[go: up one dir, main page]

JP2009211928A - Carbon fiber paper and method of manufacturing the same - Google Patents

Carbon fiber paper and method of manufacturing the same Download PDF

Info

Publication number
JP2009211928A
JP2009211928A JP2008053488A JP2008053488A JP2009211928A JP 2009211928 A JP2009211928 A JP 2009211928A JP 2008053488 A JP2008053488 A JP 2008053488A JP 2008053488 A JP2008053488 A JP 2008053488A JP 2009211928 A JP2009211928 A JP 2009211928A
Authority
JP
Japan
Prior art keywords
fiber paper
carbon fiber
holes
thickness
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008053488A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tatsuta
浩之 龍田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2008053488A priority Critical patent/JP2009211928A/en
Priority to PCT/JP2009/053962 priority patent/WO2009110467A1/en
Publication of JP2009211928A publication Critical patent/JP2009211928A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber paper for a solid polymer electrolyte fuel cell gas diffusion layer having properties excellent in mass transfer and heat transfer. <P>SOLUTION: The carbon fiber paper 12 includes a plurality of pores whose average hole diameter formed in a gap of each fiber is 10 to 20 μm and non-through-holes 18 whose average hole diameter formed in concave from one face to another face is 50 to 500 μm. The depth of the non-through-holes 18 is 20 to 80% of the thickness of the carbon fiber paper 12, the number of the non-through-holes 18 per a unit area is 100 to 1,000/cm<SP>2</SP>and the thickness is 50 to 400 μm. Preferably, the carbon fiber paper 12 contains fibrous carbon and non-fibrous carbon, the ratio of the fibrous carbon in the carbon fiber paper is 20 mass% or larger, and the thickness is 50 to 400 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、繊維同士の間隙で形成される多数の微細な細孔と、前記細孔よりも大径で、一方の面から他方の面に向かって凹状に形成された非貫通孔を複数有する固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙及びその製造方法に関する。   The present invention has a large number of fine pores formed by gaps between fibers and a plurality of non-through holes that are larger in diameter than the pores and formed in a concave shape from one surface to the other surface. The present invention relates to a carbon fiber paper for a solid polymer electrolyte fuel cell gas diffusion layer and a method for producing the same.

炭素繊維紙は、炭素繊維織物と比較すると厚みや孔径が小さく、炭素繊維不織布と比較すると通気性や厚みに斑が少なく、シート内における物質移動、伝熱に優れた性質を有する。この性質を利用し、炭素繊維紙は、高分子電解質型燃料電池用ガス拡散層電極基材、プリント配線板用基材などに用いられる。   Carbon fiber paper is smaller in thickness and pore diameter than carbon fiber woven fabrics, has less unevenness in air permeability and thickness than carbon fiber nonwoven fabrics, and has excellent properties in mass transfer and heat transfer in the sheet. Utilizing this property, carbon fiber paper is used for a gas diffusion layer electrode substrate for polymer electrolyte fuel cells, a substrate for printed wiring boards, and the like.

しかし、ガス拡散層に炭素繊維紙の様な多孔質体を用いる場合、一方の高電流密度域及び高加湿条件下では、発電時に生成される水がガス拡散層に滞留することにより燃料ガスの供給が遮断され、発電が停止するという問題がある(フラッディング現象)。他方、低電流密度域及び低加湿条件下では、生成水量の減少により電解質膜が乾燥し、電池性能が低下する問題がある。   However, when a porous material such as carbon fiber paper is used for the gas diffusion layer, water generated during power generation stays in the gas diffusion layer under the high current density region and high humidification condition. There is a problem that supply is cut off and power generation stops (flooding phenomenon). On the other hand, under a low current density region and a low humidification condition, there is a problem that the electrolyte membrane is dried due to a decrease in the amount of generated water and the battery performance is lowered.

上記問題を解決するための方法として、繊維同士の間隙で形成される多数の微細な細孔に比較して開口径の大きな貫通孔又は貫通溝を、ガス拡散層又はガス拡散膜に形成する方法が提案されている(例えば、特許文献1〜4参照)。しかし、この方法では貫通孔又は貫通溝の存在により、機械的強度が低く、取扱性の面で不利となること、触媒層との接触抵抗が増大すること、更には、貫通孔部又は貫通溝部と、それ以外の部分とでガス透過性が異なり、特に低電流密度域では電解質膜の部分的な枯渇を生じさせるという問題がある。   As a method for solving the above problem, a method of forming a through-hole or a through-groove having a large opening diameter in a gas diffusion layer or a gas diffusion film as compared with a large number of fine pores formed by gaps between fibers Has been proposed (see, for example, Patent Documents 1 to 4). However, in this method, the presence of the through hole or the groove has a low mechanical strength, which is disadvantageous in terms of handleability, increases the contact resistance with the catalyst layer, and further, the through hole or the groove portion. There is a problem that gas permeability is different from other parts, and the electrolyte membrane is partially depleted particularly in a low current density region.

上記問題を解決するための別の方法として、カーボンペーパー等よりなる基材上に黒鉛粒子よりなるガス拡散膜を形成し、その膜の表面から裏面に凹部を形成する方法が提案されている(例えば、特許文献5参照)。しかし、この方法では黒鉛粒子よりなるガス拡散膜の通気性が悪く、特に高電流密度域ではフラッディング現象を充分に防ぐには問題がある。
特開2007−103241号公報 (特許請求の範囲) 特開2006−331786号公報 (特許請求の範囲) 特開2005−108820号公報 (特許請求の範囲) 特開2004−152584号公報 (特許請求の範囲) 特開2006−4787号公報 (特許請求の範囲)
As another method for solving the above problem, a method has been proposed in which a gas diffusion film made of graphite particles is formed on a substrate made of carbon paper or the like, and a recess is formed from the front surface to the back surface of the film ( For example, see Patent Document 5). However, in this method, the gas diffusion film made of graphite particles has poor air permeability, and there is a problem in sufficiently preventing the flooding phenomenon particularly in a high current density region.
JP 2007-103241 A (Claims) JP 2006-331786 A (Claims) Japanese Patent Laying-Open No. 2005-108820 (Claims) JP 2004-152584 A (Claims) JP 2006-4787 A (Claims)

本発明の目的とするところは、上記問題を解決した炭素繊維紙及びその製造方法を提供することにある。   An object of the present invention is to provide a carbon fiber paper and a method for producing the same that solve the above problems.

具体的には、高電流密度域及び高加湿条件から低電流密度域及び低加湿条件までの広範囲な電池反応において、水管理に優れ、電池反応を阻害することなく、更に、ガス拡散性が均一であり、触媒層との接触抵抗の増加を抑制した固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙及びその製造方法を提供することにある。   Specifically, in a wide range of battery reactions from high current density range and high humidification conditions to low current density range and low humidification conditions, water management is excellent, and the gas diffusivity is uniform without hindering the battery reaction. It is an object of the present invention to provide a carbon fiber paper for a solid polymer electrolyte fuel cell gas diffusion layer in which an increase in contact resistance with a catalyst layer is suppressed and a method for producing the same.

上記目的を達成するために、本発明者が鋭意検討した結果、炭素繊維織物に対して比較的小さな細孔を有する炭素繊維紙の一方の面から他方の面に向かって、所定の深さで炭素繊維紙の細孔よりも大きな孔径の非貫通孔を複数有する炭素繊維紙が固体高分子電解質型ガス拡散層として最適であることを見出した。   In order to achieve the above object, as a result of intensive studies by the present inventors, carbon fiber paper having relatively small pores with respect to the carbon fiber fabric has a predetermined depth from one surface to the other surface. It has been found that carbon fiber paper having a plurality of non-through holes having a larger pore diameter than the pores of carbon fiber paper is optimal as a solid polymer electrolyte type gas diffusion layer.

すなわち、上記目的を達成する本発明は、以下に記載のものである。   That is, the present invention that achieves the above object is as described below.

[1] 繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有する炭素繊維紙であって、非貫通孔の深さが炭素繊維紙の厚みの20〜80%であり、単位面積当りの非貫通孔の数が100〜1000個/cm2であり、厚みが50〜400μmである固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙。 [1] A pore having an average pore diameter of 10 to 20 μm formed by a gap between fibers and a non-through hole having an average pore diameter of 50 to 500 μm formed in a concave shape from one surface to the other surface. A plurality of carbon fiber papers, wherein the depth of the non-through holes is 20 to 80% of the thickness of the carbon fiber paper, the number of non-through holes per unit area is 100 to 1000 / cm 2 , and the thickness Carbon fiber paper for solid polymer electrolyte fuel cell gas diffusion layers having a thickness of 50 to 400 μm.

[2] 炭素繊維紙が、繊維状炭素と非繊維状炭素を含み、炭素繊維紙中の繊維状炭素の割合が20質量%以上である[1]に記載の炭素繊維紙。   [2] The carbon fiber paper according to [1], wherein the carbon fiber paper contains fibrous carbon and non-fibrous carbon, and the ratio of the fibrous carbon in the carbon fiber paper is 20% by mass or more.

[3] 酸化繊維紙を、レーザー加工により開孔処理を施して一方の面から他方の面に向かって凹状に形成されてなる非貫通孔を複数有する酸化繊維紙を得、次いで前記酸化繊維紙を不活性雰囲気下、1300〜2500℃の温度で焼成することを特徴とする、繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有する炭素繊維紙であって、非貫通孔の深さが炭素繊維紙の厚みの20〜80%であり、単位面積当りの非貫通孔の数が100〜1000個/cm2であり、厚みが50〜400μmである固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙の製造方法。 [3] Oxidized fiber paper is subjected to aperture processing by laser processing to obtain an oxidized fiber paper having a plurality of non-through holes formed in a concave shape from one surface to the other surface, and then the oxidized fiber paper Is fired at a temperature of 1300 to 2500 ° C. in an inert atmosphere, and pores having an average pore diameter of 10 to 20 μm formed between the fibers and from one surface to the other surface A carbon fiber paper having a plurality of non-through holes with an average hole diameter of 50 to 500 μm formed in a concave shape, wherein the depth of the non-through holes is 20 to 80% of the thickness of the carbon fiber paper, and per unit area A method for producing carbon fiber paper for a solid polymer electrolyte fuel cell gas diffusion layer, wherein the number of non-through holes is 100 to 1000 / cm 2 and the thickness is 50 to 400 μm.

[4] 酸化繊維紙を、レーザー加工により開孔処理を施して一方の面から他方の面にわたる貫通孔を複数有する酸化繊維紙を得、前記開孔処理を施した酸化繊維紙と、開孔処理を施していない酸化繊維紙とを貼付けることにより一方の面から他方の面に向かって凹状に形成されてなる非貫通孔を複数有する貼付型酸化繊維紙を得、次いで前記貼付型酸化繊維紙を不活性雰囲気下、1300〜2500℃の温度で焼成することを特徴とする、繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有する炭素繊維紙であって、非貫通孔の深さが炭素繊維紙の厚みの20〜80%であり、単位面積当りの非貫通孔の数が100〜1000個/cm2であり、厚みが50〜400μmである固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙の製造方法。 [4] Oxidized fiber paper is subjected to an aperture treatment by laser processing to obtain an oxidized fiber paper having a plurality of through holes extending from one surface to the other surface, and the oxidized fiber paper subjected to the aperture treatment; Affixed oxidized fiber paper having a plurality of non-through holes formed in a concave shape from one surface to the other surface is obtained by pasting the untreated oxidized fiber paper, and then the pasted oxidized fiber Paper is fired in an inert atmosphere at a temperature of 1300 to 2500 ° C., and has an average pore diameter of 10 to 20 μm formed between the fibers and from one side to the other side. Carbon fiber paper having a plurality of non-through holes with an average hole diameter of 50 to 500 μm formed in a concave shape, and the depth of the non-through holes is 20 to 80% of the thickness of the carbon fiber paper, and the unit area The number of non-through holes per 100 to 1 00 pieces / cm 2, a solid polymer electrolyte fuel cell manufacturing method of the carbon fiber paper for gas diffusion layer is a thickness of 50 to 400 [mu] m.

本発明の炭素繊維紙を、固体高分子電解質型燃料電池においてガス拡散層として用いる場合、ガス拡散層の凹状に開口された一方の面をセパレータ側に位置するように配置し、他方の面を触媒層側に位置するように配置することにより、高電流密度域及び高加湿条件から低電流密度域及び低加湿条件までの広範囲な電池反応条件下においてガス拡散層は優れた水管理能力を発揮する。   When the carbon fiber paper of the present invention is used as a gas diffusion layer in a solid polymer electrolyte fuel cell, one surface of the gas diffusion layer that is opened in a concave shape is disposed on the separator side, and the other surface is The gas diffusion layer exhibits excellent water management capability under a wide range of battery reaction conditions, from high current density and high humidification conditions to low current density and low humidification conditions, by placing it on the catalyst layer side. To do.

すなわち、一方の電池反応条件の高電流密度域及び高加湿条件下では、発生した水はガス拡散層内に形成された凹部より速やかに排出されフラッディングによる電池反応の低下を防止する。他方、低電流密度域及び低加湿条件の電池反応条件下では、貫通孔を有する炭素繊維紙をガス拡散層として用いる場合、貫通孔による供給ガスの局部的な集中による電解質膜の部分的な枯渇が起こるとともに、触媒層との接触抵抗も増大する。   That is, under the high current density region and high humidification condition of one battery reaction condition, the generated water is quickly discharged from the recess formed in the gas diffusion layer, thereby preventing the battery reaction from being lowered due to flooding. On the other hand, when the carbon fiber paper having a through hole is used as a gas diffusion layer under a battery reaction condition in a low current density region and a low humidification condition, partial depletion of the electrolyte membrane due to local concentration of supply gas through the through hole Occurs, and the contact resistance with the catalyst layer also increases.

これに対し、本発明の炭素繊維紙をガス拡散層として用いる場合、凹状に形成された孔は非貫通孔なので、低電流密度域及び低加湿条件の電池反応条件下であっても、電解質膜の部分的な枯渇を抑制することが出来るとともに、触媒層との接触抵抗の増大も抑制することができる。   On the other hand, when the carbon fiber paper of the present invention is used as a gas diffusion layer, the hole formed in a concave shape is a non-through hole, and therefore, even under battery reaction conditions in a low current density region and a low humidification condition, In addition, it is possible to suppress partial depletion of the catalyst, and to suppress an increase in contact resistance with the catalyst layer.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

図1は本発明の炭素繊維紙を固体高分子電解質型燃料電池に組込んだ一例を示す概念図であって、炭素繊維紙の一方の面から他方の面にわたる垂直な面に沿った断面図である。   FIG. 1 is a conceptual diagram showing an example in which the carbon fiber paper of the present invention is incorporated into a solid polymer electrolyte fuel cell, and is a cross-sectional view along a vertical plane extending from one surface of the carbon fiber paper to the other surface. It is.

図1に示すように、固体高分子電解質型燃料電池2は、電解質膜4、触媒層6、8からなる一対の電極、炭素繊維紙10、12からなる一対のガス拡散層、並びに、一対のセパレータ14、16を主要構成部材として、これらの部材で一つのセルが形成されている。   As shown in FIG. 1, a solid polymer electrolyte fuel cell 2 includes an electrolyte membrane 4, a pair of electrodes composed of catalyst layers 6 and 8, a pair of gas diffusion layers composed of carbon fiber paper 10 and 12, and a pair of With the separators 14 and 16 as main constituent members, one cell is formed of these members.

電解質膜4は、プロトン伝導性を持ち、その外側に、貴金属を含む触媒層6、8からなる一対の電極が配置され、その一方の触媒層6がアノードに、他方の触媒層8がカソードになる。触媒層6、8からなる電極のそれぞれの外側に、炭素繊維紙10、12からなる一対のガス拡散層が配置されている。   The electrolyte membrane 4 has proton conductivity, and a pair of electrodes including catalyst layers 6 and 8 containing a noble metal are arranged on the outside thereof, one of the catalyst layers 6 serving as an anode and the other catalyst layer 8 serving as a cathode. Become. A pair of gas diffusion layers made of carbon fiber papers 10 and 12 are arranged outside the electrodes made of the catalyst layers 6 and 8.

ガス拡散層10は、燃料である水素ガスやメタノール等を透過、拡散させる。また、ガス拡散層12は燃料が燃焼して生成した水を排水させ、且つ電極で発生した電子を集電、伝導する役割を果たす。更に、ガス拡散層10、12のそれぞれの外側に燃料や燃焼生成物等の流路(不図示)がガス拡散層10、12に接する面に設けられたセパレータ14、16が配置されている。   The gas diffusion layer 10 permeates and diffuses hydrogen gas, methanol, or the like as fuel. The gas diffusion layer 12 serves to drain water generated by combustion of fuel and collect and conduct electrons generated at the electrodes. Furthermore, separators 14 and 16 are provided on the outer surfaces of the gas diffusion layers 10 and 12, and flow paths (not shown) such as fuel and combustion products are provided on the surfaces in contact with the gas diffusion layers 10 and 12.

固体高分子電解質型燃料電池2において、触媒層6からなるアノードには水素が供給され、触媒によりプロトンが生成する。このプロトンは、電解質膜4を通り、触媒層8からなるカソードに達し、電子と結合し、水が生成する。電解質膜4のプロトンの伝導度は、膜4内の水分によって変化し、水分量が多いと伝導度は上がり、水分量が少ないと伝導度は下がる。   In the solid polymer electrolyte fuel cell 2, hydrogen is supplied to the anode formed of the catalyst layer 6, and protons are generated by the catalyst. The protons pass through the electrolyte membrane 4 and reach the cathode made of the catalyst layer 8, and combine with electrons to generate water. The proton conductivity of the electrolyte membrane 4 changes depending on the moisture in the membrane 4, and the conductivity increases when the amount of moisture is large, and decreases when the amount of moisture is small.

固体高分子電解質型燃料電池2において、水分の管理は極めて重要であり、触媒層8からなるカソードでの水の排水及び電解質膜4の保水を両立させることが必要である。   In the solid polymer electrolyte fuel cell 2, moisture management is extremely important, and it is necessary to achieve both water drainage at the cathode formed of the catalyst layer 8 and water retention of the electrolyte membrane 4.

本発明の炭素繊維紙は、繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μm、好ましくは90〜250μmの非貫通孔18とを複数有する炭素繊維紙であって、非貫通孔18の深さが炭素繊維紙の厚みの20〜80%であるので、高分子電解質型燃料電池のカソード側のガス拡散層12に用いる場合、触媒層8からなるカソードでの水の排水及び電解質膜4の保水を両立させることができる。   The carbon fiber paper of the present invention has an average pore diameter of 10 to 20 μm formed in the gap between the fibers, and an average pore diameter of 50 to 500 μm formed in a concave shape from one surface to the other surface, Preferably, the carbon fiber paper has a plurality of non-through holes 18 of 90 to 250 μm, and the depth of the non-through holes 18 is 20 to 80% of the thickness of the carbon fiber paper. When used for the gas diffusion layer 12 on the cathode side, both the drainage of water at the cathode formed of the catalyst layer 8 and the water retention of the electrolyte membrane 4 can be achieved.

非貫通孔18の深さが炭素繊維紙厚みの20%未満の場合は、炭素繊維紙内における物質移動性が低下し、例えば炭素繊維紙を高分子電解質型燃料電池用ガス拡散層電極基材に用いる場合、反応生成水を非貫通孔からスムーズに排出できなくなり、反応生成水が燃料ガスの供給を遮断するフラッディングが発生し易くなるので好ましくない。   When the depth of the non-through hole 18 is less than 20% of the thickness of the carbon fiber paper, the mass mobility in the carbon fiber paper is lowered. For example, the carbon fiber paper is used as a gas diffusion layer electrode base material for a polymer electrolyte fuel cell. When used in the above, the reaction product water cannot be smoothly discharged from the non-through holes, and the reaction product water is likely to be flooded to shut off the supply of the fuel gas.

非貫通孔18の深さが炭素繊維紙厚みの80%を超える場合は、炭素繊維紙内における物質移動性に斑が発生し、炭素繊維紙を高分子電解質型燃料電池用ガス拡散層電極基材に用いる場合、均一なガスの供給が困難となり、局所的な電解質膜の枯渇を発生せしめ、燃料電池の発電性能の低下が生じ易くなるので好ましくない。更に、炭素繊維紙自体の強度が低下する。   When the depth of the non-through hole 18 exceeds 80% of the thickness of the carbon fiber paper, unevenness occurs in the mass mobility in the carbon fiber paper, and the carbon fiber paper is used as a gas diffusion layer electrode group for a polymer electrolyte fuel cell. When used as a material, it is difficult to supply a uniform gas, which causes local depletion of the electrolyte membrane and is liable to reduce the power generation performance of the fuel cell. Furthermore, the strength of the carbon fiber paper itself is reduced.

単位面積当りの非貫通孔の数は100〜1000個/cm2が好ましく、300〜500個/cm2がより好ましい。 The number of non-through holes is preferably 100 to 1000 / cm 2 per unit area, and more preferably 300 to 500 pieces / cm 2.

本発明の炭素繊維紙は、繊維状炭素と非繊維状炭素を含む。炭素繊維紙を高分子電解質型燃料電池用ガス拡散層電極基材に用いる場合、強度、導電性を高くするため、炭素繊維紙中の繊維状炭素の割合は20質量%以上であることが好ましく、炭素繊維紙の厚みは50〜400μmであることが好ましい。   The carbon fiber paper of the present invention contains fibrous carbon and non-fibrous carbon. When carbon fiber paper is used for the gas diffusion layer electrode substrate for polymer electrolyte fuel cells, the ratio of fibrous carbon in the carbon fiber paper is preferably 20% by mass or more in order to increase strength and conductivity. The thickness of the carbon fiber paper is preferably 50 to 400 μm.

繊維状炭素は、原料酸化繊維紙中の酸化繊維に由来するものであり、非繊維状炭素は、湿式抄紙で原料酸化繊維紙を得る際に酸化繊維に混合する有機高分子に由来するものである。即ち、後述の炭素化処理において、酸化繊維は繊維状炭素になり、有機高分子は非繊維状炭素になる。   Fibrous carbon is derived from oxidized fibers in raw oxidized fiber paper, and non-fibrous carbon is derived from organic polymers mixed with oxidized fibers when obtaining raw oxidized fiber paper by wet papermaking. is there. That is, in the carbonization treatment described later, the oxidized fiber becomes fibrous carbon, and the organic polymer becomes non-fibrous carbon.

本発明の炭素繊維紙の製造方法としては、例えば、原料酸化繊維紙を、レーザー加工により開孔処理を施して一方の面から他方の面にわたる非貫通孔を複数有する酸化繊維紙を得、次いで前記酸化繊維紙を不活性雰囲気下、1300〜2500℃の温度で焼成し炭素化することにより製造することが好ましい。   As a method for producing the carbon fiber paper of the present invention, for example, raw material oxidized fiber paper is subjected to an opening treatment by laser processing to obtain an oxidized fiber paper having a plurality of non-through holes extending from one surface to the other surface, It is preferable to produce the oxidized fiber paper by baking and carbonizing at 1300 to 2500 ° C. in an inert atmosphere.

又は、酸化繊維紙を、レーザー加工により開孔処理を施して一方の面から他方の面にわたる貫通孔を複数有する酸化繊維紙を得、前記開孔処理を施した酸化繊維紙と、開孔処理を施していない酸化繊維紙とを貼付けた後、この貼付型酸化繊維紙を上記条件で炭素化する方法がある。   Alternatively, the oxidized fiber paper is subjected to an aperture treatment by laser processing to obtain an oxidized fiber paper having a plurality of through holes extending from one surface to the other surface, and the oxidized fiber paper subjected to the aperture treatment and the aperture treatment. There is a method in which the affixed oxidized fiber paper is carbonized under the above-mentioned conditions after affixed to the oxidized fiber paper not subjected to.

〔原料酸化繊維紙〕
本例の炭素繊維紙の製造用原料酸化繊維紙は、所定繊維長の酸化繊維と、有機高分子とを混合し、既存の湿式抄紙法にて得ることが出来る。酸化繊維としては、ポリアクリロニトリル(PAN)系、ピッチ系、フェノール系、レーヨン系等の酸化繊維を用いることが出来るが、酸化繊維及び得られた炭素繊維の強度特性より、PAN系酸化繊維が好ましい。有機高分子としては炭素化後の残炭率の高さから芳香族ポリアミド(アラミド)、フェノール樹脂、ポリイミド、PAN等が好適であり、液状、パウダー状、ペレット状、短繊維状、パルプ状等の形態で利用できる。
[Raw material oxidized fiber paper]
The raw material oxidized fiber paper for producing the carbon fiber paper of this example can be obtained by mixing an oxidized fiber having a predetermined fiber length and an organic polymer and using an existing wet papermaking method. Oxidized fibers such as polyacrylonitrile (PAN), pitch-based, phenol-based, rayon-based oxidized fibers can be used as the oxidized fibers, but PAN-based oxidized fibers are preferred from the strength characteristics of the oxidized fibers and the obtained carbon fibers. . As the organic polymer, aromatic polyamide (aramid), phenol resin, polyimide, PAN, etc. are suitable because of the high residual carbon ratio after carbonization, liquid, powder, pellet, short fiber, pulp, etc. Available in the form of

〔熱圧縮処理〕
上述した原料酸化繊維紙には、均質化や高嵩密度化を目的に、100〜350℃の温度下、圧力0.30〜20MPaの条件で熱圧縮処理が施されることが好ましい。その原料酸化繊維紙の嵩密度は1.0〜0.2g/cm3に制御される。
[Heat compression treatment]
The above-mentioned raw oxidized fiber paper is preferably subjected to a heat compression treatment at a temperature of 100 to 350 ° C. and a pressure of 0.30 to 20 MPa for the purpose of homogenization and high bulk density. The bulk density of the raw oxidized fiber paper is controlled to 1.0 to 0.2 g / cm 3 .

熱圧縮処理による均質化は、例えばカレンダー加工、プレス加工で行うことができる。   Homogenization by heat compression treatment can be performed, for example, by calendaring or pressing.

この熱圧縮処理の結果、酸化繊維同士は圧縮され、その圧縮により酸化繊維同士の間隙で形成される細孔径は制御される。   As a result of this heat compression treatment, the oxidized fibers are compressed, and the pore diameter formed by the gap between the oxidized fibers is controlled by the compression.

本発明においては、このようにして細孔径を制御した原料酸化繊維紙を用いて後述するレーザー加工を行う。   In the present invention, laser processing, which will be described later, is performed using the raw material oxidized fiber paper whose pore diameter is controlled in this way.

〔開孔処理〕
上記原料酸化繊維紙は、レーザー加工装置にて開孔処理を施して直径54〜540μm、100〜10000個/cm2の非貫通孔を有する酸化繊維紙にする。レーザー加工装置の種類は、YAG、CO2、半導体レーザーなどを利用することが出来る。
[Opening treatment]
The raw material oxidized fiber paper is subjected to a hole opening process with a laser processing apparatus to obtain oxidized fiber paper having a diameter of 54 to 540 μm and non-through holes of 100 to 10,000 pieces / cm 2 . As the type of the laser processing apparatus, YAG, CO 2 , a semiconductor laser, or the like can be used.

以上のように、酸化繊維紙のレーザー加工を行うことにより、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔を複数有すると共に、非貫通孔の深さが炭素繊維紙の厚みの20〜80%である酸化繊維紙を容易に得ることができる。   As described above, by carrying out laser processing of oxidized fiber paper, it has a plurality of non-through holes with an average hole diameter of 50 to 500 μm formed in a concave shape from one surface to the other surface. Oxidized fiber paper having a depth of 20 to 80% of the thickness of the carbon fiber paper can be easily obtained.

レーザー加工条件は、例えば従来公知の炭酸ガスレーザー等におけるレーザー照射条件を適宜採用できる。炭酸ガスレーザーでは、赤外線波長域にある9.3〜10.6μmの波長が一般的に使用され、エネルギーは4〜60mJが好適に使用される。   As the laser processing conditions, for example, laser irradiation conditions in a conventionally known carbon dioxide laser can be appropriately employed. In the carbon dioxide laser, a wavelength of 9.3 to 10.6 μm in the infrared wavelength region is generally used, and energy of 4 to 60 mJ is preferably used.

なお、前述のように酸化繊維紙に貫通孔を形成して多孔酸化繊維紙を得、これに無孔酸化繊維紙を貼合わせても良い。   As described above, through-holes may be formed in oxidized fiber paper to obtain porous oxidized fiber paper, and non-porous oxidized fiber paper may be bonded thereto.

〔炭素化処理〕
上記酸化繊維紙を、窒素等の不活性ガス雰囲気下、500℃付近で予備焼成する工程を経由して1300〜2500℃で焼成して炭素化し、炭素繊維紙を得る。
[Carbonization treatment]
The oxidized fiber paper is baked and carbonized at 1300 to 2500 ° C. through a step of pre-baking near 500 ° C. in an inert gas atmosphere such as nitrogen to obtain carbon fiber paper.

なお、昇温下で炭素化する場合の昇温速度は200℃/分以下が好ましい。   In addition, the temperature increase rate in the case of carbonization under temperature increase is preferably 200 ° C./min or less.

以上の製造方法で得られた炭素繊維紙は、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有すると共に、非貫通孔の深さが炭素繊維紙の厚みの20〜80%である。   The carbon fiber paper obtained by the above production method has a plurality of non-through holes with an average hole diameter of 50 to 500 μm formed in a concave shape from one surface to the other surface, and the depth of the non-through holes. Is 20 to 80% of the thickness of the carbon fiber paper.

また、この炭素繊維紙は、平均細孔径が10〜20μm、通気度が10000ml/min以上であり、その表面に膜状炭化物が形成されること無く、曲げ強さは10MPa以上である。   Moreover, this carbon fiber paper has an average pore diameter of 10 to 20 μm, an air permeability of 10,000 ml / min or more, and a bending strength is 10 MPa or more without forming a film-like carbide on the surface.

更に、この炭素繊維紙は、厚さが50〜400μm、目付が20〜180g/m2、嵩密度が0.2〜0.6g/cm3である。 Further, the carbon fiber paper has a thickness of 50 to 400 μm, a basis weight of 20 to 180 g / m 2 , and a bulk density of 0.2 to 0.6 g / cm 3 .

以下、実施例により本発明を更に具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、操作条件の評価、各物性の測定は次の方法によった。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, evaluation of operation conditions and measurement of each physical property were based on the following methods.

〔酸化繊維紙、炭素繊維紙の細孔径〕
パームポロメーター[PMI(Porous Material,Inc.)社製:商品名CFP−1100AEX]を用い、酸化繊維紙、炭素繊維紙の細孔分布を測定し、この細孔分布から体積平均細孔径を求めた。
[Pore diameter of oxidized fiber paper and carbon fiber paper]
Using a palm porometer [PMI (Porous Material, Inc.): trade name CFP-1100AEX], the pore distribution of oxidized fiber paper and carbon fiber paper is measured, and the volume average pore diameter is obtained from the pore distribution. It was.

〔酸化繊維紙、炭素繊維紙の非貫通孔〕
デジタルマイクロスコープ(KEYENCE社製:商品名VH−8000C)を用い、酸化繊維紙、炭素繊維紙の非貫通孔について諸寸法を測定し、これらの測定値から、前述の算出方法により、平均非貫通孔径、非貫通孔密度、非貫通孔真円度、非貫通孔表裏直径比を求めた。
[Non-through holes in oxidized fiber paper and carbon fiber paper]
Using a digital microscope (manufactured by KEYENCE, trade name: VH-8000C), various dimensions of non-through holes of oxidized fiber paper and carbon fiber paper were measured, and the average non-penetration was determined from these measured values by the above-described calculation method. The hole diameter, non-through hole density, non-through hole roundness, and non-through hole front / back diameter ratio were determined.

〔酸化繊維の比重〕
アルキメデス法(溶媒アセトン)により測定した。
[Specific gravity of oxidized fiber]
It was measured by the Archimedes method (solvent acetone).

〔酸化繊維紙、炭素繊維紙の厚さ〕
直径5mmの円盤状圧板で荷重1.2Nを負荷したときの厚さを測定した。
[Thickness of oxidized fiber paper and carbon fiber paper]
The thickness when a load of 1.2 N was applied with a disk-shaped pressure plate having a diameter of 5 mm was measured.

〔酸化繊維紙、炭素繊維紙の目付〕
100mm角のシートを120℃、1時間乾燥させた質量より、単位面積当たりの質量を算出した。
[Oxidized fiber paper, carbon fiber paper weight]
The mass per unit area was calculated from the mass obtained by drying a 100 mm square sheet at 120 ° C. for 1 hour.

〔酸化繊維紙、炭素繊維紙の嵩密度〕
上記条件により測定した厚さ及び目付から算出した。
[Bulk density of oxidized fiber paper and carbon fiber paper]
It was calculated from the thickness and basis weight measured under the above conditions.

〔実施例1〕
酸化繊維としてポリアクリロニトリル(PAN)系酸化繊維(平均繊維太さ2.2dtex、平均繊維長5mm、比重1.42)と、有機高分子としてアラミドファイブリッド(平均繊維長1.2mm)と、PET繊維(平均繊維太さ2.5dtex、平均繊維長5mm)とを、配合比が65/15/20質量%となるように混合し、湿式抄紙し、原料酸化繊維紙を得た。この原料酸化繊維紙を温度120℃、圧力0.5MPaの条件下にて圧縮処理することにより、目付147g/m2、厚さ320μm、嵩密度0.46g/cm3、繊維同士の間隙で形成される細孔の平均孔径17μmの酸化繊維紙を得た。
[Example 1]
Polyacrylonitrile (PAN) -based oxidized fiber (average fiber thickness 2.2 dtex, average fiber length 5 mm, specific gravity 1.42) as oxidized fiber, aramid fibrid (average fiber length 1.2 mm) as organic polymer, PET Fibers (average fiber thickness 2.5 dtex, average fiber length 5 mm) were mixed so that the blending ratio was 65/15/20% by mass, and wet papermaking was performed to obtain raw material oxidized fiber paper. This raw oxidized fiber paper is compressed at a temperature of 120 ° C. and a pressure of 0.5 MPa to form a basis weight of 147 g / m 2 , a thickness of 320 μm, a bulk density of 0.46 g / cm 3 , and a gap between fibers. An oxidized fiber paper having an average pore diameter of 17 μm was obtained.

この酸化繊維紙に、レーザー加工装置で開孔処理を施し、直径220μm、深さ240μm(酸化繊維紙の厚みの0.75%)、320個/cm2の非貫通孔を有する酸化繊維紙を得た。続いて、この酸化繊維紙を窒素ガス雰囲気下にて500℃で10分間、2000℃で10分間焼成することにより、目付75g/m2、厚さ200μm、嵩密度0.375g/cm3の炭素繊維紙が得られた。 This oxidation fiber paper, subjected to a pore-opening treatment by laser processing apparatus, the diameter 220 .mu.m, depth 240 .mu.m (0.75% of oxidized fiber sheet thickness), the oxide fiber paper having a non-through holes of 320 / cm 2 Obtained. Subsequently, the oxidized fiber paper is baked in a nitrogen gas atmosphere at 500 ° C. for 10 minutes and at 2000 ° C. for 10 minutes, whereby carbon having a basis weight of 75 g / m 2 , a thickness of 200 μm and a bulk density of 0.375 g / cm 3 is obtained. A fiber paper was obtained.

〔実施例2〕
酸化繊維紙における非貫通孔の深さを80μm(酸化繊維紙の厚みの25%)としたこと以外は実施例1と同様にして炭素繊維紙を得たところ表1に示すように、炭素繊維紙は、非貫通孔の直径が202μm、非貫通孔の深さが50μm(炭素繊維紙の厚みの25%)、非貫通孔の表面密度が400個/cm2、繊維同士の間隙で形成される細孔の平均孔径が15μmであった。
[Example 2]
Carbon fiber paper was obtained in the same manner as in Example 1 except that the depth of the non-through holes in the oxidized fiber paper was 80 μm (25% of the thickness of the oxidized fiber paper). The paper has a non-through hole diameter of 202 μm, a non-through hole depth of 50 μm (25% of the thickness of the carbon fiber paper), a non-through hole surface density of 400 pieces / cm 2 , and a gap between fibers. The average pore diameter of the fine pores was 15 μm.

〔実施例3〕
目付72g/m2、厚さ160μm、嵩密度0.45g/cm3、繊維同士の間隙で形成される細孔の平均孔径17μmの酸化繊維紙に、レーザー加工装置で開孔処理を施し、直径220μm、320個/cm2の貫通孔を有する多孔酸化繊維紙を得た。続いて、この多孔酸化繊維紙に、目付72g/m2、厚さ160μm、嵩密度0.45g/cm3、繊維同士の間隙で形成される細孔の平均孔径17μmの無孔酸化繊維紙を張り合わせた酸化繊維紙(貼付型酸化繊維紙)を得た。この貼付型酸化繊維紙を実施例1と同様に炭素化焼成することにより、目付75g/m2、厚さ200μm、嵩密度0.375g/cm3の炭素繊維紙が得られた。
Example 3
An oxidized fiber paper having a basis weight of 72 g / m 2 , a thickness of 160 μm, a bulk density of 0.45 g / cm 3 , and an average pore diameter of 17 μm formed by gaps between fibers is subjected to a hole opening treatment with a laser processing apparatus, and the diameter A porous oxidized fiber paper having through-holes of 220 μm and 320 pieces / cm 2 was obtained. Subsequently, nonporous oxidized fiber paper having a basis weight of 72 g / m 2 , a thickness of 160 μm, a bulk density of 0.45 g / cm 3 , and an average pore diameter of 17 μm of pores formed between the fibers is applied to the porous oxidized fiber paper. A laminated oxidized fiber paper (sticky oxidized fiber paper) was obtained. By carbonizing and firing this sticky-type oxidized fiber paper in the same manner as in Example 1, carbon fiber paper having a basis weight of 75 g / m 2 , a thickness of 200 μm, and a bulk density of 0.375 g / cm 3 was obtained.

得られた炭素繊維紙は、表1に示すように、非貫通孔の直径が202μm、非貫通孔の深さが100μm(炭素繊維紙の厚みの50%)、非貫通孔の表面密度が400個/cm2、繊維同士の間隙で形成される細孔の平均孔径が15μmであった。 As shown in Table 1, the obtained carbon fiber paper has a non-through hole diameter of 202 μm, a non-through hole depth of 100 μm (50% of the thickness of the carbon fiber paper), and a non-through hole surface density of 400 μm. Pieces / cm 2 , and the average pore diameter of the pores formed by the gaps between the fibers was 15 μm.

〔比較例1〕
酸化繊維紙に開孔処理を施さなかった以外は実施例1と同様にして炭素繊維紙を得たところ、炭素繊維紙は、直径50μm以上の比較的大きな孔が無く、繊維同士の間隙で形成される細孔の平均孔径が15μmのものであった。
[Comparative Example 1]
A carbon fiber paper was obtained in the same manner as in Example 1 except that the oxidized fiber paper was not subjected to opening treatment. The carbon fiber paper had no relatively large holes with a diameter of 50 μm or more and was formed in the gap between the fibers. The average pore diameter of the pores formed was 15 μm.

〔比較例2〕
酸化繊維紙における非貫通孔の深さを40μm(酸化繊維紙の厚みの12.5%)としたこと以外は実施例1と同様にして炭素繊維紙を得たところ表1に示すように、炭素繊維紙は、非貫通孔の直径が202μm、非貫通孔の深さが25μm(炭素繊維紙の厚みの12.5%)、非貫通孔の表面密度が400個/cm2、繊維同士の間隙で形成される細孔の平均孔径が15μmであった。
[Comparative Example 2]
As shown in Table 1, carbon fiber paper was obtained in the same manner as in Example 1 except that the depth of the non-through hole in the oxidized fiber paper was 40 μm (12.5% of the thickness of the oxidized fiber paper). The carbon fiber paper has a non-through hole diameter of 202 μm, a non-through hole depth of 25 μm (12.5% of the thickness of the carbon fiber paper), a non-through hole surface density of 400 / cm 2 , The average pore diameter of the pores formed by the gaps was 15 μm.

〔比較例3〕
酸化繊維紙における非貫通孔の深さを280μm(酸化繊維紙の厚みの87.5%)としたこと以外は実施例1と同様にして炭素繊維紙を得たところ表1に示すように、炭素繊維紙は、非貫通孔の直径が202μm、非貫通孔の深さが175μm(炭素繊維紙の厚みの87.5%)、非貫通孔の表面密度が400個/cm2、繊維同士の間隙で形成される細孔の平均孔径が15μmであった。
[Comparative Example 3]
As shown in Table 1, carbon fiber paper was obtained in the same manner as in Example 1 except that the depth of the non-through hole in the oxidized fiber paper was 280 μm (87.5% of the thickness of the oxidized fiber paper). The carbon fiber paper has a non-through hole diameter of 202 μm, a non-through hole depth of 175 μm (87.5% of the thickness of the carbon fiber paper), a non-through hole surface density of 400 / cm 2 , The average pore diameter of the pores formed by the gaps was 15 μm.

〔比較例4〕
酸化繊維紙の開孔処理において孔を貫通させた以外は実施例1と同様にして炭素繊維紙を得たところ表1に示すように、炭素繊維紙は、貫通孔の直径が202μm、貫通孔の深さが202μm(炭素繊維紙の厚みの100%)、貫通孔の表面密度が400個/cm2、繊維同士の間隙で形成される細孔の平均孔径が15μmであった。
[Comparative Example 4]
A carbon fiber paper was obtained in the same manner as in Example 1 except that the holes were penetrated in the opening process of the oxidized fiber paper. As shown in Table 1, the carbon fiber paper had a through-hole diameter of 202 μm and a through-hole. The depth was 202 μm (100% of the thickness of the carbon fiber paper), the surface density of the through holes was 400 / cm 2 , and the average pore diameter of the pores formed by the gaps between the fibers was 15 μm.

Figure 2009211928
Figure 2009211928

〔評価例〕
実施例1〜3で得られた炭素繊維紙を用いて、固体高分子電解質型燃料電池用ガス拡散層電極基材を作製し、電極基材としての評価テストを、表2に示す高加湿条件下、低加湿条件下について行った。その結果、実施例1〜3で得られた炭素繊維紙の何れについても、図2〜3に示すように、高加湿条件下でも低加湿条件下でも、高い電流密度まで電圧の落ち込みが見られず、広い電流密度域で高い電池性能が維持できている。
[Evaluation example]
Using the carbon fiber paper obtained in Examples 1 to 3, a gas diffusion layer electrode base material for a solid polymer electrolyte fuel cell was prepared, and an evaluation test as an electrode base material was performed under the high humidification conditions shown in Table 2. Below, it carried out on the low humidification conditions. As a result, for any of the carbon fiber papers obtained in Examples 1 to 3, as shown in FIGS. 2 to 3, a voltage drop was observed up to a high current density under both high and low humidification conditions. However, high battery performance can be maintained in a wide current density range.

比較例1〜2で得られた炭素繊維紙を用いて、同様の評価テストを行った結果、何れの炭素繊維紙についても、高加湿条件下において低い電流密度で電圧の落ち込みが見られ、電池性能は低いものであった。
反応生成水の排出が十分でなく、電極機材として満足のいく結果が得られなかった。
As a result of performing the same evaluation test using the carbon fiber paper obtained in Comparative Examples 1 and 2, a voltage drop was observed at a low current density under high humidification conditions for any of the carbon fiber papers. The performance was low.
The reaction product water was not sufficiently discharged, and satisfactory results were not obtained as electrode equipment.

比較例3〜4で得られた炭素繊維紙を用いて、同様の評価テストを行った結果、何れの炭素繊維紙についても、低加湿条件下において低い電流密度で電圧の落ち込みが見られ、電池性能は低いものであった。   As a result of performing the same evaluation test using the carbon fiber paper obtained in Comparative Examples 3 to 4, a voltage drop was observed at a low current density under low humidification conditions for any carbon fiber paper, and the battery The performance was low.

Figure 2009211928
Figure 2009211928

本発明の炭素繊維紙を固体高分子電解質型燃料電池に組込んだ一例を示す概念図であって、炭素繊維紙の一方の面から他方の面にわたる垂直な面に沿った断面図である。It is a conceptual diagram which shows an example which incorporated the carbon fiber paper of this invention in the solid polymer electrolyte fuel cell, Comprising: It is sectional drawing along the perpendicular | vertical surface ranging from one surface of carbon fiber paper to the other surface. 実施例1〜3、比較例1〜4についての高加湿条件下における固体高分子電解質型燃料電池の電流密度に対する電圧の変化を示したグラフである。It is the graph which showed the change of the voltage with respect to the current density of the solid polymer electrolyte type fuel cell in the highly humidified condition about Examples 1-3 and Comparative Examples 1-4. 実施例1〜3、比較例1〜4についての低加湿条件下における固体高分子電解質型燃料電池の電流密度に対する電圧の変化を示したグラフである。It is the graph which showed the change of the voltage with respect to the current density of the polymer electrolyte fuel cell in low humidification conditions about Examples 1-3 and Comparative Examples 1-4.

符号の説明Explanation of symbols

2 固体高分子電解質型燃料電池
4 電解質膜
6、8 触媒層
10、12 炭素繊維紙
14、16 セパレータ
18 非貫通孔
2 Solid Polymer Electrolyte Fuel Cell 4 Electrolyte Membrane 6, 8 Catalyst Layer 10, 12 Carbon Fiber Paper 14, 16 Separator 18 Non-Through Hole

Claims (4)

繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有する炭素繊維紙であって、非貫通孔の深さが炭素繊維紙の厚みの20〜80%であり、単位面積当りの非貫通孔の数が100〜1000個/cm2であり、厚みが50〜400μmである固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙。 Carbon having a plurality of pores having an average pore diameter of 10 to 20 μm formed by gaps between fibers and non-through holes having an average pore diameter of 50 to 500 μm formed in a concave shape from one surface to the other surface Fiber paper, wherein the depth of the non-through holes is 20 to 80% of the thickness of the carbon fiber paper, the number of non-through holes per unit area is 100 to 1000 / cm 2 , and the thickness is 50 to Carbon fiber paper for a solid polymer electrolyte fuel cell gas diffusion layer having a thickness of 400 μm. 炭素繊維紙が、繊維状炭素と非繊維状炭素を含み、炭素繊維紙中の繊維状炭素の割合が20質量%以上である請求項1に記載の炭素繊維紙。 The carbon fiber paper according to claim 1, wherein the carbon fiber paper contains fibrous carbon and non-fibrous carbon, and the ratio of the fibrous carbon in the carbon fiber paper is 20% by mass or more. 酸化繊維紙を、レーザー加工により開孔処理を施して一方の面から他方の面に向かって凹状に形成されてなる非貫通孔を複数有する酸化繊維紙を得、次いで前記酸化繊維紙を不活性雰囲気下、1300〜2500℃の温度で焼成することを特徴とする、繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有する炭素繊維紙であって、非貫通孔の深さが炭素繊維紙の厚みの20〜80%であり、単位面積当りの非貫通孔の数が100〜1000個/cm2であり、厚みが50〜400μmである固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙の製造方法。 Oxidized fiber paper is subjected to aperture processing by laser processing to obtain oxidized fiber paper having a plurality of non-through holes formed in a concave shape from one surface to the other surface, and then the oxidized fiber paper is inactivated It is fired at a temperature of 1300 to 2500 ° C. in an atmosphere, and is formed with pores having an average pore diameter of 10 to 20 μm formed by the gap between the fibers and concave from one surface to the other surface. Carbon fiber paper having a plurality of non-through holes with an average pore diameter of 50 to 500 μm, wherein the depth of the non-through holes is 20 to 80% of the thickness of the carbon fiber paper, and the non-through holes per unit area The manufacturing method of the carbon fiber paper for solid polymer electrolyte type fuel cell gas diffusion layers whose number of holes is 100-1000 piece / cm < 2 >, and whose thickness is 50-400 micrometers. 酸化繊維紙を、レーザー加工により開孔処理を施して一方の面から他方の面にわたる貫通孔を複数有する酸化繊維紙を得、前記開孔処理を施した酸化繊維紙と、開孔処理を施していない酸化繊維紙とを貼付けることにより一方の面から他方の面に向かって凹状に形成されてなる非貫通孔を複数有する貼付型酸化繊維紙を得、次いで前記貼付型酸化繊維紙を不活性雰囲気下、1300〜2500℃の温度で焼成することを特徴とする、繊維同士の間隙で形成される平均孔径が10〜20μmの細孔と、一方の面から他方の面に向かって凹状に形成されてなる平均孔径が50〜500μmの非貫通孔とを複数有する炭素繊維紙であって、非貫通孔の深さが炭素繊維紙の厚みの20〜80%であり、単位面積当りの非貫通孔の数が100〜1000個/cm2であり、厚みが50〜400μmである固体高分子電解質型燃料電池ガス拡散層用炭素繊維紙の製造方法。 Oxidized fiber paper is subjected to an aperture treatment by laser processing to obtain an oxidized fiber paper having a plurality of through holes extending from one surface to the other surface, and the oxidized fiber paper subjected to the aperture treatment and the aperture treatment are performed. By attaching non-oxidized fiber paper, a sticky-type oxidized fiber paper having a plurality of non-through holes formed in a concave shape from one surface to the other surface is obtained. Baking at a temperature of 1300 to 2500 ° C. in an active atmosphere, pores having an average pore diameter of 10 to 20 μm formed by the gap between the fibers, and concave from one surface to the other surface A carbon fiber paper having a plurality of non-through holes with an average pore diameter of 50 to 500 μm formed, the depth of the non-through holes being 20 to 80% of the thickness of the carbon fiber paper, The number of through holes is 100 to 1000 / Cm < 2 >, The manufacturing method of the carbon fiber paper for solid polymer electrolyte type fuel cell gas diffusion layers which is 50-400 micrometers in thickness.
JP2008053488A 2008-03-04 2008-03-04 Carbon fiber paper and method of manufacturing the same Pending JP2009211928A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008053488A JP2009211928A (en) 2008-03-04 2008-03-04 Carbon fiber paper and method of manufacturing the same
PCT/JP2009/053962 WO2009110467A1 (en) 2008-03-04 2009-03-03 Carbon fiber paper and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053488A JP2009211928A (en) 2008-03-04 2008-03-04 Carbon fiber paper and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009211928A true JP2009211928A (en) 2009-09-17

Family

ID=41056021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053488A Pending JP2009211928A (en) 2008-03-04 2008-03-04 Carbon fiber paper and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP2009211928A (en)
WO (1) WO2009110467A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098530A1 (en) 2013-12-27 2015-07-02 東レ株式会社 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precurser fibers
JP2015143405A (en) * 2013-12-27 2015-08-06 東レ株式会社 Carbon fiber nonwoven fabric and method for producing carbon fiber nonwoven fabric
JP2015159058A (en) * 2014-02-25 2015-09-03 東レ株式会社 Gas diffusion electrode base material and fuel cell using the same
KR20210107201A (en) * 2020-02-21 2021-09-01 한국과학기술원 Ditch-Structured Microporous Layer for Polymer Electrolyte Fuel Cell Prepared by Laser Ablation and Gas Diffusion Layer Comprising The Same
US11444291B2 (en) 2018-03-01 2022-09-13 Toyota Jidosha Kabushiki Kaisha Gas diffusion layer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096385A (en) * 2009-10-27 2011-05-12 Toppan Printing Co Ltd Gas diffusion layer for cathode and method of manufacturing the same
JP5485358B2 (en) * 2012-01-06 2014-05-07 三菱レイヨン株式会社 Gas diffusion layer for polymer electrolyte fuel cells
JP5761441B2 (en) * 2013-12-27 2015-08-12 東レ株式会社 Carbon fiber nonwoven fabric
US11302951B2 (en) * 2016-12-01 2022-04-12 Toray Industries, Inc. Electrode and redox flow battery
DE102020202637A1 (en) * 2020-03-02 2021-09-02 Robert Bosch Gesellschaft mit beschränkter Haftung Distribution structure for a fuel cell with anisotropic gas diffusion coefficient
CN111682227B (en) * 2020-07-06 2022-04-12 山东交通学院 A kind of preparation method of diffusion layer for fuel cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152584A (en) * 2002-10-30 2004-05-27 Toray Ind Inc Gas diffuser, membrane-electrode assembly and fuel cell
JP2005038738A (en) * 2003-07-16 2005-02-10 Mitsubishi Rayon Co Ltd Gas diffusion layer electrode substrate, method for producing the same, and polymer electrolyte fuel cell
JP2006004787A (en) * 2004-06-18 2006-01-05 Nitto Denko Corp Gas diffusion membrane for solid polymer electrolyte fuel cell
JP2006331786A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Fuel cell electrode material and method for producing the same
JP2007042435A (en) * 2005-08-03 2007-02-15 Toyota Motor Corp Diffusion layer, membrane / electrode assembly and fuel cell
JP2007080742A (en) * 2005-09-15 2007-03-29 Toho Tenax Co Ltd Carbon fiber sheet for solid polymer electrolyte fuel cell and its manufacturing method
JP2008041348A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Polymer electrolyte fuel cell and its manufacturing method
KR100888193B1 (en) * 2007-07-24 2009-03-12 한국과학기술원 A fuel cell comprising a gas diffusion layer, a method of manufacturing the same, and a gas diffusion layer manufactured by the method.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015098530A1 (en) 2013-12-27 2015-07-02 東レ株式会社 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precurser fibers
JP2015143405A (en) * 2013-12-27 2015-08-06 東レ株式会社 Carbon fiber nonwoven fabric and method for producing carbon fiber nonwoven fabric
KR20160102969A (en) 2013-12-27 2016-08-31 도레이 카부시키가이샤 Carbon fiber nonwoven fabric, production method for carbon fiber nonwoven fabric, and nonwoven fabric of carbon fiber precurser fibers
TWI641180B (en) * 2013-12-27 2018-11-11 東麗股份有限公司 Carbon fiber nonwoven fabric, manufacturing method of carbon fiber nonwoven fabric, and carbon fiber precursor fiber nonwoven fabric
JP2015159058A (en) * 2014-02-25 2015-09-03 東レ株式会社 Gas diffusion electrode base material and fuel cell using the same
US11444291B2 (en) 2018-03-01 2022-09-13 Toyota Jidosha Kabushiki Kaisha Gas diffusion layer
KR20210107201A (en) * 2020-02-21 2021-09-01 한국과학기술원 Ditch-Structured Microporous Layer for Polymer Electrolyte Fuel Cell Prepared by Laser Ablation and Gas Diffusion Layer Comprising The Same
KR102325855B1 (en) * 2020-02-21 2021-11-15 한국과학기술원 Ditch-Structured Microporous Layer for Polymer Electrolyte Fuel Cell Prepared by Laser Ablation and Gas Diffusion Layer Comprising The Same

Also Published As

Publication number Publication date
WO2009110467A1 (en) 2009-09-11

Similar Documents

Publication Publication Date Title
JP2009211928A (en) Carbon fiber paper and method of manufacturing the same
US10256477B2 (en) Gas diffusion electrode substrate
US10854887B2 (en) Carbon sheet, gas diffusion electrode substrate and fuel cell
TWI644477B (en) Gas diffusion electrode substrate, membrane electrode assembly having the same, and fuel cell
JP6287490B2 (en) Polymer electrolyte fuel cell
JP5987484B2 (en) Gas diffusion electrode substrate and method for producing the same
US10957916B2 (en) Porous carbon sheet and precursor fiber sheet thereof
CA2962722C (en) Carbon sheet, gas diffusion electrode substrate and fuel cell
JP6743805B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
CA2977344A1 (en) Porous carbon electrode substrate, method for manufacturing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
CA2997688C (en) Carbon sheet, gas diffusion electrode substrate, wound body, and fuel cell
JP2017139219A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
JP2013004214A (en) Method for producing gas diffusion electrode base material
JP2017182900A (en) Carbon sheet, gas diffusion electrode base material, and fuel cell
JP2008190072A (en) Carbon fiber paper and method for producing the same