processed at a processing temperature of 180 to 250 ° C. and a processing time of 3 to 20 hours. Based on this range, heat treatment (artificial aging treatment) is performed by varying the treatment temperature and treatment time, and then cut into the size shown in FIG. 3 (vertical 200 mm × width 200 mm square). It was.

更に、図3に示す供試材(ブランク材1)の全周の加工予定部2に局所加熱を行った。局所加熱は、処理温度520℃、処理時間5秒の瞬間加熱を基本として、その処理温度、処理時間を種々ずらせることで行った。その局所加熱の後、直ちに供試材を水冷し、局所加熱した加工予定部2はT4、残る母材部分3は前記人工時効処理の強度を維持するような状態として、供試材Aとした。(尚、比較例はこの強度分布とはなっていない。)   Furthermore, local heating was performed on the planned processing portion 2 on the entire circumference of the test material (blank material 1) shown in FIG. The local heating was performed by varying the processing temperature and processing time based on instantaneous heating at a processing temperature of 520 ° C. and a processing time of 5 seconds. Immediately after the local heating, the test material was water-cooled, and the locally heated processing scheduled portion 2 was T4, and the remaining base material portion 3 was in a state maintaining the strength of the artificial aging treatment. . (The comparative example does not have this intensity distribution.)

このときの、各部位の強度については、熱処理(人工時効処理)を行った状態の供試材Bと、その供試材Bに更に前記局所加熱と同じ条件で加熱を行った状態の供試材Cから夫々JIS5号試験片を夫々採取し、インストロン型万能試験機を用いて引張試験を実施した。表1に、この引張試験で得られた供試材Bと供試材Cの引張強度の差を、耐力差として示す。   At this time, regarding the strength of each part, the test material B in a state where heat treatment (artificial aging treatment) was performed, and the test material in a state where the test material B was further heated under the same conditions as the local heating JIS No. 5 test pieces were collected from the material C, respectively, and subjected to a tensile test using an Instron universal testing machine. Table 1 shows the difference in tensile strength between the test material B and the test material C obtained in this tensile test as a difference in yield strength.

更に、深絞り金型を用いて供試材Aの成形試験を行った。成形試験に用いた深絞り金型は、図4に示すように、ポンチの形状が特殊であり、外周部が角筒で、中央部が円筒となっている。成形試験条件は、しわ押さえ力3MPa、成形速度10mm/min、潤滑はポリシートとした。   Further, a molding test of the specimen A was performed using a deep drawing die. As shown in FIG. 4, the deep-drawing mold used in the molding test has a special punch shape, an outer peripheral portion is a square tube, and a central portion is a cylinder. The molding test conditions were a wrinkle holding force of 3 MPa, a molding speed of 10 mm / min, and lubrication using a polysheet.

この試験では、先に説明したサイズ(縦200mm×横200mmの正方形)の供試材の四隅を、図3に示すように切断した後、深絞り金型にセットし、室温(25℃)にて、前述した条件で深絞り成形を行い、割れ発生の有無を確認した。その確認結果を、表1に○×で示す。   In this test, after cutting the four corners of the test piece of the size described above (vertical 200 mm × width 200 mm square) as shown in FIG. 3, it was set in a deep-drawing mold and brought to room temperature (25 ° C.). Then, deep drawing was performed under the conditions described above, and the presence or absence of cracks was confirmed. The confirmation result is shown in Table 1 by ○ ×.

Figure 2009242907
Figure 2009242907

No.1〜10は、瞬間加熱の条件を、本発明で規定した要件内の処理温度520℃、処理時間5秒に固定したもので、No.1〜6は、最初の熱処理(人工時効処理)の条件を、本発明で規定した要件内で種々変更した発明例、No.7、8は、最初の熱処理(人工時効処理)の条件のうち、処理温度を本発明で規定した要件外とした比較例、No.9、10は、最初の熱処理(人工時効処理)の条件のうち、処理時間を本発明で規定した要件外とした比較例である。   No. Nos. 1 to 10 were obtained by fixing the conditions for instantaneous heating to a processing temperature of 520 ° C. and a processing time of 5 seconds within the requirements defined in the present invention. Nos. 1 to 6 are invention examples in which the conditions of the first heat treatment (artificial aging treatment) were variously changed within the requirements defined in the present invention. Nos. 7 and 8 are comparative examples in which the processing temperature is outside the requirements defined in the present invention, among the conditions of the first heat treatment (artificial aging treatment), No. Nos. 9 and 10 are comparative examples in which the treatment time out of the conditions defined in the present invention is the condition of the first heat treatment (artificial aging treatment).

また、No.11〜18は、最初の熱処理(人工時効処理)の条件を、本発明で規定した要件内の処理温度230℃、処理時間8秒に固定したもので、No.11〜14は、瞬間加熱の条件を、本発明で規定した要件内で種々変更した発明例、No.15、16は、瞬間加熱の条件のうち、処理温度を本発明で規定した要件外とした比較例、No.17、18は、瞬間加熱の条件のうち、処理時間を本発明で規定した要件外とした比較例である。   No. Nos. 11 to 18 were prepared by fixing the conditions of the first heat treatment (artificial aging treatment) to a treatment temperature of 230 ° C. and a treatment time of 8 seconds within the requirements defined in the present invention. Nos. 11 to 14 are invention examples in which the conditions of instantaneous heating are variously changed within the requirements defined in the present invention, No. 11 to No. 14. Nos. 15 and 16 are comparative examples in which the processing temperature is out of the requirements defined in the present invention among the conditions of instantaneous heating, No. Nos. 17 and 18 are comparative examples in which the processing time is out of the requirements defined in the present invention among the instantaneous heating conditions.

本発明の要件を満足するNo.1〜6およびNo.11〜14は、引張試験で得られた耐力差は110〜140MPaであり、成形試験では割れが発生しなかった。   No. satisfying the requirements of the present invention. 1-6 and no. In Nos. 11 to 14, the proof stress difference obtained in the tensile test was 110 to 140 MPa, and no cracks occurred in the molding test.

これに対し、本発明の要件を満足しないNo.7〜10およびNo.15〜18(No.16を除く)は、引張試験で得られた耐力差は全て80MPa以下であり、成形試験では割れが発生した。尚、No.16は、瞬間加熱の温度が高すぎたため、熱が周辺部に伝わることになり部分熱処理ができず、供試材が溶融してしまった。   On the other hand, No. which does not satisfy the requirements of the present invention. 7-10 and no. For 15 to 18 (excluding No. 16), the yield strength difference obtained in the tensile test was 80 MPa or less, and cracks occurred in the molding test. No. In No. 16, since the instantaneous heating temperature was too high, the heat was transferred to the peripheral portion, and partial heat treatment could not be performed, so that the specimen was melted.

本発明に係るプレス成形加工用アルミニウム合金ブランク材を用いてプレス成形を行う工程を示す説明図で、(a)は所定形状に切断する前のブランク材を、(b)は所定形状切断後に瞬間加熱を行ったブランク材を、(c)は冷却したブランク材を、(d)はプレス成形を終えた成形品を夫々示す。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing which shows the process of performing press molding using the aluminum alloy blank material for press molding processing which concerns on this invention, (a) is the blank material before cut | disconnecting to a predetermined shape, (b) is a moment after cutting a predetermined shape. The heated blank material, (c) shows the cooled blank material, and (d) shows the molded product after press forming. プレス成形用金型でブランク材のプレス成形を行った状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state which performed the press molding of the blank material with the metal mold | die for press molding. 実施例で供試材として用いるブランク材の形状を示す説明図である。It is explanatory drawing which shows the shape of the blank material used as a test material in an Example. 実施例の成形試験に用いた深絞り金型のポンチの形状を示す説明図である。It is explanatory drawing which shows the shape of the punch of the deep drawing metal mold | die used for the shaping | molding test of an Example.

符号の説明Explanation of symbols

1…アルミニウム合金ブランク材
2…加工予定部
2a…全周部
2b…局部
3…母材部分
DESCRIPTION OF SYMBOLS 1 ... Aluminum alloy blank 2 ... Planned part 2a ... All-around part 2b ... Local part 3 ... Base material part

Claims (2)

溶体化処理、焼入れ処理を終えたAl−Mg−Si系アルミニウム合金板に、180〜250℃で3〜20時間の熱処理を行った後、所定形状に切断してアルミニウム合金ブランク材とし、
そのブランク材の加工予定部のみに対して、480〜550℃の温度で、0.5〜10秒の瞬間加熱を行うことを特徴とするプレス成形加工用アルミニウム合金ブランク材の製造方法。
After heat treatment at 180 to 250 ° C. for 3 to 20 hours on the Al—Mg—Si aluminum alloy plate that has undergone solution treatment and quenching treatment, it is cut into a predetermined shape to obtain an aluminum alloy blank material,
A method for producing an aluminum alloy blank material for press forming, characterized by performing instantaneous heating for 0.5 to 10 seconds at a temperature of 480 to 550 ° C. only on a portion to be processed of the blank material.
瞬間加熱を行った前記ブランク材の加工予定部の引張強度と、前記ブランク材のその他の母材部分の引張強度の強度差が、80MPa超、140MPa以下である請求項1記載のプレス成形加工用アルミニウム合金ブランク材の製造方法。
2. The press forming process according to claim 1, wherein a difference in tensile strength between a part to be processed of the blank material subjected to instantaneous heating and a tensile strength of another base material part of the blank material is more than 80 MPa and not more than 140 MPa. A method for producing an aluminum alloy blank.
JP2008092897A 2008-03-31 2008-03-31 Method for producing aluminum alloy blank for press forming Pending JP2009242907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092897A JP2009242907A (en) 2008-03-31 2008-03-31 Method for producing aluminum alloy blank for press forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092897A JP2009242907A (en) 2008-03-31 2008-03-31 Method for producing aluminum alloy blank for press forming

Publications (1)

Publication Number Publication Date
JP2009242907A true JP2009242907A (en) 2009-10-22

Family

ID=41305135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092897A Pending JP2009242907A (en) 2008-03-31 2008-03-31 Method for producing aluminum alloy blank for press forming

Country Status (1)

Country Link
JP (1) JP2009242907A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115837A (en) * 2009-12-07 2011-06-16 Furukawa-Sky Aluminum Corp Method of producing aluminum alloy molded article
JP2011134676A (en) * 2009-12-25 2011-07-07 Kobe Steel Ltd Method of manufacturing led bulb heat dissipation section and led bulb heat dissipation section
JPWO2020209319A1 (en) * 2019-04-10 2020-10-15
CN115255127A (en) * 2022-06-14 2022-11-01 上海友升铝业股份有限公司 A kind of stamping forming process of high-strength aluminum alloy plate
US11939655B2 (en) * 2016-07-13 2024-03-26 Constellium Neuf-Brisach Aluminium alloy blanks with local flash annealing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239032A (en) * 2002-02-19 2003-08-27 Kobe Steel Ltd Aluminum alloy sheet with excellent bendability
JP2004124151A (en) * 2002-10-01 2004-04-22 Japan Science & Technology Corp Heat treatment method of aluminum alloy
JP2008207212A (en) * 2007-02-27 2008-09-11 Kobe Steel Ltd Aluminum alloy sheet blank excellent in press-formability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003239032A (en) * 2002-02-19 2003-08-27 Kobe Steel Ltd Aluminum alloy sheet with excellent bendability
JP2004124151A (en) * 2002-10-01 2004-04-22 Japan Science & Technology Corp Heat treatment method of aluminum alloy
JP2008207212A (en) * 2007-02-27 2008-09-11 Kobe Steel Ltd Aluminum alloy sheet blank excellent in press-formability

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115837A (en) * 2009-12-07 2011-06-16 Furukawa-Sky Aluminum Corp Method of producing aluminum alloy molded article
JP2011134676A (en) * 2009-12-25 2011-07-07 Kobe Steel Ltd Method of manufacturing led bulb heat dissipation section and led bulb heat dissipation section
US11939655B2 (en) * 2016-07-13 2024-03-26 Constellium Neuf-Brisach Aluminium alloy blanks with local flash annealing
JPWO2020209319A1 (en) * 2019-04-10 2020-10-15
WO2020209319A1 (en) * 2019-04-10 2020-10-15 日本製鉄株式会社 Blank and component
CN113631288A (en) * 2019-04-10 2021-11-09 日本制铁株式会社 blanks and components
KR20210143283A (en) * 2019-04-10 2021-11-26 닛폰세이테츠 가부시키가이샤 Blanks and parts
JP7188567B2 (en) 2019-04-10 2022-12-13 日本製鉄株式会社 blanks and parts
CN113631288B (en) * 2019-04-10 2023-06-30 日本制铁株式会社 Blank and member
US11951520B2 (en) 2019-04-10 2024-04-09 Nippon Steel Corporation Blank and component
KR102656971B1 (en) * 2019-04-10 2024-04-16 닛폰세이테츠 가부시키가이샤 blanks and parts
CN115255127A (en) * 2022-06-14 2022-11-01 上海友升铝业股份有限公司 A kind of stamping forming process of high-strength aluminum alloy plate

Similar Documents

Publication Publication Date Title
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP5435914B2 (en) Method for producing aluminum alloy plate for cold press forming, method for cold press forming aluminum alloy plate, and aluminum alloy cold press formed product
JP5498069B2 (en) Method for producing aluminum alloy sheet blank for cold press forming, and cold press forming method and molded product thereby
CN104114726A (en) Aluminum alloy sheet with excellent baking-paint curability
JP5671422B2 (en) Method for producing high strength 7000 series aluminum alloy member and high strength 7000 series aluminum alloy member
JP6429519B2 (en) Warm forming method of Al-Mg-Si alloy rolled sheet
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JP5789150B2 (en) Method for manufacturing press-molded aluminum alloy blank, and method for manufacturing aluminum alloy press-formed body using the blank
JP2011111657A (en) Method for producing aluminum alloy sheet blank for cold press forming having coating/baking hardenability, cold press forming method using the blank, and formed part
JP5379471B2 (en) Method for producing aluminum alloy plate for cold press forming and cold press forming method
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP5148896B2 (en) Aluminum alloy blank with excellent press forming
JP5329746B2 (en) Aluminum alloy sheet for warm forming
JP2010227954A (en) Method of press-forming aluminum alloy sheet
JP5291370B2 (en) Method for producing aluminum alloy automotive panel member
JP2009242907A (en) Method for producing aluminum alloy blank for press forming
JP5789138B2 (en) Method for manufacturing press-molded aluminum alloy blank, and method for manufacturing aluminum alloy press-formed body using the blank
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
CN100429330C (en) Shaping method of aluminium alloy section
JP2009148823A (en) Warm press forming method of aluminum alloy cold rolled sheet
JP4164453B2 (en) Forming method of aluminum alloy material
JP2012152780A (en) Molding working method for aluminum alloy plate
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP2014147958A (en) High strength 7000 aluminum alloy member and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604