[go: up one dir, main page]

JP2009224578A - Deterioration diagnosis method of oil electrical apparatus - Google Patents

Deterioration diagnosis method of oil electrical apparatus Download PDF

Info

Publication number
JP2009224578A
JP2009224578A JP2008067803A JP2008067803A JP2009224578A JP 2009224578 A JP2009224578 A JP 2009224578A JP 2008067803 A JP2008067803 A JP 2008067803A JP 2008067803 A JP2008067803 A JP 2008067803A JP 2009224578 A JP2009224578 A JP 2009224578A
Authority
JP
Japan
Prior art keywords
oil
diaphragm
nitrogen gas
permeability coefficient
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067803A
Other languages
Japanese (ja)
Other versions
JP5341376B2 (en
Inventor
Shigekazu Mori
繁和 森
Shin Yamada
慎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008067803A priority Critical patent/JP5341376B2/en
Publication of JP2009224578A publication Critical patent/JP2009224578A/en
Application granted granted Critical
Publication of JP5341376B2 publication Critical patent/JP5341376B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

【課題】隔膜における窒素ガス透過係数の増倍率でガス遮断性能を評価することにより、油温の影響を排除した高感度で信頼性の高い油入電気機器の劣化診断方法を提供する。
【解決手段】隔膜式コンサベータを有する油入変圧器において、油中窒素濃度[N2油]と、絶縁油の温度の経時データと、未劣化の隔膜5の窒素ガス透過係数k<N2>の温度特性データとを用いて、未劣化の隔膜5の窒素ガス侵入量Q<N2>を評価し、前記未劣化の前記隔膜の窒素ガス侵入量Q<N2>と前記油入変圧器の油中窒素濃度の変化量と絶縁油体積との積で表される実際の窒素ガス侵入量Q<N2実>と、前記未劣化の隔膜5の窒素ガス侵入量Q<N2>との比からなる窒素ガス透過係数増倍率α<N2>を用いて、前記油入変圧器の前記隔膜のガス遮断性能の診断を行うことを特徴とする。
【選択図】図3
The present invention provides a highly sensitive and reliable deterioration diagnosis method for oil-filled electrical equipment that eliminates the influence of oil temperature by evaluating the gas shutoff performance by the multiplication factor of the nitrogen gas permeability coefficient in the diaphragm.
In an oil-filled transformer having a diaphragm type conservator, nitrogen concentration in oil [N2 oil], temperature data of insulating oil, and nitrogen gas permeability coefficient k <N2> of an undegraded diaphragm 5 Using the temperature characteristic data, the nitrogen gas penetration amount Q <N2> of the undegraded diaphragm 5 is evaluated, and the nitrogen gas penetration amount Q <N2> of the undegraded diaphragm and the oil-filled transformer oil Nitrogen having a ratio between the actual nitrogen gas penetration amount Q <N2 actual> expressed by the product of the amount of change in nitrogen concentration and the insulating oil volume and the nitrogen gas penetration amount Q <N2> of the undegraded diaphragm 5 Diagnosis of the gas barrier performance of the diaphragm of the oil-filled transformer is performed using a gas permeability coefficient multiplication factor α <N2>.
[Selection] Figure 3

Description

本発明は、絶縁油を大気から遮断する隔膜式コンサベータを有する変圧器等の油入電気機器において、前記隔膜のガス遮断性能の診断や絶縁油特性の劣化予測診断を行う油入電気機器の劣化診断方法に関するものである。   The present invention relates to an oil-filled electrical device such as a transformer having a diaphragm type conservator that blocks insulating oil from the atmosphere. The oil-filled electrical device performs diagnosis of gas barrier performance of the diaphragm and prediction of deterioration prediction of insulating oil characteristics. The present invention relates to a deterioration diagnosis method.

従来から、変圧器やコンデンサ等の油入電気機器には、運転時における温度の変化による絶縁油の膨張・収縮を吸収するためのコンサベータが設けられている。コンサベータは、空気やガス等が絶縁油に侵入するのを遮断するために、耐油性のゴム等からなる隔膜を備えた隔膜式コンサベータが広く用いられている。   Conventionally, oil-filled electrical devices such as transformers and capacitors have been provided with a conservator for absorbing expansion and contraction of insulating oil due to temperature changes during operation. As the conservator, a diaphragm type conservator having a diaphragm made of oil-resistant rubber or the like is widely used in order to block air and gas from entering the insulating oil.

しかし、コンサベータ内に配置された隔膜は経年変化で劣化・損傷することがある。また、隔膜に目立った損傷等がなくとも、空気側の気体分子が隔膜を形成するゴム材を透過することがある。空気が隔膜を透過して絶縁油と接触すると、空気中の酸素が絶縁油中に溶解され、絶縁油の劣化を促進し、油入電気機器の寿命に影響を及ぼす原因となる。   However, the diaphragm placed in the conservator may be deteriorated or damaged by aging. Moreover, even if there is no noticeable damage to the diaphragm, gas molecules on the air side may permeate the rubber material forming the diaphragm. When air permeates through the diaphragm and comes into contact with the insulating oil, oxygen in the air is dissolved in the insulating oil, promoting the deterioration of the insulating oil and affecting the life of the oil-filled electrical device.

したがって、コンサベータの隔膜の異常を早期に発見・予測する技術が求められている。   Accordingly, there is a need for a technique for detecting and predicting abnormalities in the conservator's diaphragm at an early stage.

この点、油入電気機器中の窒素濃度を測定し、窒素濃度が予め定めたしきい値に達するか否かによって隔膜の劣化診断をする技術がある(特許文献1参照)。この技術は、油中窒素濃度の経時的変化から変圧器への窒素ガスの侵入量を評価することで、隔膜の異状を間接的に検知しようとするものである。
特開2005−101391号公報
In this regard, there is a technique of measuring the nitrogen concentration in the oil-filled electrical device and diagnosing the deterioration of the diaphragm depending on whether or not the nitrogen concentration reaches a predetermined threshold (see Patent Document 1). This technique tries to detect abnormalities of the diaphragm indirectly by evaluating the amount of nitrogen gas entering the transformer from the change in nitrogen concentration in oil over time.
JP 2005-101391 A

しかし、上述した従来技術では、油中窒素濃度が絶縁油に対して温度依存性を有するため、油中窒素濃度の上昇が油温の上昇によるものなのか、隔膜の異状によるものなのか、判定が困難である、という問題があった。   However, in the above-described prior art, since the nitrogen concentration in the oil has temperature dependence on the insulating oil, it is determined whether the increase in the nitrogen concentration in the oil is due to the increase in the oil temperature or the abnormality of the diaphragm. There was a problem that it was difficult.

そこで、本発明は、上記問題点を解決するためになされたものであって、油入電気機器の隔膜式コンサベータのガス遮断性能を、実際に使用されている隔膜の窒素ガス透過係数の増倍率を用いて評価することにより、油温の影響を排除した高感度で信頼性の高い油入電気機器の劣化診断方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-mentioned problems, and the gas barrier performance of the diaphragm type conservator of the oil-filled electrical equipment is increased by increasing the nitrogen gas permeability coefficient of the diaphragm actually used. It is an object of the present invention to provide a highly sensitive and reliable deterioration diagnosis method for oil-filled electrical equipment that eliminates the effect of oil temperature by evaluating using the magnification.

上記目的を達成するために、本発明における油入変圧器の劣化診断方法は、隔膜式コンサベータを有する油入変圧器において、油中窒素濃度と、絶縁油の温度の経時データと、未劣化の隔膜の窒素ガス透過係数の温度特性データとを用いて、未劣化の隔膜の窒素ガス侵入量を評価し、この未劣化の隔膜の窒素ガス侵入量と前記油入変圧器の油中窒素濃度の変化量と絶縁油体積との積で表される実際の前記窒素ガス侵入量と、前記未劣化の隔膜の窒素ガス侵入量との比からなる窒素ガス透過係数増倍率を用いて、前記油入変圧器の前記隔膜のガス遮断性能の診断を行うことを特徴とする。   In order to achieve the above object, the method of diagnosing deterioration of an oil-filled transformer according to the present invention is an oil-filled transformer having a diaphragm type conservator. Using the temperature characteristic data of the nitrogen gas permeability coefficient of the diaphragm, the nitrogen gas penetration amount of the undegraded diaphragm was evaluated, and the nitrogen gas penetration amount of the undegraded diaphragm and the nitrogen concentration in the oil of the oil-filled transformer Using the nitrogen gas permeability coefficient multiplication factor consisting of the ratio of the actual nitrogen gas intrusion amount represented by the product of the change amount and the volume of the insulating oil and the nitrogen gas intrusion amount of the undegraded diaphragm, Diagnosing the gas barrier performance of the diaphragm of the input transformer.

また、本発明の油入変圧器の劣化診断方法は、前記窒素ガス透過係数増倍率の増加が検出された場合、前記隔膜に劣化があると判断し、前記窒素ガス透過係数増倍率の増加が検出されなかった場合、前記隔膜に劣化がないと判断することを特徴とする。   Further, the degradation diagnosis method for an oil-filled transformer according to the present invention determines that the diaphragm is degraded when an increase in the nitrogen gas permeability coefficient multiplication factor is detected, and the increase in the nitrogen gas permeability coefficient multiplication factor is determined. If not detected, it is determined that the diaphragm is not deteriorated.

本発明によれば、油入電気機器の隔膜式コンサベータのガス遮断性能を、実際に使用されている隔膜の窒素ガス透過係数の増倍率を用いて評価することにより、油温の影響を排除した高感度で信頼性の高い油入電気機器の劣化診断方法を可能とする。   According to the present invention, the influence of the oil temperature is eliminated by evaluating the gas barrier performance of the diaphragm type conservator of the oil-filled electrical equipment by using the multiplication factor of the nitrogen gas permeability coefficient of the diaphragm actually used. This enables a highly sensitive and reliable method for diagnosing deterioration of oil-filled electrical equipment.

以下、本発明の実施形態を、油入電気機器の一例として油入変圧器に適用した場合について図を参照しながら説明する。   Hereinafter, a case where an embodiment of the present invention is applied to an oil-filled transformer as an example of an oil-filled electrical device will be described with reference to the drawings.

油入変圧器1の概略構成図を図1に示す。   A schematic diagram of the oil-filled transformer 1 is shown in FIG.

図1において、2は内部に図示しない変圧器本体を収納した油入変圧器タンク、3はコンサベータであり、油入変圧器タンク2内とその上部に設置されたコンサベータ3内は連通管4によって接続されており、この連通管4を介して油入変圧器タンク2内とコンサベータ3内は連通している。油入変圧器タンク2の内部は絶縁油10で満たされており、コンサベータ3の内部にはニトリルゴム等の耐油性ゴムを使用した隔膜5がフランジ6で固定設置されている。このフランジ6を介して隔膜5は、コンサベータ3の外部に設けられた配管7と連通する一方、この配管7に取り付けたブリーザ8を介して外気とも連通している。そして、隔膜5内の空気やガス等の空気ガス(以下、空気という)9をコンサベータ3内の絶縁油10から遮断することで、絶縁油10の劣化を防止する役割を有する。なお、隔膜5内の空気9の圧力は大気圧となっており、またブリーザ8内には、外気中の湿気が隔膜5内に侵入することを防ぐため、シリカゲル等の乾燥剤が装填されている。   In FIG. 1, 2 is an oil-filled transformer tank in which a transformer body (not shown) is housed, 3 is a conservator, and the inside of the oil-filled transformer tank 2 and the conservator 3 installed in the upper part thereof are connected pipes. 4, the oil-filled transformer tank 2 and the conservator 3 communicate with each other through the communication pipe 4. The oil-filled transformer tank 2 is filled with insulating oil 10, and a diaphragm 5 using oil-resistant rubber such as nitrile rubber is fixedly installed inside the conservator 3 with a flange 6. The diaphragm 5 communicates with a pipe 7 provided outside the conservator 3 through the flange 6, and communicates with outside air through a breather 8 attached to the pipe 7. The insulating oil 10 has a role of preventing deterioration of the insulating oil 10 by blocking air gas (hereinafter referred to as air) 9 such as air or gas in the diaphragm 5 from the insulating oil 10 in the conservator 3. The pressure of the air 9 in the diaphragm 5 is atmospheric pressure, and a desiccant such as silica gel is loaded in the breather 8 in order to prevent moisture in the outside air from entering the diaphragm 5. Yes.

ここで、コンサベータ3の機能について説明する。外気温の変化や負荷損による発熱量の増減によって、油入変圧器タンク2内の絶縁油10の温度が変化し、油温が上昇した場合には絶縁油10の体積が膨張し、油温が低下した場合には逆に収縮する。コンサベータ3は、油入変圧器タンク2と連通しているので、絶縁油10の体積が変化すると隔膜5内の空気9が外気と出入りして隔膜5の体積が変化する。   Here, the function of the conservator 3 will be described. When the temperature of the insulating oil 10 in the oil-filled transformer tank 2 changes due to changes in the outside air temperature or due to load loss, and the oil temperature rises, the volume of the insulating oil 10 expands and the oil temperature In contrast, when it drops, it contracts. Since the conservator 3 communicates with the oil-filled transformer tank 2, when the volume of the insulating oil 10 changes, the air 9 in the diaphragm 5 enters and leaves the outside air, and the volume of the diaphragm 5 changes.

すなわち、コンサベータ3は絶縁油10の体積変化を隔膜5の体積変化に変換することによって、絶縁油10が空気9に曝されることなく油入変圧器タンク2内の圧力を一定に保って油入変圧器タンク2を保護し、絶縁油10が容器から外部に溢れ出ることを防いでいる。この隔膜5に使用されるゴム材は、ガス遮断性能や耐油性に優れるニトリルゴムを基材にしたものが一般的に使用されているが、隔膜5内の空気9の透過を完全に遮断できるわけではない。   That is, the conservator 3 converts the volume change of the insulating oil 10 into the volume change of the diaphragm 5 to keep the pressure in the oil-filled transformer tank 2 constant without the insulating oil 10 being exposed to the air 9. The oil-filled transformer tank 2 is protected and the insulating oil 10 is prevented from overflowing from the container to the outside. The rubber material used for the diaphragm 5 is generally based on a nitrile rubber having excellent gas barrier performance and oil resistance, but can completely block the permeation of air 9 in the diaphragm 5. Do not mean.

隔膜5に穴等の欠陥部位がなくても、空気9の気体分子は隔膜5のゴム材に浸透して内部に拡散し、拡散した気体分子が油側に到達して放出されて空気9が絶縁油10中に侵入する。一般的に、コンサベータ3に使用される耐油性のニトリルゴム製隔膜の空気透過率は、ASTM(米国材料試験協会;American Society for Testing and Materials) D1434に記載される方法で測定を行うと10−6cm3/cm・min・atmオーダの値である。 Even if there is no defect such as a hole in the diaphragm 5, the gas molecules of the air 9 penetrate into the rubber material of the diaphragm 5 and diffuse to the inside, and the diffused gas molecules reach the oil side and are released to release the air 9. It penetrates into the insulating oil 10. In general, the air permeability of an oil-resistant nitrile rubber diaphragm used for Conservator 3 is 10 when measured by the method described in ASTM (American Society for Testing and Materials) D1434. It is a value on the order of −6 cm 3 / cm 2 · min · atm.

特に、電力用の油入変圧器は、20年以上の機器としての寿命が期待される。このため長期間の使用においては、隔膜5の空気透過率が微少であっても、その運転期間中の油入変圧器1への空気侵入量を積算すると、その量は無視できない。特に、透過する空気9中の酸素は油入変圧器1内の絶縁油10の劣化、更に油入変圧器1の寿命に大きく影響を及ぼす。   In particular, oil-filled transformers for electric power are expected to have a lifetime as equipment of 20 years or more. For this reason, even if the air permeability of the diaphragm 5 is very small during long-term use, if the amount of air entering the oil-filled transformer 1 during the operation period is integrated, the amount cannot be ignored. In particular, the oxygen in the permeated air 9 greatly affects the deterioration of the insulating oil 10 in the oil-filled transformer 1 and further the life of the oil-filled transformer 1.

そのため、隔膜5には、長期間に渡る高いガス遮断性能と高い信頼性が求められる。   Therefore, the diaphragm 5 is required to have a high gas barrier performance and high reliability over a long period of time.

本実施形態では、油入変圧器1の油中窒素濃度[N2油]と油温(T)の経時変化を測定することによって、コンサベータ3に設置された隔膜5のガス透過性能を診断する方法について述べる。   In this embodiment, the gas permeation performance of the diaphragm 5 installed in the conservator 3 is diagnosed by measuring the time-dependent changes in the nitrogen concentration [N2 oil] and the oil temperature (T) in the oil-filled transformer 1. The method is described.

まず、隔膜5の窒素ガス透過係数k<N2新>を算出する。この窒素ガス透過係数k<N2新>は、隔膜5が劣化していない状態のガス透過係数である。劣化していない状態とは、隔膜に穴も傷も生じていないだけのことを意味し、未使用であるか否かは問題にしない。   First, the nitrogen gas permeability coefficient k <N2 new> of the diaphragm 5 is calculated. This nitrogen gas permeability coefficient k <N2 new> is a gas permeability coefficient when the diaphragm 5 is not deteriorated. The state of not deteriorating means that there are no holes or scratches in the diaphragm, and it does not matter whether or not it is unused.

コンサベータ3内での隔膜5の空気に接する表面積をS、隔膜5の厚さをdとする。油入変圧器1に対する、単位時間当たりの空気中の窒素ガスの侵入量、すなわち窒素侵入速度F<N2>は、以下で表される。   The surface area of the diaphragm 5 in contact with the air in the conservator 3 is S, and the thickness of the diaphragm 5 is d. The amount of penetration of nitrogen gas in the air per unit time into the oil-filled transformer 1, that is, the nitrogen penetration rate F <N2> is expressed as follows.

F<N2> = k<N2新>・S/d・(P<N2空>−P<N2油>)・・・・(1)
ここで、P<N2空>、P<N2油>は、それぞれ空気中(1atm=101,325Pa)、油中の窒素のガス分圧であり、P<N2空>は定数と見なせる。また、油中窒素ガス分圧P<N2油>は、油中窒素濃度[N2油]に比例し、絶縁油における窒素のオストワルドの吸収係数をC<N2>、空気中(1atm)の窒素濃度をそれぞれ[N2空](=定数)とすると、以下で表される。
F <N2> = k <N2 new>. S / d. (P <N2 empty> -P <N2 oil>) (1)
Here, P <N2 empty> and P <N2 oil> are gas partial pressures of nitrogen in the air (1 atm = 101, 325 Pa) and oil, respectively, and P <N2 empty> can be regarded as a constant. Moreover, the nitrogen gas partial pressure P <N2 oil> in oil is proportional to the nitrogen concentration in oil [N2 oil], the Ostwald absorption coefficient of nitrogen in the insulating oil is C <N2>, and the nitrogen concentration in the air (1 atm) Is represented as [N2 empty] (= constant).

P<N2油>=(P<N2空>/C<N2>)・([N2油]/[N2空])・・・・(2)
絶縁油10のオストワルドの吸収係数C<N2>については、例えばASTM D2779−92(2002)において窒素や酸素ガスに対する値が温度の関数として定式化されており、これを用いればよい。油中窒素ガス分圧P<N2油>を窒素侵入速度F<N2>の式に代入すると以下で表される。
P <N2 oil> = (P <N2 empty> / C <N2>) ([N2 oil] / [N2 empty]) (2)
As for the Ostwald absorption coefficient C <N2> of the insulating oil 10, values for nitrogen and oxygen gas are formulated as a function of temperature in, for example, ASTM D2779-92 (2002), and this may be used. Substituting the nitrogen gas partial pressure P <N2 oil> in the oil into the formula of the nitrogen penetration rate F <N2>, it is expressed as follows.

F<N2>=S/d・P<N2空>・k<N2新>・(1−[N2油]/(C<N2> ・[N2空]))・・・(3)
このように、窒素ガス透過係数k<N2新>、オストワルドの吸収係数C<N2>、油中窒素濃度[N2油]が変数となる。上述のように、窒素ガス透過係数k<N2>、オストワルドの吸収係数C<N2>は油温の関数として求める。油中窒素濃度[N2油]は実際の絶縁油10をガス分析することによって求められる。
F <N2> = S / d.P <N2 empty> .k <N2 new>. (1- [N2 oil] / (C <N2>. [N2 empty])) (3)
Thus, the nitrogen gas permeability coefficient k <N2 new>, the Ostwald absorption coefficient C <N2>, and the nitrogen concentration in oil [N2 oil] are variables. As described above, the nitrogen gas permeability coefficient k <N2> and the Ostwald absorption coefficient C <N2> are obtained as a function of the oil temperature. The nitrogen concentration in oil [N2 oil] is obtained by gas analysis of the actual insulating oil 10.

変圧器への窒素ガス侵入量Q<N2>は、窒素侵入速度F<N2>を時間積分すればよく
Q<N2> = ∫F<N2> dt・・・・(4)
で求められる。この、窒素ガス侵入量Q<N2>、窒素侵入速度F<N2>は、導出に使用した窒素ガス透過係数k<N2新>が、隔膜5が劣化していない状態の値であることから、それぞれ未劣化状態の想定される変圧器への窒素ガス侵入速度、侵入量である。ここで、ある期間における変圧器への窒素ガス侵入量は、式(4)については当該期間においての時間積分を行って求めることができる。
The nitrogen gas penetration amount Q <N2> into the transformer may be obtained by integrating the nitrogen penetration speed F <N2> over time. Q <N2> = ∫F <N2> dt (4)
Is required. Since the nitrogen gas penetration amount Q <N2> and the nitrogen penetration speed F <N2> are the values in the state where the nitrogen gas permeability coefficient k <N2 new> used for derivation is not deteriorated, These are the nitrogen gas intrusion rate and the amount of intrusion into the transformer that is assumed to be undegraded. Here, the nitrogen gas intrusion amount into the transformer in a certain period can be obtained by performing time integration in the period for Expression (4).

また、実際の窒素ガス侵入量Q<N2実>については、その期間における油中窒素濃度の増加量Δ([N2油])を測定し、これに、油入変圧器の油体積Vとの積を取ることによって、以下で求めることができる。   In addition, for the actual nitrogen gas intrusion amount Q <N2 actual>, the increase amount Δ ([N2 oil]) of the nitrogen concentration in oil during that period is measured, and this is compared with the oil volume V of the oil-filled transformer. By taking the product, we can find

Q<N2実> = Δ([N2油])・V ・・・・(5)
窒素ガス侵入量Q<N2>に対する実際の窒素ガス侵入量Q<N2実>の比をA<N2>とし、以下に表す。
Q <N2 actual> = Δ ([N2 oil]) · V (5)
The ratio of the actual nitrogen gas intrusion amount Q <N2 actual> to the nitrogen gas intrusion amount Q <N2> is represented as A <N2>.

A<N2> = Q<N2実>/Q<N2> = m・α<N2>・・・・(6)
このA<N2>を窒素ガス量評価係数とする。ここで、mは、油中窒素濃度[N2油]や油体積V等の測定誤差、評価誤差に関する係数であり、同一の変圧器では常数として扱い、誤差が無い理想的な場合にはm=1となる。α<N2>は、コンサベータ隔膜5の劣化による窒素ガス透過係数の増倍率であり、実際の変圧器の劣化したコンサベータ隔膜の窒素ガス透過係数をk<N2劣>とすると、
α<N2> = k<N2劣>/k<N2新>・・・・(7)
となる。
A <N2> = Q <N2 actual> / Q <N2> = M · α <N2> (6)
Let A <N2> be the nitrogen gas amount evaluation coefficient. Here, m is a coefficient relating to measurement error and evaluation error such as nitrogen concentration in oil [N2 oil] and oil volume V, and is treated as a constant in the same transformer, and in an ideal case with no error, m = 1 α <N2> is the multiplication factor of the nitrogen gas permeability coefficient due to deterioration of the conservator diaphragm 5, and the nitrogen gas permeability coefficient of the deteriorated conservator diaphragm of the actual transformer is k <N2 inferior>
α <N2> = K <N2 inferior> / k <N2 new> (7)
It becomes.

k<N2劣>とk<N2新>の温度依存性が相似であるとすれば、窒素ガス透過係数の増倍率α<N2>は温度には依存せずコンサベータ隔膜5のガス遮断性能が劣化した場合にのみ変化する。したがって、この窒素ガス透過係数の増倍率α<N2>の経時的変化を測定することによって、コンサベータ隔膜5のガス遮断性能の劣化度合いが評価できるとともに、どの時点で劣化あるいは隔膜の破損が発生したかを判断することが可能となる。更に、窒素ガス透過係数の増倍率α<N2>の変化傾向から隔膜の劣化・破損パターンの識別を行うことも可能となる。   If the temperature dependence of k <N2 poor> and k <N2 new> is similar, the multiplication factor α <N2> of the nitrogen gas permeability coefficient does not depend on the temperature, and the gas barrier performance of the conservator diaphragm 5 is It changes only when it deteriorates. Therefore, by measuring the change over time in the multiplication factor α <N2> of the nitrogen gas permeability coefficient, it is possible to evaluate the degree of deterioration of the gas barrier performance of the conservator diaphragm 5, and at which point the deterioration or damage to the diaphragm occurs. It becomes possible to judge whether or not. Further, it is possible to identify the deterioration / breakage pattern of the diaphragm from the changing tendency of the multiplication factor α <N2> of the nitrogen gas permeability coefficient.

以上の実施の形態における作用効果を、図2に基づいて説明する。図2(a)は油温(T)の経時変化を示したグラフ、図2(b)は油中窒素濃度[N2油]の経時変化を示したグラフ、図2(c)は窒素ガス透過係数増倍率α<N2>の経時変化を示したグラフであり、これらのグラフは同一の時間軸(時間(t))で表わされている。   The effect in the above embodiment is demonstrated based on FIG. FIG. 2 (a) is a graph showing a change with time of oil temperature (T), FIG. 2 (b) is a graph showing a change with time of nitrogen concentration in oil [N2 oil], and FIG. 2 (c) is a nitrogen gas permeation. It is the graph which showed the time-dependent change of coefficient multiplication factor (alpha) <N2>, These graphs are represented by the same time-axis (time (t)).

具体的に、時間t1にて外部の温度変化の影響を受けて油温が上昇し、時間t2にて隔膜のガス遮断性能が劣化した場合を想定する。   Specifically, it is assumed that the oil temperature rises due to the influence of an external temperature change at time t1, and the gas barrier performance of the diaphragm deteriorates at time t2.

まず、時間t1において油温(T)が25度から上昇したとする。この油温の上昇は外気温や変圧器の発熱による上昇によるものであるが、隔膜5の窒素ガス透過係数k<N2>は温度依存性を有するため、これに伴い窒素ガス透過係数k<N2>も上昇する。窒素ガス透過係数k<N2>の上昇により油中窒素濃度[N2油]も増加する。しかし、窒素ガス透過係数増倍率α<N2>は変化がないため、隔膜5に劣化が生じていないと判断される。   First, it is assumed that the oil temperature (T) rises from 25 degrees at time t1. The increase in the oil temperature is due to an increase due to the outside air temperature or heat generated by the transformer, but the nitrogen gas permeability coefficient k <N2> of the diaphragm 5 has temperature dependence, and accordingly, the nitrogen gas permeability coefficient k <N2 > Also rises. As the nitrogen gas permeability coefficient k <N2> increases, the nitrogen concentration in oil [N2 oil] also increases. However, since the nitrogen gas permeability coefficient multiplication factor α <N2> is not changed, it is determined that the diaphragm 5 is not deteriorated.

時間t2において、隔膜5のガス遮断性能に劣化が生じた場合、窒素ガス透過係数増倍率α<N2>に初めて変化が生じる。例えば、耐油性のゴム等から成る隔膜5に穴が開く等、ガス遮断性能が急激に低下した場合には窒素ガス透過係数増倍率α<N2>は階段状に変化する(ア)。ガス遮断性能の低下が連続的に変化する場合には、窒素ガス透過係数増倍率α<N2>は連続的に変化する(イ)。これらの劣化が生じた場合、油中窒素濃度[N2油]にも変化が現れるが、窒素ガス透過係数増倍率α<N2>に比べて変化度合いは小さい。   When the gas barrier performance of the diaphragm 5 deteriorates at time t2, the nitrogen gas permeability coefficient multiplication factor α <N2> changes for the first time. For example, when the gas barrier performance is drastically lowered, such as when a hole is formed in the diaphragm 5 made of oil-resistant rubber or the like, the nitrogen gas permeability coefficient multiplication factor α <N2> changes in a stepped manner (A). When the deterioration of the gas barrier performance continuously changes, the nitrogen gas permeability coefficient multiplication factor α <N2> continuously changes (A). When these deteriorations occur, a change also appears in the nitrogen concentration in oil [N2 oil], but the degree of change is small compared to the nitrogen gas permeability coefficient multiplication factor α <N2>.

たとえば、ガス遮断性能が急激に低下した場合、窒素ガス透過係数増倍率α<N2>は図2(c)における(ア)のように階段状に変化するが、油中窒素濃度[N2油]は、図2(b)のように傾きに変化が出る程度である(図2(b)(ア´)参照)。また、ガス遮断性能の低下が連続的に変化する場合には、窒素ガス透過係数増倍率α<N2>は(イ)のように変化(図2(c))するが、油中窒素濃度[N2油]はやはり傾きに変化が出る程度であり(図2(b)(イ´)参照)、(ア´)と大きな区別がつかない。したがって、油中窒素濃度[N2油]よりも窒素ガス透過係数の増倍率α<N2>を評価指標とする方が、隔膜5のガス遮断性能の診断に対して高い精度・感度が得られる。   For example, when the gas shut-off performance sharply decreases, the nitrogen gas permeability coefficient multiplication factor α <N2> changes stepwise as shown in FIG. 2 (c), but the nitrogen concentration in oil [N2 oil] Is such that the inclination changes as shown in FIG. 2B (see FIG. 2B and FIG. 2A). Further, when the decrease in the gas shutoff performance continuously changes, the nitrogen gas permeability coefficient multiplication factor α <N2> changes as shown in (a) (FIG. 2 (c)), but the nitrogen concentration in oil [ N2 oil] still has a change in inclination (see FIGS. 2B and 2A), and cannot be distinguished from (A '). Therefore, higher accuracy and sensitivity for diagnosis of the gas barrier performance of the diaphragm 5 can be obtained by using the multiplication factor α <N2> of the nitrogen gas permeability coefficient as an evaluation index than the nitrogen concentration in oil [N2 oil].

この場合、窒素ガス透過係数増倍率α<N2>に対して管理値を設定し、この管理値を越えた場合に隔膜5の保守や交換等の対策を行うようにすることも可能である。さらに、これまでの窒素ガス透過係数増倍率α<N2>の経時特性のカーブを延長することによって、窒素ガス透過係数増倍率α<N2>の今後の変化傾向を予測し、管理値に達するまでの寿命診断を行うことが可能である。   In this case, it is also possible to set a management value for the nitrogen gas permeability coefficient multiplication factor α <N2> and take measures such as maintenance and replacement of the diaphragm 5 when the management value is exceeded. In addition, by extending the curve of the time-dependent characteristics of the nitrogen gas permeability coefficient multiplication factor α <N2>, the future change trend of the nitrogen gas permeability coefficient multiplication factor α <N2> is predicted, and the control value is reached. It is possible to perform lifespan diagnosis.

この診断に際し、油温(T)や油中窒素濃度[N2油]の測定や窒素ガス透過係数の増倍率α<N2>の評価を、時間的に連続的に行えば、高い精度で時間遅れの無いタイムリーな診断が可能であるが、ある期間毎の定期測定による離散的なデータを用いて診断を行ってもよい。この場合、油温や油中窒素濃度[N2油]は離散区間の平均値として扱われることになるが、特に油温に関しては季節の変化や負荷変動に応じて変化し易いため、その変化の節目毎のデータを用いることが望ましい。   In this diagnosis, if measurement of oil temperature (T) and nitrogen concentration in oil [N2 oil] and evaluation of multiplication factor α <N2> of nitrogen gas permeability coefficient are performed continuously in time, time delay with high accuracy However, the diagnosis may be performed using discrete data obtained by periodic measurement every certain period. In this case, the oil temperature and the nitrogen concentration in the oil [N2 oil] will be treated as the average value of the discrete sections, but especially the oil temperature is likely to change according to seasonal changes and load fluctuations. It is desirable to use data for each milestone.

また、油温や油中窒素濃度[N2油]の測定箇所であるが、式(1)〜(4)の導出においては、コンサベータ3内での窒素ガス透過に関する現象であることから、コンサベータ3内の油温、油中窒素濃度[N2油]を基準とするのが望ましい。一方、式(5)に関しては、油入変圧器タンク2内の油中窒素濃度[N2油]とするか、油入変圧器タンク2やコンサベータ3等の各部位の油体積を考慮した体積平均値を用いるのが好ましい。なぜならば、油入変圧器タンク2内の油体積Vは、コンサベータ3内の油体積よりも桁違いに多い為である。   In addition, the oil temperature and the nitrogen concentration in the oil [N2 oil] are measured, but the derivation of the equations (1) to (4) is a phenomenon related to nitrogen gas permeation in the conservator 3, so It is desirable to use oil temperature in beta 3 and nitrogen concentration in oil [N2 oil] as a reference. On the other hand, regarding the formula (5), the nitrogen concentration in oil in the oil-filled transformer tank 2 [N2 oil], or the volume considering the oil volume of each part such as the oil-filled transformer tank 2 and the conservator 3 It is preferable to use an average value. This is because the oil volume V in the oil-filled transformer tank 2 is much larger than the oil volume in the conservator 3.

具体的に、隔膜5の劣化状態を診断する方法として、窒素ガス透過係数増倍率α<N2>を用いたガス透過性能を診断する方法を図3のフローチャートを用いて説明する。   Specifically, as a method of diagnosing the deterioration state of the diaphragm 5, a method of diagnosing gas permeation performance using the nitrogen gas permeability coefficient multiplication factor α <N2> will be described with reference to the flowchart of FIG.

ガス透過性能の診断にあたって、あらかじめ、劣化していない隔膜5における窒素ガス侵入量を測定し、この窒素ガス侵入量に基づき、劣化していない隔膜5における窒素ガス透過係数k<N2新>を測定しておく必要がある。そのうえで、隔膜5の劣化状態の診断を開始する(ステップS20)。   Before diagnosing the gas permeation performance, the nitrogen gas intrusion amount in the undegraded diaphragm 5 is measured in advance, and the nitrogen gas permeability coefficient k <N2 new> in the undegraded diaphragm 5 is measured based on the nitrogen gas intrusion amount. It is necessary to keep it. After that, diagnosis of the deterioration state of the diaphragm 5 is started (step S20).

まず、油温度の測定は行う(ステップS21)。油温度の測定は、常時測定してもよいし、定期的に測定してもよい。絶縁油10の油温度が通常通りである場合には、隔膜5に異常がないこととなるが(ステップS26)、絶縁油10の油温度の上昇が見られた場合には、実際の窒素ガス透過係数増倍率α<N2>の測定を行うこととなる。もっとも、窒素ガス透過係数増倍率α<N2>の測定は、絶縁油10の油温度の上昇の有無にかかわらず、常時あるいは定期的に測定してもよい。   First, the oil temperature is measured (step S21). The oil temperature may be measured constantly or periodically. When the oil temperature of the insulating oil 10 is normal, there is no abnormality in the diaphragm 5 (step S26), but when an increase in the oil temperature of the insulating oil 10 is observed, the actual nitrogen gas The transmission coefficient multiplication factor α <N2> is measured. However, the nitrogen gas permeability coefficient multiplication factor α <N2> may be measured constantly or periodically regardless of whether the oil temperature of the insulating oil 10 has increased.

ここで、劣化していない隔膜の油中窒素ガス侵入量を算出(式(4))するとともに、測定時の隔膜5の油中窒素ガス侵入量Q<N2実>を算出する(式(5))(ステップS23)。   Here, the intrusion amount of nitrogen gas in oil of the diaphragm which is not deteriorated is calculated (formula (4)), and the intrusion amount of nitrogen gas in oil Q of the diaphragm 5 at the time of measurement is calculated (formula (5)). )) (Step S23).

この、式(4)、式(5)の油中窒素ガス侵入量の比から、実際の窒素ガス透過係数増加率α<N2>を算出することとなる。すなわち、実際の窒素ガス透過係数k<N2劣>を測定し(ステップS24)、測定開始の前に測定した劣化していない窒素ガス透過係数k<N2新>と比較する(ステップS25)。実際のガス透過係数増倍率α<N2>が増加していない場合、隔膜5の劣化はないと判断する(ステップS25)。事前に測定した窒素ガス透過係数増倍率α<N2>と比較して、ガス透過係数増倍率α<N2>が増加した場合(ステップS24)、隔膜5の劣化があったと判断する(ステップS27)。   The actual nitrogen gas permeability coefficient increase rate α <N2> is calculated from the ratio of the nitrogen gas intrusion amount in oil in the equations (4) and (5). That is, the actual nitrogen gas permeability coefficient k <N2 poor> is measured (step S24), and compared with the non-degraded nitrogen gas permeability coefficient k <N2 new> measured before the start of measurement (step S25). If the actual gas permeability coefficient multiplication factor α <N2> has not increased, it is determined that there is no deterioration of the diaphragm 5 (step S25). When the gas permeability coefficient multiplication factor α <N2> is increased as compared with the nitrogen gas permeability coefficient multiplication factor α <N2> measured in advance (step S24), it is determined that the diaphragm 5 has deteriorated (step S27). .

隔膜5に劣化があると判断された場合、窒素ガス透過係数増倍率α<N2>の増加の状況から、隔膜5の劣化状態を検出する(ステップS28)。窒素ガス透過係数増倍率α<N2>の増加が連続的でない場合、すなわち断続的である場合、隔膜5に穴が開いていることを検出する(ステップS29)。窒素ガス透過係数増倍率α<N2>の増加が連続的である場合、隔膜5に傷があるが、穴が開くに至っていないと判断する(ステップS30)。   If it is determined that the diaphragm 5 is deteriorated, the deterioration state of the diaphragm 5 is detected from the increase of the nitrogen gas permeability coefficient multiplication factor α <N2> (step S28). If the increase in the nitrogen gas permeability coefficient multiplication factor α <N2> is not continuous, that is, if it is intermittent, it is detected that the diaphragm 5 is perforated (step S29). When the increase in the nitrogen gas permeability coefficient multiplication factor α <N2> is continuous, it is determined that the diaphragm 5 is scratched but no hole has been formed (step S30).

以上より、隔膜5の劣化状況の診断を終了する(ステップS31)。   Thus, the diagnosis of the deterioration state of the diaphragm 5 is finished (step S31).

このように、本発明は、窒素ガス透過係数増倍率α<N2>の増加状況から、隔膜5の劣化状態を検出することで、油温Tの上昇に左右されずに、コンサベータのガス遮断性能の劣化状態を検出するとこができる。   As described above, the present invention detects the deterioration state of the diaphragm 5 from the increase state of the nitrogen gas permeability coefficient multiplication factor α <N2>, so that the gas cutoff of the conservator is not affected by the increase in the oil temperature T. This can be done by detecting performance degradation.

本発明の実施形態に係る油入変圧器を示す図。The figure which shows the oil-filled transformer which concerns on embodiment of this invention. 本発明の実施形態に係る効果を示すグラフ図。The graph which shows the effect which concerns on embodiment of this invention. 窒素ガス透過係数増倍率αを用いた窒素ガス透過性能を診断する方法を示したフローチャート。The flowchart which showed the method of diagnosing nitrogen gas permeation performance using nitrogen gas permeation coefficient multiplication factor (alpha).

符号の説明Explanation of symbols

1・・・・油入変圧器
2・・・・油入変圧器タンク
3・・・・コンサベータ
4・・・・連通管
5・・・・隔膜
6・・・・フランジ
7・・・・配管
8・・・・ブリーザ
k<N2>・・・・窒素ガス透過係数
α<N2>・・・・窒素ガス透過係数増倍率
[N2油]・・・・油中窒素濃度
T・・・・油温
DESCRIPTION OF SYMBOLS 1 ... Oil-filled transformer 2 ... Oil-filled transformer tank 3 ... Conservator 4 ... Communication pipe 5 ... Diaphragm 6 ... Flange 7 ... Pipe 8 ··· Breather k <N2> ··· Nitrogen gas permeability coefficient α <N2> ··· Nitrogen gas permeability coefficient multiplication factor [N2 oil] ··· Nitrogen concentration in oil T ··· Oil temperature

Claims (3)

隔膜式コンサベータを有する油入電気機器において、
油中窒素濃度と、絶縁油の温度の経時データと、未劣化の隔膜の窒素ガス透過係数の温度特性データとを用いて、未劣化の隔膜の窒素ガス侵入量を算出し、
この未劣化の隔膜の窒素ガス侵入量及び前記油入電気機器の油中窒素濃度の変化量と絶縁油体積との積で表される実際の前記窒素ガス侵入量と、前記未劣化の隔膜の窒素ガス侵入量との比からなる窒素ガス透過係数増倍率を用いて、前記油入電気機器の前記隔膜のガス遮断性能の診断を行うことを特徴とする油入電気機器の劣化診断方法。
In oil-filled electrical equipment having a diaphragm conservator,
Using the time-dependent data of nitrogen concentration in the oil, the temperature of the insulating oil, and the temperature characteristic data of the nitrogen gas permeability coefficient of the undegraded diaphragm, calculate the nitrogen gas intrusion amount of the undegraded diaphragm,
The nitrogen gas intrusion amount of the undegraded diaphragm and the actual nitrogen gas intrusion amount represented by the product of the amount of change in the nitrogen concentration in oil of the oil-filled electrical equipment and the volume of the insulating oil, and the undegraded diaphragm A method for diagnosing deterioration of an oil-filled electrical device, comprising diagnosing the gas barrier performance of the diaphragm of the oil-filled electrical device using a nitrogen gas permeability coefficient multiplication factor comprising a ratio to the nitrogen gas intrusion amount.
前記窒素ガス透過係数増倍率の増加が検出された場合、前記隔膜に劣化があると判断し、
前記窒素ガス透過係数増倍率の増加が検出されなかった場合、前記隔膜に劣化がないと判断することを特徴とする請求項1記載の油入電気機器の劣化診断方法。
When an increase in the nitrogen gas permeability coefficient multiplication factor is detected, it is determined that the diaphragm is deteriorated,
2. The method of diagnosing deterioration of an oil-filled electrical device according to claim 1, wherein when no increase in the nitrogen gas permeability coefficient multiplication factor is detected, it is determined that the diaphragm is not deteriorated.
前記窒素ガス透過係数増倍率の増加が断続的である場合、前記隔膜に穴があると判定し、
前記窒素ガス透過係数増倍率の増加が断続的でない場合、前記隔膜に穴がないと判定することを特徴とする請求項2記載の油入電気機器の劣化診断方法。
If the increase in the nitrogen gas permeability coefficient multiplication factor is intermittent, determine that there is a hole in the diaphragm,
The deterioration diagnosis method for oil-filled electrical equipment according to claim 2, wherein when the increase in the nitrogen gas permeability coefficient multiplication factor is not intermittent, it is determined that there is no hole in the diaphragm.
JP2008067803A 2008-03-17 2008-03-17 Degradation diagnosis method for oil-filled electrical equipment Expired - Fee Related JP5341376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067803A JP5341376B2 (en) 2008-03-17 2008-03-17 Degradation diagnosis method for oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067803A JP5341376B2 (en) 2008-03-17 2008-03-17 Degradation diagnosis method for oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JP2009224578A true JP2009224578A (en) 2009-10-01
JP5341376B2 JP5341376B2 (en) 2013-11-13

Family

ID=41241049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067803A Expired - Fee Related JP5341376B2 (en) 2008-03-17 2008-03-17 Degradation diagnosis method for oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP5341376B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005680A (en) * 2013-06-24 2015-01-08 愛知電機株式会社 Method for diagnosing degradation of shield body for conservator
CN107491123A (en) * 2017-08-25 2017-12-19 杭州柯林电气股份有限公司 A kind of intelligence control system and method for transformer Maintenance-free respirator
WO2022004139A1 (en) * 2020-07-01 2022-01-06 株式会社日立製作所 Transformer diagnosis method and diagnosis system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352071A (en) * 1986-08-22 1988-03-05 Toshiba Corp Insulation diagnosing device for oil-immersed electric equipment
JPH0794334A (en) * 1993-09-21 1995-04-07 Osaka Gas Co Ltd Deterioration diagnostic system and life predictive system of oil-immersed transformer
JPH08124751A (en) * 1994-10-25 1996-05-17 Mitsubishi Electric Corp Method for diagnosing service life and abnormality of oil-immersed electric equipment
JP2005101391A (en) * 2003-09-26 2005-04-14 Aichi Electric Co Ltd Diagnosis method for diaphragmatic abnormality of conservator
JP2007234687A (en) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The Method of detecting cracks and pinholes in rubber cells of transformers using B-type conservators
JP2008042130A (en) * 2006-08-10 2008-02-21 Tokyo Electric Power Co Inc:The Internal abnormality diagnosis method for oil-filled electrical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352071A (en) * 1986-08-22 1988-03-05 Toshiba Corp Insulation diagnosing device for oil-immersed electric equipment
JPH0794334A (en) * 1993-09-21 1995-04-07 Osaka Gas Co Ltd Deterioration diagnostic system and life predictive system of oil-immersed transformer
JPH08124751A (en) * 1994-10-25 1996-05-17 Mitsubishi Electric Corp Method for diagnosing service life and abnormality of oil-immersed electric equipment
JP2005101391A (en) * 2003-09-26 2005-04-14 Aichi Electric Co Ltd Diagnosis method for diaphragmatic abnormality of conservator
JP2007234687A (en) * 2006-02-28 2007-09-13 Tokyo Electric Power Co Inc:The Method of detecting cracks and pinholes in rubber cells of transformers using B-type conservators
JP2008042130A (en) * 2006-08-10 2008-02-21 Tokyo Electric Power Co Inc:The Internal abnormality diagnosis method for oil-filled electrical equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015005680A (en) * 2013-06-24 2015-01-08 愛知電機株式会社 Method for diagnosing degradation of shield body for conservator
CN107491123A (en) * 2017-08-25 2017-12-19 杭州柯林电气股份有限公司 A kind of intelligence control system and method for transformer Maintenance-free respirator
WO2022004139A1 (en) * 2020-07-01 2022-01-06 株式会社日立製作所 Transformer diagnosis method and diagnosis system
JP2022012217A (en) * 2020-07-01 2022-01-17 株式会社日立製作所 Transformer diagnostic methods and diagnostic systems
JP7405707B2 (en) 2020-07-01 2023-12-26 株式会社日立製作所 Transformer diagnostic method and system

Also Published As

Publication number Publication date
JP5341376B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5341376B2 (en) Degradation diagnosis method for oil-filled electrical equipment
US9128477B2 (en) Bushing diagnosis
US7987726B2 (en) Method and apparatus for diagnosis of liquid losses in pressure measuring transducers filled with pressure transmitting liquids
US20170165592A1 (en) Methods and Systems for Selective Hydrogen Gas Extraction for Dissolved Gas Analysis Applications
Schwab et al. Prediction of service life for vacuum insulation panels with fumed silica kernel and foil cover
US7770435B2 (en) Pipeline having a collector line and method for leakage monitoring and leakage location
JP2010141019A (en) Oil-immersed transformer with diaphragm type conservator
CN110716032A (en) Transformer winding hot spot aging evaluation method and system based on furfural in oil
KR20140124691A (en) Leak inspection apparatus using pressure-difference and leak inspection method
JP2019102694A (en) Transformer diagnostic system, transformer diagnostic method, and transformer
JP2021527925A (en) Methods and systems for detecting leaks in fuel cell thin films
JP4872519B2 (en) Internal abnormality diagnosis method for oil-filled electrical equipment
JP2020186983A (en) Hose deterioration determination method
JP5239193B2 (en) Abnormality diagnosis method for oil-filled electrical equipment
JP2020123681A (en) Oil-immersed transformer and water removal device
KR102542629B1 (en) A method for determining the durability of a filtration membrane and a field for determining the durability using the same
US20060220498A1 (en) Method for determining at least one state parameter of a sealing system and sealing system
JP6317971B2 (en) Reversible cell operation control method and reversible cell capable of switching operation mode between water electrolysis operation and fuel cell operation
US20140047827A1 (en) Aeration in liquid reservoirs
US9919964B2 (en) Method of processing optical fiber
CN106019091B (en) power system transformer performance evaluation system
CN105784977B (en) A kind of power transformer method for evaluating reliability
CN116442974A (en) Determination of Brake Fluid Life Based on Continuous Level and Mass Measurements
KR20230112940A (en) Insulating oil leakage detecting functional dehydrating breather for transformer
CN118860024B (en) A temperature control system and control method for tank storage and transportation equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R151 Written notification of patent or utility model registration

Ref document number: 5341376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees