[go: up one dir, main page]

JP2009222168A - Rocking gear device - Google Patents

Rocking gear device Download PDF

Info

Publication number
JP2009222168A
JP2009222168A JP2008068776A JP2008068776A JP2009222168A JP 2009222168 A JP2009222168 A JP 2009222168A JP 2008068776 A JP2008068776 A JP 2008068776A JP 2008068776 A JP2008068776 A JP 2008068776A JP 2009222168 A JP2009222168 A JP 2009222168A
Authority
JP
Japan
Prior art keywords
flexible external
gear
external gear
rigid internal
eccentric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008068776A
Other languages
Japanese (ja)
Inventor
Koichi Kamiyama
好一 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Drive Technology Corp
Original Assignee
Nidec Shimpo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Shimpo Corp filed Critical Nidec Shimpo Corp
Priority to JP2008068776A priority Critical patent/JP2009222168A/en
Priority to TW98105982A priority patent/TW200942713A/en
Priority to PCT/JP2009/000943 priority patent/WO2009116236A1/en
Publication of JP2009222168A publication Critical patent/JP2009222168A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H49/001Wave gearings, e.g. harmonic drive transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H49/00Other gearings
    • F16H2049/006Wave generators producing a non-elliptical shape of flexsplines, i.e. with a qualified different shape than elliptical

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gear device for which a commercial bearing can be used and whose inertia moment can be reduced without causing a tooth skipping phenomenon. <P>SOLUTION: The rocking gear device 10 includes a rigid internal gear 20, a flexible external gear 30, and a rocking generator 40. The rocking generator 40 has two circular contour eccentric rollers 41 each consisting of an eccentric cam 42 to be rotated in a predetermined eccentric state, a bearing 43 and a wheel 44, and the centers of the circular contours of the eccentric rollers 41 are overlapped with each other to be located a predetermined distance from a rotational axis XX in the mutually opposite directions. The outer peripheral face of each eccentric roller 41 has contact with the inner peripheral face of the flexible external gear 30 to deflect the flexible external gear 30 so that the flexible external gear 30 partially engages with the rigid internal gear 20. At this time, a curvature radius R at the engaging position of the flexible external gear 30 satisfies an expression 1: 2×(ε+R)=m×Zc and an expression 2: 2×π×R+4×ε=π×m×Zf, where R is the curvature radius at the engaging position of the flexible external gear, ε is the eccentricity of the eccentric roller, m is a module, Zc is the number of internal teeth, and Zf is the number of external teeth. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、揺動歯車装置に関するものであり、詳しくは、高位置決め精度、円滑な回転および静粛性が求められるロボット、工作機械、液晶・半導体製造装置などに利用される高精度、高減速比を有する揺動歯車装置に関するものである。   The present invention relates to an oscillating gear device, and more particularly, a high accuracy, high reduction ratio used in a robot, a machine tool, a liquid crystal / semiconductor manufacturing apparatus, etc. that require high positioning accuracy, smooth rotation and quietness. The present invention relates to a rocking gear device having

従来、軽量、コンパクトで、複雑な機構・構造を用いることなく高精度、高減速比が得られる歯車装置として、波動歯車装置が知られている。波動歯車装置は、環状の剛性内歯歯車に弾性的な撓み噛み合い式の可撓性外歯歯車を部分的に噛み合わせるとともに、弾性的な可撓性を利用することにより、その噛み合わせ位置を両歯車の歯数差によって円周方向に移動させる波動発生器を備える構造のものが代表的である。(特許文献1参照)。   Conventionally, a wave gear device is known as a gear device that is lightweight, compact, and capable of obtaining high accuracy and a high reduction ratio without using a complicated mechanism or structure. The wave gear device partially meshes an elastic flexure meshing-type flexible external gear with an annular rigid internal gear, and uses the elastic flexibility to change the meshing position. A structure having a wave generator that moves in the circumferential direction by a difference in the number of teeth of both gears is representative. (See Patent Document 1).

代表的な波動歯車装置は、その具体的な構成として、環状の剛性内歯歯車と、この内側に配置されたカップ形状の可撓性外歯歯車と、この内側にはめ込まれた楕円形の波動発生器とを有している。可撓性外歯歯車は、波動発生器によって楕円形に撓められて、その楕円形状の長軸方向の両端部分の外歯が、内歯歯車の内周面に形成した内歯に噛み合っている。波動発生器がモータ回転軸等により回転すると、両歯車の噛み合い位置が円周方向に移動する。一般には、内歯歯車の側が固定されているので、カップ形状の可撓性外歯歯車の側から、両歯車の歯数差に応じて大幅に減速された回転が出力される。   A typical wave gear device includes, as a specific configuration, an annular rigid internal gear, a cup-shaped flexible external gear disposed on the inside, and an elliptical wave fitted on the inside. And a generator. The flexible external gear is bent into an elliptical shape by a wave generator, and the external teeth at both ends of the major axis of the elliptical shape mesh with the internal teeth formed on the inner peripheral surface of the internal gear. Yes. When the wave generator is rotated by a motor rotating shaft or the like, the meshing position of both gears moves in the circumferential direction. Generally, since the internal gear side is fixed, rotation that is greatly decelerated according to the difference in the number of teeth of both gears is output from the cup-shaped flexible external gear side.

波動発生器は、楕円状に形成されたカム部と軸受とを備えている。このカム部は、剛性内歯歯車の内歯に対して可撓性外歯歯車の外歯を半径方向に撓ませて部分的に噛み合わせる役目を行うものである。軸受は、ボール、内輪および外輪を有している。内輪はカム部の外周に固定されており、外輪は可撓性外歯歯車の外歯の裏面側に嵌合され、カム部の回転により可撓性外歯歯車に合わせて弾性変形する。
特開平10−110790号公報
The wave generator includes a cam portion and a bearing formed in an elliptical shape. The cam portion serves to partially mesh the internal teeth of the rigid internal gear by bending the external teeth of the flexible external gear in the radial direction. The bearing has a ball, an inner ring, and an outer ring. The inner ring is fixed to the outer periphery of the cam portion, and the outer ring is fitted to the back side of the outer teeth of the flexible external gear, and is elastically deformed in accordance with the flexible external gear by the rotation of the cam portion.
JP-A-10-110790

従来の代表的な波動歯車装置では、波動発生器に、内輪が楕円形で外輪が弾性変形可能な特殊な軸受を使用するため、市販の軸受が使用できないという問題があった。また、該軸受の外輪が薄肉であることから、過負荷が作用したときに、軸受のボールとボールの間で生じる外輪の撓みに起因して、剛性内歯歯車と可撓性外歯歯車の噛み合いが瞬間的にずれてしまうラチェッティング(歯飛び)現象が生じる可能性があった。また、高速回転側となる波動発生器のカム部の長軸の長さは、剛性内歯歯車の内周の直径に対する比率が大きいので、慣性モーメントが大きくなる傾向にあった。   The conventional typical wave gear device has a problem that a commercially available bearing cannot be used because the wave generator uses a special bearing whose inner ring is elliptical and whose outer ring is elastically deformable. In addition, since the outer ring of the bearing is thin, when the overload is applied, the rigid inner gear and the flexible external gear are caused by the bending of the outer ring that occurs between the balls of the bearing. There is a possibility that a ratcheting phenomenon occurs in which the meshing momentarily shifts. Further, since the length of the long axis of the cam portion of the wave generator on the high speed rotation side has a large ratio to the inner diameter of the rigid internal gear, the moment of inertia tends to increase.

本発明は、市販の軸受が使用でき、過負荷が作用してもラチェッティング現象が起こらず、高速回転側の慣性モーメントを小さくすることができる歯車装置を提供することを目的とする。   An object of the present invention is to provide a gear device that can use a commercially available bearing, does not cause a ratcheting phenomenon even when an overload is applied, and can reduce the moment of inertia on the high-speed rotation side.

本発明の揺動歯車装置は、上記課題を解決するために、環状の剛性内歯歯車と、該剛性内歯歯車の内側に配置された環状の可撓性外歯歯車と、該可撓性外歯歯車の内側に嵌め込まれた揺動発生器とを有し、前記可撓性外歯歯車を撓ませて、前記剛性内歯歯車の中心を挟み対向する2箇所で部分的に両歯車を噛み合わせ、前記揺動発生器の回転によって両歯車の噛み合い位置を円周方向に移動させることにより、前記剛性内歯歯車および前記可撓性外歯歯車の間に相対回転を生じさせる揺動歯車装置であって、
前記揺動発生器は、該揺動発生器の回転軸回りに所定量偏心して回転する円形輪郭の偏心カムと、該偏心カムの外周に嵌められた軸受と、該軸受の外周に配置されたホイールとを備える円形輪郭の偏心ローラを2個有し、2個の偏心ローラは、各偏心ローラの円形輪郭の中心が前記回転軸から互いに逆方向に前記所定量離れて位置するように、重ねて配置されており、
前記偏心ローラの外周面が前記可撓性外歯歯車の内周面と接触することにより、該可撓性外歯歯車と前記剛性内歯歯車とが前記2箇所で部分的に噛み合うように、該可撓性外歯歯車を撓ませたとき、該可撓性外歯歯車の噛み合い位置の曲率半径Rは、下記式(1)、(2)を満たすことを特徴としている。
2×(ε+R)=m×Zc (1)
2×π×R+4×ε=π×m×Zf (2)
ただし、
R :可撓性外歯歯車の噛み合い位置の曲率半径
ε :偏心ローラの偏心量
m :剛性内歯歯車および可撓性外歯歯車のモジュール
Zc:剛性内歯歯車の歯数
Zf:可撓性外歯歯車の歯数
In order to solve the above-described problems, an oscillating gear device of the present invention includes an annular rigid internal gear, an annular flexible external gear disposed inside the rigid internal gear, and the flexibility. A swing generator fitted inside the external gear, the flexible external gear is bent, and the two gears are partially connected at two positions facing each other across the center of the rigid internal gear. An oscillating gear for generating relative rotation between the rigid internal gear and the flexible external gear by meshing and moving the meshing position of both gears in the circumferential direction by rotation of the oscillation generator A device,
The swing generator is disposed on an outer periphery of the eccentric cam, a circular contour eccentric cam that rotates eccentrically around a rotation axis of the swing generator, a bearing fitted on the outer periphery of the eccentric cam, and Two eccentric rollers each having a circular contour provided with a wheel, and the two eccentric rollers are overlapped so that the centers of the circular contours of the eccentric rollers are positioned away from the rotation shaft by the predetermined amount in the opposite directions. Arranged,
When the outer peripheral surface of the eccentric roller is in contact with the inner peripheral surface of the flexible external gear, the flexible external gear and the rigid internal gear are partially meshed at the two locations. When the flexible external gear is bent, the curvature radius R of the meshing position of the flexible external gear satisfies the following expressions (1) and (2).
2 × (ε + R) = m × Zc (1)
2 × π × R + 4 × ε = π × m × Zf (2)
However,
R: curvature radius of meshing position of flexible external gear ε: eccentric amount of eccentric roller m: module of rigid internal gear and flexible external gear Zc: number of teeth of rigid internal gear Zf: flexibility Number of teeth of external gear

また、本発明の揺動歯車装置は、上記課題を解決するために、環状の剛性内歯歯車と、該剛性内歯歯車の内側に配置された環状の可撓性外歯歯車と、該可撓性外歯歯車の内側に嵌め込まれた揺動発生器とを有し、前記可撓性外歯歯車を撓ませて、前記剛性内歯歯車の中心を挟み対向する2箇所で部分的に両歯車を噛み合わせ、前記揺動発生器の回転によって両歯車の噛み合い位置を円周方向に移動させることにより、前記剛性内歯歯車および前記可撓性外歯歯車の間に相対回転を生じさせる揺動歯車装置であって、
前記揺動発生器は、該揺動発生器の回転軸回りに所定量偏心して回転する円形輪郭の偏心カムと、該偏心カムの外周に嵌められた軸受と、該軸受の外周に配置されたホイールとを備える円形輪郭の偏心ローラを2個有し、2個の偏心ローラは、各偏心ローラの円形輪郭の中心が前記回転軸から互いに逆方向に前記所定量離れて位置するように、重ねて配置されており、
前記偏心ローラの外周面が前記可撓性外歯歯車の内周面と接触することにより、該可撓性外歯歯車の歯幅中央部と前記剛性内歯歯車とが前記2箇所で部分的に噛み合うように、該可撓性外歯歯車を撓ませたとき、剛性内歯車を噛み合さない状態での該可撓性外歯歯車の仮想開口部の曲率半径Rおよび偏心量εは、下記式(3)、(4)を満たすことを特徴としている。
2×(ε+R)=m×{Zc+(Zc−Zf)×0.5×b/S} (3)
2×π×R+4×ε=π×m×Zf (4)
ただし、
:可撓性外歯歯車の仮想開口部の曲率半径
ε :仮想開口部の偏心量
m :剛性内歯歯車および可撓性外歯歯車のモジュール
Zc:剛性内歯歯車の歯数
Zf:可撓性外歯歯車の歯数
b :可撓性外歯歯車の歯幅
S :可撓性外歯歯車の底面から歯幅中央までの長さ
In order to solve the above-described problem, the oscillating gear device of the present invention includes an annular rigid internal gear, an annular flexible external gear disposed inside the rigid internal gear, and the movable gear. A swing generator fitted inside the flexible external gear, the flexible external gear is bent, and both of the two internal parts are opposed to each other across the center of the rigid internal gear. Engaging the gears and moving the meshing position of both gears in the circumferential direction by the rotation of the oscillation generator, the oscillation causing relative rotation between the rigid internal gear and the flexible external gear. A dynamic gear device,
The swing generator is disposed on an outer periphery of the eccentric cam, a circular contour eccentric cam that rotates eccentrically around a rotation axis of the swing generator, a bearing fitted on the outer periphery of the eccentric cam, and Two eccentric rollers each having a circular contour provided with a wheel, and the two eccentric rollers are overlapped so that the centers of the circular contours of the eccentric rollers are positioned away from the rotation shaft by the predetermined amount in the opposite directions. Arranged,
When the outer peripheral surface of the eccentric roller contacts the inner peripheral surface of the flexible external gear, the central portion of the tooth width of the flexible external gear and the rigid internal gear are partially at the two locations. When the flexible external gear is bent so as to mesh with the internal gear, the radius of curvature R 0 and the amount of eccentricity ε 0 of the virtual opening of the flexible external gear without meshing the rigid internal gear. Satisfies the following formulas (3) and (4).
2 × (ε 0 + R 0 ) = m × {Zc + (Zc−Zf) × 0.5 × b / S} (3)
2 × π × R 0 + 4 × ε 0 = π × m × Zf (4)
However,
R 0 : radius of curvature of virtual opening of flexible external gear ε 0 : eccentric amount of virtual opening m: module of rigid internal gear and flexible external gear Zc: number of teeth of rigid internal gear Zf : Number of teeth of flexible external gear b: tooth width of flexible external gear S: length from bottom surface of flexible external gear to center of tooth width

上記構成によれば、偏心カムは円形輪郭であり、楕円形の内輪と弾性変形可能な外輪を有する特殊な軸受を使用する必要がないため、偏心カムの外周に嵌める軸受に市販の軸受を使用することができる。また、偏心ローラは軸受の外周にホイールを備え、このホイールの外周面が可撓性外歯歯車の内周面と接触するので、可撓性外歯歯車の外歯の裏面に弾性変形可能な薄肉の外輪を備える軸受を用いる必要がなく、弾性変形可能な薄肉の外輪の撓みに起因するラチェッティング現象の発生を抑制することができる。さらに、揺動発生器は、2個の偏心ローラを有し、各偏心ローラの円形輪郭の中心が前記回転軸から互いに逆方向に所定量離れて位置するように、重ねて配置されているので、楕円形のカムを用いる必要がなく、偏心カムの直径は、剛性内歯歯車の内周の直径に対する比率を小さくすることができるので、高速回転側の慣性モーメントを小さくすることができる。   According to the above configuration, the eccentric cam has a circular contour, and it is not necessary to use a special bearing having an elliptical inner ring and an elastically deformable outer ring. Therefore, a commercially available bearing is used as a bearing that fits on the outer periphery of the eccentric cam. can do. The eccentric roller has a wheel on the outer periphery of the bearing, and the outer peripheral surface of the wheel contacts the inner peripheral surface of the flexible external gear, so that it can be elastically deformed on the back surface of the external tooth of the flexible external gear. It is not necessary to use a bearing having a thin outer ring, and it is possible to suppress the occurrence of a ratcheting phenomenon due to bending of the thin outer ring that can be elastically deformed. Further, the swing generator has two eccentric rollers, and is arranged so that the centers of the circular contours of the eccentric rollers are positioned a predetermined amount away from each other in the opposite directions from the rotation shaft. There is no need to use an elliptical cam and the ratio of the eccentric cam diameter to the inner peripheral diameter of the rigid internal gear can be reduced, so that the moment of inertia on the high speed rotation side can be reduced.

本発明の揺動歯車装置によれば、市販の軸受が使用でき、過負荷が作用してもラチェッティング現象が起こらず、高速回転側の慣性モーメントを小さくすることができる歯車装置を提供することができる。   According to the oscillating gear device of the present invention, it is possible to use a commercially available bearing, and to provide a gear device capable of reducing the moment of inertia on the high-speed rotation side without causing ratcheting phenomenon even when an overload is applied. be able to.

以下、図面を参照して、本発明の一実施形態における揺動歯車装置について説明する。   Hereinafter, an oscillating gear device according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態における揺動歯車装置の分解斜視図である。図1に示すように、揺動歯車装置10は環状の剛性内歯歯車20と、弾性変形可能な環状の可撓性外歯歯車30と、揺動発生器40とから構成されている。   FIG. 1 is an exploded perspective view of a rocking gear device according to an embodiment of the present invention. As shown in FIG. 1, the oscillating gear device 10 includes an annular rigid internal gear 20, an annular flexible external gear 30 that can be elastically deformed, and an oscillation generator 40.

剛性内歯歯車20は、内周面に形成された内歯部21と、該剛性内歯歯車20を図示しない固定部材に固定するための固定用ボルト孔22とを備えている。可撓性外歯歯車30は、カップ形状を有しており、カップの開口側の外周面に形成された外歯部31と、図示しない出力回転軸に接続するための出力回転軸取付用ボルト孔33とを備えている。外歯部31には歯幅WWの外歯が形成されている。揺動発生器40は、2個の偏心ローラ41と入力回転軸取付部45とを備えている。   The rigid internal gear 20 includes an internal tooth portion 21 formed on an inner peripheral surface, and a fixing bolt hole 22 for fixing the rigid internal gear 20 to a fixing member (not shown). The flexible external gear 30 has a cup shape, and an output rotating shaft mounting bolt for connection to an external tooth portion 31 formed on the outer peripheral surface of the cup on the opening side and an output rotating shaft (not shown). And a hole 33. The external teeth 31 are formed with external teeth having a tooth width WW. The swing generator 40 includes two eccentric rollers 41 and an input rotating shaft mounting portion 45.

図2は、本発明の一実施形態における揺動歯車装置の断面図であり、揺動発生器の回転軸と揺動発生器により撓まされた可撓性外歯歯車の長軸とを含む平面における断面図である。図3は、図2のA−A線断面図である。図2および図3に示すように、揺動歯車装置10は、剛性内歯歯車20の内側に可撓性外歯歯車30を配置し、可撓性外歯歯車30の内側に揺動発生器40を嵌め込んで可撓性外歯歯車30を撓ませることにより、剛性内歯歯車20の内歯部21に形成された内歯と、可撓性外歯歯車30の外歯部31に形成された外歯とが、剛性内歯歯車20の中心を挟み対向する2箇所、つまり噛み合い位置PおよびQで噛み合うように構成されている。   FIG. 2 is a cross-sectional view of the oscillating gear device according to the embodiment of the present invention, and includes a rotation shaft of the oscillation generator and a long axis of the flexible external gear bent by the oscillation generator. It is sectional drawing in a plane. FIG. 3 is a cross-sectional view taken along line AA in FIG. As shown in FIGS. 2 and 3, the oscillating gear device 10 has a flexible external gear 30 disposed inside a rigid internal gear 20, and a oscillating generator inside the flexible external gear 30. 40 is inserted to bend the flexible external gear 30, thereby forming the internal teeth formed on the internal tooth portion 21 of the rigid internal gear 20 and the external tooth portion 31 of the flexible external gear 30. These external teeth are configured to mesh with each other at two positions facing each other across the center of the rigid internal gear 20, that is, meshing positions P and Q.

剛性内歯歯車20は、剛性体で形成されている。可撓性外歯歯車30は、全体が可撓性材料で形成されたものでもよいが、少なくともカップ形状の底面に環状に設けられた出力回転軸取付部32以外は、可撓性材料で形成され、かつ弾性変形可能なように薄肉に形成されている。出力回転軸取付部32は他の部分より厚肉に形成され、出力回転軸取付用ボルト孔33が設けられている。なお、外歯部31も弾性変形可能に構成されている。   The rigid internal gear 20 is formed of a rigid body. The flexible external gear 30 may be entirely formed of a flexible material, but is formed of a flexible material except at least the output rotation shaft mounting portion 32 provided annularly on the cup-shaped bottom surface. And is formed thin so as to be elastically deformable. The output rotating shaft mounting portion 32 is formed thicker than other portions, and is provided with an output rotating shaft mounting bolt hole 33. In addition, the external tooth part 31 is also comprised so that elastic deformation is possible.

揺動発生器40は、円形輪郭の偏心ローラ41を2個有している。偏心ローラ41は、揺動発生器の回転軸XX回りに所定量偏心して回転する円形輪郭の偏心カム42と、偏心カム42の外周に嵌められた軸受43と、軸受43の外周に配置されたホイール44とを備えている。偏心カム42は、入力回転軸取付部45に固定されている。   The swing generator 40 has two eccentric rollers 41 having a circular contour. The eccentric roller 41 is arranged on a circular contour eccentric cam 42 that rotates eccentrically around the rotation axis XX of the swing generator, a bearing 43 fitted on the outer periphery of the eccentric cam 42, and an outer periphery of the bearing 43. And a wheel 44. The eccentric cam 42 is fixed to the input rotating shaft mounting portion 45.

図4は、2個の偏心ローラの配置状態を模式的に示す説明図である。図4に示すように、2個の偏心ローラ41は、各偏心ローラの円形輪郭の中心41aが揺動発生器40の回転軸XXから互いに逆方向に所定量(ε)離れて位置するように、重ねて配置されている。揺動発生器40がこのような形状を有しているので、可撓性外歯歯車30の内側に揺動発生器40を嵌め込むと、偏心ローラ41の外周面が可撓性外歯歯車30の外歯部31の内周面と接触して可撓性外歯歯車30が撓み、可撓性外歯歯車30の外歯が剛性内歯歯車20の内歯と、剛性内歯歯車20の中心を挟み対向する2箇所で噛み合う(図3参照)。   FIG. 4 is an explanatory view schematically showing an arrangement state of two eccentric rollers. As shown in FIG. 4, the two eccentric rollers 41 are arranged such that the center 41 a of the circular contour of each eccentric roller is located a predetermined amount (ε) away from the rotation axis XX of the swing generator 40 in the opposite directions. , Are arranged in layers. Since the swing generator 40 has such a shape, when the swing generator 40 is fitted inside the flexible external gear 30, the outer peripheral surface of the eccentric roller 41 becomes the flexible external gear. 30, the flexible external gear 30 bends in contact with the inner peripheral surface of the external tooth portion 31, and the external teeth of the flexible external gear 30 are the internal teeth of the rigid internal gear 20 and the rigid internal gear 20. Are engaged at two opposite locations (see FIG. 3).

以上のように、本実施形態の揺動歯車装置10は、従来の波動歯車装置の楕形状のカムと弾性変形可能な外輪を有する軸受を備えた波動発生器と異なり、2個の円形輪郭の偏心ローラ41を有し、各偏心ローラ41の円形輪郭の中心41aが揺動発生器40の回転軸XXから互いに逆方向に前記所定量離れて位置するように、重ねて配置された構成の揺動発生器40を備えている。それゆえ、本実施形態の揺動歯車装置10では、偏心ローラ41に用いられる偏心カム42は円形輪郭であり、楕円形の内輪と弾性変形可能な外輪を有する特殊な軸受を使用する必要がないため、偏心カム42の外周に嵌める軸受43に市販の軸受を使用することができる。また、可撓性外歯歯車30の外歯の裏面に弾性変形可能な薄肉の外輪を備える軸受を用いる必要がないため、軸受43の外側にホイール44を設けることにより、弾性変形可能な薄肉の外輪の撓みに起因するラチェッティング現象の発生を抑制することができる。さらに、偏心カム42の直径は、剛性内歯歯車20の直径に対する比率が小さくなるので、高速回転側の慣性モーメントを小さくすることができる。   As described above, the oscillating gear device 10 of the present embodiment is different from the wave generator having the elliptical cam and the bearing having the elastically deformable outer ring of the conventional wave gear device, having two circular outlines. A rocker having an eccentric roller 41 and arranged so that the center 41a of the circular contour of each eccentric roller 41 is located at a predetermined distance away from the rotation axis XX of the rocking generator 40 in the opposite direction. A motion generator 40 is provided. Therefore, in the oscillating gear device 10 of this embodiment, the eccentric cam 42 used for the eccentric roller 41 has a circular contour, and it is not necessary to use a special bearing having an elliptical inner ring and an elastically deformable outer ring. Therefore, a commercially available bearing can be used for the bearing 43 fitted to the outer periphery of the eccentric cam 42. Further, since it is not necessary to use a bearing having a thin outer ring that can be elastically deformed on the back surface of the external teeth of the flexible external gear 30, by providing a wheel 44 outside the bearing 43, a thin wall that can be elastically deformed is provided. Occurrence of the ratcheting phenomenon due to the bending of the outer ring can be suppressed. Furthermore, since the ratio of the diameter of the eccentric cam 42 to the diameter of the rigid internal gear 20 is small, the moment of inertia on the high-speed rotation side can be reduced.

次に、図5を用いて揺動歯車装置10の動作について説明する。図5は、本発明の一実施形態における揺動歯車装置の動作の説明図である。   Next, operation | movement of the rocking gear apparatus 10 is demonstrated using FIG. FIG. 5 is an explanatory diagram of the operation of the oscillating gear device according to the embodiment of the present invention.

本実施形態の揺動発生装置10は、揺動発生器40の入力回転軸取付部45に入力回転軸が取り付けられ、モータ等により駆動されると、揺動発生器40が回転を開始する。   In the swing generator 10 of the present embodiment, when the input rotation shaft is attached to the input rotation shaft mounting portion 45 of the swing generator 40 and driven by a motor or the like, the swing generator 40 starts rotating.

図5に示したように、回転前は剛性内歯歯車20の斜線で示した内歯と、可撓性外歯歯車30の黒で示した外歯が噛み合っている。揺動発生器40が90度回転すると、噛み合い位置は円周方向に90度移動する。本実施形態の揺動歯車装置10は剛性内歯歯車20の内歯の歯数と可撓性外歯歯車30の外歯の歯数の差が2枚なので、揺動発生器40が噛み合い位置を円周方向に移動させながら360度回転し、噛み合い位置が剛性内歯歯車20の斜線で示した内歯に戻るためには、可撓性外歯歯車30は外歯の歯数プラス2枚分回転しなければならない。つまり、揺動発生器40が360度回転したときに、斜線で示した内歯と噛み合うのは、黒で示した外歯の2枚隣の外歯である。その結果、可撓性外歯歯車30は、2枚の歯数分だけ揺動発生器40の回転方向と逆方向に相対回転する。本実施形態の揺動発生装置10は、剛性内歯歯車20が相対回転しないように固定されているので、可撓性外歯歯車30から、内歯と外歯の歯数差に応じて大幅に減速された回転を出力することができる。   As shown in FIG. 5, before the rotation, the internal teeth indicated by the oblique lines of the rigid internal gear 20 and the external teeth indicated by the black of the flexible external gear 30 mesh with each other. When the swing generator 40 rotates 90 degrees, the meshing position moves 90 degrees in the circumferential direction. Since the difference between the number of teeth of the internal gear 20 of the rigid internal gear 20 and the number of teeth of the external gear 30 of the flexible external gear 30 is two in the rocking gear device 10 of the present embodiment, the rocking generator 40 is engaged. In order for the meshing position to return to the internal teeth indicated by the diagonal lines of the rigid internal gear 20, the flexible external gear 30 has two external teeth plus two teeth. You have to rotate for minutes. That is, when the swing generator 40 rotates 360 degrees, the external teeth adjacent to the external teeth shown in black are meshed with the internal teeth shown in diagonal lines. As a result, the flexible external gear 30 rotates relative to the rotation direction of the oscillation generator 40 by the number of teeth of two sheets. In the oscillation generating device 10 of the present embodiment, the rigid internal gear 20 is fixed so as not to rotate relatively, so that the flexible external gear 30 is greatly changed according to the number of teeth between the internal teeth and the external teeth. It is possible to output the decelerated rotation.

ここで、可撓性外歯歯車30の内側に揺動発生器40を嵌め込み、偏心ローラ41の外周面が可撓性外歯歯車30の内周面と接触することにより、可撓性外歯歯車30と剛性内歯歯車20とが2箇所で部分的に噛み合うように、可撓性外歯歯車30を撓ませたとき、可撓性外歯歯車30の噛み合い位置の曲率半径Rは、下記式(1)、(2)を満たす。
(1) 2×(ε+R)=m×Zc
(2) 2×π×R+4×ε=π×m×Zf
ただし、Rは可撓性外歯歯車30の噛み合い位置の曲率半径、εは偏心ローラ41の偏心量、mは剛性内歯歯車20および可撓性外歯歯車30のモジュール、Zcは剛性内歯歯車20の歯数、Zfは可撓性外歯歯車30の歯数である。
Here, the swing generator 40 is fitted inside the flexible external gear 30, and the outer peripheral surface of the eccentric roller 41 comes into contact with the inner peripheral surface of the flexible external gear 30. When the flexible external gear 30 is bent so that the gear 30 and the rigid internal gear 20 are partially meshed at two locations, the curvature radius R of the meshed position of the flexible external gear 30 is as follows. Expressions (1) and (2) are satisfied.
(1) 2 × (ε + R) = m × Zc
(2) 2 × π × R + 4 × ε = π × m × Zf
Where R is the radius of curvature of the meshing position of the flexible external gear 30, ε is the amount of eccentricity of the eccentric roller 41, m is the module of the rigid internal gear 20 and the flexible external gear 30, and Zc is the rigid internal gear. The number of teeth of the gear 20, Zf, is the number of teeth of the flexible external gear 30.

上記式(1)について、図6を用いて説明する。図6は、本発明の一実施形態における揺動歯車装置の剛性内歯歯車のピッチ円と変形後の可撓性外歯歯車の噛み合い位置の輪郭との関係を示す説明図である。図6に示すように、剛性内歯歯車20のピッチ円211は円形であり、その直径は、上記式(1)の右辺に示すように、剛性内歯歯車20の歯数Zcにこの歯車のモジュールmを乗じて求めることができる。   The above formula (1) will be described with reference to FIG. FIG. 6 is an explanatory diagram showing the relationship between the pitch circle of the rigid internal gear of the oscillating gear device according to the embodiment of the present invention and the outline of the meshing position of the deformed flexible external gear. As shown in FIG. 6, the pitch circle 211 of the rigid internal gear 20 is circular, and the diameter thereof is equal to the number of teeth Zc of the rigid internal gear 20 as shown on the right side of the above formula (1). Multiply by module m.

一方、可撓性外歯歯車30の内側に揺動発生器40が嵌め込まれ、可撓性外歯歯車30の外歯と剛性内歯歯車20の内歯とが、噛み合い位置Pおよび噛み合い位置Qの2箇所で噛み合っている状態における可撓性外歯歯車30の噛み合い位置の輪郭は、図6において変形後の可撓性外歯歯車30の噛み合い位置の輪郭312として示されている。図6から明らかなように、変形後の可撓性外歯歯車30の噛み合い位置の輪郭312の長軸の長さ、つまり噛み合い位置PおよびQ間の距離は、剛性内歯歯車20のピッチ円211の直径に等しい。そして、このPQ間の距離は、噛み合い位置の曲率半径Rおよび偏心量εを用いて上記式(1)の左辺のように求めることができる。したがって、可撓性外歯歯車30の噛み合い位置の曲率半径Rは、上記式(1)を満たす。   On the other hand, the swing generator 40 is fitted inside the flexible external gear 30 so that the external teeth of the flexible external gear 30 and the internal teeth of the rigid internal gear 20 are in meshing position P and meshing position Q. The outline of the meshing position of the flexible external gear 30 in the state of meshing at these two locations is shown in FIG. 6 as the outline 312 of the meshing position of the flexible external gear 30 after deformation. As apparent from FIG. 6, the length of the major axis of the meshing position outline 312 of the flexible external gear 30 after deformation, that is, the distance between the meshing positions P and Q is determined by the pitch circle of the rigid internal gear 20. Equal to the diameter of 211. The distance between the PQs can be obtained as the left side of the above equation (1) using the curvature radius R of the meshing position and the amount of eccentricity ε. Therefore, the curvature radius R of the meshing position of the flexible external gear 30 satisfies the above formula (1).

なお、可撓性外歯歯車30と剛性内歯歯車20との噛み合い位置では、可撓性外歯歯車30が変形した状態、つまり内歯に対して外歯が傾斜した状態で噛み合うため、通常、図1に示される可撓性外歯歯車30の歯幅WWの中央で、両歯車は噛み合うことができる。したがって、変形後の可撓性外歯歯車30の噛み合い位置の輪郭312は、通常、変形後の可撓性外歯歯車30の歯幅WWの中央部の輪郭に一致する。   Note that, at the meshing position of the flexible external gear 30 and the rigid internal gear 20, the flexible external gear 30 meshes in a deformed state, that is, in a state where the external teeth are inclined with respect to the internal teeth. In the center of the tooth width WW of the flexible external gear 30 shown in FIG. Therefore, the contour 312 of the meshing position of the deformed flexible external gear 30 normally matches the contour of the central portion of the tooth width WW of the deformed flexible external gear 30.

続いて、上記式(2)について図7を用いて説明する。図7は、本発明の一実施形態における揺動歯車装置の可撓性外歯歯車の変形前後の噛み合い位置の輪郭を示す説明図である。図7に示すように、可撓性外歯歯車30は本来カップ形状であるので、変形前の可撓性外歯歯車30のピッチ円311は円形であり、この輪郭の長さ(円周)は、上記式(2)の右辺に示すように、可撓性外歯歯車30の歯数Zfと、この歯車のモジュールmを用いて求めることができる。   Next, the above formula (2) will be described with reference to FIG. FIG. 7 is an explanatory diagram showing the outline of the meshing position before and after the deformation of the flexible external gear of the rocking gear device according to the embodiment of the present invention. As shown in FIG. 7, since the flexible external gear 30 is originally cup-shaped, the pitch circle 311 of the flexible external gear 30 before deformation is circular, and the length of this contour (circumference). Can be obtained using the number of teeth Zf of the flexible external gear 30 and the module m of this gear, as shown on the right side of the above equation (2).

一方、変形後の可撓性外歯歯車30の噛み合い位置の輪郭312は図7に示されるとおりであるが、可撓性外歯歯車30の噛み合い位置の輪郭の長さは、変形前後で変化することはないので、変形後の可撓性外歯歯車30の噛み合い位置の輪郭312の長さを噛み合い位置の曲率半径Rおよび偏心量εを用いて表した式(2)の左辺と、変形前の可撓性外歯歯車30のピッチ円311の円周を歯数Zfとモジュールmを用いて表した式(2)の右辺とは、当然に等しくなる。したがって、可撓性外歯歯車30の噛み合い位置の曲率半径Rは、上記式(2)を満たす。   On the other hand, the contour 312 of the meshing position of the flexible external gear 30 after the deformation is as shown in FIG. 7, but the length of the contour of the meshing position of the flexible external gear 30 changes before and after the deformation. Therefore, the left side of the equation (2) in which the length of the contour 312 of the meshing position of the flexible external gear 30 after deformation is expressed using the curvature radius R and the eccentricity ε of the meshing position, and the deformation Naturally, the right side of the expression (2) in which the circumference of the pitch circle 311 of the previous flexible external gear 30 is expressed using the number of teeth Zf and the module m is equal. Therefore, the curvature radius R of the meshing position of the flexible external gear 30 satisfies the above formula (2).

以上のように、本発明の揺動歯車装置10は、可撓性外歯歯車30の噛み合い位置の曲率半径Rが上記式(1)、(2)を満足する。   As described above, in the oscillating gear device 10 of the present invention, the curvature radius R of the meshing position of the flexible external gear 30 satisfies the above formulas (1) and (2).

また、可撓性外歯歯車30の内側に揺動発生器40を嵌め込み、偏心ローラ41の外周面が可撓性外歯歯車30の内周面と接触することにより、可撓性外歯歯車30の歯幅WWの中央部と剛性内歯歯車20とが2箇所で部分的に噛み合うように、可撓性外歯歯車30を撓ませたとき、剛性内歯車を噛み合さない状態での該可撓性外歯歯車30の仮想開口部の曲率半径Rおよび偏心量εは、下記式(3)、(4)を満たす。
(3) 2×(ε+R)=m×{Zc+(Zc−Zf)×0.5×b/S}
(4) 2×π×R+4×ε=π×m×Zf
ただし、Rは可撓性外歯歯車30の仮想開口部の曲率半径、εは仮想開口部の偏心量、mは剛性内歯歯車20および可撓性外歯歯車30のモジュール、Zcは剛性内歯歯車20の歯数、Zfは可撓性外歯歯車30の歯数、bは可撓性外歯歯車30の歯幅WWの長さ、Sは可撓性外歯歯車30の底面から歯幅WWの中央までの長さである。
Further, the swing generator 40 is fitted inside the flexible external gear 30, and the outer peripheral surface of the eccentric roller 41 comes into contact with the inner peripheral surface of the flexible external gear 30. When the flexible external gear 30 is bent so that the central portion of the 30 tooth width WW and the rigid internal gear 20 are partially meshed at two locations, the rigid internal gear is not meshed. The radius of curvature R 0 and the amount of eccentricity ε 0 of the virtual opening of the flexible external gear 30 satisfy the following expressions (3) and (4).
(3) 2 × (ε 0 + R 0 ) = m × {Zc + (Zc−Zf) × 0.5 × b / S}
(4) 2 × π × R 0 + 4 × ε 0 = π × m × Zf
Where R 0 is the radius of curvature of the virtual opening of the flexible external gear 30, ε 0 is the amount of eccentricity of the virtual opening, m is the module of the rigid internal gear 20 and the flexible external gear 30, and Zc is The number of teeth of the rigid internal gear 20, Zf is the number of teeth of the flexible external gear 30, b is the length of the tooth width WW of the flexible external gear 30, and S is the bottom surface of the flexible external gear 30. To the center of the tooth width WW.

換言すると、可撓性外歯歯車30の内側に揺動発生器40を嵌め込み、偏心ローラ41の外周面が可撓性外歯歯車30の内周面と接触することにより、可撓性外歯歯車30が剛性内歯歯車20と部分的に噛み合うように可撓性外歯歯車30を撓ませ、可撓性外歯歯車30の噛み合い位置の曲率半径Rが、上記式(1)、(2)を満たすとき、この変形状態の可撓性外歯歯車30に剛性内歯歯車20を噛み合わせていないと仮定した場合の可撓性外歯歯車30の仮想開口部の曲率半径Rおよび偏心量εは、上記式(3)、(4)を満たすことを意味する。 In other words, the swing generator 40 is fitted inside the flexible external gear 30, and the outer peripheral surface of the eccentric roller 41 comes into contact with the inner peripheral surface of the flexible external gear 30. The flexible external gear 30 is bent so that the gear 30 partially meshes with the rigid internal gear 20, and the curvature radius R of the meshed position of the flexible external gear 30 is expressed by the above formulas (1) and (2 ), The radius of curvature R 0 of the virtual opening of the flexible external gear 30 and the eccentricity when it is assumed that the rigid external gear 30 is not meshed with the deformed flexible external gear 30. The quantity ε 0 means that the above expressions (3) and (4) are satisfied.

上記式(3)および(4)について、図8(a)、(b)を用いて説明する。図8(a)は、本発明の一実施形態における揺動歯車装置の変形後の可撓性外歯歯車の噛み合い位置および開口部の輪郭と剛性内歯歯車のピッチ円との関係を示す説明図であり、(b)は、変形後の可撓性外歯歯車の側面図である。図8(a)に示すように、変形後の可撓性外歯歯車30の開口部の輪郭313の長軸の長さは、剛性内歯歯車20のピッチ円211の直径より長くなる。したがって、変形後の可撓性外歯歯車30の開口部の輪郭313の曲率半径Rは噛み合い位置の曲率半径Rより小さくなり、偏心量εは、噛み合い位置の偏心量εより大きくなる。そこで、変形後の可撓性外歯歯車30の開口部の輪郭313の長軸の長さは、Rおよびεから式(3)の左辺のように求めることができる。また、変形後の可撓性外歯歯車30の開口部の輪郭313の長軸の長さは、剛性内歯歯車20のピッチ円211から変形後の可撓性外歯歯車30の開口部の輪郭313がはみ出す部分の長さを、剛性内歯歯車20のピッチ円211の直径に加えることで、式(3)の右辺のように求めることができる。このはみ出す長さ(片側分)は、図8(b)に示されるb/2(図1に示される可撓性外歯歯車30の歯幅WWの半分の長さ)を斜辺とする直角三角形の高さに等しくなる。したがって、変形後の可撓性外歯歯車30の開口部の輪郭313の曲率半径Rおよび偏心量εは、式(3)を満たす。 The above formulas (3) and (4) will be described with reference to FIGS. 8 (a) and 8 (b). FIG. 8A illustrates the relationship between the meshing position of the flexible external gear and the contour of the opening and the pitch circle of the rigid internal gear after the deformation of the oscillating gear device according to the embodiment of the present invention. It is a figure, (b) is a side view of the flexible external gear after a deformation | transformation. As shown in FIG. 8A, the length of the major axis of the contour 313 of the opening of the flexible external gear 30 after deformation is longer than the diameter of the pitch circle 211 of the rigid internal gear 20. Accordingly, the curvature radius R 0 of the contour 313 of the opening of the flexible external gear 30 after deformation is smaller than the curvature radius R of the meshing position, and the eccentricity ε 0 is larger than the eccentricity ε of the meshing position. Therefore, the length of the major axis of the contour 313 of the opening of the flexible external gear 30 after deformation can be obtained from R 0 and ε 0 as in the left side of Expression (3). Further, the length of the major axis of the contour 313 of the opening of the flexible external gear 30 after the deformation is from the pitch circle 211 of the rigid internal gear 20 of the opening of the flexible external gear 30 after the deformation. By adding the length of the portion where the contour 313 protrudes to the diameter of the pitch circle 211 of the rigid internal gear 20, it can be obtained as in the right side of Expression (3). This protruding length (one side) is a right triangle whose hypotenuse is b / 2 shown in FIG. 8B (half the width WW of the flexible external gear 30 shown in FIG. 1). Equal to the height of. Accordingly, the radius of curvature R 0 and the amount of eccentricity ε 0 of the contour 313 of the opening of the flexible external gear 30 after deformation satisfy Expression (3).

また、可撓性外歯歯車30の噛み合い位置の輪郭の長さは、変形前後で変化することはないので、変形後の可撓性外歯歯車30の開口部の輪郭313の長さをRおよびεを用いて表した式(4)の左辺と、変形前の可撓性外歯歯車30のピッチ円311の円周を歯数Zfとモジュールmを用いて表した式(4)の右辺とは、当然に等しくなる。したがって、変形後の可撓性外歯歯車30の開口部の輪郭313の曲率半径Rおよび偏心量εは、式(4)を満たす。 Further, since the length of the contour of the meshing position of the flexible external gear 30 does not change before and after the deformation, the length of the contour 313 of the opening of the flexible external gear 30 after the deformation is set to R. Expression (4) expressing the left side of Expression (4) expressed using 0 and ε 0 and the circumference of pitch circle 311 of flexible external gear 30 before deformation using the number of teeth Zf and module m The right side of is naturally equal. Accordingly, the radius of curvature R 0 and the amount of eccentricity ε 0 of the contour 313 of the opening of the flexible external gear 30 after deformation satisfy Expression (4).

なお、上記式(3)、(4)を満たす変形後の可撓性外歯歯車30の開口部は、上述のように、変形状態の可撓性外歯歯車30に剛性内歯歯車20を噛み合わせていないと仮定した場合の仮想開口部であり、実際には剛性内歯歯車20を噛み合わせるので、変形後の可撓性外歯歯車30の開口部の輪郭313が剛性内歯歯車20のピッチ円211からはみ出す部分、つまり図8(a)で噛み合い分岐点212として示した2点間の円弧部分は干渉状態となり、可撓性外歯歯車30の開口部では、この部分全体が剛性内歯歯車20と噛み合うので、可撓性外歯歯車30はさらに変形させられる。ここで、噛み合い分岐点212と可撓性外歯歯車30の中心(剛性内歯歯車20の中心と一致する)とを結ぶ直線と、変形後の可撓性外歯歯車30の開口部の輪郭313の長軸を含む直線とのなす角θ(図8(a)参照)は、以下の式(5)で求めることができる。
(5) θ=cos−1[{(m×Zc/2)−R +ε }/(m×Zc×ε)]
したがって、実際の揺動歯車装置10の内歯と外歯の噛み合い位置では、変形後の可撓性外歯歯車30の開口部の輪郭313のうち、角度2θに対応する範囲の円弧部分が剛性内歯歯車20と噛み合っていることになる。
Note that the opening of the deformed flexible external gear 30 that satisfies the above formulas (3) and (4) has the rigid internal gear 20 in the deformed flexible external gear 30 as described above. Since it is a virtual opening when it is assumed that the mesh is not meshed, and the rigid internal gear 20 is actually meshed, the contour 313 of the opening of the flexible external gear 30 after deformation is the rigid internal gear 20. The portion protruding from the pitch circle 211, that is, the arc portion between the two points shown as the meshing branch point 212 in FIG. 8A is in an interference state, and the entire portion of the opening portion of the flexible external gear 30 is rigid. Since it meshes with the internal gear 20, the flexible external gear 30 is further deformed. Here, a straight line connecting the meshing branch point 212 and the center of the flexible external gear 30 (which coincides with the center of the rigid internal gear 20), and the outline of the opening of the flexible external gear 30 after deformation. An angle θ (see FIG. 8A) formed with a straight line including the major axis 313 can be obtained by the following equation (5).
(5) θ = cos −1 [{(m × Zc / 2) 2 −R 0 2 + ε 0 2 } / (m × Zc × ε 0 )]
Therefore, in the actual meshing position of the internal gear and the external gear of the oscillating gear device 10, the arc portion in the range corresponding to the angle 2θ is rigid in the contour 313 of the opening of the flexible external gear 30 after deformation. It is meshed with the internal gear 20.

以上、本発明の実施形態について説明したが、本発明は上記の実施形態のみに限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であることは言うまでもない。   The embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made within the scope shown in the claims.

本発明の一実施形態における揺動歯車装置の分解斜視図である。It is a disassembled perspective view of the rocking gear apparatus in one Embodiment of this invention. 本発明の一実施形態における揺動歯車装置の断面図である。It is sectional drawing of the rocking gear apparatus in one Embodiment of this invention. 図2のA−A線断面図である。It is the sectional view on the AA line of FIG. 2個の偏心ローラの配置状態を模式的に示す説明図である。It is explanatory drawing which shows typically the arrangement | positioning state of two eccentric rollers. 本発明の一実施形態における揺動歯車装置の動作の説明図である。It is explanatory drawing of operation | movement of the rocking gear apparatus in one Embodiment of this invention. 本発明の一実施形態における揺動歯車装置の剛性内歯歯車のピッチ円と変形後の可撓性外歯歯車の噛み合いの輪郭との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pitch circle of the rigid internal gear of the rocking | fluctuation gear apparatus in one Embodiment of this invention, and the outline of the meshing of the flexible external gear after a deformation | transformation. 本発明の一実施形態における揺動歯車装置の可撓性外歯歯車の変形前のピッチ円と変形後の噛み合いの輪郭との関係を示す説明図である。It is explanatory drawing which shows the relationship between the pitch circle before a deformation | transformation of the flexible external gear of the rocking gear apparatus in one Embodiment of this invention, and the outline of the meshing after a deformation | transformation. (a)は、本発明の一実施形態における揺動歯車装置の変形後の可撓性外歯歯車の噛み合い位置および開口部の輪郭と剛性内歯歯車のピッチ円との関係を示す説明図であり、(b)は、変形後の可撓性外歯歯車の側面図である。(A) is explanatory drawing which shows the relationship between the meshing position of the flexible external gear after a deformation | transformation of the rocking gear apparatus in one Embodiment of this invention, the outline of an opening part, and the pitch circle of a rigid internal gear. FIG. 4B is a side view of the flexible external gear after deformation.

符号の説明Explanation of symbols

10 揺動歯車装置
20 剛性内歯歯車
21 内歯部
22 固定用ボルト孔
30 可撓性外歯歯車
31 外歯部
32 出力回転軸取付部
33 出力回転軸取付用ボルト孔
40 揺動発生器
41 偏心ローラ
41a 偏心ローラの円形輪郭の中心
42 偏心カム
43 軸受
44 ホイール
45 入力回転軸取付部
211 剛性内歯歯車のピッチ円
212 噛み合い分岐点
311 変形前の可撓性外歯歯車のピッチ円
312 変形後の可撓性外歯歯車の噛み合い位置の輪郭
313 変形後の可撓性外歯歯車の開口部の輪郭
P,Q 噛み合い位置
WW 可撓性外歯歯車の歯幅
XX 揺動発生器の回転軸
DESCRIPTION OF SYMBOLS 10 Oscillating gear apparatus 20 Rigid internal gear 21 Internal tooth part 22 Fixing bolt hole 30 Flexible external gear 31 External tooth part 32 Output rotating shaft attaching part 33 Output rotating shaft attaching bolt hole 40 Swing generator 41 Eccentric roller 41a Center of circular contour of eccentric roller 42 Eccentric cam 43 Bearing 44 Wheel 45 Input rotating shaft mounting portion 211 Pitch circle of rigid internal gear 212 Meshing branch point 311 Pitch circle 312 of flexible external gear before deformation 312 Deformation Outline of meshing position of rear flexible external gear 313 Outline of opening of flexible external gear after deformation P, Q Meshing position WW Gear width of flexible external gear XX Rotation of oscillation generator axis

Claims (2)

環状の剛性内歯歯車と、該剛性内歯歯車の内側に配置された環状の可撓性外歯歯車と、該可撓性外歯歯車の内側に嵌め込まれた揺動発生器とを有し、前記可撓性外歯歯車を撓ませて、前記剛性内歯歯車の中心を挟み対向する2箇所で部分的に両歯車を噛み合わせ、前記揺動発生器の回転によって両歯車の噛み合い位置を円周方向に移動させることにより、前記剛性内歯歯車および前記可撓性外歯歯車の間に相対回転を生じさせる揺動歯車装置であって、
前記揺動発生器は、該揺動発生器の回転軸回りに所定量偏心して回転する円形輪郭の偏心カムと、該偏心カムの外周に嵌められた軸受と、該軸受の外周に配置されたホイールとを備える円形輪郭の偏心ローラを2個有し、2個の偏心ローラは、各偏心ローラの円形輪郭の中心が前記回転軸から互いに逆方向に前記所定量離れて位置するように、重ねて配置されており、
前記偏心ローラの外周面が前記可撓性外歯歯車の内周面と接触することにより、該可撓性外歯歯車と前記剛性内歯歯車とが前記2箇所で部分的に噛み合うように、該可撓性外歯歯車を撓ませたとき、該可撓性外歯歯車の噛み合い位置の曲率半径Rは、下記式(1)、(2)を満たすことを特徴とする揺動発生装置。
2×(ε+R)=m×Zc (1)
2×π×R+4×ε=π×m×Zf (2)
ただし、
R :可撓性外歯歯車の噛み合い位置の曲率半径
ε :偏心ローラの偏心量
m :剛性内歯歯車および可撓性外歯歯車のモジュール
Zc:剛性内歯歯車の歯数
Zf:可撓性外歯歯車の歯数
An annular rigid internal gear, an annular flexible external gear disposed inside the rigid internal gear, and a swing generator fitted inside the flexible external gear The flexible external gear is bent so that the two gears are partially meshed at two positions facing each other across the center of the rigid internal gear, and the meshing position of both gears is determined by the rotation of the oscillation generator. An oscillating gear device that causes relative rotation between the rigid internal gear and the flexible external gear by moving in a circumferential direction,
The swing generator is disposed on an outer periphery of the eccentric cam, a circular contour eccentric cam that rotates eccentrically around a rotation axis of the swing generator, a bearing fitted on the outer periphery of the eccentric cam, and Two eccentric rollers each having a circular contour provided with a wheel, and the two eccentric rollers are overlapped so that the centers of the circular contours of the eccentric rollers are positioned away from the rotation shaft by the predetermined amount in the opposite directions. Arranged,
When the outer peripheral surface of the eccentric roller is in contact with the inner peripheral surface of the flexible external gear, the flexible external gear and the rigid internal gear are partially meshed at the two locations. When the flexible external gear is bent, the curvature radius R of the meshing position of the flexible external gear satisfies the following expressions (1) and (2).
2 × (ε + R) = m × Zc (1)
2 × π × R + 4 × ε = π × m × Zf (2)
However,
R: curvature radius of meshing position of flexible external gear ε: eccentric amount of eccentric roller m: module of rigid internal gear and flexible external gear Zc: number of teeth of rigid internal gear Zf: flexibility Number of teeth of external gear
環状の剛性内歯歯車と、該剛性内歯歯車の内側に配置された環状の可撓性外歯歯車と、該可撓性外歯歯車の内側に嵌め込まれた揺動発生器とを有し、前記可撓性外歯歯車を撓ませて、前記剛性内歯歯車の中心を挟み対向する2箇所で部分的に両歯車を噛み合わせ、前記揺動発生器の回転によって両歯車の噛み合い位置を円周方向に移動させることにより、前記剛性内歯歯車および前記可撓性外歯歯車の間に相対回転を生じさせる揺動歯車装置であって、
前記揺動発生器は、該揺動発生器の回転軸回りに所定量偏心して回転する円形輪郭の偏心カムと、該偏心カムの外周に嵌められた軸受と、該軸受の外周に配置されたホイールとを備える円形輪郭の偏心ローラを2個有し、2個の偏心ローラは、各偏心ローラの円形輪郭の中心が前記回転軸から互いに逆方向に前記所定量離れて位置するように、重ねて配置されており、
前記偏心ローラの外周面が前記可撓性外歯歯車の内周面と接触することにより、該可撓性外歯歯車の歯幅中央部と前記剛性内歯歯車とが前記2箇所で部分的に噛み合うように、該可撓性外歯歯車を撓ませたとき、剛性内歯車を噛み合さない状態での該可撓性外歯歯車の仮想開口部の曲率半径Rおよび偏心量εは、下記式(3)、(4)を満たすことを特徴とする揺動歯車装置。
2×(ε+R)=m×{Zc+(Zc−Zf)×0.5×b/S} (3)
2×π×R+4×ε=π×m×Zf (4)
ただし、
:可撓性外歯歯車の仮想開口部の曲率半径
ε :仮想開口部の偏心量
m :剛性内歯歯車および可撓性外歯歯車のモジュール
Zc:剛性内歯歯車の歯数
Zf:可撓性外歯歯車の歯数
b :可撓性外歯歯車の歯幅
S :可撓性外歯歯車の底面から歯幅中央までの長さ
An annular rigid internal gear, an annular flexible external gear disposed inside the rigid internal gear, and a swing generator fitted inside the flexible external gear The flexible external gear is bent so that the two gears are partially meshed at two positions facing each other across the center of the rigid internal gear, and the meshing position of both gears is determined by the rotation of the oscillation generator. An oscillating gear device that causes relative rotation between the rigid internal gear and the flexible external gear by moving in a circumferential direction,
The swing generator is disposed on an outer periphery of the eccentric cam, a circular contour eccentric cam that rotates eccentrically around a rotation axis of the swing generator, a bearing fitted on the outer periphery of the eccentric cam, and Two eccentric rollers each having a circular contour provided with a wheel, and the two eccentric rollers are overlapped so that the centers of the circular contours of the eccentric rollers are positioned away from the rotation shaft by the predetermined amount in the opposite directions. Arranged,
When the outer peripheral surface of the eccentric roller contacts the inner peripheral surface of the flexible external gear, the central portion of the tooth width of the flexible external gear and the rigid internal gear are partially at the two locations. When the flexible external gear is bent so as to mesh with the internal gear, the radius of curvature R 0 and the amount of eccentricity ε 0 of the virtual opening of the flexible external gear without meshing the rigid internal gear. Satisfies the following expressions (3) and (4).
2 × (ε 0 + R 0 ) = m × {Zc + (Zc−Zf) × 0.5 × b / S} (3)
2 × π × R 0 + 4 × ε 0 = π × m × Zf (4)
However,
R 0 : radius of curvature of virtual opening of flexible external gear ε 0 : eccentric amount of virtual opening m: module of rigid internal gear and flexible external gear Zc: number of teeth of rigid internal gear Zf : Number of teeth of flexible external gear b: tooth width of flexible external gear S: length from bottom surface of flexible external gear to center of tooth width
JP2008068776A 2008-03-18 2008-03-18 Rocking gear device Withdrawn JP2009222168A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008068776A JP2009222168A (en) 2008-03-18 2008-03-18 Rocking gear device
TW98105982A TW200942713A (en) 2008-03-18 2009-02-25 Rocking gear device
PCT/JP2009/000943 WO2009116236A1 (en) 2008-03-18 2009-03-02 Rocking gear device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068776A JP2009222168A (en) 2008-03-18 2008-03-18 Rocking gear device

Publications (1)

Publication Number Publication Date
JP2009222168A true JP2009222168A (en) 2009-10-01

Family

ID=41090651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068776A Withdrawn JP2009222168A (en) 2008-03-18 2008-03-18 Rocking gear device

Country Status (3)

Country Link
JP (1) JP2009222168A (en)
TW (1) TW200942713A (en)
WO (1) WO2009116236A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002318A (en) * 2010-06-18 2012-01-05 Sumitomo Heavy Ind Ltd Flexible meshing-type gear device
JP2013199948A (en) * 2012-03-23 2013-10-03 Canon Inc Wave gear apparatus
CN104595425A (en) * 2014-12-18 2015-05-06 陕西渭河工模具有限公司 Harmonic reducer with short barrel-shaped flexible wheel
TWI513925B (en) * 2014-06-16 2015-12-21 Hiwin Tech Corp Can improve the bite rate of the harmonic reducer
WO2017006441A1 (en) * 2015-07-07 2017-01-12 株式会社ハーモニック・ドライブ・システムズ Rotation transmission mechanism provided with strain-wave gearing
CN106382339A (en) * 2016-10-25 2017-02-08 北京新立机械有限责任公司 Harmonic reducer
KR101834815B1 (en) 2014-07-23 2018-03-06 가부시키가이샤 하모닉 드라이브 시스템즈 Dual-type wave gear device
CN111911609A (en) * 2019-05-10 2020-11-10 纳博特斯克有限公司 Wave gear unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170092611A (en) * 2015-01-08 2017-08-11 가부시키가이샤 하모닉 드라이브 시스템즈 Wave generator and wave gearing
JP7081878B2 (en) * 2018-05-11 2022-06-07 日本電産シンポ株式会社 Wave gear device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491033A (en) * 1983-06-23 1985-01-01 Usm Corporation Double eccentric wave generator arrangement
JPH05164198A (en) * 1991-12-17 1993-06-29 Hitachi Ltd Harmonic drive device
JPH08296702A (en) * 1995-04-26 1996-11-12 Japan Servo Co Ltd Harmonic type decelerating mechanism
JPH1194030A (en) * 1997-09-18 1999-04-09 Riraiaru:Kk Power transmission mechanism having sealing function by means of metal partition wall
JP5173139B2 (en) * 2006-02-01 2013-03-27 三菱重工業株式会社 Reducer structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002318A (en) * 2010-06-18 2012-01-05 Sumitomo Heavy Ind Ltd Flexible meshing-type gear device
JP2013199948A (en) * 2012-03-23 2013-10-03 Canon Inc Wave gear apparatus
US9021919B2 (en) 2012-03-23 2015-05-05 Canon Kabushiki Kaisha Strain wave gear apparatus
TWI513925B (en) * 2014-06-16 2015-12-21 Hiwin Tech Corp Can improve the bite rate of the harmonic reducer
KR101834815B1 (en) 2014-07-23 2018-03-06 가부시키가이샤 하모닉 드라이브 시스템즈 Dual-type wave gear device
CN104595425A (en) * 2014-12-18 2015-05-06 陕西渭河工模具有限公司 Harmonic reducer with short barrel-shaped flexible wheel
CN107835906A (en) * 2015-07-07 2018-03-23 谐波传动系统有限公司 Rotary transfer machine with Wave gear device
WO2017006441A1 (en) * 2015-07-07 2017-01-12 株式会社ハーモニック・ドライブ・システムズ Rotation transmission mechanism provided with strain-wave gearing
JPWO2017006441A1 (en) * 2015-07-07 2018-03-29 株式会社ハーモニック・ドライブ・システムズ Rotation transmission mechanism with wave gear device
CN107835906B (en) * 2015-07-07 2020-05-05 谐波传动系统有限公司 Rotation transmission mechanism with wave gear device
US11002349B2 (en) 2015-07-07 2021-05-11 Harmonic Drive Systems Inc. Rotation transmission mechanism provided with strain wave gearing
US11391351B2 (en) 2015-07-07 2022-07-19 Harmonic Drive Systems Inc. Rotation transmission mechanism provided with strain wave gearing
US11441650B2 (en) 2015-07-07 2022-09-13 Harmonic Drive Systems Inc. Rotation transmission mechanism provided with strain wave gearing
CN106382339A (en) * 2016-10-25 2017-02-08 北京新立机械有限责任公司 Harmonic reducer
CN111911609A (en) * 2019-05-10 2020-11-10 纳博特斯克有限公司 Wave gear unit
JP2020186748A (en) * 2019-05-10 2020-11-19 ナブテスコ株式会社 Wave gear device
JP7319822B2 (en) 2019-05-10 2023-08-02 ナブテスコ株式会社 Strain wave gearing
CN111911609B (en) * 2019-05-10 2024-05-28 纳博特斯克有限公司 Wave gear device

Also Published As

Publication number Publication date
TWI359236B (en) 2012-03-01
TW200942713A (en) 2009-10-16
WO2009116236A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
WO2009116236A1 (en) Rocking gear device
KR100854517B1 (en) Wave gear device
JP5256249B2 (en) Bending gear system
WO2021015165A1 (en) Wave-motion gear device
JP2023184669A (en) gear unit
CN107664176B (en) Gear device
JP2019027519A (en) Wave gear device
JP2013100911A (en) Flexible meshing type gear device and method for determining tooth profile of flexible meshing type gear device
JP6921469B2 (en) Strain wave gearing with roller bearing wave generator
JP7267550B2 (en) gearbox
CN102691753A (en) Speed reducer, robot hand and robot
JP2020203363A5 (en)
JP2021092270A (en) Wave gear device
CN108496026A (en) Wave gear device and actuator
JP5139854B2 (en) Oscillating gear device, unit-type gear device including the same, and assembly method thereof
JP6710809B2 (en) Wave gear device and wave generator
JP2004044685A (en) Inscribed engagement planetary gear mechanism
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP2022030120A (en) Seal members and rotating equipment
TWI831988B (en) Flat strain wave gearing
JP2020085185A (en) Coupling device, speed reducer, wave gear speed reducer
JP2675854B2 (en) Wave gear wave generator
JP7103614B2 (en) Strain wave gearing
KR101251151B1 (en) Oscillating inner gearing reducer
JPH0519634Y2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607