JP2009215404A - Sheet-shaped thermally conductive molded product - Google Patents
Sheet-shaped thermally conductive molded product Download PDFInfo
- Publication number
- JP2009215404A JP2009215404A JP2008059626A JP2008059626A JP2009215404A JP 2009215404 A JP2009215404 A JP 2009215404A JP 2008059626 A JP2008059626 A JP 2008059626A JP 2008059626 A JP2008059626 A JP 2008059626A JP 2009215404 A JP2009215404 A JP 2009215404A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- pitch
- short fibers
- graphitized short
- based graphitized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 claims abstract description 160
- 229920005989 resin Polymers 0.000 claims abstract description 35
- 239000011347 resin Substances 0.000 claims abstract description 35
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 11
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 8
- 239000011295 pitch Substances 0.000 claims description 123
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 229910021389 graphene Inorganic materials 0.000 claims description 18
- 239000011302 mesophase pitch Substances 0.000 claims description 18
- 239000000945 filler Substances 0.000 claims description 12
- 238000001125 extrusion Methods 0.000 claims description 11
- 239000002994 raw material Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 description 44
- 229920000049 Carbon (fiber) Polymers 0.000 description 39
- 239000004917 carbon fiber Substances 0.000 description 39
- 229920001577 copolymer Polymers 0.000 description 24
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 23
- 238000005087 graphitization Methods 0.000 description 19
- 238000011282 treatment Methods 0.000 description 19
- 230000008569 process Effects 0.000 description 16
- 238000010298 pulverizing process Methods 0.000 description 15
- 239000000155 melt Substances 0.000 description 14
- -1 polycyclic hydrocarbon compounds Chemical class 0.000 description 14
- 239000002131 composite material Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 10
- 239000002243 precursor Substances 0.000 description 10
- 238000009987 spinning Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229920002239 polyacrylonitrile Polymers 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 238000004513 sizing Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 229920001296 polysiloxane Polymers 0.000 description 5
- 229920002050 silicone resin Polymers 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 238000010008 shearing Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000003063 flame retardant Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001955 polyphenylene ether Polymers 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000011231 conductive filler Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- 239000012767 functional filler Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- JXOOCQBAIRXOGG-UHFFFAOYSA-N [B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[Al] Chemical compound [B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[B].[Al] JXOOCQBAIRXOGG-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000011336 carbonized pitch Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229920006305 unsaturated polyester Polymers 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ピッチ系黒鉛化短繊維を含むシート状熱伝導性成形体に関わるものである。さらに詳しくは、熱伝導成形体中のピッチ系黒鉛化短繊維の面内方向に並んだ数と厚み方向に並んだ数の比を制御した熱伝導性成形体であり、電子部品の放熱部材や熱交換器に好適に使用される。 The present invention relates to a sheet-like thermally conductive molded article containing pitch-based graphitized short fibers. More specifically, it is a thermally conductive molded body in which the ratio of the number of pitch-based graphitized short fibers arranged in the in-plane direction and the number arranged in the thickness direction in the thermally conductive molded body is controlled. It is suitably used for a heat exchanger.
高性能の炭素繊維はポリアクリロニトリル(PAN)を原料とするPAN系炭素繊維と、一連のピッチ類を原料とするピッチ系炭素繊維に分類できる。そして炭素繊維は強度・弾性率が通常の合成高分子に比較して著しく高いという特徴を利用し、航空・宇宙用途、建築・土木用途、産業用ロボット、スポーツ・レジャー用途など広く用いられている。また、PAN系炭素繊維は、主として、その強度を利用する分野に、そしてピッチ系炭素繊維は、弾性率を利用する分野に用いられることが多い。 High-performance carbon fibers can be classified into PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from a series of pitches. Carbon fiber is widely used for aerospace applications, construction / civil engineering applications, industrial robots, sports / leisure applications, etc., taking advantage of its significantly higher strength and elastic modulus than ordinary synthetic polymers. . In addition, PAN-based carbon fibers are often used mainly in the field of utilizing the strength, and pitch-based carbon fibers are used in the field of utilizing the elastic modulus.
近年、省エネルギーに代表されるエネルギーの効率的使用方法が注目されている一方で、高速化されたCPUや電子回路のジュール熱による発熱が重篤な問題として認識されつつある。また、電子注入を発光原理とするエレクトロルミネッセンス素子においても同様に重篤な問題として顕在化している。一方、各種素子を形成するプロセスに目を向けると環境配慮型プロセスが求められており、その対策として鉛が添加されていない所謂鉛フリー半田への切り替えがなされている。鉛フリー半田は融点が通常の鉛含有半田に比較して高いため、プロセスの熱の効率的な使用が要求されている。そして、このような製品・プロセスが内包する熱に由来する問題を解決するためには、熱の効率的な処理(サーマルマネジメント)を達成する必要がある。 In recent years, an efficient method of using energy typified by energy saving has attracted attention, while heat generation due to Joule heat in a CPU and an electronic circuit that have been speeded up has been recognized as a serious problem. Similarly, an electroluminescent element that uses electron injection as a light emission principle is also manifesting as a serious problem. On the other hand, when considering the process of forming various elements, an environmentally conscious process is demanded, and as a countermeasure against this, switching to so-called lead-free solder to which lead is not added has been made. Since lead-free solder has a higher melting point than ordinary lead-containing solder, efficient use of process heat is required. And in order to solve the problem originating in the heat which such a product and process includes, it is necessary to achieve the efficient process (thermal management) of heat.
サーマルマネジメントを具現化するには、金属・金属酸化物・金属窒化物・金属酸窒化物・合金といった、熱伝導性の高い無機材料を用いることが多い。金属ダイカストは、その典型的な例と考えることができる。しかし、複雑な形状をした電気部品などの筐体を作製するには、上述した材料をフィラーとして何らかのマトリクスに混合した複合材として用いることが、費用対効果の面から望ましい。しかし、マトリクスに用いられることが多い合成樹脂の熱伝導率はフィラーの1/100程度以下であり、多量のフィラーを混合する必要がある。しかしながら、多量のフィラーの添加は、成形性の劣化を招き、実用性を損なってしまう。そのため、効率的に熱伝導性を発現でき、形状にまで配慮がなされた高熱伝導性フィラーが求められていた。 In order to realize thermal management, inorganic materials having high thermal conductivity such as metal, metal oxide, metal nitride, metal oxynitride, and alloy are often used. Metal die casting can be considered a typical example. However, in order to manufacture a housing such as an electric component having a complicated shape, it is desirable from the viewpoint of cost effectiveness to use the above-described material as a composite material mixed with some matrix as a filler. However, the thermal conductivity of the synthetic resin often used for the matrix is about 1/100 or less that of the filler, and a large amount of filler needs to be mixed. However, the addition of a large amount of filler causes deterioration of moldability and impairs practicality. Therefore, there has been a demand for a highly thermally conductive filler that can efficiently exhibit thermal conductivity and that takes into consideration its shape.
一般に炭素繊維は、他の合成高分子に比較して熱伝導率が高いと言われているが、サーマルマネジメント用途に向けた、さらなる熱伝導の向上が検討されている。ところが、市販されているPAN系炭素繊維の熱伝導率は通常200W/(m・K)よりも小さい。これは、PAN系炭素繊維が所謂難黒鉛化炭素繊維であり、熱伝導を担う黒鉛性を高めることが非常に困難なことに由来している。これに対して、ピッチ系炭素繊維は易黒鉛化炭素繊維と呼ばれ、PAN系炭素繊維に比べて、黒鉛性を高くすることができるため、高熱伝導率を達成しやすいと認識されている。よって、効率的に熱伝導性を発現できる形状にまで配慮がなされた高熱伝導性フィラーにできる可能性がある。 In general, carbon fibers are said to have higher thermal conductivity than other synthetic polymers, but further improvements in thermal conductivity are being studied for thermal management applications. However, the thermal conductivity of commercially available PAN-based carbon fibers is usually smaller than 200 W / (m · K). This is because the PAN-based carbon fiber is a so-called non-graphitizable carbon fiber, and it is very difficult to improve the graphitization property that bears heat conduction. On the other hand, pitch-based carbon fibers are called graphitizable carbon fibers, and can be made more graphitic than PAN-based carbon fibers, and are recognized to easily achieve high thermal conductivity. Therefore, there is a possibility that a highly thermally conductive filler in which consideration is given to a shape capable of efficiently expressing thermal conductivity can be obtained.
ただ、炭素繊維単体での熱伝導性部材への加工は困難であり、非常に特殊な手法を用いる必要がある。そこで、金属性フィラー等と同様に、何らかのマトリクスと炭素繊維を複合材化し、それを成形体化し、その成形体の熱伝導度を向上させることが求められる。
次にサーマルマネジメントに用いる成形体の特徴について考察する。一般的に炭素繊維を用いた成形体は、炭素繊維が成形体の面内方向に並びやすい傾向がある。炭素繊維は繊維軸方向の熱伝導が主体であるため、成形体の熱伝導は面内方向の方が厚み方向よりも優れる傾向にある。しかし、発熱体と放熱体の間に成形体を挟んで使用する場合は、面内の熱伝導をある程度維持しつつ、成形体の厚み方向の熱伝導が優れている事が好ましい。特許文献1、2、3には、炭素繊維を磁場を用いて成形体の厚み方向に並べているが、非常に高い磁場を印加するため、装置が高価になり、安全上の課題もある。また、ほとんど全ての炭素繊維が厚み方向に並ぶため、面内の熱伝導を維持するのが困難になる。
However, it is difficult to process a carbon fiber alone into a heat conductive member, and it is necessary to use a very special method. Therefore, like a metallic filler or the like, it is required to form a composite material of some matrix and carbon fiber, to form a molded body, and to improve the thermal conductivity of the molded body.
Next, the characteristics of the molded body used for thermal management are considered. In general, a molded body using carbon fibers tends to be easily aligned in the in-plane direction of the molded body. Since carbon fibers are mainly heat conductive in the fiber axis direction, the heat conductivity of the molded body tends to be superior in the in-plane direction than in the thickness direction. However, when the molded body is sandwiched between the heat generating body and the heat radiating body, it is preferable that the thermal conductivity in the thickness direction of the molded body is excellent while maintaining in-plane thermal conduction to some extent. In Patent Documents 1, 2, and 3, carbon fibers are arranged in the thickness direction of the molded body using a magnetic field. However, since a very high magnetic field is applied, the apparatus becomes expensive and there are safety issues. Moreover, since almost all the carbon fibers are arranged in the thickness direction, it is difficult to maintain in-plane heat conduction.
上記のように、炭素繊維、特にピッチ系炭素繊維の高熱伝導性という観点からサーマルマネジメント用途の開発が進みつつある。しかし、サーマルマネジメントの観点からは成形体としての熱伝導性が更に高くなっていることが必要とされている。中でも、面内にも膜厚方向にも適切な熱伝導性を有する熱伝導性成形体が強く望まれていた。 As described above, development of thermal management applications is progressing from the viewpoint of high thermal conductivity of carbon fibers, particularly pitch-based carbon fibers. However, from the viewpoint of thermal management, it is required that the thermal conductivity as a molded body is further increased. In particular, a thermally conductive molded body having appropriate thermal conductivity both in the plane and in the film thickness direction has been strongly desired.
本発明者らは、シート状成形体の特に厚み方向の熱伝導度を向上させることを鑑み、一つに炭素繊維の分散状態に着目し、その面内方向に並んでいる数と厚み方向に並んでいる数の割合がある範囲にある場合に、熱伝導性成形体の厚み方向の熱伝導性が著しく改善されることを見出し、優れた熱伝導性を持った熱伝導性成形体を得ることに到達した。 In view of improving the thermal conductivity in the thickness direction of the sheet-shaped molded body, the present inventors pay attention to the dispersion state of the carbon fiber, and in the number and thickness direction aligned in the in-plane direction. It is found that the thermal conductivity in the thickness direction of the thermally conductive molded body is remarkably improved when the ratio of the number in line is within a certain range, and a thermally conductive molded body having excellent thermal conductivity is obtained. I reached that.
本発明は、ピッチ系黒鉛化短繊維と熱可塑性樹脂及び/又は熱硬化性樹脂を含むシート状熱伝導性成形体であって、ピッチ系黒鉛化短繊維の該成形体の面内方向に並んでいる数(A)と、該成形体の厚み方向に並んでいる数(B)の比(B/A)が、0.5〜4であるシート状熱伝導性成形体である。 The present invention relates to a sheet-like thermally conductive molded body containing pitch-based graphitized short fibers and a thermoplastic resin and / or a thermosetting resin, and is arranged in the in-plane direction of the pitch-based graphitized short fibers. It is a sheet-like thermally conductive molded body in which the ratio (B / A) of the number (A) of the number and the number (B) arranged in the thickness direction of the molded body is 0.5-4.
更に本発明は、樹脂100重量部に対し、該ピッチ系黒鉛化短繊維が5〜300重量部含まれているシート状熱伝導性成形体、シート状熱伝導性成形体の原料となるピッチ系黒鉛化短繊維がメソフェーズピッチを原料とし、平均繊維径が2〜15μmであり、平均繊維径に対する繊維径分散の百分率(CV値)が5〜15であり、個数平均繊維長が20〜300μmであり、六角網面の成長方向に由来する結晶子サイズが30nm以上であり、透過型電子顕微鏡によるフィラー端面観察においてグラフェンシートが閉じており、走査型電子顕微鏡での観察表面が実質的に平坦であるシート状熱伝導性成形体である。 Furthermore, the present invention provides a sheet-like thermally conductive molded body containing 5 to 300 parts by weight of the pitch-based graphitized short fibers with respect to 100 parts by weight of the resin, and a pitch system as a raw material for the sheet-like thermally conductive molded body Graphitized short fibers are made from mesophase pitch, the average fiber diameter is 2 to 15 μm, the fiber diameter dispersion percentage (CV value) with respect to the average fiber diameter is 5 to 15, and the number average fiber length is 20 to 300 μm. Yes, the crystallite size derived from the growth direction of the hexagonal mesh surface is 30 nm or more, the graphene sheet is closed in the filler end face observation with the transmission electron microscope, and the observation surface with the scanning electron microscope is substantially flat It is a certain sheet-like thermally conductive molded body.
更には、ピッチ系黒鉛化短繊維を樹脂と混合して押出成形によりシート化した後、該シートを蛇腹状に折りたたみ、蛇腹の並んでいる方向の垂直方向からプレスし、シート化する事を特徴とするシート状熱伝導性成形体の製造方法、ピッチ系黒鉛化短繊維を樹脂と混合して押出成形によりシート化した後、該シートを短冊状に切断し積層した後、積層方向の垂直方向からプレスし、シート化する事を特徴とするシート状熱伝導性成形体の製造方法、ピッチ系黒鉛化短繊維を樹脂と混合して押出成形によりシート化した後、該シートをロール上に捲回した後プレスし、シート化する事を特徴とするシート状熱伝導性成形体の製造方法を含む。 Furthermore, after pitch-based graphitized short fibers are mixed with resin and formed into a sheet by extrusion, the sheet is folded into a bellows shape, and pressed from the direction perpendicular to the direction in which the bellows are lined up to form a sheet. A method for producing a sheet-like thermally conductive molded body, wherein pitch-based graphitized short fibers are mixed with a resin to form a sheet by extrusion molding, the sheet is cut into a strip shape and laminated, and then the direction perpendicular to the lamination direction A sheet-like thermally conductive molded product characterized in that it is pressed into a sheet, and pitch-based graphitized short fibers are mixed with a resin to form a sheet by extrusion, and then the sheet is placed on a roll. It includes a method for producing a sheet-like thermally conductive molded product, characterized in that it is pressed after being turned to form a sheet.
本発明のシート状熱伝導性成形体は、成形体中のピッチ系黒鉛化短繊維の面内方向に並んでいる数と厚み方向に並んでいる数の比を制御することで、厚み方向に高い熱伝導性が成形体中に発現することを可能にせしめている。 The sheet-like thermally conductive molded article of the present invention is controlled in the thickness direction by controlling the ratio of the number of pitch-based graphitized short fibers arranged in the in-plane direction and the number arranged in the thickness direction in the molded article. High thermal conductivity can be expressed in the molded body.
以下に、本発明の実施の形態について順次説明する。
本発明のシート状熱伝導性成形体は、成形体中のピッチ系黒鉛化短繊維の面内方向に並んでいる数(A)と厚み方向に並んでいる数(B)の比(B/A)が0.5〜4である。ピッチ系黒鉛化短繊維は繊維軸方向への熱伝導が主であるため、成形体中でピッチ系黒鉛化短繊維が並んだ方向の熱伝導性が高くなる。
Hereinafter, embodiments of the present invention will be sequentially described.
The sheet-like thermally conductive molded article of the present invention has a ratio of the number (A) arranged in the in-plane direction of pitch-based graphitized short fibers in the molded article to the number (B) arranged in the thickness direction (B / A) is 0.5-4. Since the pitch-based graphitized short fibers are mainly thermally conductive in the fiber axis direction, the thermal conductivity in the direction in which the pitch-based graphitized short fibers are arranged in the molded body is increased.
成形体中のピッチ系黒鉛化短繊維の面内方向に並んでいる数(A)と厚み方向に並んでいる数(B)の比(B/A)が0.5を下回ると、厚み方向に並ぶピッチ系黒鉛化短繊維が少なくなり、シート状熱伝導性成形体の厚み方向への熱伝導性が低下する。逆に、成形体中のピッチ系黒鉛化短繊維の面内方向に並んでいる数(A)と厚み方向に並んでいる数(B)の比(B/A)が4を超えると、ピッチ系黒鉛化短繊維の面内方向に並ぶ数が少なくなり、シート状熱伝導性成形体の面内方向への熱伝導性が低下する。好ましくは成形体中のピッチ系黒鉛化短繊維の面内方向に並んでいる数(A)と厚み方向に並んでいる数(B)の比(B/A)が0.8〜4倍である。シート状熱伝導性成形体中のピッチ系黒鉛化短繊維の数の測定法に特に限定は無いが、具体的にはシート状熱伝導性成形体の断面を走査型電子顕微鏡で観察し、視野中のピッチ系黒鉛化短繊維の面内方向に並んでいる数と、厚み方向に並んでいる数を数えることで測定できる。また、斜め方向に並んでいる場合は、ピッチ系黒鉛化短繊維が、面内方向に対して0〜30度にある時は0本、面内方向に対して30〜60度にある時は0.5本、面内方向に対して60〜90度にある時は1本として数える。 When the ratio (B / A) of the number (A) arranged in the in-plane direction of the pitch-based graphitized short fibers in the molded body and the number (B) arranged in the thickness direction is less than 0.5, the thickness direction Therefore, the number of pitch-based graphitized short fibers arranged in a line is reduced, and the thermal conductivity in the thickness direction of the sheet-like thermally conductive molded body is lowered. Conversely, when the ratio (B / A) of the number (A) arranged in the in-plane direction of the pitch-based graphitized short fibers in the molded body and the number (B) arranged in the thickness direction exceeds 4, the pitch The number of the graphitized short fibers arranged in the in-plane direction is reduced, and the thermal conductivity in the in-plane direction of the sheet-like thermally conductive molded body is lowered. Preferably, the ratio (B / A) of the number (A) arranged in the in-plane direction of the pitch-based graphitized short fibers in the compact and the number (B) arranged in the thickness direction is 0.8 to 4 times. is there. The method for measuring the number of pitch-based graphitized short fibers in the sheet-like thermally conductive molded body is not particularly limited. Specifically, the cross section of the sheet-like thermally conductive molded body is observed with a scanning electron microscope, and the field of view It can be measured by counting the number of pitch-based graphitized short fibers arranged in the in-plane direction and the number arranged in the thickness direction. When the pitch-based graphitized short fibers are arranged in an oblique direction, the number of pitch-based graphitized short fibers is 0 when the angle is 0 to 30 degrees with respect to the in-plane direction, and the angle is 30 to 60 degrees with respect to the in-plane direction. When it is 0.5 to 60 degrees with respect to the in-plane direction, it is counted as one.
シート状熱伝導性成形体中のピッチ系黒鉛化短繊維の面内方向に並んでいる数(A)と厚み方向に並んでいる数(B)の比(B/A)が繊維長と熱伝導性成形体の厚みの関係を制御する方法として、特に制限は無いが具体的には、ピッチ系黒鉛化短繊維を樹脂と混合して押出成形によりシート化した後、該シートを蛇腹状に折りたたみ、蛇腹の並んでいる方向の垂直方向からプレスし、シート化する方法、ピッチ系黒鉛化短繊維を樹脂と混合して押出成形によりシート化した後、該シートを短冊状に切断し積層した後、積層方向の垂直方向からプレスし、シート化する方法、ピッチ系黒鉛化短繊維を樹脂と混合して押出成形によりシート化した後、該シートをロール上に捲回した後プレスし、シート化する方法がある。 The ratio (B / A) of the number (A) arranged in the in-plane direction of the pitch-based graphitized short fibers in the sheet-like thermally conductive molded body and the number (B) arranged in the thickness direction is the fiber length and heat. The method for controlling the thickness relationship of the conductive molded body is not particularly limited. Specifically, after pitch-based graphitized short fibers are mixed with a resin to form a sheet by extrusion, the sheet is formed into a bellows shape. Folding, pressing from the vertical direction in which the bellows are aligned, forming a sheet, pitch-based graphitized short fibers are mixed with resin to form a sheet by extrusion, and then the sheet is cut into a strip shape and laminated Thereafter, the sheet is pressed from the direction perpendicular to the laminating direction and formed into a sheet. After pitch-based graphitized short fibers are mixed with a resin to form a sheet by extrusion, the sheet is wound on a roll and then pressed. There is a way to make it.
本発明のシート状熱伝導性成形体は、樹脂100重量部に対し、ピッチ系黒鉛化短繊維5〜300重量部含まれていることが好ましい。ピッチ系黒鉛化短繊維の含有量が5重量部以下だと、熱伝導材が少なく、熱伝導性が期待できない。逆にピッチ系黒鉛化短繊維の含有量が300重量部以上だと、ピッチ系黒鉛化短繊維を樹脂に分散させ、シート状成形体に加工するのが困難になりやすい。好ましくは10〜200重量部である。 The sheet-like thermally conductive molded body of the present invention preferably contains 5 to 300 parts by weight of pitch-based graphitized short fibers with respect to 100 parts by weight of the resin. When the content of the pitch-based graphitized short fibers is 5 parts by weight or less, the heat conductive material is small and heat conductivity cannot be expected. On the other hand, when the content of pitch-based graphitized short fibers is 300 parts by weight or more, it is difficult to disperse pitch-based graphitized short fibers in a resin and process into a sheet-like molded body. Preferably it is 10-200 weight part.
本発明のピッチ系黒鉛化短繊維は、光学顕微鏡で観測した平均繊維径(D1)が2〜15μmである事が好ましい。D1が2μmを下回る場合、樹脂と複合する際に当該短繊維の本数が多くなるため、樹脂/短繊維混合物の粘度が高くなり、成形が困難になる。逆にD1が15μmを超えると、樹脂と複合する際に短繊維の本数が少なくなるため、当該短繊維同士が接触しにくくなり、複合材とした時に効果的な熱伝導を発揮しにくくなる。D1の好ましい範囲は7〜13μmである。 The pitch-based graphitized short fibers of the present invention preferably have an average fiber diameter (D1) of 2 to 15 μm observed with an optical microscope. When D1 is less than 2 μm, the number of the short fibers increases when compounding with the resin, so that the viscosity of the resin / short fiber mixture becomes high and molding becomes difficult. On the other hand, when D1 exceeds 15 μm, the number of short fibers decreases when they are combined with the resin, so that the short fibers do not easily come into contact with each other, and it is difficult to exhibit effective heat conduction when used as a composite material. A preferable range of D1 is 7 to 13 μm.
本発明のピッチ系黒鉛化短繊維は、光学顕微鏡で観測したピッチ系黒鉛化短繊維における繊維径分散(S1)の平均繊維径(D1)に対する百分率(CV値)は3〜15が好ましい。CV値は繊維径のバラツキの指標であり、小さい程、工程安定性が高く、製品のバラツキが小さいことを意味している。CV値が3より小さい時、繊維径が極めて揃っているため、ピッチ系黒鉛化短繊維の間隙に入るサイズの小さな短繊維の量が少なくなり、樹脂と複合する際により密な充填状態を形成するのが困難になり、結果として高性能の複合材を得にくくなることがある。逆にCV値が15より大きい場合、樹脂と複合する際に、分散性が悪くなり、均一な性能を有する複合材を得ることが困難になることがある。CV値は好ましくは、5〜13である。CV値は、紡糸時の溶融メソフェーズピッチの粘度を調節すること、具体的には、メルトブロー法にて紡糸する際は、紡糸時のノズル孔での溶融粘度を5.0〜25.0Pa・Sに調整する事で実現できる。 In the pitch-based graphitized short fibers of the present invention, the percentage (CV value) of the fiber diameter dispersion (S1) to the average fiber diameter (D1) in the pitch-based graphitized short fibers observed with an optical microscope is preferably 3-15. The CV value is an index of fiber diameter variation, and the smaller the value, the higher the process stability and the smaller the product variation. When the CV value is less than 3, the fiber diameters are very uniform, so the amount of small fibers with a small size entering the gaps between pitch-based graphitized short fibers is reduced, and a denser packing state is formed when compounded with resin. It can be difficult to achieve and, as a result, it can be difficult to obtain high performance composites. On the other hand, when the CV value is larger than 15, the dispersibility is deteriorated when compounding with the resin, and it may be difficult to obtain a composite material having uniform performance. The CV value is preferably 5-13. The CV value is adjusted by adjusting the viscosity of the melted mesophase pitch at the time of spinning. Specifically, when spinning by the melt blow method, the melt viscosity at the nozzle hole at the time of spinning is 5.0-25.0 Pa · S. It can be realized by adjusting to.
ピッチ系黒鉛化短繊維は、一般的には平均繊維長1mm未満からなるミルドファイバーと平均繊維長1mm以上10mm未満からなるカットファイバーの2種類がある。ミルドファイバーの外観は粉状のため分散性に優れ、カットファイバーの外観は繊維状に近いため、繊維同士の接触が得られやすい特徴がある。 There are generally two types of pitch-based graphitized short fibers: milled fibers having an average fiber length of less than 1 mm and cut fibers having an average fiber length of 1 mm or more and less than 10 mm. Since the appearance of the milled fiber is powdery, it is excellent in dispersibility, and the appearance of the cut fiber is close to the fiber shape.
本発明のピッチ系黒鉛化短繊維はミルドファイバーに該当し、その平均繊維長(L1)は、20〜300μmであることが好ましい。ここで、平均繊維長は個数平均繊維長とし、光学顕微鏡下で測長器を用い、複数の視野において所定本数を測定し、その平均値から求めることができる。L1が20μmより小さい場合、当該短繊維同士が接触しにくくなり、効果的な熱伝導が期待しにくくなる。逆に300μmより大きくなる場合、樹脂と混合する際にマトリックス/短繊維混合物の粘度が高くなり、成形性が低くなる傾向にある。より好ましくは、20〜250μmの範囲である。この様なピッチ系黒鉛化短繊維を得る手法として特に制限はないがミリングの条件、すなわちカッター等で粉砕する際の、カッターの回転速度、ボールミルの回転数、ジェットミルの気流速度、クラッシャーの衝突回数、ミリング装置中の滞留時間を調節することにより平均繊維長を制御することができる。また、ミリング後のピッチ系炭素短繊維から、篩等の分級操作を行って、短い繊維長または、長い繊維長のピッチ系炭素短繊維を除去することにより調整することができる。 The pitch-based graphitized short fibers of the present invention correspond to milled fibers, and the average fiber length (L1) is preferably 20 to 300 μm. Here, the average fiber length is a number average fiber length, and a predetermined number is measured in a plurality of fields of view using a length measuring device under an optical microscope, and can be obtained from the average value. When L1 is smaller than 20 μm, it becomes difficult for the short fibers to come into contact with each other, and it becomes difficult to expect effective heat conduction. On the other hand, when it is larger than 300 μm, the viscosity of the matrix / short fiber mixture tends to be high when mixing with the resin, and the moldability tends to be low. More preferably, it is the range of 20-250 micrometers. There is no particular limitation on the method for obtaining such pitch-based graphitized short fibers, but when milling with a cutter, etc., the rotation speed of the cutter, the rotation speed of the ball mill, the air velocity of the jet mill, the collision of the crusher The average fiber length can be controlled by adjusting the number of times and the residence time in the milling apparatus. Moreover, it can adjust by performing classification operation, such as a sieve, from pitch-type carbon short fiber after milling, and removing pitch-type carbon short fiber of short fiber length or long fiber length.
本発明のピッチ系黒鉛化短繊維は、黒鉛結晶からなり、六角網面の成長方向に由来する結晶子サイズが30nm以上であることが好ましい。結晶子サイズは六角網面の成長方向のいずれも、黒鉛化度に対応するものであり、熱物性を発現するためには、一定サイズ以上が必要である。六角網面の成長方向の結晶子サイズは、X線回折法で求める事ができる。測定手法は集中法とし、解析手法としては学振法が好適に用いられる。六角網面の成長方向の結晶子サイズは、(110)面からの回折線を用いて求めることができる。 The pitch-based graphitized short fibers of the present invention are preferably composed of graphite crystals, and the crystallite size derived from the growth direction of the hexagonal network surface is preferably 30 nm or more. The crystallite size corresponds to the degree of graphitization in any of the growth directions of the hexagonal network surface, and a certain size or more is necessary to exhibit thermophysical properties. The crystallite size in the growth direction of the hexagonal mesh surface can be obtained by an X-ray diffraction method. The measurement method is a concentration method, and the Gakushin method is preferably used as an analysis method. The crystallite size in the growth direction of the hexagonal mesh plane can be obtained using diffraction lines from the (110) plane.
本発明におけるピッチ系黒鉛化短繊維は、透過型電子顕微鏡による繊維末端観察において、グラフェンシートの端面が閉じていることが好ましい。グラフェンシートの端面が閉じている場合、余分な官能基の発生や、形状に起因する電子の局在化が起こり難い。このため、ピッチ系黒鉛化短繊維に活性点が生じず、シリコーン樹脂やエポキシ樹脂などの熱硬化性樹脂との混練で、触媒活性点の低下による硬化の抑制が可能となる。また、水などの吸着も低減でき、例えばポリエステルのような加水分解を伴う樹脂との混練においても、著しい湿熱耐久性能向上をもたらすことが出来る。50万〜400万倍に拡大した透過型電子顕微鏡による視野範囲で、グラフェンシートの端面は80%閉じている事が好ましい。80%以下であると余分な官能基の発生や、形状に起因する電子の局在化を引き起こし、他材料との反応を促進する可能性があるため好ましくない。グラフェンシート端面の閉鎖率は90%以上が好ましく、更には95%以上が更に好ましい。 In the pitch-based graphitized short fiber in the present invention, it is preferable that the end face of the graphene sheet is closed in the fiber end observation with a transmission electron microscope. When the end face of the graphene sheet is closed, generation of extra functional groups and localization of electrons due to the shape are difficult to occur. For this reason, active points do not occur in the pitch-based graphitized short fibers, and curing by reducing the catalytic active point can be suppressed by kneading with a thermosetting resin such as a silicone resin or an epoxy resin. Moreover, adsorption | suction of water etc. can also be reduced, for example, also in kneading | mixing with resin accompanying hydrolysis like polyester, the remarkable heat-and-heat durability performance improvement can be brought about. It is preferable that the end face of the graphene sheet is 80% closed within the field of view by a transmission electron microscope magnified 500,000 to 4,000,000 times. If it is 80% or less, generation of extra functional groups and localization of electrons due to the shape may be caused, and the reaction with other materials may be promoted. The closing rate of the graphene sheet end face is preferably 90% or more, and more preferably 95% or more.
グラフェンシート端面構造は、黒鉛化の前に粉砕を実施するか、黒鉛化の後に粉砕を実施するかにより、大きく異なる。すなわち、黒鉛化後に粉砕処理を行った場合、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になり易い。一方、黒鉛化前に粉砕処理を行った場合、黒鉛の成長過程でグラフェンシート端面がU字上に湾曲し、湾曲部分がピッチ系黒鉛化短繊維端部に露出した構造になり易い。このため、グラフェンシート端面閉鎖率が80%を超えるようなピッチ系黒鉛化短繊維を得るためには、粉砕を行った後に黒鉛化処理することが好ましい。 The graphene sheet end face structure varies greatly depending on whether pulverization is performed before graphitization or pulverization is performed after graphitization. That is, when a pulverization process is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face tends to be open. On the other hand, when the pulverization treatment is performed before graphitization, the graphene sheet end face is curved in a U-shape during the graphite growth process, and the curved portion is likely to be exposed at the pitch-based graphitized short fiber end. For this reason, in order to obtain a pitch-based graphitized short fiber having a graphene sheet end face closing rate exceeding 80%, it is preferable to perform graphitization after pulverization.
グラフェンシート端面構造は、黒鉛化の前に粉砕を実施するか、黒鉛化の後に粉砕を実施するかにより、大きく異なる。すなわち、黒鉛化後に粉砕処理を行った場合、黒鉛化で成長したグラフェンシートが切断破断され、グラフェンシート端面が開いた状態になり易い。一方、黒鉛化前に粉砕処理を行った場合、黒鉛の成長過程でグラフェンシート端面がU字上に湾曲し、湾曲部分がピッチ系黒鉛化短繊維端部に露出した構造になり易い。このため、グラフェンシート端面閉鎖率が80%を超えるようなピッチ系黒鉛化短繊維を得るためには、粉砕を行った後に黒鉛化処理することが好ましい。 The graphene sheet end face structure varies greatly depending on whether pulverization is performed before graphitization or pulverization is performed after graphitization. That is, when a pulverization process is performed after graphitization, the graphene sheet grown by graphitization is cut and broken, and the graphene sheet end face tends to be open. On the other hand, when the pulverization treatment is performed before graphitization, the graphene sheet end face is curved in a U-shape during the graphite growth process, and the curved portion is likely to be exposed at the pitch-based graphitized short fiber end. For this reason, in order to obtain a pitch-based graphitized short fiber having a graphene sheet end face closing rate exceeding 80%, it is preferable to perform graphitization after pulverization.
本発明のピッチ系黒鉛化短繊維は走査型電子顕微鏡での側面の観察表面が実質的に平坦であることを特徴とする。ここで、実質的に平坦であるとは、フィブリル構造のような激しい凹凸をピッチ系黒鉛化短繊維に有しないことを意味する。ピッチ系黒鉛化短繊維の表面に激しい凹凸のような欠陥が存在する場合には、マトリクス樹脂との混練に際して表面積の増大に伴う粘度の増大を引き起こし、成形性を悪化させる。よって、表面凹凸のような欠陥はできるだけ小さい状態が望ましい。より具体的には、走査型電子顕微鏡において1000倍で観察した像での観察視野に、凹凸のような欠陥が10箇所以下であることとする。この様なピッチ系黒鉛化短繊維を得る手法としては、ミリングを行った後に黒鉛化処理を実施することによって、好ましく得る事ができる。 The pitch-based graphitized short fiber of the present invention is characterized in that the side observation surface with a scanning electron microscope is substantially flat. Here, “substantially flat” means that the pitch-based graphitized short fibers do not have severe unevenness like a fibril structure. When defects such as severe irregularities are present on the surface of pitch-based graphitized short fibers, an increase in viscosity accompanying an increase in surface area is caused at the time of kneading with the matrix resin, and the moldability is deteriorated. Therefore, it is desirable that defects such as surface irregularities be as small as possible. More specifically, it is assumed that there are 10 or less defects such as irregularities in the observation visual field in an image observed at 1000 times with a scanning electron microscope. As a method for obtaining such pitch-based graphitized short fibers, it can be preferably obtained by performing graphitization after milling.
以下本発明のピッチ系炭素短繊維の好ましい製造法について述べる。
本発明で用いられるピッチ系炭素短繊維の原料としては、例えば、ナフタレンやフェナントレンといった縮合多環炭化水素化合物、石油系ピッチや石炭系ピッチといった縮合複素環化合物等が挙げられる。その中でもナフタレンやフェナントレンといった縮合多環炭化水素化合物が好ましく、特にメソフェーズピッチが好ましい。メソフェーズピッチのメソフェーズ率としては少なくとも90%以上、より好ましくは95%以上、更に好ましくは99%以上である。なお、メソフェーズピッチのメソフェーズ率は、溶融状態にあるピッチを偏光顕微鏡で観察することで確認出来る。
Hereinafter, a preferred method for producing the pitch-based carbon short fibers of the present invention will be described.
Examples of the raw material for pitch-based carbon short fibers used in the present invention include condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene, and condensed heterocyclic compounds such as petroleum-based pitch and coal-based pitch. Among these, condensed polycyclic hydrocarbon compounds such as naphthalene and phenanthrene are preferable, and mesophase pitch is particularly preferable. The mesophase ratio of the mesophase pitch is at least 90% or more, more preferably 95% or more, and further preferably 99% or more. The mesophase ratio of the mesophase pitch can be confirmed by observing the pitch in the molten state with a polarizing microscope.
更に、原料ピッチの軟化点としては、230℃以上340℃以下が好ましい。不融化処理は、軟化点よりも低温で処理する必要がある。このため、軟化点が230℃より低いと、少なくとも軟化点未満の低い温度で不融化処理する必要があり、結果として不融化に長時間を要するため好ましくない。一方、軟化点が340℃を超えると、紡糸に340℃を超える高温が必要となり、ピッチの熱分解を引き起こし、発生したガスで糸に気泡が発生するなどの問題を生じるため好ましくない。軟化点のより好ましい範囲は250℃以上320℃以下、更に好ましくは260℃以上310℃以下である。なお、原料ピッチの軟化点はメトラー法により求めることが出来る。原料ピッチは、二種以上を適宜組み合わせて用いてもよい。組み合わせる原料ピッチのメソフェーズ率は少なくとも90%以上であり、軟化点が230℃以上340℃以下であることが好ましい。 Furthermore, the softening point of the raw material pitch is preferably 230 ° C. or higher and 340 ° C. or lower. The infusibilization treatment needs to be performed at a temperature lower than the softening point. For this reason, when the softening point is lower than 230 ° C., it is necessary to perform the infusibilization treatment at a temperature at least lower than the softening point. On the other hand, if the softening point exceeds 340 ° C., a high temperature exceeding 340 ° C. is required for spinning, which causes thermal decomposition of the pitch and causes problems such as generation of bubbles in the yarn due to the generated gas. A more preferable range of the softening point is 250 ° C. or higher and 320 ° C. or lower, and more preferably 260 ° C. or higher and 310 ° C. or lower. The softening point of the raw material pitch can be obtained by the Mettler method. Two or more raw material pitches may be used in appropriate combination. The mesophase ratio of the raw material pitch to be combined is preferably at least 90% or more, and the softening point is preferably 230 ° C. or higher and 340 ° C. or lower.
メソフェーズピッチは溶融法により紡糸され、その後不融化、炭化、粉砕、黒鉛化によってピッチ系黒鉛化短繊維となる。場合によっては、粉砕の後、分級工程を入れることもある。 The mesophase pitch is spun by a melting method and then converted into pitch-based graphitized short fibers by infusibilization, carbonization, pulverization and graphitization. In some cases, a classification step may be added after the pulverization.
以下各工程の好ましい態様について説明する。
本発明における紡糸方法には、特に制限はないが、所謂溶融紡糸法を適応することができる。具体的には、口金から吐出したメソフェーズピッチをワインダーで引き取る通常の紡糸延伸法、熱風をアトマイジング源として用いるメルトブロー法、遠心力を利用してメソフェーズピッチを引き取る遠心紡糸法などが挙げられる。中でもピッチ系炭素繊維前駆体の形態の制御、生産性の高さなどの理由からメルトブロー法を用いることが望ましい。このため以下本発明におけるピッチ系黒鉛化短繊維の製造方法に関してはメルトブロー法について記載する。
Hereinafter, preferred embodiments of each step will be described.
The spinning method in the present invention is not particularly limited, but a so-called melt spinning method can be applied. Specific examples include a normal spinning drawing method in which a mesophase pitch discharged from a die is drawn with a winder, a melt blow method using hot air as an atomizing source, and a centrifugal spinning method in which a mesophase pitch is drawn using centrifugal force. Among these, it is desirable to use the melt blow method for reasons such as control of the form of the pitch-based carbon fiber precursor and high productivity. For this reason, the melt blow method will be described below for the method for producing pitch-based graphitized short fibers in the present invention.
本発明では、ピッチ系炭素繊維前駆体を形成する紡糸ノズルの形状はどのようなものであっても良い。通常真円状のものが使用されるが、適時楕円などの異型形状のノズルを用いても何ら問題ない。ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)としては、2〜20の範囲が好ましい。LN/DNが20を超えると、ノズルを通過するメソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造が発現する。ラジアル構造の発現は、黒鉛化の過程で繊維断面に割れを生じさせることがあり、機械特性の低下を引き起こすことがあるため好ましくない。一方、LN/DNが2未満では、原料ピッチにせん断を付与することが出来ず、結果として黒鉛の配向が低いピッチ系炭素繊維前駆体となる。このため、黒鉛化しても黒鉛化度を十分に上げることが出来ず、熱伝導性を向上させ難く好ましくない。機械強度と熱伝導性の両立を達成するには、メソフェーズピッチに適度のせん断を付与する必要がある。このため、ノズル孔の長さ(LN)と孔径(DN)の比(LN/DN)は2〜20の範囲が好ましく、更には3〜12の範囲が特に好ましい。 In the present invention, the spinning nozzle forming the pitch-based carbon fiber precursor may have any shape. Normally, a perfect circle is used, but there is no problem even if a nozzle having an irregular shape such as an ellipse is used in a timely manner. The ratio of the nozzle hole length (LN) to the hole diameter (DN) (LN / DN) is preferably in the range of 2-20. When LN / DN exceeds 20, a strong shearing force is imparted to the mesophase pitch passing through the nozzle, and a radial structure appears in the fiber cross section. The expression of the radial structure is not preferable because it may cause a crack in the fiber cross-section during the graphitization process and may cause a decrease in mechanical properties. On the other hand, if LN / DN is less than 2, shearing cannot be imparted to the raw material pitch, resulting in a pitch-based carbon fiber precursor having a low orientation of graphite. For this reason, even when graphitized, the degree of graphitization cannot be sufficiently increased, and it is difficult to improve the thermal conductivity. In order to achieve both mechanical strength and thermal conductivity, it is necessary to apply appropriate shear to the mesophase pitch. For this reason, the ratio (LN / DN) of the nozzle hole length (LN) to the hole diameter (DN) is preferably in the range of 2 to 20, and more preferably in the range of 3 to 12.
紡糸時のノズルの温度、メソフェーズピッチがノズルを通過する際のせん断速度、ノズルからブローされる風量、風の温度等についても特に制約はなく、安定した紡糸状態が維持できる条件、即ち、メソフェーズピッチのノズル孔での溶融粘度が1〜100Pa・sの範囲にあれば良い。 There are no particular restrictions on the temperature of the nozzle during spinning, the shear rate when the mesophase pitch passes through the nozzle, the air volume blown from the nozzle, the temperature of the wind, etc. The melt viscosity at the nozzle hole may be in the range of 1 to 100 Pa · s.
ノズルを通過するメソフェーズピッチの溶融粘度が1Pa・s未満の場合、溶融粘度が低すぎて糸形状を維持することが出来ず好ましくない。一方、メソフェーズピッチの溶融粘度が100Pa・sを超える場合、メソフェーズピッチに強いせん断力が付与され、繊維断面にラジアル構造を形成するため好ましくない。メソフェーズピッチに付与するせん断力を適切な範囲にせしめ、かつ繊維形状を維持するためには、ノズルを通過するメソフェーズピッチの溶融粘度を制御する必要がある。このため、メソフェーズピッチの溶融粘度を1〜100Pa・sの範囲にするのが好ましく、更には3〜30Pa・sの範囲にすることが好ましく、5〜25Pa・sの範囲にすることが更に好ましい。 When the melt viscosity of the mesophase pitch passing through the nozzle is less than 1 Pa · s, the melt viscosity is too low to maintain the yarn shape, which is not preferable. On the other hand, when the melt viscosity of the mesophase pitch exceeds 100 Pa · s, a strong shearing force is applied to the mesophase pitch and a radial structure is formed in the fiber cross section, which is not preferable. In order to keep the shearing force applied to the mesophase pitch within an appropriate range and maintain the fiber shape, it is necessary to control the melt viscosity of the mesophase pitch passing through the nozzle. Therefore, the melt viscosity of the mesophase pitch is preferably in the range of 1 to 100 Pa · s, more preferably in the range of 3 to 30 Pa · s, and further preferably in the range of 5 to 25 Pa · s. .
本発明のピッチ系黒鉛化短繊維は、平均繊維径(D1)が2〜20μm以下であることを特徴とするが、ピッチ系黒鉛化短繊維の平均繊維径の制御は、ノズルの孔径を変更する、あるいはノズルからの原料ピッチの吐出量を変更する、あるいはドラフト比を変更することで調整可能である。ドラフト比の変更は、100〜400℃に加温された毎分100〜20000mの線速度のガスを細化点近傍に吹き付けることによって達成することができる。吹き付けるガスに特に制限は無いが、コストパフォーマンスと安全性の面から空気が望ましい。 The pitch-based graphitized short fibers of the present invention are characterized in that the average fiber diameter (D1) is 2 to 20 μm or less, but the control of the average fiber diameter of the pitch-based graphitized short fibers is to change the nozzle hole diameter. It can be adjusted by changing the discharge amount of the raw material pitch from the nozzle or changing the draft ratio. The draft ratio can be changed by blowing a gas having a linear velocity of 100 to 20000 m / minute heated to 100 to 400 ° C. in the vicinity of the thinning point. There is no particular restriction on the gas to be blown, but air is desirable from the viewpoint of cost performance and safety.
ピッチ系炭素繊維前駆体は、金網等のベルトに捕集されピッチ系炭素繊維前駆体ウェブとなる。その際、ベルト搬送速度により任意の目付量に調整できるが、必要に応じ、クロスラップ等の方法により積層させてもよい。ピッチ系炭素繊維前駆体ウェブの目付量は生産性及び工程安定性を考慮して、150〜1000g/m2が好ましい。 The pitch-based carbon fiber precursor is collected on a belt such as a wire mesh to form a pitch-based carbon fiber precursor web. At that time, the weight per unit area can be adjusted according to the belt conveyance speed, but if necessary, it may be laminated by a method such as cross wrapping. The basis weight of the pitch-based carbon fiber precursor web is preferably 150 to 1000 g / m 2 in consideration of productivity and process stability.
このようにして得られたピッチ系炭素繊維前駆体ウェブは、公知の方法で不融化処理し、ピッチ系不融化繊維ウェブにする。不融化は、空気、或いはオゾン、二酸化窒素、窒素、酸素、ヨウ素、臭素を空気に添加したガスを用いた酸化性雰囲気下で実施できるが、安全性、利便性を考慮すると空気中で実施することが望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すると連続処理が望ましい。不融化処理は150〜350℃の温度で、一定時間の熱処理を付与することで達成される。より好ましい温度範囲は、160〜340℃である。昇温速度は1〜10℃/分が好適に用いられ、連続処理の場合は任意の温度に設定した複数の反応室を順次通過させることで、上記昇温速度を達成できる。昇温速度のより好ましい範囲は、生産性及び工程安定性を考慮して、3〜9℃/分である。 The pitch-based carbon fiber precursor web thus obtained is infusibilized by a known method to form a pitch-based infusible fiber web. Infusibilization can be performed in air or in an oxidizing atmosphere using a gas in which ozone, nitrogen dioxide, nitrogen, oxygen, iodine, or bromine is added to air, but in consideration of safety and convenience, it is performed in air. It is desirable. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity. The infusibilization treatment is achieved by applying a heat treatment for a predetermined time at a temperature of 150 to 350 ° C. A more preferable temperature range is 160 to 340 ° C. A heating rate of 1 to 10 ° C./min is preferably used. In the case of continuous treatment, the above heating rate can be achieved by sequentially passing through a plurality of reaction chambers set at arbitrary temperatures. A more preferable range of the heating rate is 3 to 9 ° C./min in consideration of productivity and process stability.
ピッチ系不融化繊維ウェブは、600〜2000℃の温度で、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気中で炭化処理され、ピッチ系炭素繊維ウェブになる。炭化処理は、コスト面を考慮して、常圧かつ窒素雰囲気下での処理が望ましい。また、バッチ処理、連続処理のどちらでも処理可能であるが、生産性を考慮すれば連続処理が望ましい。 The pitch-based infusible fiber web is carbonized at a temperature of 600 to 2000 ° C. in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, or krypton, to become a pitch-based carbon fiber web. . Carbonization treatment is preferably performed at normal pressure and in a nitrogen atmosphere in consideration of cost. Further, both batch processing and continuous processing can be performed, but continuous processing is desirable in consideration of productivity.
炭化処理されたピッチ系炭素繊維ウェブは、所望の繊維長にするために、切断、破砕・粉砕等の処理が実施される。また、場合によっては、分級処理が実施される。処理方式は所望の繊維長に応じて選定されるが、切断にはギロチン式、1軸、2軸及び多軸回転式等のカッターが好適に使用され、破砕、粉砕には衝撃作用を利用したハンマ式、ピン式、ボール式、ビーズ式及びロッド式、粒子同士の衝突を利用した高速回転式、圧縮・引裂き作用を利用したロール式、コーン式及びスクリュー式等の破砕機・粉砕機等が好適に使用される。所望の繊維長を得るために、切断と破砕・粉砕を多種複数機で構成してもよい。処理雰囲気は湿式、乾式のどちらでもよい。分級処理には、振動篩い式、遠心分離式、慣性力式、濾過式等の分級装置等が好適に使用される。所望の繊維長は、機種選定のみならず、ロータ・回転刃等の回転数、供給量、刃間クリアランス、系内滞留時間等を制御することによっても得ることができる。また、分級処理を用いる場合には、所望の繊維長は篩い網孔径等を調整することによっても得ることができる。 The carbonized pitch-based carbon fiber web is subjected to processing such as cutting, crushing and pulverization in order to obtain a desired fiber length. In some cases, classification processing is performed. The treatment method is selected according to the desired fiber length, but a guillotine type, one-axis, two-axis, and multi-axis rotary type cutters are preferably used for cutting, and an impact action is used for crushing and crushing. Hammer type, pin type, ball type, bead type and rod type, high speed rotation type using collision of particles, roll type using compression / tearing action, cone type and screw type etc. Preferably used. In order to obtain a desired fiber length, cutting, crushing and pulverization may be configured by a plurality of machines. The treatment atmosphere may be either wet or dry. For the classification treatment, a classification device such as a vibration sieve type, a centrifugal separation type, an inertial force type, and a filtration type is preferably used. The desired fiber length can be obtained not only by selecting a model, but also by controlling the number of revolutions of the rotor / rotating blade, supply amount, clearance between blades, residence time in the system, and the like. Moreover, when using a classification process, desired fiber length can be obtained also by adjusting a sieve mesh hole diameter.
上記の切断、破砕・粉砕処理、場合によっては分級処理を併用して作成したピッチ系炭素短繊維は、2000〜3500℃に加熱し黒鉛化して最終的なピッチ系黒鉛化短繊維とする。黒鉛化は、アチソン炉、電気炉等にて実施され、真空中、或いは窒素、アルゴン、クリプトン等の不活性ガスを用いた非酸化性雰囲気下等で実施される。 The pitch-based carbon short fibers prepared by using the above-described cutting, crushing / pulverizing treatment, and, in some cases, classification treatment, are heated to 2000-3500 ° C. and graphitized to obtain the final pitch-based graphitized short fibers. Graphitization is performed in an Atchison furnace, an electric furnace, or the like, and is performed in a vacuum or in a non-oxidizing atmosphere using an inert gas such as nitrogen, argon, or krypton.
本発明においてピッチ系黒鉛化短繊維は、マトリックスの親和性をより高め、成形性の向上や複合材とした時の機械強度の向上を目的として、表面処理やサイジング処理をしても良い。また、必要に応じて表面処理した後にサイジング処理をしても良い。表面処理の方法として特に限定は無いが、具体的には、電着処理、めっき処理、オゾン処理、プラズマ処理、酸処理などが挙げられる。サイジング処理に用いるサイジング剤に特に限定は無いが、具体的にはエポキシ化合物、水溶性ポリアミド化合物、飽和ポリエステル、不飽和ポリエステル、酢酸ビニル、水、アルコール、グリコールを単独又はこれらの混合物で用いることができる。サイジング剤はフィラーに対し0.01〜10重量%、付着させても良い。しかし、サイジング剤付着ピッチ系炭素繊維フィラーは活性点を持つ可能性もあることから、サイジング処理は極力少ない事が好ましい。好ましい付着量は0.1〜2.5重量%である。サイジング剤の種類や使用量は、目的や複合させるマトリックスを考慮して用いるのが望ましい。 In the present invention, the pitch-based graphitized short fibers may be subjected to a surface treatment or a sizing treatment for the purpose of further improving the affinity of the matrix, improving the moldability, and improving the mechanical strength when used as a composite material. Further, sizing treatment may be performed after surface treatment as necessary. The surface treatment method is not particularly limited, and specific examples include electrodeposition treatment, plating treatment, ozone treatment, plasma treatment, and acid treatment. There is no particular limitation on the sizing agent used for the sizing treatment, but specifically, an epoxy compound, a water-soluble polyamide compound, a saturated polyester, an unsaturated polyester, vinyl acetate, water, alcohol, glycol may be used alone or in a mixture thereof. it can. The sizing agent may be attached in an amount of 0.01 to 10% by weight based on the filler. However, since the sizing agent-attached pitch-based carbon fiber filler may have active sites, it is preferable that the sizing treatment is as little as possible. A preferable adhesion amount is 0.1 to 2.5% by weight. It is desirable to use the sizing agent in consideration of the purpose and the matrix to be combined.
樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれか一つ以上を含有し、さらに複合成形体に所望の物性を発現させるために熱可塑性樹脂と熱硬化性樹脂を適宜混合して用いることもできる。 The resin contains any one or more of a thermoplastic resin and a thermosetting resin, and a thermoplastic resin and a thermosetting resin may be appropriately mixed and used in order to develop desired physical properties in the composite molded body. it can.
マトリクスに用いることができる熱可塑性樹脂としてポリオレフィン類及びその共重合体(ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体等のエチレン−α−オレフィン共重合体など)、ポリメタクリル酸類及びその共重合体(ポリメタクリル酸メチル等のポリメタクリル酸エステルなど)、ポリアクリル酸類及びその共重合体、ポリアセタール類及びその共重合体、フッ素樹脂類及びその共重合体(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリエステル類及びその共重合体(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6ナフタレート、液晶性ポリマーなど)、ポリスチレン類及びその共重合体(スチレン−アクリロニトリル共重合体、ABS樹脂など)、ポリアクリロニトリル類及びその共重合体、ポリフェニレンエーテル(PPE)類及びその共重合体(変性PPE樹脂なども含む)、脂肪族ポリアミド類及びその共重合体、芳香族ポリアミド類及びその共重合体、ポリイミド類及びその共重合体、ポリアミドイミド類及びその共重合体、ポリカーボネート類及びその共重合体、ポリフェニレンスルフィド類及びその共重合体、ポリサルホン類及びその共重合体、ポリエーテルサルホン類及びその共重合体、ポリエーテルニトリル類及びその共重合体、ポリエーテルケトン類及びその共重合体、ポリエーテルエーテルケトン類及びその共重合体、ポリケトン類及びその共重合体、エラストマー、液晶性ポリマー、シリコーンオイル等が挙げられる。これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。また、これらの熱可塑性樹脂に難燃剤等の添加剤や他の機能性フィラーなどが混入していても良い。 Polyolefins and their copolymers (polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, ethylene-vinyl acetate copolymer, ethylene as thermoplastic resins that can be used in the matrix -Ethylene-α-olefin copolymer such as propylene copolymer), polymethacrylic acid and its copolymer (polymethacrylic acid ester such as polymethyl methacrylate), polyacrylic acid and its copolymer, polyacetal And copolymers thereof, fluororesins and copolymers thereof (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyesters and copolymers thereof (polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6 naphtha) Liquid crystal polymers), polystyrenes and copolymers thereof (styrene-acrylonitrile copolymers, ABS resins, etc.), polyacrylonitriles and copolymers thereof, polyphenylene ethers (PPE) and copolymers thereof ( Modified PPE resins), aliphatic polyamides and copolymers thereof, aromatic polyamides and copolymers thereof, polyimides and copolymers thereof, polyamideimides and copolymers thereof, polycarbonates and copolymers thereof Polymers, polyphenylene sulfides and copolymers thereof, polysulfones and copolymers thereof, polyether sulfones and copolymers thereof, polyether nitriles and copolymers thereof, polyether ketones and copolymers thereof , Polyether ether ketones and copolymers thereof, polyketones and And copolymers, elastomers, liquid crystalline polymers, silicone oils, and the like. One of these may be used alone, or two or more may be used in appropriate combination. Moreover, an additive such as a flame retardant or other functional filler may be mixed in these thermoplastic resins.
また、熱硬化性樹脂としては、エポキシ類、アクリル類、ウレタン類、シリコーン類、フェノール類、イミド類、熱硬化型変性PPE類、および熱硬化型PPE類、ポリブタジエン系ゴム及びその共重合体、アクリル系ゴム及びその共重合体、シリコーン系ゴム及びその共重合体、天然ゴムなどが挙げられ、これらから一種を単独で用いても、二種以上を適宜組み合わせて用いても良い。また、これらの熱硬化性樹脂に難燃剤等の添加剤や機能性フィラーなどが混入していても良い。 Examples of the thermosetting resin include epoxies, acrylics, urethanes, silicones, phenols, imides, thermosetting modified PPEs, thermosetting PPEs, polybutadiene rubbers and copolymers thereof, Examples thereof include acrylic rubber and copolymers thereof, silicone rubber and copolymers thereof, natural rubber, and the like. One of these may be used alone, or two or more may be used in appropriate combination. Further, an additive such as a flame retardant or a functional filler may be mixed in these thermosetting resins.
本発明の組成物は、ピッチ系黒鉛化短繊維と樹脂とを混合して作製するが、混合の際には、ニーダー、各種ミキサー、ブレンダー、ロール、押出機、ミリング機、自公転式の撹拌機などの混合装置又は混練装置が好適に用いられる。そして、シート状成形体は、ロールによる押し出しや、ダイによる押し出しなど押出成形法にて、成形することが可能である。成形条件は、成形手法とマトリクスに依存し、熱可塑性樹脂の場合は、当該樹脂の溶融粘度より温度を上げた状態で成形を実施する。マトリクスが熱硬化性樹脂の場合は、適切な型において、当該樹脂の硬化温度を付与するといった方法を挙げることができる。 The composition of the present invention is prepared by mixing pitch-based graphitized short fibers and a resin. During mixing, kneaders, various mixers, blenders, rolls, extruders, milling machines, self-revolving stirring A mixing device such as a machine or a kneading device is preferably used. And a sheet-like molded object can be shape | molded by extrusion molding methods, such as extrusion by a roll and extrusion by die | dye. The molding conditions depend on the molding method and the matrix. In the case of a thermoplastic resin, the molding is performed in a state where the temperature is higher than the melt viscosity of the resin. In the case where the matrix is a thermosetting resin, a method of applying a curing temperature of the resin in an appropriate mold can be exemplified.
本発明の組成物の熱伝導率をより高めるためには、ピッチ系黒鉛化短繊維以外のフィラーを必要に応じて添加してもよい。具体的には、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化亜鉛、などの金属酸化物、水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物、窒化ホウ素、窒化アルミニウムなどの金属窒化物、酸化窒化アルミニウムなどの金属酸窒化物、炭化珪素などの金属炭化物、金、銀、銅、アルミニウムなどの金属もしくは金属合金、天然黒鉛、人造黒鉛、膨張黒鉛、ダイヤモンドなどの炭素材料などが挙げられる。これらを機能に応じて適宜添加してもよい。また、2種類以上併用することも可能である。 In order to further increase the thermal conductivity of the composition of the present invention, fillers other than pitch-based graphitized short fibers may be added as necessary. Specifically, metal oxides such as aluminum oxide, magnesium oxide, silicon oxide, and zinc oxide, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, metal nitrides such as boron nitride and aluminum nitride, oxynitride Examples thereof include metal oxynitrides such as aluminum, metal carbides such as silicon carbide, metals or metal alloys such as gold, silver, copper, and aluminum, and carbon materials such as natural graphite, artificial graphite, expanded graphite, and diamond. You may add these suitably according to a function. Two or more types can be used in combination.
さらに、成形性、機械物性などのその他特性をより高めるために、ガラス繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼化アルミニウムウィスカ、窒化ホウ素ウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、アスベスト繊維、石膏繊維、金属繊維などの繊維状フィラーを必要な機能に応じて適宜添加してもよい。これらを2種類以上併用することも可能である。ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスビーズ、ガラスフレーク及びセラミックビーズなどの非繊維状フィラーも必要に応じて適宜添加することが可能である。これらは中空であってもよく、さらにはこれらを2種類以上併用することも可能である。ただ、上記化合物は、密度がピッチ系黒鉛化短繊維より大きなものが多く、軽量化を目的とするときには、添加量や添加比率に気を配る必要がある。
また、必要に応じて他の添加剤を複数、組成物に添加しても構わない。他の添加剤としては離型剤、難燃剤、乳化剤、軟化剤、可塑剤、界面活性剤を挙げることができる。
Furthermore, glass fibers, potassium titanate whiskers, zinc oxide whiskers, aluminum boride whiskers, boron nitride whiskers, aramid fibers, alumina fibers, silicon carbide fibers, asbestos fibers are used to enhance other properties such as moldability and mechanical properties. Further, a fibrous filler such as gypsum fiber or metal fiber may be appropriately added depending on a required function. Two or more of these can be used in combination. Wollastonite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, alumina silicate and other silicates, calcium carbonate, magnesium carbonate, dolomite and other carbonates, calcium sulfate, barium sulfate, etc. Non-fibrous fillers such as sulfate, glass beads, glass flakes, and ceramic beads can be added as necessary. These may be hollow, and two or more of these may be used in combination. However, many of the above compounds have a density higher than that of pitch-based graphitized short fibers, and when the purpose is to reduce the weight, it is necessary to pay attention to the addition amount and addition ratio.
Moreover, you may add two or more other additives to a composition as needed. Examples of other additives include mold release agents, flame retardants, emulsifiers, softeners, plasticizers, and surfactants.
このようにして得られた炭素繊維複合成形体は、発熱体に貼付し用いることができる。より具体的に、成形体の用途について説明する。当該成形体は、電子機器等において半導体素子や電源、光源などの電子部品が発生する熱を効果的に外部へ放散させるための放熱部材、伝熱部材あるいはそれらの構成材料等として用いることができる。 The carbon fiber composite molded body obtained in this way can be used by being attached to a heating element. More specifically, the use of the molded body will be described. The molded body can be used as a heat radiating member, a heat transfer member, or a constituent material thereof for effectively radiating heat generated by electronic components such as a semiconductor element, a power source, and a light source in an electronic device or the like. .
以下に実施例を示すが、本発明はこれらに制限されるものではない。
なお、本実施例における各値は、以下の方法に従って求めた。
(1)ピッチ系黒鉛化短繊維の平均繊維径は、黒鉛化を経たピッチ系炭素繊維フィラーをJIS R7607に準じ、光学顕微鏡下でスケールを用いて60本測定し、その平均値から求めた。
(2)ピッチ系黒鉛化短繊維の個数平均繊維長は、黒鉛化を経たピッチ系炭素繊維フィラーを抜き取り、光学顕微鏡下で測長器で2000本(10視野、200本ずつ)測定し、その平均値から求めた。
(3)成形体中のピッチ系黒鉛化短繊維の面内方向と厚み方向の比は、成形体の断面を走査型電子顕微鏡で100倍の倍率で観察し、面内方向に並んでいる数と厚み方向に並んでいる数を数え、その比を求めた。
(4)ピッチ系黒鉛化短繊維の結晶子サイズは、X線回折に現れる(110)面からの反射を測定し、学振法にて求めた。
(5)ピッチ系黒鉛化短繊維の端面は、透過型電子顕微鏡で100万倍の倍率で観察し、400万倍に写真上で拡大し、グラフェンシートを確認した。
(6)ピッチ系黒鉛化短繊維の表面は走査型電子顕微鏡で1000倍の倍率で観察し、凹凸を確認した。
(7)シート状熱伝導性成形体の厚み方向の熱抵抗は、成形体の片面にヒーター(熱電対付)を設置し、反対側に熱電対を設置し、以下の式を用いて求めた。
熱抵抗=(T1−T2)/P(W/℃)
T1:ヒーター温度、T2:ヒーターと反対側の温度、P:ヒーター出力。
(8)シート状熱伝導性成形体の面内方向の熱伝導率は、ネッチ製LFA427で測定した。
Examples are shown below, but the present invention is not limited thereto.
In addition, each value in a present Example was calculated | required according to the following method.
(1) The average fiber diameter of pitch-based graphitized short fibers was determined from the average value of 60 pitch-based carbon fiber fillers that had been graphitized using a scale under an optical microscope in accordance with JIS R7607.
(2) The number-average fiber length of the pitch-based graphitized short fibers was measured by extracting 2000 pitched carbon fiber fillers (10 fields of view and 200 lines each) with an optical microscope under an optical microscope. Obtained from the average value.
(3) The ratio between the in-plane direction and the thickness direction of the pitch-based graphitized short fibers in the molded body is the number of cross sections of the molded body observed in a scanning electron microscope at a magnification of 100 times and aligned in the in-plane direction. And the number in the thickness direction was counted, and the ratio was obtained.
(4) The crystallite size of the pitch-based graphitized short fibers was determined by the Gakushin method by measuring the reflection from the (110) plane appearing in X-ray diffraction.
(5) The end face of the pitch-based graphitized short fiber was observed with a transmission electron microscope at a magnification of 1,000,000 times, magnified on a photograph at a magnification of 4 million times, and a graphene sheet was confirmed.
(6) The surface of the pitch-based graphitized short fiber was observed with a scanning electron microscope at a magnification of 1000 times, and irregularities were confirmed.
(7) The thermal resistance in the thickness direction of the sheet-like thermally conductive molded body was obtained using the following equation, with a heater (with thermocouple) installed on one side of the molded body and a thermocouple installed on the opposite side. .
Thermal resistance = (T1-T2) / P (W / ° C)
T1: Heater temperature, T2: Temperature opposite to the heater, P: Heater output.
(8) The thermal conductivity in the in-plane direction of the sheet-like thermally conductive molded body was measured with Letcha LFA427.
[実施例1]
縮合多環炭化水素化合物よりなるピッチを主原料とした。光学的異方性割合は100%、軟化点が283℃であった。直径0.2mmφの孔のキャップを使用し、スリットから加熱空気を毎分5500mの線速度で噴出させて、溶融ピッチを牽引して平均直径14.5μmのピッチ系短繊維を作製した。この時の紡糸温度は325℃であり、溶融粘度は18.5Pa・S(185poise)であった。紡出された繊維をベルト上に捕集してマットとし、さらにクロスラッピングで目付320g/m2のピッチ系炭素繊維前駆体からなるピッチ系炭素繊維前駆体ウェブとした。
このピッチ系炭素繊維前駆体ウェブを空気中で170℃から320℃まで平均昇温速度5℃/分で昇温して不融化、更に800℃で焼成を行った。このピッチ系炭素繊維ウェブをカッター(ターボ工業製)で800rpmで粉砕し、3000℃で黒鉛化した。
[Example 1]
A pitch made of a condensed polycyclic hydrocarbon compound was used as a main raw material. The optical anisotropy ratio was 100%, and the softening point was 283 ° C. Using a cap with a hole with a diameter of 0.2 mmφ, heated air was ejected from the slit at a linear velocity of 5500 m / min, and the melt pitch was pulled to produce pitch-based short fibers with an average diameter of 14.5 μm. The spinning temperature at this time was 325 ° C., and the melt viscosity was 18.5 Pa · S (185 poise). The spun fibers were collected on a belt to form a mat, and a pitch-based carbon fiber precursor web made of a pitch-based carbon fiber precursor having a basis weight of 320 g / m 2 by cross-wrapping.
The pitch-based carbon fiber precursor web was heated from 170 ° C. to 320 ° C. at an average heating rate of 5 ° C./min to be infusible, and further fired at 800 ° C. This pitch-based carbon fiber web was pulverized at 800 rpm with a cutter (manufactured by Turbo Kogyo) and graphitized at 3000 ° C.
ピッチ系黒鉛化短繊維の平均繊維径は9.8μm、平均繊維径に対する繊維径分散の比(CV値)は11%であった。個数平均繊維長は150μm、六角網面の成長方向に由来する結晶サイズは70nmであった。
ピッチ系黒鉛化短繊維の端面は透過型顕微鏡の観察によりグラフェンシートが閉じていることを確認した。また、表面は走査型電子顕微鏡の観察により、凹凸は1個であり実質的に平滑であった。
The average fiber diameter of the pitch-based graphitized short fibers was 9.8 μm, and the ratio of the fiber diameter dispersion to the average fiber diameter (CV value) was 11%. The number average fiber length was 150 μm, and the crystal size derived from the growth direction of the hexagonal network surface was 70 nm.
It was confirmed by observation with a transmission microscope that the graphene sheet was closed on the end face of the pitch-based graphitized short fiber. Moreover, the surface was substantially smooth with one unevenness | corrugation by observation with the scanning electron microscope.
ピッチ系黒鉛化短繊維220重量部と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)を100重量部とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、三本ロールで練り、ローラーで押し出し1mmの厚みに成形した。更に、これを蛇腹状に5mmの厚みに折りたたんだ後、真空プレス機(北川精機製)で、プレス加工し厚み1mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。
作成したシート状熱伝導性成形体中の面内方向のピッチ系黒鉛化短繊維と膜厚方向のピッチ系黒鉛化短繊維の比は1.9であった。厚み方向の熱抵抗は0.13W/℃、面内方向の熱伝導率は41W/m・Kであった。
220 parts by weight of pitch-based graphitized short fibers and 100 parts by weight of a two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) ARV310 ") was mixed for 3 minutes, then kneaded with three rolls, extruded with a roller, and formed into a thickness of 1 mm. Furthermore, after folding this in a bellows shape to a thickness of 5 mm, a vacuum press machine (manufactured by Kitagawa Seiki) is pressed to obtain a 1 mm-thick plate-shaped composite molded body, and cured at 130 ° C. for 2 hours. A sheet-like thermally conductive molded body was prepared.
The ratio of the pitch-based graphitized short fibers in the in-plane direction to the pitch-based graphitized short fibers in the film thickness direction in the prepared sheet-like thermally conductive molded body was 1.9. The thermal resistance in the thickness direction was 0.13 W / ° C., and the thermal conductivity in the in-plane direction was 41 W / m · K.
[実施例2]
実施例1と同様の手法でピッチ系黒鉛化短繊維を作製した。
ピッチ系黒鉛化短繊維220重量部と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)を100重量部とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、三本ロールで練り、ローラーで押し出し1mmの厚みに成形した。更に、3mmに短冊状に切断してこれを並べた後、真空プレス機(北川精機製)で、プレス加工し厚み1mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。
作成したシート状熱伝導性成形体中の面内方向のピッチ系黒鉛化短繊維と膜厚方向のピッチ系黒鉛化短繊維の比は2.4であった。厚み方向の熱抵抗は0.11W/℃、面内方向の熱伝導率は38W/m・Kであった。
[Example 2]
Pitch-based graphitized short fibers were produced in the same manner as in Example 1.
220 parts by weight of pitch-based graphitized short fibers and 100 parts by weight of a two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) ARV310 ") was mixed for 3 minutes, then kneaded with three rolls, extruded with a roller, and formed into a thickness of 1 mm. Furthermore, after cutting into 3 mm strips and arranging them, they were pressed with a vacuum press (made by Kitagawa Seiki) to obtain a 1 mm-thick plate-shaped composite molded body and cured at 130 ° C. for 2 hours. A sheet-like thermally conductive molded body was prepared.
The ratio of the pitch-based graphitized short fibers in the in-plane direction to the pitch-based graphitized short fibers in the film thickness direction in the prepared sheet-like thermally conductive molded body was 2.4. The thermal resistance in the thickness direction was 0.11 W / ° C., and the thermal conductivity in the in-plane direction was 38 W / m · K.
[実施例3]
実施例1と同様の手法でピッチ系黒鉛化短繊維を作製した。
ピッチ系黒鉛化短繊維220重量部と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)を100重量部とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、三本ロールで練り、ローラーで押し出し1mmの厚みに成形した。更に、直径5mmの棒に捲回させ、厚み5mmのロールにした後、真空プレス機(北川精機製)で、プレス加工し厚み1mmの平板状の複合成形体を得、130℃で2時間硬化することで、シート状熱伝導性成形体を作成した。
作成したシート状熱伝導性成形体中の面内方向のピッチ系黒鉛化短繊維と膜厚方向のピッチ系黒鉛化短繊維の比は0.9であった。厚み方向の熱抵抗は0.16W/℃、面内方向の熱伝導率は54W/m・Kであった。
[Example 3]
Pitch-based graphitized short fibers were produced in the same manner as in Example 1.
220 parts by weight of pitch-based graphitized short fibers and 100 parts by weight of a two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) ARV310 ") was mixed for 3 minutes, then kneaded with three rolls, extruded with a roller, and formed into a thickness of 1 mm. Further, after being wound on a 5 mm diameter rod to form a 5 mm thick roll, it was pressed with a vacuum press machine (manufactured by Kitagawa Seiki Co., Ltd.) to obtain a 1 mm thick flat plate-like composite molded body and cured at 130 ° C. for 2 hours. By doing so, the sheet-like heat conductive molded object was created.
The ratio of pitch-based graphitized short fibers in the in-plane direction to pitch-based graphitized short fibers in the film thickness direction in the prepared sheet-like thermally conductive molded body was 0.9. The thermal resistance in the thickness direction was 0.16 W / ° C., and the thermal conductivity in the in-plane direction was 54 W / m · K.
[比較例1]
実施例1と同様の手法でピッチ系黒鉛化短繊維を作製した。
ピッチ系黒鉛化短繊維220重量部と二液硬化性シリコーン系樹脂(東レダウシリコーン社製商品名「SE1740」)を100重量部とを自公転混合機(シンキー社製商品名「あわとり練太郎ARV310」)を用いて3分間混合した後、三本ロールで練り、ローラーで押し出し1mmの厚みに成形することで、シート状熱伝導性成形体を得た。
作成したシート状熱伝導性成形体中の面内方向のピッチ系黒鉛化短繊維と膜厚方向のピッチ系黒鉛化短繊維の比は0.05であった。厚み方向の熱抵抗は0.28W/℃、面内方向の熱伝導率は66W/m・Kであった。
[Comparative Example 1]
Pitch-based graphitized short fibers were produced in the same manner as in Example 1.
220 parts by weight of pitch-based graphitized short fibers and 100 parts by weight of a two-part curable silicone resin (trade name “SE1740” manufactured by Toray Dow Silicone Co., Ltd.) ARV310 ") was mixed for 3 minutes, then kneaded with three rolls, extruded with a roller and molded to a thickness of 1 mm to obtain a sheet-like thermally conductive molded body.
The ratio of the pitch-based graphitized short fibers in the in-plane direction to the pitch-based graphitized short fibers in the film thickness direction in the prepared sheet-like thermally conductive molded body was 0.05. The thermal resistance in the thickness direction was 0.28 W / ° C., and the thermal conductivity in the in-plane direction was 66 W / m · K.
本発明のシート状熱伝導性成形体は、シート状熱伝導性成形体中のピッチ系黒鉛化短繊維の面内方向に並んだ数と厚み方向に並んだ数の比を制御することで、厚み方向に高い熱伝導性が発現することを可能にせしめている。これにより、高い放熱特性が要求される場所に用いることが可能になり、サーマルマネージメントを確実なものとする。 By controlling the ratio of the number of pitch-based graphitized short fibers arranged in the in-plane direction and the number of arranged in the thickness direction in the sheet-like thermally conductive molded body of the present invention, It is possible to develop high thermal conductivity in the thickness direction. As a result, it can be used in places where high heat dissipation characteristics are required, and thermal management is ensured.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008059626A JP2009215404A (en) | 2008-03-10 | 2008-03-10 | Sheet-shaped thermally conductive molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008059626A JP2009215404A (en) | 2008-03-10 | 2008-03-10 | Sheet-shaped thermally conductive molded product |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009215404A true JP2009215404A (en) | 2009-09-24 |
Family
ID=41187600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008059626A Pending JP2009215404A (en) | 2008-03-10 | 2008-03-10 | Sheet-shaped thermally conductive molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009215404A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014010521A1 (en) * | 2012-07-07 | 2014-01-16 | デクセリアルズ株式会社 | Method for producing thermally conductive sheet |
WO2015002085A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
WO2015002084A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
WO2016068157A1 (en) * | 2014-10-31 | 2016-05-06 | デクセリアルズ株式会社 | Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device |
JP2016092407A (en) * | 2014-10-31 | 2016-05-23 | デクセリアルズ株式会社 | HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE |
WO2016104169A1 (en) * | 2014-12-25 | 2016-06-30 | デクセリアルズ株式会社 | Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device |
CN113353927A (en) * | 2021-07-14 | 2021-09-07 | 长沙新材料产业研究院有限公司 | Heat-conducting composite graphite film and preparation method thereof |
JP2022064580A (en) * | 2020-10-14 | 2022-04-26 | 矢崎総業株式会社 | Heat-conductive sheet, electronic apparatus and on-vehicle apparatus, and method for producing heat-conductive sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04166328A (en) * | 1990-10-30 | 1992-06-12 | Bando Chem Ind Ltd | Rubber structural body into which short fiber having anisotropy is filled |
JPH08174655A (en) * | 1994-12-21 | 1996-07-09 | Nippon Muki Co Ltd | Corrugated inorganic fiberboard and production thereof |
JP2005200676A (en) * | 2004-01-13 | 2005-07-28 | Shimane Pref Gov | Composite material and method for producing the same |
WO2006112516A1 (en) * | 2005-04-19 | 2006-10-26 | Teijin Limited | Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein |
-
2008
- 2008-03-10 JP JP2008059626A patent/JP2009215404A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04166328A (en) * | 1990-10-30 | 1992-06-12 | Bando Chem Ind Ltd | Rubber structural body into which short fiber having anisotropy is filled |
JPH08174655A (en) * | 1994-12-21 | 1996-07-09 | Nippon Muki Co Ltd | Corrugated inorganic fiberboard and production thereof |
JP2005200676A (en) * | 2004-01-13 | 2005-07-28 | Shimane Pref Gov | Composite material and method for producing the same |
WO2006112516A1 (en) * | 2005-04-19 | 2006-10-26 | Teijin Limited | Carbon fiber composite sheet, use of the same as heat transferring article, and sheet for pitch-based carbon fiber mat for use therein |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103748146B (en) * | 2012-07-07 | 2015-08-26 | 迪睿合电子材料有限公司 | The preparation method of heat conductive sheet |
WO2014010563A1 (en) * | 2012-07-07 | 2014-01-16 | デクセリアルズ株式会社 | Method for producing thermally conductive sheet |
JP2014031501A (en) * | 2012-07-07 | 2014-02-20 | Dexerials Corp | Method for manufacturing heat conductive sheet |
JP2014031502A (en) * | 2012-07-07 | 2014-02-20 | Dexerials Corp | Method for manufacturing heat conductive sheet |
CN103748146A (en) * | 2012-07-07 | 2014-04-23 | 迪睿合电子材料有限公司 | Method for producing thermally conductive sheet |
US10336929B2 (en) | 2012-07-07 | 2019-07-02 | Dexerials Corporation | Method of producing heat conductive sheet |
WO2014010521A1 (en) * | 2012-07-07 | 2014-01-16 | デクセリアルズ株式会社 | Method for producing thermally conductive sheet |
US9944840B2 (en) | 2012-07-07 | 2018-04-17 | Dexerials Corporation | Method of producing heat conductive sheet |
EP2871205A4 (en) * | 2012-07-07 | 2016-04-06 | Dexerials Corp | PROCESS FOR PRODUCING THERMO-CONDUCTIVE SHEET |
WO2015002084A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
CN105408996B (en) * | 2013-07-01 | 2017-08-08 | 迪睿合电子材料有限公司 | Manufacture method, thermally conductive sheet and the thermal component of thermally conductive sheet |
CN105408996A (en) * | 2013-07-01 | 2016-03-16 | 迪睿合电子材料有限公司 | Manufacturing method of heat conduction sheet, heat conduction sheet and heat dissipation component |
JP2015029075A (en) * | 2013-07-01 | 2015-02-12 | デクセリアルズ株式会社 | Method for manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
WO2015002085A1 (en) * | 2013-07-01 | 2015-01-08 | デクセリアルズ株式会社 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
CN105324844A (en) * | 2013-07-01 | 2016-02-10 | 迪睿合电子材料有限公司 | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
JP2015029076A (en) * | 2013-07-01 | 2015-02-12 | デクセリアルズ株式会社 | Manufacturing method of heat conductive sheet, heat conductive sheet, and heat radiation member |
US9536804B2 (en) | 2013-07-01 | 2017-01-03 | Dexerials Corporation | Method of manufacturing heat conductive sheet |
US9560791B2 (en) | 2013-07-01 | 2017-01-31 | Dexerials Corporation | Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member |
JP2016092407A (en) * | 2014-10-31 | 2016-05-23 | デクセリアルズ株式会社 | HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE |
US9922901B2 (en) | 2014-10-31 | 2018-03-20 | Dexerials Corporation | Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device |
WO2016068157A1 (en) * | 2014-10-31 | 2016-05-06 | デクセリアルズ株式会社 | Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device |
WO2016104169A1 (en) * | 2014-12-25 | 2016-06-30 | デクセリアルズ株式会社 | Method for producing heat-conductive sheet, heat-conductive sheet, and semiconductor device |
JP2022064580A (en) * | 2020-10-14 | 2022-04-26 | 矢崎総業株式会社 | Heat-conductive sheet, electronic apparatus and on-vehicle apparatus, and method for producing heat-conductive sheet |
JP7235708B2 (en) | 2020-10-14 | 2023-03-08 | 矢崎総業株式会社 | Method for manufacturing thermally conductive sheet |
CN113353927A (en) * | 2021-07-14 | 2021-09-07 | 长沙新材料产业研究院有限公司 | Heat-conducting composite graphite film and preparation method thereof |
CN113353927B (en) * | 2021-07-14 | 2022-07-29 | 长沙新材料产业研究院有限公司 | Heat-conducting composite graphite film and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4538502B2 (en) | Pitch-based carbon fiber, mat, and resin molded body containing them | |
JP2009179700A (en) | Thermally conductive powder coating composition | |
JP2009215404A (en) | Sheet-shaped thermally conductive molded product | |
JP2012171986A (en) | Thermally conductive composition | |
JP4891011B2 (en) | Carbon fiber assembly suitable for reinforcement and heat dissipation materials | |
JPWO2010087371A1 (en) | Graphitized short fiber and composition thereof | |
JP2007291267A (en) | Thermally conductive molding material and molded sheet using this | |
JP2009191392A (en) | Pitch-based carbon fiber filer and molded article using the same | |
JP2013007124A (en) | Pitch-based graphitized short fiber coated with polyamide imide | |
JP2010065123A (en) | Heat-conductive molding | |
WO2010024462A1 (en) | Pitch-derived graphitized short fiber and molded object obtained using same | |
JP2011037919A (en) | Thermally conductive bar-shaped resin compact | |
JP2009108424A (en) | Thermally conductive filler and molded product using the same | |
WO2011013840A1 (en) | Insulated pitch-based graphitized short fibers | |
JP2010056299A (en) | Method of producing thermally-conductive rubber sheet | |
JP2008248462A (en) | Pitch based carbon fiber filler and molded article using the same | |
JP2009108425A (en) | Carbon fiber and composite material using the same | |
JP5015490B2 (en) | Thermally conductive filler and composite molded body using the same | |
JP2008189867A (en) | Composite material of carbon fiber-reinforced thermoplastic resin | |
JP2009215403A (en) | Sheet-like heat-conductive molded body | |
JP2012082295A (en) | Thermally conductive composition | |
JP2009188172A (en) | Thermal diffusion sheet | |
JP4971958B2 (en) | Sheet-like thermally conductive molded body | |
JP2009030215A (en) | Carbon fiber and molded article using the same | |
JP2012077224A (en) | Thermally conductive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101220 |
|
RD02 | Notification of acceptance of power of attorney |
Effective date: 20110706 Free format text: JAPANESE INTERMEDIATE CODE: A7422 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20110706 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120306 |
|
A131 | Notification of reasons for refusal |
Effective date: 20120327 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120717 |