[go: up one dir, main page]

JP2009240057A - Electric motor - Google Patents

Electric motor Download PDF

Info

Publication number
JP2009240057A
JP2009240057A JP2008082282A JP2008082282A JP2009240057A JP 2009240057 A JP2009240057 A JP 2009240057A JP 2008082282 A JP2008082282 A JP 2008082282A JP 2008082282 A JP2008082282 A JP 2008082282A JP 2009240057 A JP2009240057 A JP 2009240057A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
outer peripheral
peripheral side
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008082282A
Other languages
Japanese (ja)
Inventor
Shoei Abe
昇栄 阿部
Hirobumi Shin
博文 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008082282A priority Critical patent/JP2009240057A/en
Publication of JP2009240057A publication Critical patent/JP2009240057A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric motor which can improve the torque density. <P>SOLUTION: An inner circumferential side rotor 6 having an inner circumferential side permanent magnet 9B, and an outer circumferential side rotor 5 having an outer circumferential side permanent magnet 9A are arranged coaxially, and the relative phase is suitably changed by a phase-change means. A stator 2 is arranged on the outer circumferential side of the outer circumferential side rotor 5. On the opposite sides of the outer circumferential side permanent magnet 9A in the axial direction, sub-permanent magnets 36, having the same magnetic pole as that on the outer side surface of the outer circumferential side permanent magnet 9A in the radial direction, are arranged facing each other, at positions that are radial outside the outer circumferential side permanent magnet 9A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、回転子に永久磁石を備えた電動機に関し、特に、回転子の永久磁石の界磁特性を変更できる電動機に関するものである。   The present invention relates to an electric motor having a permanent magnet in a rotor, and more particularly to an electric motor capable of changing the field characteristics of a permanent magnet of a rotor.

電動機として、夫々個別に永久磁石を備える内周側回転子と外周側回転子を同軸に配設し、この両回転子をアクチュエータによって周方向に相対的に回動させる(両回転子の相対的な位相を変更する)ことにより、回転子全体としての界磁特性を変更できるようにしたものが知られている(例えば、特許文献1参照)。   As an electric motor, an inner rotor and an outer rotor each having a permanent magnet are arranged coaxially, and both rotors are rotated relative to each other in the circumferential direction by an actuator (relative to both rotors). It is known that the field characteristics of the entire rotor can be changed by changing the phase (for example, see Patent Document 1).

この電動機においては、外周側回転子と内周側回転子の永久磁石を互いに異極同士で対向させる(同極配置にする)ことによって回転子全体の界磁を強めて誘起電圧定数を増大させ、逆に、外周側回転子と内周側回転子の永久磁石を互いに同極同士で対向させる(対極配置にする)ことによって回転子全体の界磁を弱めて誘起電圧定数を減少させる。
特開2004−72978号公報
In this electric motor, the permanent magnets of the outer and inner rotors are opposed to each other with different polarities (with the same polarity arrangement), thereby strengthening the field of the entire rotor and increasing the induced voltage constant. On the contrary, the permanent magnets of the outer peripheral rotor and the inner peripheral rotor are opposed to each other with the same polarity (with a counter electrode arrangement), thereby weakening the field of the entire rotor and reducing the induced voltage constant.
JP 2004-72978 A

しかし、上記従来の電動機においては、外周側回転子の永久磁石の径方向外側領域に固定子コアが配置され、永久磁石と固定子ヨークの間の磁束の入出が、外周側回転子の径方向外側のエアギャップを介して行われるが、永久磁石から発された磁束が必ずしも径方向外側(固定子ヨーク)に向かわず、磁束の一部は外周側回転子の軸方向両側の端部から別方向に逃げてしまう。そして、この磁束の逃げ量が増大すると、電動機のトルク密度が減少し、モータ効率の低下を来たすことが懸念される。   However, in the above-described conventional electric motor, the stator core is disposed in the radially outer region of the permanent magnet of the outer peripheral side rotor, and the magnetic flux enters and exits between the permanent magnet and the stator yoke in the radial direction of the outer peripheral side rotor. Although it is performed through the outer air gap, the magnetic flux generated from the permanent magnet does not necessarily go to the radially outer side (stator yoke), and a part of the magnetic flux is separated from the ends on both axial sides of the outer rotor. Run away in the direction. And if the escape amount of the magnetic flux increases, there is a concern that the torque density of the electric motor decreases and the motor efficiency decreases.

そこで、この発明は、トルク密度の向上を図ることのできる電動機を提供しようとするものである。   Accordingly, the present invention is intended to provide an electric motor capable of improving the torque density.

上記の課題を解決する請求項1に記載の発明は、円周方向に沿って内周側永久磁石(例えば、後述の実施形態における内周側永久磁石9B)が配設された内周側回転子(例えば、後述の実施形態における内周側回転子6)と、この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿って外周側永久磁石(例えば、後述の実施形態における外周側永久磁石9A)が配設された外周側回転子(例えば、後述の実施形態における外周側回転子5)と、前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段(例えば、後述の実施形態における回動操作機構11)と、前記外周側回転子の外周側に非接触状態で配置されるとともに、電磁巻線(例えば、後述の実施形態における電磁巻線2a)を有する固定子(例えば、後述の実施形態における固定子2)と、を備えた電動機において、前記外周側永久磁石の軸方向両側に、前記外周側永久磁石よりも径方向外側位置で、前記外周側永久磁石の径方向外側面の磁極と同じ磁極で相互に対向する副永久磁石(例えば、後述の実施形態における副永久磁石36)を配置したことを特徴とする。
外周側永久磁石から発された磁束は軸方向両側に配置された副永久磁石によって軸方向両側への逃げを抑えられ、固定子方向に向かうようになる。また、副永久磁石は外周側永久磁石とともにハルバッハ配置を成すようになる。
The invention according to claim 1, which solves the above problem, is an inner peripheral rotation in which an inner peripheral permanent magnet (for example, an inner peripheral permanent magnet 9B in an embodiment described later) is disposed along the circumferential direction. A rotor (for example, an inner circumferential rotor 6 in an embodiment described later) and an outer circumferential side along the circumferential direction are disposed coaxially and relatively rotatably on the outer circumferential side of the inner circumferential rotor. An outer rotor (for example, an outer rotor 5 in an embodiment described later) on which a permanent magnet (for example, an outer permanent magnet 9A in an embodiment described later) is disposed, and the inner rotor and outer periphery A phase changing means (for example, a rotating operation mechanism 11 in an embodiment described later) that rotates the rotor relative to each other to change the relative phase between them, and is arranged in a non-contact state on the outer peripheral side of the outer peripheral rotor. Electromagnetic windings (for example, in the embodiments described later). In an electric motor including a stator (for example, a stator 2 in an embodiment described later) having an electromagnetic winding 2a), it is radially outer than the outer peripheral permanent magnet on both axial sides of the outer peripheral permanent magnet. A secondary permanent magnet (for example, a secondary permanent magnet 36 in an embodiment described later) facing each other with the same magnetic pole as the magnetic pole on the radially outer side surface of the outer peripheral permanent magnet is disposed at a position.
The magnetic flux generated from the outer peripheral side permanent magnet is prevented from escaping to both sides in the axial direction by the secondary permanent magnets arranged on both sides in the axial direction, and is directed toward the stator. Further, the secondary permanent magnet and the outer peripheral side permanent magnet form a Halbach arrangement.

請求項2に記載の発明は、請求項1に記載の電動機において、前記副永久磁石は、前記固定子の固定子ヨーク(例えば、後述の実施形態における固定子ヨーク2b)の軸方向両端部よりも外側に配置したことを特徴とする。
これより、外周側回転子に対峙する固定子ヨークの軸方向幅を最大限に活用しつつ、副永久磁石が配置されることになる。
According to a second aspect of the present invention, in the electric motor according to the first aspect, the secondary permanent magnet is formed from both axial ends of a stator yoke of the stator (for example, a stator yoke 2b in an embodiment described later). Is also arranged outside.
As a result, the sub permanent magnet is arranged while making the most of the axial width of the stator yoke facing the outer rotor.

請求項3に記載の発明は、請求項1または2に記載の電動機において、前記位相変更手段は、前記内周側回転子に一体に設けられた環状ハウジング(例えば、後述の実施形態における環状ハウジング15)と、この環状ハウジングの径方向内側に相対回動可能に配置された内側可動部材(例えば、後述の実施形態におけるベーンロータ14)と、前記内周側回転子と環状ハウジングの側端部を跨いで前記外周側回転子と前記内側可動部材の軸方向両側の端部同士を連結する一対の端板(例えば、後述の実施形態におけるドライブプレート16)と、前記環状ハウジングと内側可動部材の間に設けられた液室(例えば、後述の実施形態における進角側作動室24および遅角側作動室25)と、を備え、前記液室に作動液を給排して前記外周側回転子と内周側回転子を相対回動させる構成とし、前記副永久磁石は前記両側の端板に配設したことを特徴とする。   According to a third aspect of the present invention, in the electric motor according to the first or second aspect, the phase changing means is an annular housing (for example, an annular housing in an embodiment described later) provided integrally with the inner circumferential rotor. 15), an inner movable member (for example, a vane rotor 14 in an embodiment to be described later) disposed so as to be relatively rotatable on the radially inner side of the annular housing, the inner circumferential side rotor, and side end portions of the annular housing. A pair of end plates (for example, a drive plate 16 in an embodiment to be described later) for connecting the outer peripheral rotor and the axially opposite ends of the inner movable member across the straddle, and between the annular housing and the inner movable member A liquid chamber (for example, an advance side working chamber 24 and a retard side working chamber 25 in an embodiment described later), and supply and discharge hydraulic fluid to and from the liquid chamber. A structure for relatively rotating the inner periphery side rotor and the child, the auxiliary permanent magnet is characterized in that disposed in the end plate of the opposite sides.

請求項4に記載の発明は、請求項3に記載の電動機において、前記端板は非磁性体によって構成され、前記外周側永久磁石の軸方向の端部に当接して当該外周側永久磁石を位置決めすることを特徴とする。
これにより、両側の端板が副永久磁石を保持するとともに、外周側永久磁石を位置決めするようになる。端板は非磁性体によって構成されているため、端板を通して永久磁石や副永久磁石の磁束が漏れ難くなる。
According to a fourth aspect of the present invention, in the electric motor according to the third aspect, the end plate is made of a non-magnetic material, and abuts the outer peripheral side permanent magnet in contact with an axial end of the outer peripheral side permanent magnet. It is characterized by positioning.
As a result, the end plates on both sides hold the secondary permanent magnet and position the outer peripheral permanent magnet. Since the end plate is made of a non-magnetic material, the magnetic flux of the permanent magnet and the sub permanent magnet is difficult to leak through the end plate.

請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の電動機において、前記外周側永久磁石と内周側永久磁石の少なくとも一方は、前記副永久磁石と同サイズ・同規格の永久磁石を複数配列して構成したことを特徴とする。
同サイズ・同規格の永久磁石を副永久磁石と、外周側永久磁石や内周側永久磁石で利用できるようになる。また、永久磁石を複数配列して構成された外周側永久磁石や内周側永久磁石は磁石間の微小なギップや接合部で渦電流が流れ難くになる。
According to a fifth aspect of the present invention, in the electric motor according to any one of the first to fourth aspects, at least one of the outer peripheral side permanent magnet and the inner peripheral side permanent magnet is the same size and the same as the sub permanent magnet. It is characterized in that a plurality of standard permanent magnets are arranged.
Permanent magnets of the same size and standard can be used as secondary permanent magnets, outer peripheral side permanent magnets and inner peripheral side permanent magnets. Further, in the outer peripheral side permanent magnet and the inner peripheral side permanent magnet configured by arranging a plurality of permanent magnets, it is difficult for eddy currents to flow at the minute gaps or joints between the magnets.

請求項1に記載の発明によれば、外周側永久磁石とハルバッハ配置をなすように外周側永久磁石の軸方向両側に副永久磁石を配置したため、外周側永久磁石の軸方向両側からの磁束の逃げを抑制しつつ、磁気レンズ効果によって大きな強め界磁を得ることができる。したがって、この発明によれば、トルク密度の向上を図ることができる。   According to the first aspect of the present invention, the auxiliary permanent magnets are arranged on both sides in the axial direction of the outer peripheral side permanent magnet so as to form a Halbach arrangement with the outer peripheral side permanent magnet. While suppressing escape, a large field strength can be obtained by the magnetic lens effect. Therefore, according to the present invention, the torque density can be improved.

請求項2に記載の発明によれば、外周側回転子に対峙する固定子ヨークの軸方向幅を最大限に活用しつつ、副永久磁石を配置できるため、トルク密度をより有利に高めることができる。   According to the second aspect of the present invention, the auxiliary permanent magnet can be disposed while maximally utilizing the axial width of the stator yoke facing the outer rotor, so that the torque density can be increased more advantageously. it can.

請求項3に記載の発明によれば、外周側回転子と内側可動部材の軸方向両側の端部同士を連結する一対の端板に副永久磁石を配置したため、部品点数の増加や大型化を招くことなく副永久磁石を最適位置に配置することが可能になる。   According to the third aspect of the present invention, since the auxiliary permanent magnets are arranged on the pair of end plates that connect the end portions on both sides in the axial direction of the outer peripheral rotor and the inner movable member, the increase in the number of parts and the increase in the size are increased. The secondary permanent magnet can be arranged at the optimum position without incurring.

請求項4に記載の発明によれば、非磁性体製の端板によって磁束の漏れを招くことなく、永久磁石の位置決めと副永久磁石の保持を行うことができる。   According to the fourth aspect of the present invention, the permanent magnet can be positioned and the secondary permanent magnet can be held without causing leakage of magnetic flux by the end plate made of non-magnetic material.

請求項5に記載の発明によれば、同サイズ・同規格の永久磁石を副永久磁石と、外周側永久磁石や内周側永久磁石で利用できるため、製品コストの低減を図ることができる。また、この発明においては、外周側永久磁石や内周側永久磁石が複数の永久磁石を配列して構成されているため、磁石間の微小なギップや接合部によって渦電量を流れ難くし、鉄損の増大を抑制することができる。   According to the invention described in claim 5, since the permanent magnet of the same size and the same standard can be used as the sub permanent magnet, the outer peripheral side permanent magnet, and the inner peripheral side permanent magnet, the product cost can be reduced. In the present invention, since the outer peripheral side permanent magnet and the inner peripheral side permanent magnet are configured by arranging a plurality of permanent magnets, it is difficult for the eddy current to flow due to minute gaps or joints between the magnets. An increase in loss can be suppressed.

以下、この発明の各実施形態を図面に基づいて説明する。なお、以下で説明する各実施形態においては、同一部分に同一符号を付して重複する説明を一部省略するものとする。
最初に、図1〜図5に示すこの発明の第1の実施形態について説明する。
図1〜図5に示す電動機1は、ハイブリッド車両や電動車両等の走行駆動源として用いられる。この電動機1は、円環状の固定子2の内周側に回転子ユニット3が配置されたインナロータ型のブラシレスモータである。固定子2は複数相の電磁巻線2aを有し、回転子ユニット3は軸芯部に回転軸4を有している。また、電動機1の回転力はトランスミッション(図示せず)を介して車輪の駆動軸(図示せず)に伝達されるようになっている。この場合、電動機1は車両の減速時に発電機として機能させれば、回生エネルギーとして蓄電器に回収することもできる。また、ハイブリッド車においては、電動機1の回転軸4をさらに内燃機関のクランクシャフト(図示せず)に連結することにより、内燃機関による発電にも利用することができる。
Embodiments of the present invention will be described below with reference to the drawings. In each embodiment described below, the same portions are denoted by the same reference numerals, and a part of overlapping description is omitted.
First, a first embodiment of the present invention shown in FIGS. 1 to 5 will be described.
The electric motor 1 shown in FIGS. 1 to 5 is used as a driving source for a hybrid vehicle or an electric vehicle. The electric motor 1 is an inner rotor type brushless motor in which a rotor unit 3 is disposed on the inner peripheral side of an annular stator 2. The stator 2 has a plurality of phases of electromagnetic windings 2a, and the rotor unit 3 has a rotating shaft 4 at the shaft core. Further, the rotational force of the electric motor 1 is transmitted to a wheel drive shaft (not shown) via a transmission (not shown). In this case, if the electric motor 1 functions as a generator when the vehicle is decelerated, it can be recovered as regenerative energy in the electric storage device. Further, in the hybrid vehicle, the rotating shaft 4 of the electric motor 1 can be further connected to a crankshaft (not shown) of the internal combustion engine so that it can be used for power generation by the internal combustion engine.

回転子ユニット3は、円環状の外周側回転子5と、この外周側回転子5の内側に同軸に配置される円環状の内周側回転子6を備え、外周側回転子5と内周側回転子6が設定角度の範囲で回動可能とされている。   The rotor unit 3 includes an annular outer circumferential rotor 5 and an annular inner circumferential rotor 6 disposed coaxially inside the outer circumferential rotor 5, and includes the outer circumferential rotor 5 and the inner circumferential surface. The side rotor 6 is rotatable within a set angle range.

外周側回転子5と内周側回転子6は、円環状の回転子本体7,8が、複数の珪素鋼板を軸方向に積層して形成され、その回転子本体7,8に、複数の磁石装着スロット7a…,8a…が円周方向に沿って形成されている。各磁石装着スロット7a,8aには、厚み方向に磁化された平板状の外周側永久磁石9Aと内周側永久磁石9Bが夫々装着されている。そして、磁石装着スロット7a,8aは、外周側回転子5上と内周側回転子6上で夫々円周方向で隣接するもの2つが一組を成し、各組の磁石装着スロット7a,8aに同磁極が同方向を向くように対応する外周側永久磁石9Aと内周側永久磁石9Bが夫々装着されている。また、外周側回転子5上の隣接する組の磁石装着スロット7aに装着される外周側永久磁石9A同士は磁極の向きが逆向きになり、内周側回転子6上の隣接する組の磁石装着スロット8aに装着される内周側永久磁石9B同士も磁極の向きが逆向きになっている。即ち、外周側回転子5においては、外周側がN極とされた外周側永久磁石9Aの対とS極とされた外周側永久磁石9Aの対が円周方向に交互に並んで配置されており、内周側回転子6においては、外周側がN極とされた内周側永久磁石9Bの対と、S極とされた内周側永久磁石9Bの対が交互に並んで配置されている。
なお、外周側回転子5の隣接する磁石装着スロット7aの組の間には、磁束の流れを制御するための磁束障壁孔31が形成され、内周側回転子6の隣接する磁石装着スロット8の組の間には、磁束の流れを制御するための切欠き部10が形成されている。
The outer circumferential side rotor 5 and the inner circumferential side rotor 6 are formed by annularly forming rotor main bodies 7 and 8 by laminating a plurality of silicon steel plates in the axial direction. Magnet mounting slots 7a ..., 8a ... are formed along the circumferential direction. Each of the magnet mounting slots 7a and 8a is mounted with a flat plate-like outer peripheral side permanent magnet 9A and inner peripheral side permanent magnet 9B magnetized in the thickness direction. The magnet mounting slots 7a and 8a form a set of two circumferentially adjacent ones on the outer peripheral rotor 5 and the inner peripheral rotor 6, and each set of magnet mounting slots 7a and 8a. Corresponding outer peripheral side permanent magnets 9A and inner peripheral side permanent magnets 9B are mounted so that the same magnetic poles face in the same direction. Moreover, the direction of the magnetic poles of the outer peripheral side permanent magnets 9 </ b> A mounted in the adjacent sets of magnet mounting slots 7 a on the outer peripheral side rotor 5 are opposite to each other, and the adjacent sets of magnets on the inner peripheral side rotor 6. The directions of the magnetic poles of the inner peripheral side permanent magnets 9B mounted in the mounting slot 8a are also opposite to each other. In other words, in the outer rotor 5, pairs of outer permanent magnets 9 </ b> A having an N pole on the outer periphery and pairs of outer permanent magnets 9 </ b> A having an S pole are alternately arranged in the circumferential direction. In the inner circumferential side rotor 6, pairs of inner circumferential side permanent magnets 9B having N poles on the outer circumferential side and pairs of inner circumferential side permanent magnets 9B having S poles are alternately arranged.
A magnetic flux barrier hole 31 for controlling the flow of magnetic flux is formed between the pair of adjacent magnet mounting slots 7 a of the outer rotor 5, and the adjacent magnet mounting slot 8 of the inner rotor 6. A notch 10 for controlling the flow of magnetic flux is formed between the pair.

外周側回転子5と内周側回転子6の磁石装着スロット7a,8aは夫々同数設けられ、両回転子5,6の永久磁石9A,9Bが夫々1対1で対応するようになっている。したがって、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9A,9Bを互いに同極同士で対向させる(異極配置にする)ことにより、回転子ユニット3全体の界磁が最も弱められる弱め界磁の状態を得ることができるとともに、外周側回転子5と内周側回転子6の各磁石装着スロット7a,8a内の永久磁石9A,9Bを互いに異極同士で対向させる(同極配置にする)ことにより、回転子ユニット3全体の界磁が最も強められる強め界磁の状態を得ることができる。   The same number of magnet mounting slots 7a and 8a are provided for the outer rotor 5 and the inner rotor 6, and the permanent magnets 9A and 9B of the rotors 5 and 6 correspond to each other on a one-to-one basis. . Accordingly, the permanent magnets 9A and 9B in the magnet mounting slots 7a and 8a of the outer peripheral rotor 5 and the inner peripheral rotor 6 are opposed to each other with the same polarity (disposed in different polarities), thereby providing a rotor unit. 3 is able to obtain a field weakening state in which the entire field is weakened most, and the permanent magnets 9A and 9B in the magnet mounting slots 7a and 8a of the outer rotor 5 and the inner rotor 6 are mutually connected. By making the different poles face each other (with the same polarity arrangement), it is possible to obtain a strong field state in which the field of the entire rotor unit 3 is most enhanced.

また、回転子ユニット3は、外周側回転子5と内周側回転子6が回動操作機構11によって相対的に回動操作されるようになっている。回動操作機構11は、図示しない油圧制御装置の油圧によって操作されるようになっている。なお、この実施形態においては、回動操作機構11と油圧制御装置が、内周側回転子と外周側回転子の相対的な位相を変更する位相変更手段を構成するようになっている。   In the rotor unit 3, the outer peripheral side rotor 5 and the inner peripheral side rotor 6 are relatively rotated by a rotation operation mechanism 11. The rotation operation mechanism 11 is operated by the hydraulic pressure of a hydraulic control device (not shown). In this embodiment, the rotation operation mechanism 11 and the hydraulic control device constitute phase changing means for changing the relative phases of the inner circumferential rotor and the outer circumferential rotor.

回動操作機構11は、回転軸4の外周に一体回転可能にスプライン嵌合されるベーンロータ14(内側可動部材)と、ベーンロータ14の外周側に相対回動可能に配置される環状ハウジング15とを備え、この環状ハウジング15が内周側回転子6の内周面に一体に嵌合固定されるとともに、ベーンロータ14が、環状ハウジング15と内周側回転子6の軸方向両側の側端部を跨ぐ円板状の一対のドライブプレート16,16(端板)を介して外周側回転子5に一体に結合されている。したがって、ベーンロータ14は回転軸4と外周側回転子5に一体化され、環状ハウジング15は内周側回転子6に一体化されている。   The rotation operation mechanism 11 includes a vane rotor 14 (inner movable member) that is spline-fitted to the outer periphery of the rotation shaft 4 and an annular housing 15 that is rotatably disposed on the outer periphery side of the vane rotor 14. The annular housing 15 is integrally fitted and fixed to the inner peripheral surface of the inner circumferential rotor 6, and the vane rotor 14 has side end portions on both sides in the axial direction of the annular housing 15 and the inner circumferential rotor 6. It is integrally coupled to the outer peripheral rotor 5 via a pair of disk-shaped drive plates 16 and 16 (end plates) straddling. Therefore, the vane rotor 14 is integrated with the rotary shaft 4 and the outer peripheral rotor 5, and the annular housing 15 is integrated with the inner peripheral rotor 6.

ベーンロータ14は、回転軸4にスプライン嵌合される円筒状のボス部17の外周に、径方向外側に突出する複数のベーン18が円周方向等間隔に設けられている。一方、環状ハウジング15は、内周面に円周方向等間隔に複数の凹部19が設けられ、この各凹部19にベーンロータ14の対応するベーン18が収容配置されるようになっている。各凹部19は、ベーン18の先端部の回転軌道にほぼ合致する円弧面を有する底壁20と、隣接する凹部19,19同士を隔成する略三角形状の仕切壁21によって構成され、ベーンロータ14と環状ハウジング15の相対回動時に、ベーン18が一方の仕切壁21と他方の仕切壁21の間を変位し得るようになっている。この実施形態の場合、仕切壁21はベーン18と当接することにより、ベーンロータ14と環状ハウジング15の相対回動を規制するストッパとしても機能する。なお、各ベーン18の先端部と仕切壁21の先端部には、軸方向に沿うようにシール部材22が設けられ、これらのシール部材22によってベーン18と凹部19の底壁20、仕切壁21とボス部17の外周面の各間が液密にシールされている。   In the vane rotor 14, a plurality of vanes 18 projecting radially outward are provided at equal intervals in the circumferential direction on the outer periphery of a cylindrical boss portion 17 that is spline-fitted to the rotary shaft 4. On the other hand, the annular housing 15 is provided with a plurality of concave portions 19 on the inner peripheral surface at equal intervals in the circumferential direction, and the corresponding vanes 18 of the vane rotor 14 are accommodated in the concave portions 19. Each recess 19 is constituted by a bottom wall 20 having an arc surface that substantially matches the rotational trajectory of the tip of the vane 18 and a substantially triangular partition wall 21 that separates the adjacent recesses 19, 19. The vane 18 can be displaced between the one partition wall 21 and the other partition wall 21 during relative rotation of the annular housing 15. In the case of this embodiment, the partition wall 21 also functions as a stopper that restricts the relative rotation of the vane rotor 14 and the annular housing 15 by contacting the vane 18. A seal member 22 is provided along the axial direction at the tip of each vane 18 and the tip of the partition wall 21, and the vane 18, the bottom wall 20 of the recess 19, and the partition wall 21 are provided by these seal members 22. And the outer peripheral surface of the boss portion 17 are liquid-tightly sealed.

また、内周側回転子6に固定される環状ハウジング15のベース部15aは一定厚みの円筒状に形成されるとともに、図1に示すように内周側回転子6や仕切壁21に対して軸方向外側に突出している。このベース部15aの外側に突出した各端部は、ドライブプレート16に形成された環状のガイド溝16aに摺動自在に保持され、環状ハウジング15と内周側回転子6が、外周側回転子5や回転軸4にフローティング状態で支持されるようになっている。   Further, the base portion 15a of the annular housing 15 fixed to the inner peripheral rotor 6 is formed in a cylindrical shape having a constant thickness, and is also provided with respect to the inner peripheral rotor 6 and the partition wall 21 as shown in FIG. Projects outward in the axial direction. Each end projecting outward of the base portion 15a is slidably held in an annular guide groove 16a formed in the drive plate 16, and the annular housing 15 and the inner peripheral rotor 6 are connected to the outer peripheral rotor. 5 and the rotating shaft 4 are supported in a floating state.

外周側回転子5とベーンロータ14を連結する両側のドライブプレート16,16は、環状ハウジング15の両側面(軸方向の両端面)に摺動自在に密接し、環状ハウジング15の各凹部19の側方を夫々閉塞する。したがって、各凹部19は、ベーンロータ14のボス部17と両側のドライブプレート16,16によって夫々独立した空間部を形成し、この空間部は、オイルが導入される導入空間となっている。各導入空間内は、ベーンロータ14の対応する各ベーン18によって夫々2室に隔成され、一方の部屋が進角側作動室24(液室)、他方の部屋が遅角側作動室25(液室)とされている。進角側作動室24は、内部に導入されたオイルの圧力によって内周側回転子6を外周側回転子5に対して進角方向に相対回動させ、遅角側作動室25は、内部に導入されたオイルの圧力によって内周側回転子6を外周側回転子5に対して遅角方向に相対回動させる。この場合、「進角」とは、内周側回転子6を外周側回転子5に対して、図2中の矢印Rで示す電動機1の回転方向に進めることを言い、「遅角」とは、内周側回転子6を外周側回転子5に対して、電動機1の回転方向Rと逆側に進めることを言うものとする。   The drive plates 16 and 16 on both sides connecting the outer rotor 5 and the vane rotor 14 are slidably in close contact with both side surfaces (both end surfaces in the axial direction) of the annular housing 15, and the side of each recess 19 of the annular housing 15. Respectively. Therefore, each recessed part 19 forms the independent space part by the boss | hub part 17 of the vane rotor 14, and the drive plates 16 and 16 on both sides, and this space part is an introduction space into which oil is introduced. Each introduction space is divided into two chambers by the corresponding vanes 18 of the vane rotor 14. One chamber is an advance working chamber 24 (liquid chamber) and the other chamber is a retard working chamber 25 (liquid chamber). Room). The advance side working chamber 24 rotates the inner circumferential side rotor 6 relative to the outer circumferential side rotor 5 in the advance direction by the pressure of the oil introduced therein. The inner rotor 6 is rotated relative to the outer rotor 5 in the retarding direction by the pressure of the oil introduced into the outer periphery. In this case, “advance angle” refers to advancing the inner rotor 6 in the rotation direction of the electric motor 1 indicated by the arrow R in FIG. Means that the inner rotor 6 is advanced with respect to the outer rotor 5 in the direction opposite to the rotation direction R of the electric motor 1.

また、各進角側作動室24と遅角側作動室25に対するオイルの給排は回転軸4を通して行われるようになっている。具体的には、進角側作動室24は、油圧制御装置の進角側給排通路26に接続され、遅角側作動室25は同油圧制御装置の遅角側給排通路27に接続されているが、進角側給排通路26と遅角側給排通路27の一部は、図1に示すように、夫々回転軸4に軸方向に沿って形成させた通路孔26a,27aによって構成されている。そして、各通路孔26a,27aの端部は、回転軸4の外周面の軸方向にオフセットした位置に形成された環状溝26b,27bに接続され、その各環状溝26b,27bは、ベーンロータ14のボス部17に略半径方向に沿って形成された複数の導通孔26c…,27c…に接続されている。進角側給排通路26の各導通孔26cは環状溝26bと各進角側作動室24とを接続し、遅角側給排通路27の各導通孔27cは環状溝27bと各遅角側作動室25とを接続している。   In addition, oil is supplied to and discharged from each of the advance side working chambers 24 and the retard side working chambers 25 through the rotary shaft 4. Specifically, the advance side working chamber 24 is connected to the advance side supply / discharge passage 26 of the hydraulic control device, and the retard side operation chamber 25 is connected to the retard side supply / discharge passage 27 of the hydraulic control device. However, as shown in FIG. 1, a part of the advance side supply / discharge passage 26 and the retard side supply / discharge passage 27 are formed by passage holes 26a, 27a formed along the axial direction of the rotary shaft 4, respectively. It is configured. The end portions of the passage holes 26a and 27a are connected to annular grooves 26b and 27b formed at positions offset in the axial direction of the outer peripheral surface of the rotating shaft 4, and the annular grooves 26b and 27b are connected to the vane rotor 14. Are connected to a plurality of conduction holes 26c,..., 27c. Each conduction hole 26c of the advance side supply / discharge passage 26 connects the annular groove 26b and each advance side working chamber 24, and each conduction hole 27c of the retard side supply / exhaust passage 27 connects to the annular groove 27b and each retard side. The working chamber 25 is connected.

ここで、この実施形態の電動機1の場合、内周側回転子6が外周側回転子5に対して最遅角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が異極同士で対向して強め界磁の状態になり、内周側回転子6が外周側回転子5に対して最進角位置にあるときに、外周側回転子5と内周側回転子6の永久磁石9が同極同士で対向して弱め界磁の状態になるように設定されている。
なお、この電動機1は、進角側作動室24と遅角側作動室25に対する作動油の給排制御によって、強め界磁の状態と弱め界磁の状態を任意に変更し得るものであるが、こうして磁界の強さが変更されると、それに伴って誘起電圧定数が変化し、その結果、電動機1の特性が変更される。即ち、強め界磁によって誘起電圧定数が大きくなると、電動機1として運転可能な許容回転速度は低下するものの、出力可能な最大トルクは増大し、逆に、弱め界磁によって誘起電圧定数が小さくなると、電動機1の出力可能な最大トルクは減少するものの、運転可能な許容回転速度は上昇する。
Here, in the case of the electric motor 1 of this embodiment, when the inner circumferential rotor 6 is at the most retarded position with respect to the outer circumferential rotor 5, the outer circumferential rotor 5 and the inner circumferential rotor 6 are permanent. When the magnets 9 are opposed to each other with different polarities and are in a strong field state, and the inner circumferential rotor 6 is in the most advanced position with respect to the outer circumferential rotor 5, the outer circumferential rotor 5 and the inner circumferential The permanent magnets 9 of the side rotor 6 are set so as to face each other with the same poles and to be in a field weakening state.
The electric motor 1 can arbitrarily change the state of the strong field and the state of the weak field by controlling the supply and discharge of hydraulic oil to and from the advance side working chamber 24 and the retard side working chamber 25. Thus, when the strength of the magnetic field is changed, the induced voltage constant is changed accordingly, and as a result, the characteristics of the electric motor 1 are changed. That is, when the induced voltage constant increases due to the strong field, the allowable rotational speed at which the motor 1 can be operated decreases, but the maximum torque that can be output increases. Conversely, when the induced voltage constant decreases due to the weak field, Although the maximum torque that can be output from the electric motor 1 decreases, the allowable rotational speed at which the motor 1 can operate increases.

ところで、ベーンロータ14と外周側回転子5を連結する両側のドライブプレート16,16は非磁性材料であるアルミニウムによって形成され、外周側回転子5の側部にボルト固定された状態において、外周側回転子5の各磁石装着スロット7aに収容された外周側永久磁石9Aの軸方向の端部に当接するようになっている。各外周側永久磁石9Aはドライブプレート16によって軸方向に位置決めされている。   By the way, the drive plates 16 and 16 on both sides connecting the vane rotor 14 and the outer rotor 5 are formed of aluminum which is a non-magnetic material, and are rotated on the outer periphery in a state where they are bolted to the side of the outer rotor 5. The outer peripheral side permanent magnet 9A accommodated in each magnet mounting slot 7a of the child 5 is in contact with the axial end portion. Each outer peripheral permanent magnet 9 </ b> A is positioned in the axial direction by a drive plate 16.

各ドライブプレート16の外周側回転子5に臨む側の外周縁部には、外周側回転子5上の外周側永久磁石9Aの対と同数の磁石装着溝35が形成され、各磁石装着溝35に副永久磁石36が嵌着固定されている。磁石装着溝35は外周側回転子5上の対応する外周側永久磁石9Aの対の軸方向側部で、かつ外周側永久磁石9Aの対に対して径方向外側に若干オフセットした位置に設けられている。そして、外周側永久磁石9Aの対を間に挟んで軸方向両側に配置される副永久磁石36,36は、外周側永久磁石9Aの対の径方向外側面の磁極と同じ磁極で相互に対向するようになっている。つまり、任意の外周側永久磁石9Aの対の径方向外側面の磁極がN極である場合には、その両側の副永久磁石36,36はN極同士で向き合い、外周側永久磁石9Aの対の径方向外側面の磁極がS極である場合には、その両側の副永久磁石36,36はS極同士で向き合うことになる。したがって、外周側回転子5上の各外周側永久磁石9Aと軸方向両側の副永久磁石36,36とはハルバッハ配置を成し、各外周側永久磁石9Aの界磁はこのハルバッハ配置による磁気レンズ効果によって強められることになる。
また、外周側回転子5の軸方向幅は、電磁巻線2aが巻回される固定子ヨーク2bの軸方向幅と同幅に形成されており、両側のドライブプレート16,16に装着される副永久磁石36は固定子ヨーク2bの軸方向外側の径方向内側領域(固定子ヨーク2bの軸方向の端部からはみ出した電磁巻線2aの内側領域)に配置されている。
On the outer peripheral edge of each drive plate 16 facing the outer rotor 5, the same number of magnet mounting grooves 35 as the pairs of outer permanent magnets 9 </ b> A on the outer rotor 5 are formed. The secondary permanent magnet 36 is fixedly fitted to the base. The magnet mounting groove 35 is provided on the axial side of the pair of outer peripheral permanent magnets 9A on the outer rotor 5 and at a position slightly offset radially outward from the pair of outer permanent magnets 9A. ing. The auxiliary permanent magnets 36 and 36 disposed on both sides in the axial direction with the pair of outer peripheral side permanent magnets 9A interposed therebetween are opposed to each other by the same magnetic pole as the magnetic pole on the radially outer surface of the pair of outer peripheral side permanent magnets 9A. It is supposed to be. That is, when the magnetic poles on the radially outer side surfaces of any pair of outer peripheral permanent magnets 9A are N poles, the secondary permanent magnets 36, 36 on both sides thereof face each other, and the pair of outer peripheral permanent magnets 9A faces. When the magnetic poles on the outer surface in the radial direction are S poles, the sub permanent magnets 36 on both sides face each other. Accordingly, each outer permanent magnet 9A on the outer rotor 5 and the auxiliary permanent magnets 36, 36 on both sides in the axial direction form a Halbach arrangement, and the field of each outer permanent magnet 9A is a magnetic lens by this Halbach arrangement. It will be strengthened by the effect.
Further, the axial width of the outer rotor 5 is formed to be the same as the axial width of the stator yoke 2b around which the electromagnetic winding 2a is wound, and is mounted on the drive plates 16 and 16 on both sides. The sub-permanent magnet 36 is disposed in a radially inner region outside the stator yoke 2b in the axial direction (an inner region of the electromagnetic winding 2a protruding from the axial end of the stator yoke 2b).

以上の構成において、この電動機1の界磁特性を変更する場合、液圧制御装置による作動液の給排により、進角側作動室24と遅角側作動室25の一方に作動液を供給するとともに他方から作動液を排出する。こうして作動液の給排が制御されると、ベーンロータ14と環状ハウジング15が相対的に回動し、それにともなって外周側回転子9Aと内周側回転子9Bの相対位相が操作される。   In the above configuration, when the field characteristics of the electric motor 1 are changed, the hydraulic fluid is supplied to one of the advance side working chamber 24 and the retard side working chamber 25 by supplying and discharging the hydraulic fluid by the hydraulic pressure control device. At the same time, the hydraulic fluid is discharged from the other side. When the supply / discharge of the hydraulic fluid is controlled in this way, the vane rotor 14 and the annular housing 15 are relatively rotated, and accordingly, the relative phases of the outer peripheral rotor 9A and the inner peripheral rotor 9B are operated.

そして、内周側回転子4が外周側回転子5に対して遅角側に操作されると、外周側永久磁石9Aと内周側永久磁石9Bが異磁極同士で対向して強め界磁の状態となり、このとき、副永久磁石36は、図4に示すように、外周側永久磁石5から発された磁束を固定子ヨーク2b方向に誘導するとともに、磁気レンズ効果によって強め界磁をより強める。また、逆に、内周側回転子4が外周側回転子5に対して進角側に操作されると、外周側永久磁石9Aと内周側永久磁石9Bが同磁極同士で対向して弱め界磁の状態となり、このとき、副永久磁石36は、図5に示すように、外周側永久磁石5から発された磁束を固定子ロータ2b方向に誘導するとともに、界磁をより弱めるように機能する。   When the inner circumferential side rotor 4 is operated to the retard side with respect to the outer circumferential side rotor 5, the outer circumferential side permanent magnet 9A and the inner circumferential side permanent magnet 9B are opposed to each other with different magnetic poles so At this time, as shown in FIG. 4, the secondary permanent magnet 36 guides the magnetic flux generated from the outer peripheral side permanent magnet 5 in the direction of the stator yoke 2b, and further strengthens the field by the magnetic lens effect. . On the other hand, when the inner rotor 4 is operated toward the advance side with respect to the outer rotor 5, the outer permanent magnet 9A and the inner permanent magnet 9B face each other and weaken. At this time, as shown in FIG. 5, the secondary permanent magnet 36 induces the magnetic flux generated from the outer peripheral side permanent magnet 5 in the direction of the stator rotor 2b and further weakens the field. Function.

この電動機1においては、外周側永久磁石9Aの軸方向両側の、外周側永久磁石9Aよりも径方向外側位置に、外周側永久磁石9Aの外側面の磁極と同じ磁極で相互に対向するように副永久磁石が配置36されているため、外周側永久磁石9Aから発された磁束が軸方向外側に逃げるのを副永久磁石36の磁気作用によって抑えることができるうえ、外周側永久磁石9Aと副永久磁石36のハルバッハ配置による磁気レンズ効果によって大きな強め界磁効果を得ることができる。したがって、この電動機1は、外周側永久磁石9Aから発された磁束をロスなく固定子2に作用させることができるため、トルク密度を向上させることが可能である。   In the electric motor 1, the outer side permanent magnet 9 </ b> A is opposite to the outer side permanent magnet 9 </ b> A in the radial direction outside the outer side permanent magnet 9 </ b> A so as to face each other with the same magnetic pole as the magnetic pole on the outer side surface of the outer side permanent magnet 9 </ b> A. Since the secondary permanent magnet is disposed 36, the magnetic flux generated from the outer peripheral side permanent magnet 9A can be prevented from escaping outward in the axial direction by the magnetic action of the secondary permanent magnet 36. A large field effect can be obtained by the magnetic lens effect by the Halbach arrangement of the permanent magnets 36. Therefore, since the electric motor 1 can cause the magnetic flux generated from the outer peripheral side permanent magnet 9A to act on the stator 2 without loss, the torque density can be improved.

また、この電動機1においては、副永久磁石36がドライブプレート16に取り付けられ、固定子ヨーク2bの軸方向の端部よりも外側の径方向内側領域に配置されているため、外周側永久磁石9Aとの間で磁束の入出が行われる固定子ヨーク2bの軸方向幅を圧迫することなく、軸方向からの磁束の逃げを阻止することができる。したがって、トルク密度をより高めることができる。   Further, in this electric motor 1, the secondary permanent magnet 36 is attached to the drive plate 16, and is disposed in the radially inner region outside the axial end of the stator yoke 2b. The magnetic flux can be prevented from escaping from the axial direction without pressing the axial width of the stator yoke 2b where the magnetic flux enters and exits. Therefore, the torque density can be further increased.

さらに、この電動機1の場合、ベーンロータ14と外周側回転子5を連結するドライブプレート16の外周縁部に副永久磁石36を取り付けたため、専用の取付部材等が不要であり、部品点数の増加や装置全体の大型化を回避することができる。   Furthermore, in the case of the electric motor 1, the auxiliary permanent magnet 36 is attached to the outer peripheral edge of the drive plate 16 that connects the vane rotor 14 and the outer rotor 5, so that a dedicated attachment member or the like is not necessary, and the number of parts is increased. An increase in the size of the entire apparatus can be avoided.

加えて、この電動機1においては、副永久磁石36を保持するドライブプレート16が非磁性体であるアルミニウムによって形成されているため、ドライブプレート16を通しての副永久磁石36や外周側永久磁石9Aからの磁束の漏れを防止することができる。また、この実施形態の電動機1の場合、外周側永久磁石9Aの軸方向の端面をドライブプレート16に突き当て、ドライブプレート16によって外周側永久磁石9Aの軸方向の位置決めを行うようになっているため、外周側永久磁石9Aに対する専用の位置決め部品を廃止して部品点数の削減を図ることができる。   In addition, in this electric motor 1, since the drive plate 16 that holds the secondary permanent magnet 36 is formed of aluminum that is a non-magnetic material, the secondary permanent magnet 36 that passes through the drive plate 16 and the outer peripheral permanent magnet 9A Magnetic flux leakage can be prevented. In the case of the electric motor 1 of this embodiment, the axial end face of the outer peripheral side permanent magnet 9A is abutted against the drive plate 16, and the outer peripheral side permanent magnet 9A is positioned in the axial direction by the drive plate 16. Therefore, it is possible to eliminate the dedicated positioning parts for the outer peripheral side permanent magnet 9A and reduce the number of parts.

図6は、この発明の第2の実施形態を示すものである。
この実施形態の電動機101は、基本的な構成は第1の実施形態とほぼ同様であるが、外周側永久磁石109Aと内周側永久磁石109Bの構成が第1の実施形態のものと異なっている。
すなわち、この実施形態の外周側永久磁石109Aと内周側永久磁石109Bは、副永久磁石36と同サイズ・同規格の複数の永久磁石pが接合されて構成されている。
FIG. 6 shows a second embodiment of the present invention.
The basic configuration of the electric motor 101 of this embodiment is substantially the same as that of the first embodiment, but the configuration of the outer peripheral side permanent magnet 109A and the inner peripheral side permanent magnet 109B is different from that of the first embodiment. Yes.
That is, the outer peripheral side permanent magnet 109A and the inner peripheral side permanent magnet 109B of this embodiment are configured by joining a plurality of permanent magnets p having the same size and the same standard as the sub permanent magnet 36.

この実施形態の電動機101は、前述した第1の実施形態と同様の効果を得ることができるうえ、外周側永久磁石9Aと内周側永久磁石9Bが、副永久磁石36と同サイズ・同規格の複数の永久磁石Pを接合して構成したものとなっているため、単一種類の永久磁石pのみで副永久磁石36と外周側永久磁石9A、内周側永久磁石9Bをすべて賄うことができる。したがって、永久磁石pのコストの低減を図ることができる。   The electric motor 101 of this embodiment can obtain the same effects as those of the first embodiment described above, and the outer peripheral permanent magnet 9A and the inner peripheral permanent magnet 9B have the same size and the same standard as the sub permanent magnet 36. Therefore, the secondary permanent magnet 36, the outer peripheral side permanent magnet 9A, and the inner peripheral side permanent magnet 9B can be covered with only a single type of permanent magnet p. it can. Therefore, the cost of the permanent magnet p can be reduced.

また、外周側永久磁石9Aと内周側永久磁石9Bは、複数の永久磁石pが接合されて、各磁石要素間が接着剤あるいは微小な隙間によって絶縁されているため、外周側永久磁石9Aや内周側永久磁石9Bで発生する渦電流を小さくすることができる。したがって、この構成により鉄損の増大を抑制することができる。   Further, since the outer peripheral side permanent magnet 9A and the inner peripheral side permanent magnet 9B are joined with a plurality of permanent magnets p and the magnet elements are insulated by an adhesive or a minute gap, the outer peripheral side permanent magnet 9A or The eddy current generated in the inner peripheral side permanent magnet 9B can be reduced. Therefore, this configuration can suppress an increase in iron loss.

なお、この発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。   In addition, this invention is not limited to said embodiment, A various design change is possible in the range which does not deviate from the summary.

この発明の第1の実施形態の電動機の断面図。Sectional drawing of the electric motor of 1st Embodiment of this invention. 同実施形態を示す一部部品を取り去った回転子ユニットの側面図。The side view of the rotor unit which removed some components which show the embodiment. 同実施形態の回転子ユニットの分解斜視図。The disassembled perspective view of the rotor unit of the embodiment. 同実施形態の電動機の要部を拡大した断面図。Sectional drawing which expanded the principal part of the electric motor of the embodiment. 同実施形態の電動機の要部を拡大した断面図。Sectional drawing which expanded the principal part of the electric motor of the embodiment. この発明の第2の実施形態の電動機の要部を拡大した断面図。Sectional drawing which expanded the principal part of the electric motor of 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…電動機
2…固定子
2a…電磁巻線
2b…固定子ヨーク
5…外周側回転子
6…内周側回転子
9A,109A…外周側永久磁石
9B,109B…内周側永久磁石
11…回動操作機構(位相変更手段)
14…ベーンロータ(内側可動部材)
15…環状ハウジング
16…ドライブプレート
24…進角側作動室(液室)
25…遅角側作動室(液室)
36…副永久磁石
DESCRIPTION OF SYMBOLS 1 ... Electric motor 2 ... Stator 2a ... Electromagnetic winding 2b ... Stator yoke 5 ... Outer side rotor 6 ... Inner side rotor 9A, 109A ... Outer side permanent magnet 9B, 109B ... Inner side permanent magnet 11 ... Time Dynamic operation mechanism (phase change means)
14 ... Vane rotor (inner movable member)
15 ... annular housing 16 ... drive plate 24 ... advance side working chamber (liquid chamber)
25 ... retarded-side working chamber (liquid chamber)
36 ... Sub permanent magnet

Claims (5)

円周方向に沿って内周側永久磁石が配設された内周側回転子と、
この内周側回転子の外周側に同軸にかつ相対回動可能に配設されるとともに、円周方向に沿って外周側永久磁石が配設された外周側回転子と、
前記内周側回転子と外周側回転子を相対回動させて両者の相対的な位相を変更する位相変更手段と、
前記外周側回転子の外周側に非接触状態で配置されるとともに、電磁巻線を有する固定子と、
を備えた電動機において、
前記外周側永久磁石の軸方向両側に、前記外周側永久磁石よりも径方向外側位置で、前記外周側永久磁石の径方向外側面の磁極と同じ磁極で相互に対向する副永久磁石を配置したことを特徴とする電動機。
An inner rotor on which inner permanent magnets are arranged along the circumferential direction;
An outer peripheral rotor on which an outer peripheral permanent magnet is disposed along the circumferential direction, coaxially and relatively rotatably disposed on the outer peripheral side of the inner peripheral rotor,
Phase changing means for changing the relative phase of the inner and outer rotors by relatively rotating the inner and outer rotors;
A non-contact state disposed on the outer peripheral side of the outer peripheral rotor, and a stator having an electromagnetic winding,
In an electric motor with
Sub-permanent magnets facing each other with the same magnetic poles as the magnetic poles on the radially outer side surface of the outer peripheral side permanent magnet are disposed on both sides in the axial direction of the outer peripheral side permanent magnet at a radially outer position than the outer peripheral side permanent magnet. An electric motor characterized by that.
前記副永久磁石は、前記固定子の固定子ヨークの軸方向両端部よりも外側に配置したことを特徴とする請求項1に記載の電動機。   2. The electric motor according to claim 1, wherein the secondary permanent magnet is disposed outside both axial end portions of the stator yoke of the stator. 前記位相変更手段は、前記内周側回転子に一体に設けられた環状ハウジングと、この環状ハウジングの径方向内側に相対回動可能に配置された内側可動部材と、前記内周側回転子と環状ハウジングの側端部を跨いで前記外周側回転子と前記内側可動部材の軸方向両側の端部同士を連結する一対の端板と、前記環状ハウジングと内側可動部材の間に設けられた液室と、を備え、前記液室に作動液を給排して前記外周側回転子と内周側回転子を相対回動させる構成とし、
前記副永久磁石は前記両側の端板に配設したことを特徴とする請求項1または2に記載の電動機。
The phase changing means includes an annular housing provided integrally with the inner circumferential rotor, an inner movable member disposed so as to be rotatable relative to a radial inner side of the annular housing, and the inner circumferential rotor. A pair of end plates that connect end portions on both sides in the axial direction of the outer peripheral rotor and the inner movable member across a side end portion of the annular housing, and a liquid provided between the annular housing and the inner movable member And a configuration for rotating the outer peripheral side rotor and the inner peripheral side rotor relative to each other by supplying and discharging hydraulic fluid to and from the liquid chamber,
The electric motor according to claim 1, wherein the sub permanent magnet is disposed on the end plates on both sides.
前記端板は非磁性体によって構成され、前記外周側永久磁石の軸方向の端部に当接して当該外周側永久磁石を位置決めすることを特徴とする請求項3に記載の電動機。   4. The electric motor according to claim 3, wherein the end plate is made of a non-magnetic material, and abuts against an axial end portion of the outer peripheral side permanent magnet to position the outer peripheral side permanent magnet. 前記外周側永久磁石と内周側永久磁石の少なくとも一方は、前記副永久磁石と同サイズ・同規格の永久磁石を複数配列して構成したことを特徴とする請求項1〜4のいずれか1項に記載の電動機。   5. At least one of the outer peripheral side permanent magnet and the inner peripheral side permanent magnet is configured by arranging a plurality of permanent magnets having the same size and the same standard as the sub permanent magnet. The electric motor according to item.
JP2008082282A 2008-03-27 2008-03-27 Electric motor Pending JP2009240057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008082282A JP2009240057A (en) 2008-03-27 2008-03-27 Electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008082282A JP2009240057A (en) 2008-03-27 2008-03-27 Electric motor

Publications (1)

Publication Number Publication Date
JP2009240057A true JP2009240057A (en) 2009-10-15

Family

ID=41253341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008082282A Pending JP2009240057A (en) 2008-03-27 2008-03-27 Electric motor

Country Status (1)

Country Link
JP (1) JP2009240057A (en)

Similar Documents

Publication Publication Date Title
JP4762866B2 (en) Axial gap type motor
JP5089066B2 (en) Electric motor
JP5037083B2 (en) Electric motor
JP4890056B2 (en) Electric motor
JP4545702B2 (en) Electric motor
JP4584206B2 (en) Electric motor
JP2009254005A (en) Motor
JP4213171B2 (en) Electric motor
JP4223526B2 (en) Electric motor
JP4999535B2 (en) Rotor yoke and rotor yoke manufacturing method and electric motor
JP4932418B2 (en) Electric motor
JP2008151214A (en) Vane type hydraulic equipment, electric motor, and valve timing control device for internal combustion engine
JP4409551B2 (en) Power transmission device for internal combustion engine
JP2009240057A (en) Electric motor
JP2008067577A (en) Electric motor
JP4499052B2 (en) Electric motor
JP5286588B2 (en) Electric motor
JP5037076B2 (en) Electric motor
JP5085875B2 (en) Electric motor
JP2008099366A (en) Electric motor
JP4503543B2 (en) Electric motor
JP4961289B2 (en) Electric motor
JP2009027859A (en) Electric motor
JP4494354B2 (en) Electric motor
JP4828393B2 (en) Electric motor