[go: up one dir, main page]

JP2009241813A - Vehicle vibrating state detecting method, and suspension controlling method and device using the same - Google Patents

Vehicle vibrating state detecting method, and suspension controlling method and device using the same Download PDF

Info

Publication number
JP2009241813A
JP2009241813A JP2008092177A JP2008092177A JP2009241813A JP 2009241813 A JP2009241813 A JP 2009241813A JP 2008092177 A JP2008092177 A JP 2008092177A JP 2008092177 A JP2008092177 A JP 2008092177A JP 2009241813 A JP2009241813 A JP 2009241813A
Authority
JP
Japan
Prior art keywords
vehicle
wheel
suspension
vibration
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008092177A
Other languages
Japanese (ja)
Other versions
JP5224039B2 (en
Inventor
Noriaki Itagaki
紀章 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008092177A priority Critical patent/JP5224039B2/en
Publication of JP2009241813A publication Critical patent/JP2009241813A/en
Application granted granted Critical
Publication of JP5224039B2 publication Critical patent/JP5224039B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

【課題】サスペンション制御装置において、必要な精度を維持しつつ、必要な状態量を検出するためのセンサ数を少なくする。
【解決手段】車両の車体2と車輪3との間に懸架バネ4及び減衰力可変ダンパ5を介装する。車速センサ6及び車輪速センサ7によって検出した車速及び各車輪3の車輪速を含む車両の走行状態を表す状態量に基づいて、コントローラ8によって減衰力可変ダンパ5の減衰力を調整して、車体2に姿勢制御及び振動制御を行なう。このとき、車速及び各車輪3の車輪速に基づいて、車軸路面間の相対変位を抽出し、抽出した車軸路面間の相対変位に基づいて、車両の振動状態を演算することにより、必要な精度を維持しつつ、車体2の上下加速度センサ等を不要として、必要な状態量を検出するためのセンサ数を少なくすることができる。
【選択図】図1
In a suspension control device, the number of sensors for detecting necessary state quantities is reduced while maintaining necessary accuracy.
A suspension spring 4 and a damping force variable damper 5 are interposed between a vehicle body 2 and a wheel 3 of the vehicle. The controller 8 adjusts the damping force of the damping force variable damper 5 based on the state quantity representing the running state of the vehicle including the vehicle speed detected by the vehicle speed sensor 6 and the wheel speed sensor 7 and the wheel speed of each wheel 3. 2 performs posture control and vibration control. At this time, the required accuracy is obtained by extracting the relative displacement between the axle road surfaces based on the vehicle speed and the wheel speed of each wheel 3, and calculating the vibration state of the vehicle based on the extracted relative displacement between the axle road surfaces. Thus, the number of sensors for detecting a necessary amount of state can be reduced without requiring the vertical acceleration sensor of the vehicle body 2 or the like.
[Selection] Figure 1

Description

本発明は、サスペンション制御のための車両の振動検出方法並びにこれを用いたサスペンション制御方法及び装置に関するものである。   The present invention relates to a vehicle vibration detection method for suspension control, and a suspension control method and apparatus using the same.

従来、車両の走行状態に応じて懸架バネのバネ力、油圧ダンパの減衰力等のサスペンション特性を調整して車体の姿勢制御及び振動制御を行うことにより、車両の走行安定性及び乗り心地を向上させるようにしたサスペンション制御装置が知られている。この種のサスペンション制御装置では、車両の走行状態を検出する車速センサ、加速度センサ等の各種センサの検出信号に基づいて、コントローラによって、サスペンション装置に装着された減衰力調整式油圧ダンパの減衰力、エアスプリングのバネ力、車高調整用のシリンダ装置の推力等を調整することによって車体の姿勢制御及び振動制御を行っている。   Conventionally, the vehicle's running stability and ride comfort are improved by adjusting suspension characteristics such as the spring force of the suspension spring and the damping force of the hydraulic damper according to the running state of the vehicle to perform vehicle body posture control and vibration control. There is known a suspension control device that can be made to do so. In this type of suspension control device, based on detection signals from various sensors such as a vehicle speed sensor and an acceleration sensor that detect the running state of the vehicle, the damping force of the damping force adjusting hydraulic damper attached to the suspension device by the controller, The posture control and vibration control of the vehicle body are performed by adjusting the spring force of the air spring and the thrust of the cylinder device for adjusting the vehicle height.

この種のサスペンション制御装置においては、多数のセンサを用いて車両の走行状態を表す各状態量を直接的に検出することにより、高精度の制御を実行することができるが、センサ数が多くなるとコストも増大することになる。そこで、例えば特許文献1には、車輪速センサが検出する車輪速度に基づいてコントローラによって車体の振動レベルを演算することにより、簡単な構成でサスペンション特性を的確に制御することができるようにしたサスペンション制御装置が開示されている。これにより、車体の振動レベルを検出するために圧電素子等のセンサが不要となり、構造の簡略化及びコストの低減を図ることができる。
特開平6−55919号公報
In this type of suspension control device, it is possible to perform highly accurate control by directly detecting each state quantity representing the running state of the vehicle using a large number of sensors, but when the number of sensors increases. Cost will also increase. Therefore, for example, Patent Document 1 discloses a suspension in which suspension characteristics can be accurately controlled with a simple configuration by calculating a vibration level of a vehicle body by a controller based on a wheel speed detected by a wheel speed sensor. A control device is disclosed. As a result, a sensor such as a piezoelectric element is not required to detect the vibration level of the vehicle body, and the structure can be simplified and the cost can be reduced.
JP-A-6-55919

しかしながら、上記特許文献1では、車輪速度の変動量の大きさにのみを抽出しており、その大きさが、ある基準値を超えるとき、減衰力をハードにするという単純なものである。そのため、時々刻々変化する様々な振動に対処し得る制御側ではない。したがって、ばね上共振付近での制振効果は望めるとしても、ばね上共振以上の振動成分を励起する路面に対しては、制御効果が望めないと考えられる問題がある。   However, in the above Patent Document 1, only the fluctuation amount of the wheel speed is extracted, and when the magnitude exceeds a certain reference value, the damping force is simply set to be hard. Therefore, it is not a control side that can cope with various vibrations that change every moment. Therefore, even if the vibration suppression effect near the sprung resonance can be expected, there is a problem that the control effect cannot be expected for a road surface that excites a vibration component higher than the sprung resonance.

本発明は、上記の点に鑑みてなされたものであり、ばね上共振以上の振動成分を励起する路面に対しても制御効果が期待できる上、必要な状態量を検出するためのセンサ数が少なくてすむ車両の振動状態検出方法並びにこれを用いたサスペンション制御方法及びサスペンション制御装置を提供することを目的とする。   The present invention has been made in view of the above points, and can be expected to have a control effect on a road surface that excites a vibration component higher than the sprung resonance, and the number of sensors for detecting a necessary amount of state is large. It is an object of the present invention to provide a vehicle vibration state detection method which can be reduced, and a suspension control method and suspension control apparatus using the same.

上記の課題を解決するために、本発明は、車輪の回転速度に基づいて、車軸路面間の上下方向物理量を抽出し、抽出した車軸路面間の上下方向物理量に基づいて、車両の振動状態を演算する。そして、演算した車両の振動状態に基づいてサスペンション特性を調整することにより、サスペンション制御を実行する。   In order to solve the above problem, the present invention extracts the vertical physical quantity between the axle road surfaces based on the rotational speed of the wheels, and determines the vibration state of the vehicle based on the extracted vertical physical quantity between the axle road surfaces. Calculate. Then, suspension control is executed by adjusting suspension characteristics based on the calculated vibration state of the vehicle.

本発明によれば、車輪速に基づいて車両の振動状態を演算することにより、車高センサや上下加速度センサ等が不要となるので、センサ数が少なくてすむ。このとき、路面の外乱による車輪の回転速度の変動を抽出することにより、振動状態の演算精度を高めることができる。   According to the present invention, since the vehicle vibration state is calculated based on the wheel speed, a vehicle height sensor, a vertical acceleration sensor, and the like are not necessary, and therefore the number of sensors can be reduced. At this time, the calculation accuracy of the vibration state can be improved by extracting the fluctuation of the rotational speed of the wheel due to the disturbance of the road surface.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の第1実施形態について、図1乃至図3を参照して説明する。本実施形態に係る自動車のサスペンション制御装置の概略構成を図1に示す。図1に示すように、サスペンション制御装置1は、車体2と各車輪3(1輪のみ図示する)との間に懸架バネ4及び減衰力可変ダンパ5が並列に介装され、車体2には、車両速度(車速)を検出する車速センサ6(車速検出手段)が設けられ、また、各車輪3の回転速度(車輪速度)を検出する車輪速センサ7(車輪速検出手段)が設けられている。そして、車速センサ6及び車輪速センサ7の検出信号を含む当該車両の走行状態を表すパラメータを入力して減衰力可変ダンパ5に制御信号を供給するコントローラ8が設けられている。なお、図1中、符号Rは、路面を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 shows a schematic configuration of an automobile suspension control apparatus according to the present embodiment. As shown in FIG. 1, the suspension control device 1 includes a suspension spring 4 and a damping force variable damper 5 interposed in parallel between a vehicle body 2 and each wheel 3 (only one wheel is shown). A vehicle speed sensor 6 (vehicle speed detection means) for detecting the vehicle speed (vehicle speed) is provided, and a wheel speed sensor 7 (wheel speed detection means) for detecting the rotational speed (wheel speed) of each wheel 3 is provided. Yes. A controller 8 is provided that inputs parameters representing the running state of the vehicle including detection signals of the vehicle speed sensor 6 and the wheel speed sensor 7 and supplies a control signal to the damping force variable damper 5. In FIG. 1, the symbol R indicates a road surface.

減衰力可変ダンパ5は、油液が封入されたシリンダ内に、ピストンロッドが連結されたピストンが摺動可能に嵌装され、ピストンロッドの伸縮に対して、シリンダ内のピストンの摺動によって生じる油液の流れをオリフィス及びディスクバルブ等からなる減衰力発生機構で制御して減衰力を発生させるようになっている。また、減衰力発生機構の減衰力特性を調整する減衰力調整機構及び減衰力調整機構を作動させるアクチュエータを備えている。そして、ピストン速度に応じた減衰力を発生させ、コントローラ8からの制御電流に応じて減衰力特性を調整することができる。減衰力可変ダンパ5は、このほか、例えば、作動流体として磁性流体を用いて、制御電流によって磁性流体に作用させる磁界によって、その粘度を変化させることより、減衰力を調整するものでもよく、コントローラ8からの制御信号に応じて減衰力特性を制御できるものであればよい。   The damping force variable damper 5 is slidably fitted in a cylinder filled with oil and slidable with a piston rod, and is generated by sliding of the piston in the cylinder against expansion and contraction of the piston rod. The flow of the oil is controlled by a damping force generation mechanism including an orifice and a disk valve, and the damping force is generated. Further, a damping force adjusting mechanism for adjusting the damping force characteristic of the damping force generating mechanism and an actuator for operating the damping force adjusting mechanism are provided. A damping force corresponding to the piston speed can be generated, and the damping force characteristic can be adjusted according to the control current from the controller 8. In addition to this, the damping force variable damper 5 may be a controller that adjusts the damping force by, for example, using a magnetic fluid as a working fluid and changing its viscosity by a magnetic field applied to the magnetic fluid by a control current. Any device can be used as long as the damping force characteristic can be controlled in accordance with the control signal from 8.

コントローラ8は、マイクロプロセッサベースの制御回路であり、信号抽出演算処理部9と、減衰力演算部10と、アクチュエータ駆動部11とを備えている。信号抽出演算処理部9は、さらに、路面外乱影響分車輪角速度抽出部12(以下、外乱角速度抽出部12という)(抽出手段)及び車輪−路面間相対変位抽出部13(以下、相対変位抽出部13という)を備えている。   The controller 8 is a microprocessor-based control circuit, and includes a signal extraction calculation processing unit 9, a damping force calculation unit 10, and an actuator driving unit 11. The signal extraction calculation processing unit 9 further includes a road surface disturbance influence wheel angular velocity extraction unit 12 (hereinafter referred to as disturbance angular velocity extraction unit 12) (extraction means) and a wheel-road surface relative displacement extraction unit 13 (hereinafter referred to as relative displacement extraction unit). 13).

外乱角速度抽出部12は、車輪速センサ7が検出する車輪3の回転速度及び車速センサ6が検出する車速から、路面の凹凸等の車両の走行状態に影響する路面外乱による車輪角速度を抽出し、また、相対変位抽出部13は、車輪速センサ7が検出する車輪3の回転速度及び車速センサ6が検出する車速に基づいて、車輪3の中心(車軸)と路面Rとの間の相対変位を抽出する。   The disturbance angular velocity extraction unit 12 extracts a wheel angular velocity due to road surface disturbance that affects the running state of the vehicle such as road surface unevenness from the rotational speed of the wheel 3 detected by the wheel speed sensor 7 and the vehicle speed detected by the vehicle speed sensor 6, Further, the relative displacement extraction unit 13 calculates the relative displacement between the center (axle) of the wheel 3 and the road surface R based on the rotational speed of the wheel 3 detected by the wheel speed sensor 7 and the vehicle speed detected by the vehicle speed sensor 6. Extract.

外乱角速度抽出部12及び相対変位抽出部13について、図2の一輪モデルを用いて説明する。図2において、各パラメータは、r:車輪3の半径、r:路面Rと車輪3の中心(車軸)との距離、I:車輪3の慣性モーメント、D:回転抵抗の減衰係数、μ:路面摩擦係数、m:車体2の質量、k:懸架バネ4のバネ剛性、c(.):減衰力可変ダンパ5の可変減衰係数、m:車輪3の質量、k:車輪3のバネ剛性、T:車輪3の駆動トルク、V:車両速度、x:車体2の上下変位、x:車輪3の上下変位、θ:車輪3の回転角度、z:路面Rの変位である。 The disturbance angular velocity extraction unit 12 and the relative displacement extraction unit 13 will be described using a single-wheel model in FIG. In FIG. 2, the parameters are as follows: r 0 : radius of the wheel 3, r: distance between the road surface R and the center (axle) of the wheel 3, I T : moment of inertia of the wheel 3, D T : damping coefficient of rotation resistance, μ: road surface friction coefficient, m b : mass of the vehicle body 2, k s : spring stiffness of the suspension spring 4, c s (.): variable damping coefficient of the damping force variable damper 5, m t : mass of the wheel 3, k t : spring rigidity of the wheel 3, T: drive torque of the wheel 3, V: vehicle speed, x b: vertical displacement of the vehicle body 2, x t: vertical displacement of the wheel 3, theta: angle of rotation of the wheel 3, z: road surface R Displacement.

図2から、車輪3の中心周りのモーメントは、次式(数式1)で表される。
θ´´+Dθ´+μk(r−r)r=T … (数式1)
ここで、
−r=x−z … (数式2)
であり、車輪3の中心(車軸)と路面Rとの相対変位(x−z)が微小と仮定して、
(x−z)≒0 … (数式3)
とすると、(数式1)は、次式(数式4)となる。
θ´´+Dθ´+μk(x−z)=T … (数式4)
From FIG. 2, the moment around the center of the wheel 3 is expressed by the following formula (Formula 1).
I T θ ″ + D T θ ′ + μk t (r 0 −r) r = T (Equation 1)
here,
r 0 −r = x t −z (Formula 2)
Assuming that the relative displacement (x t -z) between the center (axle) of the wheel 3 and the road surface R is very small,
(X t −z) 2 ≈0 (Formula 3)
Then, (Formula 1) becomes the following formula (Formula 4).
I T θ'' + D T θ'+ μk t r 0 (x t -z) = T ... ( Equation 4)

(数式4)より、車輪3の角速度と、車輪3(車軸)−路面R間の相対変位とに相関があることから、車輪角速度θ´に基づいてサスペンション制御を実行することが可能であることがわかる。しかしながら、車輪3の角速度θ´の変化は路面Rの凹凸等による路面外乱の影響よりも、車輪3への入力トルク(駆動トルク、制動トルク)による影響の方が大きいので、車輪角速度θ´に基づいてサスペンション制御を実行した場合、充分な制御精度を得ることは困難である。そこで、本発明では、車輪3の入力トルクによる影響分を除いた路面外乱による影響分の車輪角速度を抽出してサスペンション制御に用いることにより、制御精度を高めている。   From (Equation 4), since there is a correlation between the angular velocity of the wheel 3 and the relative displacement between the wheel 3 (axle) and the road surface R, suspension control can be executed based on the wheel angular velocity θ ′. I understand. However, the change in the angular velocity θ ′ of the wheel 3 is more influenced by the input torque (drive torque, braking torque) to the wheel 3 than the influence of the road surface disturbance due to the unevenness of the road surface R. When suspension control is executed based on this, it is difficult to obtain sufficient control accuracy. Therefore, in the present invention, the control accuracy is improved by extracting the wheel angular velocity of the influence caused by the road surface disturbance excluding the influence caused by the input torque of the wheel 3 and using it for suspension control.

路面外乱影響分車輪角速度θ´を抽出する際、車速Vに路面外乱による影響が現れず、車輪3の半径rが一定であると仮定する。仮想車輪回転角度をθとすると、微小なθに対して円の中心角と円弧の長さの関係から次式(数式5)が成り立つ。
θ´=V … (数式5)
路面外乱による影響分の車輪角速度をθ´とすると、θ´は次式(数式6)で表される。
θ´=θ´−θ´ … (数式6)
そして、(数式5)と(数式6)とから次式(数式7)が導かれる。
θ´=θ´−V/r … (数式7)
したがって、車輪3の角速度θ´と車速Vとから、路面外乱影響分車輪角速度θ´を得ることができる。
When extracting the wheel angular velocity θ w ′ corresponding to the road disturbance influence, it is assumed that the vehicle speed V is not affected by the road disturbance and the radius r 0 of the wheel 3 is constant. When the imaginary wheel rotational angle and theta V, the following expression holds from the central angle and the arc length of the relationship of the circle with respect to small theta V (Equation 5).
r 0 θ V ′ = V (Formula 5)
Assuming that the wheel angular velocity due to the road surface disturbance is θ w ′, θ w ′ is expressed by the following equation (Equation 6).
θ w ′ = θ′−θ V ′ (Formula 6)
Then, the following expression (Expression 7) is derived from (Expression 5) and (Expression 6).
θ w ′ = θ′−V / r 0 (Formula 7)
Therefore, from the angular velocity θ ′ of the wheel 3 and the vehicle speed V, the wheel angular velocity θ w ′ corresponding to the road surface disturbance influence can be obtained.

次に、相対変位抽出部13について説明する。上記と同様、車速Vに路面外乱の影響が現れないと仮定して、仮想車輪回転角度θを用いると、車輪3の回転中心周りのモーメント式は次式(数式8)のように表される。
θ´´+Dθ´=T … (数式8)
以上の関係から、(数式5)を(数式8)に代入すると、車速Vと車両加速度V´に依存する次式(数式9)が得られる。
(I/r)V´+(D/r)V=T … (数式9)
ここで、入力トルクTは等しいので、(数式4)と(数式9)とからθ´´は、次式(数式10)で表される。
θ´´=−(D/I)θ´−(μk/I)(x−z)
+(1/r)V´+(D/I)V … (数式10)
(数式10)を変形して、次式(数式11)により、車輪(車軸)−路面間相対変位(x−z)を得ることができる。
−z=(I/μk)(−θ´´−(D/I)θ´
+(1/r)V´+(D/I)V) … (数式11)
Next, the relative displacement extraction unit 13 will be described. As described above, assuming that does not appear the effect of the road surface disturbance to the vehicle speed V, the the use of imaginary wheel rotational angle theta V, the moment equation about the center of rotation of the wheel 3 is expressed by the following equation (Equation 8) The
I T θ V ″ + D T θ V ′ = T (Equation 8)
From the above relationship, when (Formula 5) is substituted into (Formula 8), the following formula (Formula 9) depending on the vehicle speed V and the vehicle acceleration V ′ is obtained.
(I T / r 0 ) V ′ + (D T / r 0 ) V = T (Formula 9)
Here, since the input torque T is equal, θ ″ is expressed by the following equation (Equation 10) from (Equation 4) and (Equation 9).
θ'' = - (D T / I T) θ'- (μk t r 0 / I T) (x t -z)
+ (1 / r 0) V' + (D T / I T r 0) V ... ( Equation 10)
By transforming (Equation 10), it is possible to obtain the wheel (axle) -road relative displacement (x t -z) by the following equation (Equation 11).
x t -z = (I T / μk t r 0) (- θ''- (D T / I T) θ'
+ (1 / r 0) V' + (D T / I T r 0) V) ... ( Equation 11)

次に、減衰力演算部10による演算処理について、図3を参照して説明する。
減衰力演算部10では、外乱角速度抽出部12によって得た路面外乱影響分車輪角速度(θ´)、相対変位抽出部13によって得た車輪(車軸)−路面間相対変位(x−z)及び現在の減衰力可変ダンパ5の減衰力に基づいて、観測器14(振動演算手段)によって、車体2、車輪3の振動状態及び車体2と車輪3との間の相対速度を演算し、ロバスト制御器15によって振動状態に応じて目標減衰力を演算し、減衰力調整器16によって、目標減衰力及び車体−車輪間相対速度に基づいて減衰力指令信号を出力する。また、減衰力指令信号を観測器14にフィードバックして振動状態及び車体−車輪間相対速度の演算に使用する。
Next, calculation processing by the damping force calculation unit 10 will be described with reference to FIG.
In the damping force calculation unit 10, the wheel angular velocity (θ w ′) obtained by the disturbance angular velocity extraction unit 12 and the wheel (axle) -road surface relative displacement (x t -z) obtained by the relative displacement extraction unit 13 are obtained. Based on the damping force of the current damping force variable damper 5, the observer 14 (vibration computing means) computes the vibration state of the vehicle body 2, the wheel 3 and the relative speed between the vehicle body 2 and the wheel 3, and is robust. A controller 15 calculates a target damping force according to the vibration state, and a damping force adjuster 16 outputs a damping force command signal based on the target damping force and the vehicle body-wheel relative speed. Further, the damping force command signal is fed back to the observer 14 and used for the calculation of the vibration state and the vehicle body-wheel relative speed.

観測器14では、カルマンフィルタによって、外乱角速度抽出部12によって得た路面外乱影響分車輪角速度(θ´)及び車輪−路面間相対変位(x−z)に基づいて車体2及び車輪3の振動状態を演算するが、このほか、可変構造制御の一つであるVSSオブザーバや拡張カルマンフィルタ等を適用してもよい。また、演算精度が落ちる場合もあるが、外乱角速度抽出部12によって得た路面外乱影響分車輪角速度(θ´)を除いて演算してもよい。 In the observation device 14, vibrations of the vehicle body 2 and the wheel 3 are calculated by the Kalman filter based on the wheel angular velocity (θ w ′) and the wheel-road relative displacement (x t -z) obtained by the disturbance angular velocity extraction unit 12. Although the state is calculated, a VSS observer or an extended Kalman filter, which is one of variable structure controls, may be applied. Although the calculation accuracy may be reduced, the calculation may be performed by removing the wheel angular velocity (θ w ′) for the road surface disturbance influence obtained by the disturbance angular velocity extraction unit 12.

ロバスト制御器15では、推定精度の低下や摩擦係数μの不確かさを考慮するため、モデル化誤差を補償できるロバスト制御理論、例えばH∞制御理論等を適用することができる。また、上記第1実施形態の変形例として、図4に示すように、車両のエンジン制御を行うエンジンECU17及びアンチロックブレーキ制御を行うABSコントローラ18からエンジントルク及び制動トルクすなわち回転トルクTを表す信号及び路面摩擦係数μを表す信号を得て、これらの入力信号に基づいて振動状態を演算することにより、演算精度を高めることができる。演算精度が一定の高さにあれば、スカイフック理論に基づく振動制御等の高度な制御を実行することが可能になる。なお、図4において、上記図1に示すものと同様の部分には同一の符号を付してある。   The robust controller 15 can apply a robust control theory that can compensate for a modeling error, such as an H∞ control theory, in order to take into account a decrease in estimation accuracy and uncertainty of the friction coefficient μ. As a modification of the first embodiment, as shown in FIG. 4, a signal representing engine torque and braking torque, that is, rotational torque T, from an engine ECU 17 that performs vehicle engine control and an ABS controller 18 that performs antilock brake control. Further, by obtaining signals representing the road surface friction coefficient μ and calculating the vibration state based on these input signals, the calculation accuracy can be improved. If the calculation accuracy is constant, advanced control such as vibration control based on Skyhook theory can be executed. In FIG. 4, the same parts as those shown in FIG.

また、車両がスピン状態等の制御不能状態に陥った場合には、各車輪3の回転速度を監視し、各車輪3の空転状態に基づいて制御不能状態を判断し、その場合には、制御を停止し、減衰力可変ダンパ5の減衰力を所定値に固定してパッシブ状態とする。   Further, when the vehicle falls into an uncontrollable state such as a spin state, the rotational speed of each wheel 3 is monitored, and the uncontrollable state is determined based on the idling state of each wheel 3. Is stopped, and the damping force of the damping force variable damper 5 is fixed to a predetermined value to be in a passive state.

そして、減衰力演算部10が出力する減衰力指令信号に基づいてアクチュエータ駆動部11から減衰力可変ダンパ5へ制御電流を出力して減衰力可変ダンパ5の減衰力を調整することにより、車両の走行状態に応じて車体2の姿勢制御及び振動制御を行う。   Then, based on the damping force command signal output from the damping force calculation unit 10, a control current is output from the actuator driving unit 11 to the damping force variable damper 5 to adjust the damping force of the damping force variable damper 5. The posture control and vibration control of the vehicle body 2 are performed according to the running state.

このようにして、車高センサや上下加速度センサ等を用いることなく、車速センサ6及び車輪速センサ7の検出に基づいて振動状態を演算することができるので、必要な精度を維持しつつ、必要な状態量を検出するためのセンサ数を減少させることができ、コストの削減を達成することができる。さらに、上記実施形態において、各車輪3の車輪速センサ7の検出に基づいて車速を推定することができるので、これにより、車速センサ6を省略することも可能である。この場合、各車輪速センサ7の検出値の平均値を用いることにより、車速の推定精度を向上させることができる。   In this way, the vibration state can be calculated based on the detection of the vehicle speed sensor 6 and the wheel speed sensor 7 without using a vehicle height sensor, a vertical acceleration sensor, or the like, so that it is necessary while maintaining necessary accuracy. It is possible to reduce the number of sensors for detecting a state quantity and to achieve cost reduction. Furthermore, in the said embodiment, since a vehicle speed can be estimated based on the detection of the wheel speed sensor 7 of each wheel 3, the vehicle speed sensor 6 can also be abbreviate | omitted by this. In this case, the estimation accuracy of the vehicle speed can be improved by using the average value of the detection values of the wheel speed sensors 7.

次に、本発明の第2実施形態について、図5及び図6を参照して説明する。なお、以下の説明において、上記第1実施形態に対して、同様の部分には同一の符号を付して異なる部分についてのみ詳細に説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS. In the following description, the same parts as those in the first embodiment are denoted by the same reference numerals, and only different parts will be described in detail.

本実施形態は、本発明に係るサスペンション制御装置をいわゆるアクティブサスペンション装置に適用したものであり、図5に示すように、上記第1実施形態のものに対して、減衰力可変ダンパ5の代りに、減衰力特性が固定されたダンパ19及び車体2と車輪3との間に制御力を作用させる油圧シリンダ等のアクチュエータ20が設けられている。また、車速センサ6が省略されている。   In the present embodiment, the suspension control device according to the present invention is applied to a so-called active suspension device. As shown in FIG. 5, instead of the variable damping force damper 5, the suspension control device is applied to the first embodiment. A damper 19 having a fixed damping force characteristic and an actuator 20 such as a hydraulic cylinder for applying a control force between the vehicle body 2 and the wheel 3 are provided. Further, the vehicle speed sensor 6 is omitted.

そして、コントローラ8には、減衰力演算部10の代りに、アクチュエータ20の制御力を演算する制御力演算部21が設けられ、制御力演算部21が出力する制御力発生信号に基づいてアクチュエータ駆動部11によってアクチュエータ20に制御電流を供給してアクチュエータ20の推力(制御力)を制御する。なお、車速センサ6が省略されているので、車速については、上述の第1実施形態の変形例と同様、各車輪3に設けられた車輪速センサ7の検出に基づいて推定する。   The controller 8 is provided with a control force calculation unit 21 that calculates the control force of the actuator 20 instead of the damping force calculation unit 10, and drives the actuator based on the control force generation signal output from the control force calculation unit 21. The control current is supplied to the actuator 20 by the unit 11 to control the thrust (control force) of the actuator 20. Since the vehicle speed sensor 6 is omitted, the vehicle speed is estimated based on the detection of the wheel speed sensor 7 provided on each wheel 3 as in the modified example of the first embodiment described above.

次に、制御力演算部21による演算処理について、図6を参照して説明する。
制御力演算部21では、相対変位抽出部13によって得た車輪−路面間相対変位(x−z)及びダンパ19の減衰力等に基づいて、観測器14によって、車体2、車輪3の振動状態を演算し、ロバスト制御器22によって、その振動状態に応じてアクチュエータ20の目標制御力を演算し、制御力発生信号変換器23によって、目標制御力に基づいて制御力発生信号を出力する。
Next, calculation processing by the control force calculation unit 21 will be described with reference to FIG.
In the control force calculation unit 21, vibrations of the vehicle body 2 and the wheel 3 are detected by the observer 14 based on the wheel-road relative displacement (x t -z) obtained by the relative displacement extraction unit 13 and the damping force of the damper 19. The state is calculated, the robust controller 22 calculates the target control force of the actuator 20 according to the vibration state, and the control force generation signal converter 23 outputs the control force generation signal based on the target control force.

そして、制御力演算部21が出力する制御力指令信号に基づいてアクチュエータ駆動部11からアクチュエータ20へ制御電流を出力してアクチュエータ20の推力(制御力)を調整することにより、車両の走行状態に応じて車体2の姿勢制御及び振動制御を行う。   Then, based on the control force command signal output from the control force calculation unit 21, a control current is output from the actuator drive unit 11 to the actuator 20 to adjust the thrust (control force) of the actuator 20. Accordingly, posture control and vibration control of the vehicle body 2 are performed.

このようにして、車高センサや上下加速度センサ等を用いることなく、車輪速センサ7の検出に基づいて振動状態を演算することができるので、必要な精度を維持しつつ、必要な状態量を検出するためのセンサ数を減少させることができ、コストの削減を達成することができる。   In this way, the vibration state can be calculated based on the detection of the wheel speed sensor 7 without using a vehicle height sensor, a vertical acceleration sensor, or the like, so that the necessary amount of state can be obtained while maintaining the necessary accuracy. The number of sensors for detection can be reduced, and cost reduction can be achieved.

本発明の第1実施形態に係るサスペンション制御装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a suspension control device concerning a 1st embodiment of the present invention. 図1のサスペンション制御装置の一輪分をモデル化して示す図である。FIG. 2 is a diagram illustrating a model of one suspension control device of FIG. 1. 図1のサスペンション制御装置の減衰力演算部の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the damping force calculating part of the suspension control apparatus of FIG. 図1のサスペンション制御装置の変形例の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the modification of the suspension control apparatus of FIG. 本発明の第2実施形態に係るサスペンション制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the suspension control apparatus which concerns on 2nd Embodiment of this invention. 図5のサスペンション制御装置の減衰力演算部の概略構成を示すブロック図である。FIG. 6 is a block diagram illustrating a schematic configuration of a damping force calculation unit of the suspension control device of FIG. 5.

符号の説明Explanation of symbols

1 サスペンション制御装置、2 車体、3 車輪、6 車速センサ、7 車輪速センサ、12 外乱角速度抽出部(抽出手段)、14 観測器(振動演算手段)   DESCRIPTION OF SYMBOLS 1 Suspension control apparatus, 2 vehicle body, 3 wheels, 6 vehicle speed sensor, 7 wheel speed sensor, 12 disturbance angular velocity extraction part (extraction means), 14 observation device (vibration calculation means)

Claims (5)

車輪の回転速度に基づいて、車軸路面間の上下方向物理量を抽出し、抽出した車軸路面間の上下方向物理量に基づいて、車両の振動状態を演算することを特徴とする車両の振動状態検出方法。 A vehicle vibration state detection method comprising: extracting a physical quantity in the vertical direction between axle road surfaces based on a rotational speed of a wheel; and calculating a vibration state of the vehicle based on the physical quantity in the vertical direction between the extracted axle road surfaces. . 車両の走行状態に応じてサスペンション特性を調整することにより、車両の振動制御を行なうサスペンション制御方法において、
車輪の回転速度に基づいて、車軸路面間の上下方向物理量を抽出し、抽出した車軸路面間の上下方向物理量に基づいて、車両の振動状態を演算し、演算した車両の振動状態に基づいてサスペンション特性を調整することを特徴とするサスペンション制御方法。
In a suspension control method for controlling vibration of a vehicle by adjusting suspension characteristics according to the running state of the vehicle,
Based on the rotational speed of the wheel, the vertical physical quantity between the axle road surfaces is extracted, the vehicle vibration state is calculated based on the extracted vertical physical quantity between the axle road surfaces, and the suspension is based on the calculated vehicle vibration state. A suspension control method characterized by adjusting characteristics.
車両の走行状態に応じてサスペンション特性を調整することにより、車両の振動制御を行なうサスペンション制御装置において、
車輪の回転速度に基づいて、車軸路面間の上下方向物理量を抽出する抽出手段と、該抽出手段によって抽出した車軸路面間の上下方向物理量に基づいて、車両の振動状態を演算する振動演算手段とを備え、
前記振動演算手段によって演算した車両の振動状態に基づいて前記サスペンション特性を調整することを特徴とするサスペンション制御装置。
In a suspension control device that performs vibration control of a vehicle by adjusting suspension characteristics according to the running state of the vehicle,
Extracting means for extracting the vertical physical quantity between the axle road surfaces based on the rotational speed of the wheels; and vibration calculating means for calculating the vibration state of the vehicle based on the vertical physical quantity between the axle road surfaces extracted by the extracting means; With
A suspension control apparatus, wherein the suspension characteristic is adjusted based on a vibration state of a vehicle calculated by the vibration calculation means.
車輪の回転速度から路面外乱影響分車輪角速度を抽出する路面外乱影響分車輪角速度抽出手段を備え、前記振動演算手段は、抽出した路面外乱影響分車輪角速度及び前記車軸路面間の上下方向物理量に基づいて、車両の振動状態を演算することを特徴とする請求項3に記載のサスペンション制御装置。 A road surface disturbance influence amount wheel angular speed extraction means for extracting a road surface disturbance influence amount wheel angular speed from a wheel rotation speed is provided, and the vibration calculation means is based on the extracted road surface disturbance influence amount wheel angular speed and a vertical physical quantity between the axle road surfaces. The suspension control device according to claim 3, wherein a vibration state of the vehicle is calculated. 車輪の空転状態に基づいて制御不能状態を判断し、制御不能状態と判断した場合には、制御を停止することを特徴とする請求項3又は4のいずれかに記載のサスペンション装置。 The suspension device according to any one of claims 3 and 4, wherein the suspension is determined based on the idling state of the wheel, and the control is stopped when it is determined that the control is impossible.
JP2008092177A 2008-03-31 2008-03-31 Suspension control device Active JP5224039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092177A JP5224039B2 (en) 2008-03-31 2008-03-31 Suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092177A JP5224039B2 (en) 2008-03-31 2008-03-31 Suspension control device

Publications (2)

Publication Number Publication Date
JP2009241813A true JP2009241813A (en) 2009-10-22
JP5224039B2 JP5224039B2 (en) 2013-07-03

Family

ID=41304223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092177A Active JP5224039B2 (en) 2008-03-31 2008-03-31 Suspension control device

Country Status (1)

Country Link
JP (1) JP5224039B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061983A1 (en) * 2011-10-26 2013-05-02 日産自動車株式会社 Suspension control device and suspension control method
CN103189729A (en) * 2010-08-26 2013-07-03 日产自动车株式会社 Device for estimating vehicle body vibration and controller for suppressing vehicle body vibration using same
WO2013111733A1 (en) * 2012-01-25 2013-08-01 日産自動車株式会社 Vehicle control system and vehicle control method
WO2013111742A1 (en) * 2012-01-25 2013-08-01 日産自動車株式会社 Vehicle control system and vehicle control method
WO2013111504A1 (en) 2012-01-26 2013-08-01 日産自動車株式会社 Vehicle control system
WO2013115006A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Vehicle control device
WO2013115007A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Control device for vehicle
WO2013115008A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Control device for vehicle
WO2013172281A1 (en) 2012-05-14 2013-11-21 日産自動車株式会社 Vehicle control device, and vehicle control method
WO2013172282A1 (en) 2012-05-14 2013-11-21 日産自動車株式会社 Vehicle control device and vehicle control method
WO2013172122A1 (en) 2012-05-14 2013-11-21 日産自動車株式会社 Vehicle control device, and vehicle control method
JP2014008885A (en) * 2012-06-29 2014-01-20 Honda Motor Co Ltd Suspension control device
JP2014008884A (en) * 2012-06-29 2014-01-20 Honda Motor Co Ltd Suspension control device
JP2015051719A (en) * 2013-09-06 2015-03-19 本田技研工業株式会社 Suspension control apparatus
JP2015123895A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Vehicle state estimation device, vehicle state estimation method, and vehicle control device
CN105691139A (en) * 2016-04-20 2016-06-22 山东交通学院 Motor bus active rollover-preventing control system based on electromagnetic suspension adjustment
JP2016539844A (en) * 2013-11-27 2016-12-22 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Suspension structure that protects against excessive force
CN107891723A (en) * 2017-11-29 2018-04-10 辽宁工业大学 The sliding-mode control and control device of automobile electrically-controlled air suspension
CN111546850A (en) * 2020-03-31 2020-08-18 重庆交通大学 Vehicle body height and vehicle attitude coordination control method based on hybrid logic dynamic model
CN113910856A (en) * 2021-11-05 2022-01-11 福州大学 Vehicle active suspension adjusting system considering three-dimensional linear shape and unevenness of road curved surface
CN115195375A (en) * 2021-04-14 2022-10-18 长城汽车股份有限公司 Vehicle body active control method and device and vehicle
CN115366699A (en) * 2022-09-15 2022-11-22 江苏理工学院 Vehicle vertical vibration control method and device
CN115570924A (en) * 2022-09-06 2023-01-06 西华大学 An Improved H∞ Control Method Based on Iterative Learning
CN115771365A (en) * 2022-12-20 2023-03-10 吉林大学 Electromagnetic suspension control system based on vehicle-road-cloud-person

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648139A (en) * 1992-07-24 1994-02-22 Toyota Motor Corp Suspension behavior detecting device and suspension control device
JPH08108723A (en) * 1994-10-07 1996-04-30 Toyota Motor Corp Suspension control device
JPH1134631A (en) * 1997-07-24 1999-02-09 Mitsubishi Electric Corp Electronic suspension system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648139A (en) * 1992-07-24 1994-02-22 Toyota Motor Corp Suspension behavior detecting device and suspension control device
JPH08108723A (en) * 1994-10-07 1996-04-30 Toyota Motor Corp Suspension control device
JPH1134631A (en) * 1997-07-24 1999-02-09 Mitsubishi Electric Corp Electronic suspension system

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610605A4 (en) * 2010-08-26 2018-01-10 Nissan Motor Co., Ltd Device for estimating vehicle body vibration and controller for suppressing vehicle body vibration using same
CN103189729A (en) * 2010-08-26 2013-07-03 日产自动车株式会社 Device for estimating vehicle body vibration and controller for suppressing vehicle body vibration using same
JP2013107628A (en) * 2011-10-26 2013-06-06 Nissan Motor Co Ltd Suspension control device
WO2013061983A1 (en) * 2011-10-26 2013-05-02 日産自動車株式会社 Suspension control device and suspension control method
WO2013111733A1 (en) * 2012-01-25 2013-08-01 日産自動車株式会社 Vehicle control system and vehicle control method
WO2013111742A1 (en) * 2012-01-25 2013-08-01 日産自動車株式会社 Vehicle control system and vehicle control method
JPWO2013111742A1 (en) * 2012-01-25 2015-05-11 日産自動車株式会社 Vehicle control apparatus and vehicle control method
JPWO2013111733A1 (en) * 2012-01-25 2015-05-11 日産自動車株式会社 Vehicle control apparatus and vehicle control method
WO2013111504A1 (en) 2012-01-26 2013-08-01 日産自動車株式会社 Vehicle control system
US9073398B2 (en) 2012-01-26 2015-07-07 Nissan Motor Co., Ltd. Vehicle control device
WO2013115006A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Vehicle control device
JPWO2013115008A1 (en) * 2012-01-31 2015-05-11 日産自動車株式会社 Vehicle control device
WO2013115007A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Control device for vehicle
WO2013115008A1 (en) * 2012-01-31 2013-08-08 日産自動車株式会社 Control device for vehicle
JPWO2013115006A1 (en) * 2012-01-31 2015-05-11 日産自動車株式会社 Vehicle control device
JPWO2013115007A1 (en) * 2012-01-31 2015-05-11 日産自動車株式会社 Vehicle control device
CN104302492A (en) * 2012-05-14 2015-01-21 日产自动车株式会社 Vehicle control device and vehicle control method
WO2013172281A1 (en) 2012-05-14 2013-11-21 日産自動車株式会社 Vehicle control device, and vehicle control method
CN104321230B (en) * 2012-05-14 2016-04-20 日产自动车株式会社 The control setup of vehicle and the control method of vehicle
CN104321230A (en) * 2012-05-14 2015-01-28 日产自动车株式会社 Vehicle control device, and vehicle control method
WO2013172122A1 (en) 2012-05-14 2013-11-21 日産自動車株式会社 Vehicle control device, and vehicle control method
US9643599B2 (en) 2012-05-14 2017-05-09 Nissan Motor Co., Ltd. Vehicle control device, and vehicle control method
WO2013172282A1 (en) 2012-05-14 2013-11-21 日産自動車株式会社 Vehicle control device and vehicle control method
RU2568048C1 (en) * 2012-05-14 2015-11-10 Ниссан Мотор Ко., Лтд. Vehicle control device and process
US9156452B2 (en) 2012-05-14 2015-10-13 Nissan Motor Co., Ltd. Vehicle control device, and vehicle control method
US9156328B2 (en) 2012-05-14 2015-10-13 Nissan Motor Co., Ltd. Vehicle control device and vehicle control method
US9061562B2 (en) 2012-06-29 2015-06-23 Honda Motor Co., Ltd. Suspension control apparatus
JP2014008884A (en) * 2012-06-29 2014-01-20 Honda Motor Co Ltd Suspension control device
JP2014008885A (en) * 2012-06-29 2014-01-20 Honda Motor Co Ltd Suspension control device
JP2015051719A (en) * 2013-09-06 2015-03-19 本田技研工業株式会社 Suspension control apparatus
KR102126841B1 (en) 2013-11-27 2020-06-26 테크놀로지안 투트키무스케스쿠스 브이티티 오와이 Protection against excessive forces in a suspension arrangement
US11041540B2 (en) 2013-11-27 2021-06-22 Teknologian Tutkimuskeskus Vtt Oy Protection against excessive forces in a suspension arrangment
JP2016539844A (en) * 2013-11-27 2016-12-22 テクノロギアン トゥトキムスケスクス ヴェーテーテー オイ Suspension structure that protects against excessive force
KR20180059961A (en) * 2013-11-27 2018-06-05 테크놀로지안 투트키무스케스쿠스 브이티티 오와이 Protection against excessive forces in a suspension arrangement
JP2015123895A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Vehicle state estimation device, vehicle state estimation method, and vehicle control device
CN105691139A (en) * 2016-04-20 2016-06-22 山东交通学院 Motor bus active rollover-preventing control system based on electromagnetic suspension adjustment
CN107891723A (en) * 2017-11-29 2018-04-10 辽宁工业大学 The sliding-mode control and control device of automobile electrically-controlled air suspension
CN107891723B (en) * 2017-11-29 2023-06-30 辽宁工业大学 Sliding mode control method and device for automobile electric control air suspension
CN111546850A (en) * 2020-03-31 2020-08-18 重庆交通大学 Vehicle body height and vehicle attitude coordination control method based on hybrid logic dynamic model
CN115195375A (en) * 2021-04-14 2022-10-18 长城汽车股份有限公司 Vehicle body active control method and device and vehicle
CN115195375B (en) * 2021-04-14 2024-04-26 长城汽车股份有限公司 Active control method and device for vehicle body and vehicle
CN113910856A (en) * 2021-11-05 2022-01-11 福州大学 Vehicle active suspension adjusting system considering three-dimensional linear shape and unevenness of road curved surface
CN113910856B (en) * 2021-11-05 2023-01-03 福州大学 Vehicle active suspension adjusting system considering three-dimensional linear shape and unevenness of road curved surface
CN115570924A (en) * 2022-09-06 2023-01-06 西华大学 An Improved H∞ Control Method Based on Iterative Learning
CN115366699A (en) * 2022-09-15 2022-11-22 江苏理工学院 Vehicle vertical vibration control method and device
CN115771365A (en) * 2022-12-20 2023-03-10 吉林大学 Electromagnetic suspension control system based on vehicle-road-cloud-person

Also Published As

Publication number Publication date
JP5224039B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5224039B2 (en) Suspension control device
JP5224048B2 (en) Suspension control device
JP5158333B2 (en) Suspension control device
JP6052405B2 (en) Vehicle suspension system
JP5740358B2 (en) Suspension control device
JP5809474B2 (en) Body posture control device
JP5149443B2 (en) Method and apparatus for controlling a semi-active suspension system for a motorcycle
KR101698599B1 (en) Suspension control system
JP6273059B1 (en) Vehicle control device and vehicle
KR101623258B1 (en) Method for controlling a torque of a roll stabilizing system
KR20090033144A (en) Suspension control unit
JP2010501388A (en) Control device for controlling an active chassis system of a vehicle
JP2009508751A (en) SUSPENSION CONTROL DEVICE, VEHICLE EQUIPPED WITH SAME DEVICE, IMPLEMENTATION METHOD AND PROGRAM
JP2005153875A (en) Electronic control suspension device and damping force control method
JP6810779B1 (en) State quantity calculation device, control device and vehicle
JP2002192931A (en) Suspension system having electric actuator and spring parallel to each other
JP6285592B1 (en) Road surface determination device, suspension control device, and suspension device
JP6285591B1 (en) Suspension control device and suspension device
JP6359163B1 (en) Suspension control device and suspension device
JP2008247261A (en) Suspension control device
KR102589031B1 (en) Control unit of active suspension and control method of active suspension
JP2018090248A (en) Vehicle control device and vehicle
JP5613727B2 (en) Suspension control device
JP2020117196A (en) Vehicle motion state estimation device
JP5818748B2 (en) Suspension control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

R150 Certificate of patent or registration of utility model

Ref document number: 5224039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250